1
Eddy Heat Fluxes across the Antarc4c Circumpolar Current in Northern Drake Passage D. Randolph WaAs 1 , Karen L. Tracey 1 , Kathleen A. Donohue 1 , Teresa K. Chereskin 2 1 Graduate School of Oceanography, University of Rhode Island, USA (Email: [email protected]) 2 Scripps Ins4tu4on of Oceanography, University of California San Diego, USA hAp://www.cdrake.org 1. Local dynamics array 2. Method to iden4fy divergent eddy heat fluxes 6. Context / Summary References and Acknowledgments Overview 5. Time series & case study Session O21A # 1655 THE UNIVERSITY OF RHODE ISLAND GRADUATE SCHOOL OF OCEANOGRAPHY See also Bishop, S.P. AGU Fall Mee4ng Session OS21A, poster #1657. Bryden, H. (1979) JMR 37, 122. Lenn, YD., T.Chereskin, J.Sprintall, and J.McClean (2011) JPO 41, 13851407. Marshall, J., and G. ShuAs (1981) JPO 11, 16771680. Phillips, H., and S.Rintoul (2000) JPO 30, 30503076. cDrake is funded by US Na4onal Science Founda4on Grants ANT0635437 and ANT0636493. 3. Fouryear mapped EHF/DEHF fields For ocean mesoscale eddy heat fluxes, the dynamically important component is the divergent field, because it modifies its environment, whereas the nondivergent component just recirculates. Helmholtz showed that vector fields are uniquely separable into nondivergent and divergent parts. Divergent eddy heat fluxes are driven by nearly depthindependent geostrophic eddy currents that can cross the temperature front. * mesoscaleresolving 24 current and pressure recording inverted echo sounders (CPIES) * 3D maps of temperature and geostrophic current vector, T, u * 4years, 11/0711/11 * in maximum SSH variance region between SAF and PF depth (m) 5000 4000 3000 2000 1000 0 SAF PF 64 o W 62 o W 60 o W 62 o S 60 o S 58 o S 56 o S Marshall and ShuAs (JPO, 1981) discussed the importance of separa4ng nondivergent and divergent eddy fluxes. They presented a method to separate them if the mean flow is nearly along temperature contours, sa4sfying approximately, ψ ≈ ψ(T). The nondivergent part recirculates EHF around <T’ 2 > = EPE extrema. φ + φ - u = u bc + u bt u bt u bc Absolute geostrophic currents u are the vector sum of a ver4callyaligned baroclinic current, u bc , and a nearly depthindependent reference current called the barotropic current, u bt , measured at 4000m depth. White contours = SSH variance * CPIES mapped eddy heat fluxes (EHF) { u ’T’ = u bc T’ + u bt T’ } × (ρ o C p ) * flux divergence is dynamically important ++ modifies the T and EPE fields ++ nondivergent part just recirculates * baroclinic part is nondivergent, .<u bc T’> = 0 ++ u bc carries no heat across front *<u bt T’> contains all dynamically important EHF ++ a major part is s4ll nondivergent 20 24 24 1 DEC 2007 20 24 24 7 DEC 2007 20 24 24 13 DEC 2007 20 20 24 0.05 ° C m s 1 0.05 ° C m s 1 0.05 ° C m s 1 19 DEC 2007 dbar 0.4 0.2 0 0.2 0.4 7 DEC 2007 20 cm s 1 65°W 63°W 61°W 58°S 57°S 56°S dbar 0.4 0.2 0 0.2 0.4 4. Ver4cal structure Upper and deep flow fields. On this day a SAF meander crest and trough had deep HI and LO, offset ~λ/4 downstream. In circled region currents turned with depth as u bt crossed the baroclinic front. Black contours: ϕ baroclinic stream func4on Gray contours: SSH from satellite al4metry Colorbar: P’ at 4000 dbar Vectors: current at 4000 dbar All five panels : 4yr mean eddy heat flux fields at 400m; DEHF vectors enlarged (boAom right). (All four 1yr mean fields are remarkably similar.) Top :<u T’> tends to be high where EKE is high; sum of ‘bc’ and ‘bt’ parts, shown in next row. Bo7om right : DEHF overlaid on mean baroclinic stream func4on (geopoten4al). Downgradient DEHFs (green shading) systema4cally occur along mean cresttotrough segment between SAF and PF; peak values ~ of others. • strongest sites have same sign toptoboAom • peaked in 200400m at 4x10 3 o Cm/s (15KW/m 2 ) • 50% of flux below 700m • contrast total EHF at 400m is ~75kW/m 2 ~5x larger DEHFs at six sites chosen to represent strong and weak down and upgradient fluxes. Meridional DEHF 4me series at site 2 typifies all six sites. The mean accumulates from many episodic shortlived events. The short integral 4me scale ~4 days accounts for why 1yr means are similar. This case exemplifies rapid growth of a SAF meander crest (A) that jointly steepens with deep an4cyclone. (B) is a canonical example of BC instability with upper crest and trough led (~λ/4) by deep high and low pressure centers; note strong poleward DEHFs. (C) intensifies further, becoming more ver4cally aligned. (D) shows a separated ring, characterized by mature ver4callyaligned current structure and thereaer liAle heat flux. Poleward DEHFs arise from ~8 southward crests of the warmer SAF steepening jointly with a deep an4cyclone, as illustrated in the casestudy map sequence . Addi4onal ~3 poleward peaks arise when northward troughs of the colder PF develop. Casestudy daily snapshots at 6d interval in December 2007, during poleward peak DEHF . Geopoten4al ( ϕ 0 re 4000 dbar ) solid contours; proxy SSH for SAF and PF (gray contours); deep reference current (gray vectors) and P 4000 (colorbar). Green arrows: DEHF at same six sites. contrast <u bt T’> at 400m are ~5 4mes larger, poleward but mainly nondivergent contrast <u T’> have similarly large magnitude, but in recircula4ng direc4ons Compare Phillips & Rintoul (2000) south of Australia ver4cal average EHF in shear coordinates 11.3kW/m 2 (ver4cal integral ~40 MW/m). Compare Bryden (1979) Drake P average EHF = 0.16cal/cm 2 s = 6.7 kW/m 2 at 2700m. Compare Lenn, et al. (2011) Drake P XBT +SADCP transects, poleward EHFs in top 300m up to 290±80 kW/m 2 (incl Ekman) calculated rela4ve mean stream coordinates. None separate DEHFs from EHFs. The mean poleward DEHF peaks are associated with several events per year of strong meander growth; the strongest events result in ring forma4on. The growth is generated by joint interac4on with deep eddies, with phaseoffset such that their currents cross the baroclinic front and release APE consistent with BC instability. This process drives the eddy variability and drives the poleward DEHF. 1500 600 200 4000 D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N 0.1 0.05 0 0.05 0.1 2008 2009 2010 2011 Location 2; 400 m mean = 3.56e03 v bt T div (m s 1 °C) poleward equatorward uT 0.025 ° C m s 1 65°W 63°W 61°W 57.5°S 56.5°S Surface EKE (m 2 s 2 ) 2 2.5 3 3.5 x 10 3 u btT 0.025 ° C m s 1 Depth (m) 5000 4000 3000 2000 1000 0 u bcT 0.025 ° C m s 1 T2 (C2) 0 0.2 0.4 0.6 0.8 u btT div 0.0125 ° C m s 1 Middle :<u bc T’> (purely nondivergent) recirculates around <T’ 2 > extrema; equatorward in many sectors. <u bt T’>, bathymetry, and SSH variance (white contours). <u bt T’> is high and poleward near SFZ where SSH variance is high. Its nondivergent and divergent components shown next row. Bo7om le= :<u bt T’> nondiv is the larger component roughly parallel to <T’ 2 >; also resembles mean 4000 m flow (not shown). A B C D Observed 4yr mean divergent eddy heat fluxes (DEHF) in the Drake Passage are stable es4mates. The strongest DEHFs occur immediately downstream of Shackleton Fracture Zone (SFZ, topographic ridge) between the Subantarc4c Front (SAF) and Polar Front (PF), where meanders and deep eddies jointly develop rapidly via baroclinic instability, and rings pinch off, and SSH variability is highest. * Divergent eddy flux must be es4mated as residual aer OA mapping the nondivergent part of EHF Peak mean downgradient DEHF at 400m is (3.6±1.2)x10 3 ( o Cm/s) ≈ 15 kW/m 2 Ver4cally integrated poleward DEHF is 619 MW/m across the front (sites 1,2,3). 5 0 5 x 10 3 4000 3500 3000 2500 2000 1500 1000 500 0 C m s 1 n· u btT div ( Cms -1 ) 1 2 3 4 5 6 1 2 3 4 5 6 u btT nondiv 0.025 ° C m s 1

Watts DrakeEHFs AGU F2012 poster-size · Title: Watts_DrakeEHFs_AGU_F2012_poster-size.pptx Author: DRandolph Watts Created Date: 11/29/2012 7:37:24 PM

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Watts DrakeEHFs AGU F2012 poster-size · Title: Watts_DrakeEHFs_AGU_F2012_poster-size.pptx Author: DRandolph Watts Created Date: 11/29/2012 7:37:24 PM

Eddy  Heat  Fluxes  across  the  Antarc4c  Circumpolar  Current  in  Northern  Drake  Passage  

D.  Randolph  WaAs1,  Karen  L.  Tracey1,  Kathleen  A.  Donohue1,  Teresa  K.  Chereskin2      

1Graduate  School  of  Oceanography,  University  of  Rhode  Island,  USA                  (E-­‐mail:  [email protected])  2Scripps  Ins4tu4on  of  Oceanography,  University  of  California  San  Diego,  USA                            hAp://www.cdrake.org  

1.  Local  dynamics  array   2.  Method  to  iden4fy  divergent  eddy  heat  fluxes  

6.  Context  /  Summary    

References  and  Acknowledgments  

Overview    

5.  Time  series  &  case  study  

Session  O21A  #  1655  

       THE  

   UNIVERSITY          OF  RHODE  ISLAND            GRADUATE  SCHOOL          OF  OCEANOGRAPHY      

è  See  also  Bishop,  S.P.  AGU  Fall  Mee4ng  Session  OS21A,  poster  #1657.  Bryden,  H.  (1979)  JMR  37,  1-­‐22.    Lenn,  Y-­‐D.,  T.Chereskin,  J.Sprintall,  and  J.McClean  (2011)  JPO  41,  1385-­‐1407.  Marshall,  J.,  and  G.  ShuAs  (1981)  JPO  11,  1677-­‐1680.  Phillips,  H.,  and  S.Rintoul  (2000)  JPO  30,  3050-­‐3076.        è  cDrake  is  funded  by  US  Na4onal  Science  Founda4on  Grants  ANT-­‐0635437  and  ANT-­‐0636493.  

3.  Four-­‐year  mapped  EHF/DEHF  fields  

For  ocean  mesoscale  eddy  heat  fluxes,  the  dynamically  important  component  is  the  divergent  field,  because  it  modifies  its  environment,  whereas  the  non-­‐divergent  component  just  recirculates.    Helmholtz  showed  that  vector  fields  are  uniquely  separable  into  non-­‐divergent  and  divergent  parts.    Divergent  eddy  heat  fluxes  are  driven  by  nearly  depth-­‐independent  geostrophic  eddy  currents  that  can  cross  the  temperature  front.  

*  mesoscale-­‐resolving  24  current  and  pressure  recording  inverted  echo  sounders  (CPIES)    *  3D  maps  of  temperature  and  geostrophic  current  vector,  T,  u    *  4-­‐years,  11/07-­‐11/11  *  in  maximum  SSH  variance  region    between  SAF  and  PF    

dept

h (m

)

−5000

−4000

−3000

−2000

−1000

0SAF

PF

64oW 62oW 60oW

62oS

60oS

58oS

56oS

Marshall  and  ShuAs  (JPO,  1981)  discussed  the  importance  of  separa4ng  non-­‐divergent  and  divergent  eddy  fluxes.  They  presented  a  method  to  separate  them  if  the  mean  flow  is  nearly  along  temperature  contours,  sa4sfying  approximately,        ψ  ≈  ψ(T).  The  non-­‐divergent  part  recirculates  EHF  around  <T’2>  =  EPE  extrema.  

φ+  φ-  

u  =  ubc  +  ubt  

ubt  

 ubc  

Absolute  geostrophic  currents  u  are  the  vector  sum  of  a  ver4cally-­‐aligned  baroclinic  current,  ubc,  and  a    nearly  depth-­‐independent  reference  current  called  the    barotropic  current,  ubt,  measured  at  4000m  depth.      

White  contours  =  SSH  variance  

*  CPIES  mapped  eddy  heat  fluxes  (EHF)                  {      u’T’  =  u’bcT’  +  u’btT’              }  ×  (ρoCp)  *  flux  divergence  is  dynamically  important                    ++      modifies  the  T  and  EPE  fields                  ++      non-­‐divergent  part  just  recirculates    

*  baroclinic  part  is  non-­‐divergent,  ∇.<ubcʹ′T’>  =  0                    ++      ubc  carries  no  heat  across  front  *  <u’btT’>    contains  all  dynamically  important  EHF                  ++      a  major  part  is  s4ll  non-­‐divergent    

20

24

24

1 DEC 2007

20

24

24

7 DEC 2007

20

24

24

13 DEC 2007

20

2024

0.05 ° C m s−10.05 ° C m s−10.05 ° C m s−1

19 DEC 2007

dbar−0.4−0.2 0 0.20.4

7 DEC 2007

20 cm s−1

65°W 63°W 61°W

58°S

57°S

56°S

dbar−0.4−0.2 0 0.2 0.4

4.  Ver4cal  structure  

Upper  and  deep  flow  fields.  On  this  day  a  SAF  meander  crest  and  trough  had  deep  HI  and  LO,  offset    ~λ/4  downstream.  In  circled  region  currents  turned  with  depth  as  ubt  crossed  the  baroclinic  front.    Black  contours:  ϕ  baroclinic  stream  func4on  Gray  contours:  SSH  from  satellite  al4metry  Colorbar:  P’  at  4000  dbar  Vectors:  current  at  4000  dbar  

All  five  panels:  4-­‐yr  mean  eddy  heat  flux  fields  at  400m;  DEHF  vectors  enlarged  (boAom  right).    (All  four  1-­‐yr  mean  fields  are  remarkably  similar.)    

Top:  <uʹ′T’>  tends  to  be  high  where  EKE  is  high;    sum  of  ‘bc’  and  ‘bt’  parts,  shown  in  next  row.  

Bo7om  right:  DEHF  overlaid  on  mean  baroclinic  stream  func4on  (geopoten4al).  Downgradient  DEHFs  (green  shading)  systema4cally  occur  along  mean  crest-­‐to-­‐trough  segment  between  SAF  and  PF;  peak  values  ~  ⅕  of  others.    

•  strongest  sites  have  same  sign  top-­‐to-­‐boAom  

•  peaked  in  200-­‐400m  at  4x10-­‐3  oCm/s  (15KW/m2)  

•  50%  of  flux  below  700m        •  contrast  total  EHF  at  

400m  is  ~75kW/m2          ~5x  larger  

DEHFs  at  six  sites  chosen  to  represent  strong  and  weak  down-­‐  and  up-­‐gradient  fluxes.      

Meridional  DEHF  4me  series  at  site  2  typifies  all  six  sites.  The  mean  accumulates  from  many  episodic  short-­‐lived  events.  The  short  integral  4me  scale  ~4  days  accounts  for  why  1-­‐yr  means  are  similar.    

This  case  exemplifies  rapid  growth  of  a  SAF  meander  crest  (A)  that  jointly  steepens  with  deep  an4cyclone.    (B)  is  a  canonical  example  of  BC  instability  with  upper  crest  and  trough  led  (~λ/4)  by  deep  high  and  low  pressure  centers;  note  strong  poleward  DEHFs.    (C)  intensifies  further,  becoming  more  ver4cally  aligned.    (D)  shows  a  separated  ring,  characterized  by  mature  ver4cally-­‐aligned  current  structure  and  therea�er  liAle  heat  flux.  

Poleward  DEHFs  arise  from  ~8  southward  crests  of  the  warmer  SAF  steepening  jointly  with  a  deep  an4cyclone,  as  illustrated  in  the  case-­‐study  map  sequence  .    Addi4onal  ~3  poleward  peaks  arise  when  northward  troughs  of  the  colder  PF  develop.    

Case-­‐study  daily  snapshots  at  6-­‐d  interval  in  December  2007,  during  poleward  peak  DEHF  .    Geopoten4al  (  ϕ0  re  4000  dbar)  solid  contours;  proxy  SSH  for  SAF  and  PF  (gray  contours);  deep  reference  current  (gray  vectors)  and  P4000  (colorbar).    Green  arrows:  DEHF  at  same  six  sites.  

     -­‐contrast  <ubtʹ′T’>  at  400m  are  ~5  4mes  larger,  poleward  but  mainly  non-­‐divergent          -­‐contrast  <uʹ′T’>  have  similarly  large  magnitude,  but  in  recircula4ng  direc4ons    

Ver4cally  integrated  poleward  DEHF  is  6-­‐19  MW/m  across  the  front  (sites  1,2,3).    

Compare  Phillips  &  Rintoul  (2000)  south  of  Australia  ver4cal  average  EHF  in  shear  coordinates  11.3kW/m2  (ver4cal  integral  ~40  MW/m).    Compare  Bryden  (1979)  Drake  P  average  EHF  =  0.16cal/cm2s  =  6.7  kW/m2  at  2700m.  Compare  Lenn,  et  al.  (2011)  Drake  P  XBT  +SADCP  transects,  poleward  EHFs  in  top    300m  up  to  290±80  kW/m2  (incl  Ekman)  calculated  rela4ve  mean  stream  coordinates.    None  separate  DEHFs  from  EHFs.  

The  mean  poleward  DEHF  peaks  are  associated  with  several  events  per  year  of  strong  meander  growth;  the  strongest  events  result  in  ring  forma4on.    The  growth  is  generated  by  joint  interac4on  with  deep  eddies,  with  phase-­‐offset  such  that  their  currents  cross  the  baroclinic  front  and  release  APE  consistent  with  BC  instability.  This  process  drives  the  eddy  variability  and  drives  the  poleward  DEHF.  

1500  

600  

200  

4000  

D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N−0.1

−0.05

0

0.05

0.1

2008 2009 2010 2011

Location 2; 400 m

mean = −3.56e−03

v btʹ′Tʹ′ di

v (m s−1

°C)

poleward  

equatorward  

u!T ! 0.025 ° C m s−1

65°W 63°W 61°W

57.5°S

56.5°S

Surface EKE (m2 s−2)2 2.5 3 3.5

x 10−3

u!

b tT ! 0.025 ° C m s−1

Depth (m)−5000 −4000 −3000 −2000 −1000 0

u!

b cT! 0.025 ° C m s−1

T ! 2 ( !C 2)

0 0.2 0.4 0.6 0.8

u!

b tT! 0.025 ° C m s−1

100 125 150 175 200 225 250 275 300 325

SSH! 2 (cm2)

u!

b tT ! d iv 0.0125 ° C m s−1

Middle:  <ubcʹ′T’>  (purely  nondivergent)  recirculates  around  <T’2>  extrema;  equatorward  in  many  sectors.      

<ubtʹ′T’>,  bathymetry,  and  SSH  variance  (white  contours).  <ubtʹ′T’>  is  high  and  poleward  near  SFZ  where  SSH  variance  is  high.  Its  non-­‐divergent  and  divergent  components  shown  next  row.      

Bo7om  le=:  <ubtʹ′T’>nondiv  is  the  larger  component  roughly  parallel  to  <T’2>;  also  resembles  mean  4000  m  flow  (not  shown).    

A   B   C   D  

Observed     4-­‐yr  mean   divergent   eddy   heat   fluxes   (DEHF)   in   the   Drake   Passage   are   stable   es4mates.   The  strongest   DEHFs   occur   immediately   downstream   of   Shackleton   Fracture   Zone   (SFZ,   topographic   ridge)  between  the  Subantarc4c  Front  (SAF)  and  Polar  Front  (PF),  where  meanders  and  deep  eddies  jointly  develop  rapidly  via  baroclinic  instability,  and  rings  pinch  off,  and    SSH  variability  is  highest.        

*  Divergent  eddy  flux  must  be  es4mated  as  residual  a�er  OA  mapping  the  non-­‐divergent  part  of  EHF    

Peak  mean  downgradient  DEHF  at  400m  is  (3.6±1.2)x10-­‐3  (oCm/s)  ≈  15  kW/m2  

Ver4cally  integrated  poleward  DEHF  is  6-­‐19  MW/m  across  the  front  (sites  1,2,3).        

−5 0 5x 10−3

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

C m s−1

n · u!

b tT!d i v

(!Cms" 1)

123456

1 2

34

5 6

u!

b tT! n ond iv 0.025 ° C m s−1

T ! 2 ( !C 2)

0 0.2 0.4 0.6 0.8