1
Watkins Research Group Graduate students: Yiliang Zhou, Benjamin Yavitt, Wenhao Li, Gayathri Kopanati, Xiyu Hu, Sravya Nuguri, Vincent Einck, Hsin-Jung Yu Postdocs & staff: Janghoon Park, Jacobo Morère Rodriguez, Hua-Feng Fei, Yuying Tang, Uzodinma Okoroanyanwu Polymer Science and Engineering ~ University of Massachusetts Amherst Our team is comprised of graduate students, post-docs and senior scientists with diverse technical backgrounds including polymer science and engineering, materials science, chemical engineering, electrical engineering and chemistry. We develop, characterize and utilize nanoscale and hybrid materials for the fabrication of devices that exploit the unique properties of the materials that we create. Fundamentals of Brush Block Copolymers Solvent-Assisted Soft Nanoimprint Lithography Optical and Energy Devices Flexible Hybrid Electronics and Roll-to-Roll Fabrication Lithium-ion battery ACS Appl. Mater. Interfaces. 10, (2018), 54475454. 3-D woodpile electrodes Slide ring-elastomer strain sensor 1μm ACS Applied Materials & Interfaces. 7, 6 (2015), 3641-3646. Plasmonic grating structures of TiN Journal of Materials Chemistry C. 6, (2018), 1399-1406. Roll-to-roll processing of nanomaterials High-performance organic inverters Wearable microfluidic sweat sensors Phase behavior No Shear 120 C, 1 hr. Oscillatory Shear ω = 1 rad/s, γ = 50 % 145 C, 6 hr. PS(2.9k)-b-PEO(5k) Lamellae align with controlled oscillatory shearing Parallel orientation (S ~ 0.8) achieved over several mm 3 Facilitated by high molecular mobility in melt Lamellar morphology d-spacing ~ 50 nm Bulk sample ~ mm 3 In preparation Controlling domain alignment with shear ~ 2 mm Macromolecules. 2017, 50, 396 Anneal 1 h at 120 C Anneal 24 h at 120 C Microphase Separated Morphology G* (Pa) f PEO = 0.22 f PEO = 0.47 f PEO = 0.81 Entanglement Plateau Elastic Terminal f PEO = 0.24 f PEO = 0.49 f PEO = 0.81 G* (Pa) Tan δ No Entanglement Viscous Terminal Tan δ Brush BCP Linear BCP “Glassy” “Glassy” Rheology of PS-b-PEO BBCP & LBCP Rheology Functional hybrid materials via self-assembly of brush block copolymers Mesopore size: 44-48 nm Macropore size: > 50 nm Uniform & Interconnected Large Area Nanoporous Films Flexible Substrate (PET) Low Temperature Processing Sub-Millisecond Treatment J. Am. Chem. Soc. 2016, 138, 13473-13476 Mesoporous silica carbon hybrids Tunable spacing (40-140 nm) High loading of 30 wt.% CdSe Well-Ordered Lamellae Strong Photoluminescence Macromolecules. 2016, 49, 5068-5075 Nonlinear optical materials Large Refractive Index Contrast (> 0.27) Selectively High Loading of NPs (42 vol.%) Tune Refractive Index from 1.45 to 1.70 Enhanced Reflection at 398 nm (~ 250 %) ACS Nano. 2016, 10, 1216-1223 High Δn photonic crystals Large Domain Spacing: 120-260 nm Visible to near-IR region: 458-1010 nm Tunable NP Loading High Loading ~ 80 wt.% Adv. Optical Mater. 2015, 3, 1169-1175 Metal-dielectric metamaterial Chemistry of Materials 2017, 29, 3908−3918 Imprint lithography and conformal metallization Bioinspired shark-skin surfaces for antimicrobial Patterned 2D & 3D metal oxide nanostructures Cellulose 2018 25: 5185 Patterned submicron scale cellulose film 10.1021/acsami.8b01302 dimatix.com In preparation Glucose sensor with inkjet-printed electrodes 10.1021/acsami.8b01302 R2R nanoimprinting process R2R UV-NIL tool Sub 50 nm features and feet per minute rates Rapid fabrication of optical & antimicrobial patterns Rapid photothermal curing BCP/metal NPs/carbon sources Mesoporous carbon structures PET roll Coated carbon precursor layer Microgravure Infrared dryer Dried film (polymerization) Xenon lamp Carbonized film for electromagnetic interference (EMI) shielding R2R coating and photothermal processing Nano Energy. 52, (2018), 431440. In Preparation Copolymer gel eletrolytes Conformal iCVD coating of copolymer electrolytes ACS Appl. Mater. Interfaces, 2018, 10 (9), pp 81738179 10.1021/acsami.8b01302 ACS Appl. Mater. Interfaces, 2018, 10 (18), pp 1598815995 Brush block copolymer properties Short Side Chains Extended Backbone Reduced Chain Entanglement High Molecular Mobility Rapid self-assembly (< 5 min) High loading of functional additives (> 70 wt.%) Large lattice parameters (> 100 nm) Macroscopic ordering (mm 3 scale) Phase behavior Phase maps In preparation

Watkins Research Group High n photonic crystals Metal ...watkins.pse.umass.edu/sites/internano.org.wrg/files/Poster_Watkins... · Watkins Research Group Graduate students: Yiliang

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Watkins Research Group High n photonic crystals Metal ...watkins.pse.umass.edu/sites/internano.org.wrg/files/Poster_Watkins... · Watkins Research Group Graduate students: Yiliang

Watkins Research GroupGraduate students: Yiliang Zhou, Benjamin Yavitt, Wenhao Li, Gayathri Kopanati, Xiyu Hu, Sravya Nuguri, Vincent Einck, Hsin-Jung Yu

Postdocs & staff: Janghoon Park, Jacobo Morère Rodriguez, Hua-Feng Fei, Yuying Tang, Uzodinma Okoroanyanwu

Polymer Science and Engineering ~ University of Massachusetts Amherst

Our team is comprised of graduate students, post-docs and senior scientists with diverse technical backgrounds including polymer

science and engineering, materials science, chemical engineering, electrical engineering and chemistry. We develop, characterize and

utilize nanoscale and hybrid materials for the fabrication of devices that exploit the unique properties of the materials that we create.

Fundamentals of Brush Block Copolymers Solvent-Assisted Soft Nanoimprint Lithography

Optical and Energy Devices Flexible Hybrid Electronics and Roll-to-Roll Fabrication

Lithium-ion battery

ACS Appl. Mater. Interfaces. 10, (2018), 5447–5454.

3-D woodpile electrodes

Slide ring-elastomer strain sensor

1μm

ACS Applied Materials & Interfaces. 7, 6 (2015), 3641-3646.

Plasmonic grating structures of TiN

Journal of Materials Chemistry C. 6, (2018), 1399-1406.

Roll-to-roll processing of nanomaterials

High-performance organic inverters Wearable microfluidic sweat sensors

Phase behavior

No Shear120 C, 1 hr.

Oscillatory Shearω = 1 rad/s, γ = 50 %

145 C, 6 hr.

PS(2.9k)-b-PEO(5k)

• Lamellae align with controlled oscillatory shearing

• Parallel orientation (S ~ 0.8) achieved over several mm3

• Facilitated by high molecular mobility in melt

• Lamellar morphology

• d-spacing ~ 50 nm

• Bulk sample ~ mm3

In preparation

Controlling domain alignment with shear

~ 2 mm

Macromolecules. 2017, 50, 396

Anneal 1 h at 120 C Anneal 24 h at 120 CMicrophase

Separated

Morphology

G* (Pa)

♦ fPEO = 0.22

♦ fPEO = 0.47

♦ fPEO = 0.81Entanglement Plateau

Elastic Terminal● fPEO = 0.24

● fPEO = 0.49

● fPEO = 0.81

G* (Pa)

Tan δ

No Entanglement

Viscous Terminal

Tan δ

Brush BCP Linear BCP

“Glassy”

“Glassy”

Rheology of PS-b-PEO BBCP & LBCP

Rheology

Functional hybrid materials via self-assembly of brush block copolymers

• Mesopore size: 44-48 nm• Macropore size: > 50 nm• Uniform & Interconnected• Large Area Nanoporous Films• Flexible Substrate (PET)• Low Temperature Processing• Sub-Millisecond Treatment

J. Am. Chem. Soc. 2016, 138, 13473-13476

Mesoporous silica carbon hybrids

Tunable spacing (40-140 nm)

High loading of 30 wt.% CdSe

Well-Ordered Lamellae

Strong Photoluminescence

Macromolecules. 2016, 49, 5068-5075

Nonlinear optical materials

• Large Refractive Index Contrast – (> 0.27)

• Selectively High Loading of NPs – (42 vol.%)

• Tune Refractive Index from 1.45 to 1.70

• Enhanced Reflection at 398 nm (~ 250 %)

ACS Nano. 2016, 10, 1216-1223

High Δn photonic crystals

• Large Domain Spacing: 120-260 nm

• Visible to near-IR region: 458-1010 nm

• Tunable NP Loading

• High Loading ~ 80 wt.%

Adv. Optical Mater. 2015, 3, 1169-1175

Metal-dielectric metamaterial

Chemistry of Materials 2017, 29, 3908−3918

Imprint lithography and conformal metallization

Bioinspired shark-skin surfaces for antimicrobialPatterned 2D & 3D metal oxide nanostructures

Cellulose 2018 25: 5185

Patterned submicron scale cellulose film

10.1021/acsami.8b01302

dim

atix.com

In preparation

Glucose sensor with inkjet-printed electrodes

10.1021/acsami.8b01302

R2R nanoimprinting process

• R2R UV-NIL tool

• Sub 50 nm features and feet per minute rates

• Rapid fabrication of optical & antimicrobial patterns

Rapid photothermalcuring

BCP/metal NPs/carbon sources Mesoporous carbon structures

PET roll

Coated carbon precursor layer

Microgravure

Infrared dryer

Dried film(polymerization)

Xenon lamp

Carbonized film for electromagnetic interference (EMI) shielding

R2R coating and photothermal processing

Nano Energy. 52, (2018), 431–440.

In Preparation

Copolymer gel eletrolytesConformal iCVD coating of copolymer electrolytes

ACS Appl. Mater. Interfaces, 2018, 10 (9), pp 8173–8179

10.1021/acsami.8b01302

ACS Appl. Mater. Interfaces, 2018, 10 (18), pp 15988–15995

Brush block copolymer properties

Short Side Chains

Extended Backbone

Reduced Chain Entanglement

High Molecular Mobility

• Rapid self-assembly (< 5 min)

• High loading of functional additives (> 70 wt.%)

• Large lattice parameters (> 100 nm)

• Macroscopic ordering (mm3 scale)

Phase behavior

Phase maps

In preparation