70
WateReuse Research Foundation Webcast Series Achieving Sustainability Goals through Water Reuse in Buildings and Communities © 2013 by the WateReuse Research Foundation. All rights reserved.

WateReuse Research Foundation Webcast Series Research Foundation Webcast Series ... Case Study Database 4) ... Gillette Stadium Wastewater Treatment and Recycling System

  • Upload
    volien

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

WateReuse Research Foundation Webcast Series

Achieving Sustainability Goals through Water Reuse in Buildings and Communities

© 2013 by the WateReuse Research Foundation. All rights reserved.

The mission of the WateReuse Research Foundation is to conduct and promote applied research on the reclamation, recycling, reuse, and desalination of water.

More Informationwww.watereuse.org/foundation

Research Reportswww.watereuse.org/foundation/publications

A Few Notes Before We Get Started…

Today’s webcast will be 75 minutes. 

You will be able download a PDF of today’s presentation when you complete the survey at the conclusion of this webcast.

There are 1.25 Professional Development Hours available for this webcast. 

If you have questions for the presenters, please send a message by typing it into the chat box located on the panel on the left side of your screen. 

If you would like to enlarge your view of the slides, please click the Full Screen button in the upper right corner of the window. To use the chat box, you must exit full screen. 

The Presenters

Dr. Ben StanfordHazen and Sawyer

Dr. Yanjin Liu American Water

Dr. Paul KnowlesNatural Systems Utilities

Achieving Sustainability Goals through Water Reuse for Buildings and Communities

Presented by      Ben StanfordYanjin LiuPaul Knowles

6

Project Team Ben Stanford, Ph.D. Anni Luck, P.E.

Rick Cisterna, P.E. Paul Knowles, Ph.D Lauren Shuler

Mark LeChevallier, Ph.D. Yanjin Liu, Ph.D.

Special Thanks to Pentair for their Financial Funding

7

Agenda

1) Emerging “Green” Reuse Drivers

2) Objective and Technical Approach

3) Case Study Database

4) Reuse Decision Support Tool

Ben Stanford

Yanjin Liu

Paul Knowles

8

Building / Community Scale Reuse Capture, treat, and reuse wastewater locally

Potential energy and infrastructure savings

Depends on location and logistics of each community

9

Drivers for Reuse Reducing the capital cost where a local sewer

connection is unavailable or far Reducing the total amount of potable water

withdrawn from rivers, streams, lakes, and underground aquifers.

Reducing the total pollutant load to sewers or the environment.

Beneficial reuse of the nutrients in treated effluent for local irrigation

Urban systems: help delay capital improvements to accommodate growth or increased demand

10

Drivers for Reuse Possibly reducing the service costs for potable

water supply and wastewater treatment. Supporting sustainability objectives for a project

and the pursuit of green building accreditations such as LEED

Positive public image of the project Potentially higher property value

11

LEED / Green Building Movement is an Emerging Driver for Water Reuse

12

What is LEED? LEED = Leadership in Energy and Environmental Design

USGBC = United States Green Building Council

Points based Certification System:

(40‐49 pts)      (50‐59 pts)      (60‐79 pts)        (80+ pts)Certified             Silver               Gold              Platinum

13

Previous 2009 Reuse Related LEED Points

LEED Category Subcategory Possible LEED Points

Water Efficiency

Water Efficient Landscaping 2 or 4

Innovative Wastewater Technologies 2

Water Use Reduction 2 to 4

Innovation and Design Process

Innovation in Design 2

Total Possible Reuse LEED Points 12

14

Obstacles to Decentralized Reuse Lack of Knowledge and Familiarity Developers Planners Architects Engineers

15

Project Objective Develop support tools: Case Studies Reuse Decision Support Tool Reuse Implementation

Guidance Manual

Designed for or planners, developers, and engineers to evaluate potential reuse projects

16

Technical Approach

Literature Review

Reuse Decision Tool

Case Studies

Cost Curves

Guidance Manual

Reuse System Database

17

Literature Sources Project Team Internal Database Journal Articles Industry Reports EPA EPRI IWA USGBC WERF

Site Visits

18

Reuse Database Parameters Geographic Location Treatment Technology Reuse Applications Power Consumption Capital Cost Annual O&M Cost Green Rating

/Certification

Total Reuse Systems = 52

19

LEED Ranking

15%

19%

0%2%4%

60%

Platinum

Gold

Silver

LEED Certified

6‐Star GB

None*

*Includes International Projects

20

Case StudiesCase Studies

Yanjin Liu

21

Reuse System Case Studies

Project Name State Year Reuse System Type Capacity (gpd)

LEED Rating

Gillette Stadium MA 2002 Commercial Building 250,000  ‐

Wrentham Outlet Mall MA 1996 Commercial Building 100,000 ‐

Turtle Run South MN 2002 Residential Community 86,300 ‐

The Solaire NY 2003 Residential Building 25,000 Gold

The Visionaire NY 2009 Residential Building 25,000 Platinum

Springs Preserve NV 2007 Commercial Building 8,400 Platinum

Headquarters Park NJ 1991 Office Building 6,000 ‐

National Great Rivers IL 2010 Institution Building 5,000 Gold

Central Carolina Community College NC 2011 School Building 5,000 Gold

Port of Portland  OR 2010 Office Building 5,000 Platinum

Oberlin College OH 2001 School Building 2,500 ‐

Willow School NJ 2003 School Building 4,000 Platinum

Jordan Lake NC 1993 Office Building 1,200 ‐

22

Battery Park City – Urban Water ReuseBattery Park City – New York

The Solaire 2003 Tribeca Green 2006 The Millennium 2007 The Visionaire 2009

Reuse Applications:

• Toilet Flushing

• Cooling Tower Make‐Up Water

• Landscape Irrigation

23

The Solaire – New York, NYReuse System Summary

Startup Year: 2003Type of Reuse System: Residential Building

Green Certification: LEED GoldPopulation Served: 560Treatment Process: MBR; UV; OzoneSystem Footprint: 700 sfDesign Capacity: 25,000 gpd

Reuse Application:Toilet Flushing ; Irrigation; 

Cooling Water

Capital Cost: $560,000 ($22.40/gpd capacity)

Annual O&M Cost: $144,000/yr

Regulatory driver (BPC Environmental Guidelines)

Lower water demand and sewer discharge

Reduce the volume of combined sewer overflows

Financial incentives from NYDEP 

Key Drivers

24

The Solaire – Battery Park City, New York City

2

AVERAGE WATER QUALITYTREATED RECLAIMED WATER

PARAMETER RECLAIMED WATERpH 7

Fecal Coliform 1 /100 mLTotal Nitrogen, TN* 31 mg/LTotal Suspended 

Solids , TSS< 1.0 mg/L

Biological Oxygen Demand, BOD

< 6.0 mg/L

Wastewater “Feed” Tank Trash

Trap TankAnoxic Tank

Aeration Tank

Membrane Tank

UV / OzoneRecycled Water Storage Tank

Solaire Wastewater Treatment and Recycling System

Wastewater Influent

To Toilet FlushingCooling TowerIrrigation

Mixed Liquor Recycle

*TN removal is not required

25

The Solaire – Battery Park City, New York City

First LEED certified green buildings in the US

Lack of regulations and permitting system at the time of development

MBR is the solution to provide high quality reclaimed water with limited space in the building basement

Researchers are working with building mangers and operators to look for opportunities for improvements (e.g. energy optimization)

Experiences and lessons learned

2

NYSERDA

26

The Visionaire – Battery Park City, NY

2

Reuse System SummaryStartup Year: 2009

Type of Reuse System: Residential BuildingGreen Certification: LEED PlatinumPopulation Served: 778

Capital Cost: $600,000Annual O&M Cost: $122,000/yrSystem Footprint: 700 sfDesign Capacity: 25,000 gpd

Treatment Process: MBR; UV; Ozone

Reuse Application:Toilet Flushing; Irrigation; 

Cooling Water• Other green features

• Water efficient fixtures• a 48 kW photovoltaic system• High efficient air filtration system• Other energy saving feature (e.g. low‐E glass curtain wall)

27

The Visionaire – Battery Park City, NY

2

Wastewater “Feed” Tank Trash

Trap TankAnoxic Tank

Aeration Tank

Membrane Tank

UV / OzoneRecycled Water Storage Tank

Visionaire Wastewater Treatment and Recycling System

Wastewater Influent

To Toilet FlushingCooling TowerIrrigation

Mixed Liquor Recycle

AVERAGE WATER QUALITYTREATED RECLAIMED WATER

PARAMETER RECLAIMED WATERpH 7

Fecal Coliform 1 /100 mLTotal Nitrogen, TN 24 mg/LTotal Suspended 

Solids , TSS< 1.0 mg/L

Biological Oxygen Demand, BOD

< 6.0 mg/L

Blowers Feed Pumps, Grinder GE Membrane Module

28

The Visionaire – Battery Park City, NY

Experiences and lessons learned from the Solaire and the other BPC green buildings: The “greenest” buildings in the US a more streamlined designed, build, and start-

up and operation process Improved design from the Solaire

Addition of grinders High efficiency blowers Ozone Redundancy Spacing of membranes Easier access for operators Stormwater is collected and treated

A showcase for sustainable living

29

Wrentham Village Outlet Mall, MA

Key Driver: lack of public sewer system ‐ an onsite wastewater treatment and reuse system is required

2

REUSE SYSTEM SUMMARYStartup Year: 1996

Location: Wrentham, MAType of Reuse: Commercial Building

Green Certification: None Capital Cost: $2,700,000 (two phases)

Population Served:130 stores, an office complex, theater, hotel, and 450‐seat 

restaurantDesign Capacity: 100,000 gpdAverage Flow: 44,000 gpd

Treatment Process: MBR; UV; Ozone

Reuse Application:Toilet Flushing; Groundwater 

Recharge

30

Wrentham Village Outlet Mall, MA

3

Wastewater“Feed” Tank Trash

Trap TankAnoxicTank

AerationTank

MembraneTank

UV / OzoneRecycled Water Storage Tank

Wrentham Wastewater Treatment and Recycling System

Wastewater Influent

To Toilet FlushingCooling TowerIrrigation

Mixed Liquor Recycle

• Reuse applications• 50% to 60% for toilet flushing• The rest is for groundwater recharge

AVERAGE WATER QUALITYTREATED RECLAIMED WATER

PARAMETER RECLAIMED WATER

pH 7.6

Fecal Coliform < 10 /100 mL

Total Nitrogen, TN 2 mg/LTotal Suspended 

Solids , TSS3 mg/L

Biological Oxygen Demand, BOD

< 4.0 mg/L

31

Wrentham Village Outlet Mall, MA

3

Experiences and lessons learned One of the earliest reuse system in MA Flow equalization is critical to address the

challenges in variation of flow (diurnal, weekday vs. weekend)

Two types of membrane technologies are used GE Zenon membrane was used in phase I Kubota membrane was later added to

handle the increase of flow from the new stores

Similar performance

GE Zeeweed Hollow Fiber Membrane Kubota Flat Sheet Membrane

32

Gillette Stadium, MAREUSE SYSTEM SUMMARY

Startup Year: 2002Location: Foxborough, MA

Type of Reuse: Football StadiumGreen Certification: None

Capital Cost: $5,100,000 (two phases)Population Served: 69,000 (game day)

Design Capacity: 250,000 gpdAverage Flow: 90,000 gpd

Treatment Process: MBR; UV; Ozone

Reuse Application:Toilet Flushing; Groundwater 

Recharge

3

Key Driver: lack of water supply and sewer system which had limited the expansion of the stadium and the growth of the surrounding area

33

Gillette Stadium, MA

3

Flow EqualizationTank

Pre-Anoxic Tank

Aeration Tank 1

Aeration Tank 2

MembraneTank

UV / OzoneRecycled Water Storage Tank

Gillette Stadium Wastewater Treatment and Recycling System

Wastewater Influent

To Toilet Flushingand Groundwater Recharge

Mixed Liquor Recycle

Post-AnoxicTank

AVERAGE WATER QUALITYTREATED RECLAIMED WATER

PARAMETER RECLAIMED WATER

pH 7‐8

Fecal Coliform 5 /100 mL

Total Nitrogen, TN 4 mg/LTotal Suspended 

Solids , TSS< 1 mg/L

Biological Oxygen Demand, BOD

< 2 mg/L

• Reuse applications• stadium and mall toilet flushing• 2.4 acre leach field – on site groundwater recharge

34

Gillette Stadium, MA

30.5 MG Reclaimed Water Storage Tank

1.0 MG Wastewater EQ Tank

Reuse enabled the reconstruction and expansion of the stadium and provide water supply to the economic growth in the area

Wastewater equalization and reclaimed water storage capability to handle the peak flow during a game day

On‐site wastewater treatment using MBR was the most economical option

A showcase of “green” stadium 

35

Willow School, NJ

Also captures and treats all stormwater run-off from the site

Provides educational amenity to the school students

Emphasizes the school’s commitment to sustainability

Reuse System SummaryStartup Year: 2003

Type of Reuse System: School BuildingGreen Certification: LEED PlatinumPopulation Served: 200Treatment Process: WetlandSystem Footprint: 3,000 sfDesign Capacity: 4,000 gpd

Reuse Application: Toilet Flushing

Capital Cost: $70,000($17.50/gpd capacity)

Annual O&M Cost: $30,000/yr

36

Willow School Treatment System

Toilet Flushing

37

Willow School, NJ

3

• Energy efficient building shell containing high efficient insulation materials 

• Energy efficient lightening and electrical systems • Energy efficient mechanical and ventilation systems 

• Renewable energy – solar panels on roof and solar heating and lighting  

Other “green” features at the Willow School include: 

This facility has become an active learning center, with students surrounded by interactive facility and yet it is not using any drinking water for either irrigation or flushing toilets

38

Reuse Decision Support ToolReuse Decision Support Tool

Paul Knowles

39

Reuse Decision Support Tool (DST)

Survey Engine Results

Water Reuse Decision Support Tool

The DST captures the required user input (survey), processes the information to arrive at conclusions (engine) about system cost, area, carbon footprint, and provides outputs (results) so that the user can make an informed selection.

It has been designed to be usable by all and follows the LEED 2009 in terms of the questions asked.

40

Conceptual Architecture of Tool

Project Specific Variables

Locational Variables

Regional Variables Database

Database of Technology Cost Curves

Calculation Module LEED Points

Water Demand Profile and Balance

Cost, Area, Carbon Metrics

1. SURVEY 2. ENGINE 3. RESULTS

41

Survey Module Broken-down into 6 steps with two input options: Detailed Survey

Utilizes project-specific user inputs Takes 5 to 20 minutes to complete pending on level of detail

Abbreviated Survey Utilizes industry standards in place of user inputs Takes less than 5 minutes to complete Provides generalized results based on project type and size

Each color indicates a different type of input cell:

42

Step 1: Site Details/Project Background

Zip Code:  Must be a valid 5‐digit zip code.  Please ensure the state and zip code match.

Sewer Access:  Provide details about the current availability of sewer access and soil type. This helps to determine the disposal mechanism.

Project Size:  Please fill in all three values and include units. 

Next Button:  Runs the tool and automatically returns the results page. Press ‘Next’ when all information has been input.

43

Step 2: Population Details

Occupant Type:  Up to a maximum of 7 user types/rows can be added. 

Gender:  Men & women have different water use profiles. Please use this option to appropriately indicate a non‐equal gender split  

Frequency:  Indicate how frequently the occupant type will utilize the project space.

Number:  A new, blank, occupant line will appear each time a number of occupants is added. 

44

Step 3: Indoor Water Demand

YESNO

If ‘YES’ a GREEN input box will appear allowing the user to input the known flow (units are fixed).

Assumptions:  Flow ratings for each type of fixture including conserving and non‐conserving options are based on industry standards.

Fixture Flow Rates:  Indicate whether or not flow for a given type of fixture is known.

If ‘NO’ a YELLOW drop down will appear allowing the user to choose from a series of industry standards.  The BLUE cell provides the flow rate for the industry standards.

45

Step 4: Reuse Selector

Types of Reuse:  Provide YES/NO answers for each question to indicate the general type of reuse that is desired for the project.

Disposal Method:  Indicate potential options. Note that these options are not mutually exclusive. 

Reuse Applications: Indicate the desired types of reuse applications. Note that state guidelines may set requirements for different types of reuse. 

Level of Insulation:  Water cooled A/C systems provide a great opportunity for reuse water. Level of insulation helps to determine overall cooling load. 

46

Step 5: Cost Info

Cost of Land:  Input the land cost if known.

Rate:  Input separate rates for  regional water and sewer service.  If only the combined rate is known, the user may use best judgment to split the rate into separate water and sewer components.

47

Step 6: Irrigation Info

Variable descriptions for reference.

Provide details about each type of planting for the project:1. Planting Area2. Planting Water Needs3. Planting Density4. Indoor vs. Outdoor5. Sprinkler Type

LEED multiplication factors:  Used for irrigation calculations 

48

Engine Module

Regional Variables Database

PrecipitationEvapotranspiration

Degree DaysDischarge RegulationsReuse Regulations

Database of Technology Curves

CAPEX ($/gpd installed)OPEX ($/1000 gal treated)

Power (kWh/1000 gal treated)Footprint (sq. ft/gal installed)

CALCULATIONS COMBINED WITH LOGIC ALGORITHMS

49

Engine Module – Water Balance

2. Treatment & Reuse

3. Disposal / Discharge1. Demand

POTABLE

STORM WATER

PERMEATION & RUNOFF

DISCHARGE

EVAPOTRANSPIRATION

ENGINE

Water Balance verifies that “Inflows = Outflows”

Cooling Tower EVAPORATIONCooling Tower EVAPORATION

50

Reuse Treatment Systems1) Conventional Customized activated sludge plants, trickling filters, rotating biological contractors

2) Conventional Package activated package plants, sequencing batch reactors, oxidation ditches

3) Membrane Customized membrane biological reactors (MBRs), reverse osmosis membranes

4) Natural Systems constructed wetlands, lagoons, and ponds

51

Capital Expenses (CAPEX) in $/gpd

Flowrate (MGD)

Capital Cost ($/gpd)

52

Operating Expenses (OPEX) in $/1000 gal

Flowrate (MGD)

OPE

X ($/100

0 gal)

53

CAPEX Multipliers for System Complexity

54

OPEX Multipliers for System Complexity

55

Sample Results from Reuse Decision Support ToolSample Results from Reuse Decision Support Tool

56

Water Balance

57

Monthly Avg. Potable Water Consumption

58

Portion of Water Demand Supplied by Reuse

59

Capital Cost & Size of Disposal Options

Disposal Options

Baseline Water Use

Conservation Only

Conservation and Reuse

Groundwater Discharge Cost  $ 1,485,064 $ 1,008,090 $ 639,218

Sewer Cost $ 5,280,000 $ 5,280,000 $ 5,280,000

Groundwater Dispersal Area 3.0 acres 2.0 acres 1.3 acres

60

CAPEX of Treatment Options

Flowrate (MGD)

Capital Cost ($/gpd)

61

OPEX of Treatment Options

Flowrate (MGD)

Ope

ratin

g Co

st ($

/100

0 gal)

62

Total Capital CostCa

pital Cost ($)

Baseline Water UseConservingConserving  + Reuse

63

Annual Operating Costs ($/yr)An

nual Ope

ratin

g  Cost ($/yr)

Baseline Water UseConservingConserving  + Reuse

64

20 Year Net Present Value (NPV)20

 Year N

et Present Value

 ($)

Baseline Water Use

ConservingConserving  + Reuse

65

Physical FootprintPh

ysical Foo

tprin

t (Squa

re Feet)

Baseline Water UseConservingConserving  + Reuse

66

Potential Achievable LEED Points

67

Environmental Performance Metrics

ScenarioSystem Capacity

Annual Potable Demand

Equivalent Olympic Swimming 

Pools

Annual Wastewater Discharge

Equivalent Olympic Swimming 

Pools

Carbon Footprint of Wastewater Technology

(gpd) (gal/yr) # (gal/yr) #Tons 

CO2/YearBaseline Water Use

64,568 28,304,857 43 23,567,320 36 94

Conservation Only

43,830 20,727,710 31 15,997,950 24 77

Conservation and Reuse

43,830 13,661,950 21 15,997,950 24 108

68

Results Summary Screen Shots

69

Take Home Messages Involve regulators early in the process Educate the public and potential clients/customers

about the benefits and the expected challenges (costs)

Ensure that the selected technology can handle large variations in flow and use patterns

Use competitive bids for technologies Consider energy along with water efficiency and

reuse—both impact sustainability! Design according to principles contained in green

design codes to meet sustainability goals for the project

Questions?Please type your questions in the chat box

A short survey and a link to download the 

presentation will appear in this window at the 

conclusion of the webcast

For more information, visit:

www.watereuse.org/foundation