12
WATER POVERTY INDEX IN SUBTROPICAL ZONES: THE CASE OF HUASTECA POTOSINA, MEXICO Briseida LÓPEZ ÁLVAREZ 1 *, Germán SANTACRUZ DE LEÓN 1 , José Alfredo RAMOS LEAL 2 and Janete MORÁN RAMÍREZ 2 1 El Colegio de San Luis, A. C. (COLSAN). Parque de Macul 155, Frac. Colinas del Parque, San Luis Potosí, S.L.P., C.P. 78299 2 Instituto Potosino de Investigación Científico y Tecnológico (IPICYT). Camino a La Presa de San José 2005, Col. Lomas 4ta Sección, San Luis Potosí, S.L.P., C. P. 78216 *Autor para correspondencia: [email protected] (Recibido mayo 2014; aceptado febrero 2015) Key words: water access, water quality, water availability, human development, hydric resources, Valles River ABSTRACT Tools are needed in order to evaluate an integrated water resource management, and to encourage the management and coordinated usage of water resources along with the environmental and socioeconomic factors. One of those tools is the Water Poverty Index (WPI), which enables the evaluation of water poverty in terms of the physical and socioeconomic factors related to water availability. The WPI, as calculated in this study, is derived from the weighted sum of six key components –resources, access, usage, capacity, quality and environment– on a scale of 0 to 100. The objective of this work was to calculate the Río Valles Basin WPI for 2010. This region is a semi-tropical area with abundant water resources, such as large springs. Its annual mean precipita- tion is 1100 mm. In the Río Valles Basin, the volume of surface water used per year is 81.33 Mm 3 , which represents 91 % of the total resource. The volume of groundwater used per year is 8.17 Mm 3 , representing the remaining 9 %. Usually 45 Mm 3 /year is stored in La Lajilla dam. These data indicate that surface water is the main source of supply for uses such as agriculture, which is the activity with the largest water demand. A WPI score of 59 was obtained for the Río Valles Basin. Palabras clave: acceso al agua, calidad de agua, disponibilidad de agua, desarrollo humano, recursos hídricos, Río Valles RESUMEN Para evaluar la gestión integrada de los recursos hídricos se necesitan herramientas para fo- mentar su administración y uso coordinado con el ambiente y los factores socioeconómicos. Una de estas herramientas es el Índice de Pobreza del Agua (IPA), que permite evaluar la pobreza del agua en términos de los factores físicos y socioeconómicos relacionados con su disponibilidad. El IPA, como se calculó en este estudio, se deriva de la suma ponderada de seis componentes clave: el acceso, el uso, la capacidad, la calidad y el ambiente, en una escala de 0 a 100. El objetivo de este trabajo fue calcular el IPA de la cuenca del Río Valles para el año 2010. Esta región es semitropical, con abundantes recursos hídricos, Rev. Int. Contam. Ambie. 31 (2) 173-184, 2015

WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

Embed Size (px)

Citation preview

Page 1: WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

WATER POVERTY INDEX IN SUBTROPICAL ZONES: THE CASE OF HUASTECA POTOSINA, MEXICO

Briseida LÓPEZ ÁLVAREZ1*, Germán SANTACRUZ DE LEÓN1, José Alfredo RAMOS LEAL2 and Janete MORÁN RAMÍREZ2

1 El Colegio de San Luis, A. C. (COLSAN). Parque de Macul 155, Frac. Colinas del Parque, San Luis Potosí, S.L.P., C.P. 78299

2InstitutoPotosinodeInvestigaciónCientíficoyTecnológico(IPICYT).CaminoaLaPresadeSanJosé2005,Col. Lomas 4ta Sección, San Luis Potosí, S.L.P., C. P. 78216

* Autor para correspondencia: [email protected]

(Recibido mayo 2014; aceptado febrero 2015)

Keywords:wateraccess,waterquality,wateravailability,humandevelopment,hydricresources,VallesRiver

ABSTRACT

Toolsareneededinordertoevaluateanintegratedwaterresourcemanagement,andtoencouragethemanagementandcoordinatedusageofwaterresourcesalongwiththeenvironmentalandsocioeconomicfactors.OneofthosetoolsistheWaterPovertyIndex(WPI),whichenablestheevaluationofwaterpovertyintermsofthephysicalandsocioeconomicfactorsrelatedtowateravailability.TheWPI,ascalculatedinthisstudy,isderivedfromtheweightedsumofsixkeycomponents–resources,access,usage,capacity,qualityandenvironment–onascaleof0to100.TheobjectiveofthisworkwastocalculatetheRíoVallesBasinWPIfor2010.Thisregionisasemi-tropicalareawithabundantwaterresources,suchaslargesprings.Itsannualmeanprecipita-tionis1100mm.IntheRíoVallesBasin,thevolumeofsurfacewaterusedperyearis81.33 Mm3,whichrepresents91%ofthetotalresource.Thevolumeofgroundwaterusedperyearis8.17Mm3,representingtheremaining9%.Usually45Mm3/yearisstoredinLaLajilladam.Thesedataindicatethatsurfacewateristhemainsourceofsupplyforusessuchasagriculture,whichistheactivitywiththelargestwaterdemand.AWPIscoreof59wasobtainedfortheRíoVallesBasin.

Palabrasclave: accesoalagua,calidaddeagua,disponibilidaddeagua,desarrollohumano,recursoshídricos,Río Valles

RESUMEN

Paraevaluarlagestiónintegradadelosrecursoshídricossenecesitanherramientasparafo-mentarsuadministraciónyusocoordinadoconelambienteylosfactoressocioeconómicos.UnadeestasherramientaseselÍndicedePobrezadelAgua(IPA),quepermiteevaluarlapobrezadelaguaentérminosdelosfactoresfísicosysocioeconómicosrelacionadosconsu disponibilidad. El IPA, como se calculó en este estudio, se deriva de la suma ponderada deseiscomponentesclave:elacceso,eluso,lacapacidad,lacalidadyelambiente,enunaescalade0a100.ElobjetivodeestetrabajofuecalcularelIPAdelacuencadelRíoVallesparaelaño2010.Estaregiónessemitropical,conabundantesrecursoshídricos,

Rev.Int.Contam.Ambie.31(2)173-184,2015

Page 2: WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

B. López Álvarez et al.174

comograndesmanantialesyunaprecipitaciónmediaanualde1100mm.EnlacuencadelRíoValleselvolumendeaguasuperficialutilizadaesde81.33Mm3/año, lo que representa el91%deltotaldelrecursoutilizado.Elvolumendeaguasubterráneautilizadaesde 8.17 Mm3/año,loquerepresentael9%restante,normalmentesealmacenan45Mm3/año enlapresadeLaLajilla.Estosdatosindicanqueelaguasuperficialeslaprincipalfuentedeabastoparadiversosusoscomolaagriculturaqueeslaactividadconlamayordemandade agua. El IPA que se obtuvo para la cuenca del Río Valles fue de 59 puntos.

INTRODUCTION

IntegratedWaterResourcesManagement(IWRM)isaprocesstofosterthemanagementandcoordinatedusageofwaterresources,aswellastheenvironmen-tal and socioeconomic factors in order to maximize socialandeconomicbenefitsinanequitablemannerwithout compromising the sustainability of vitalecosystems (IWRM-UNESCO2009).To evaluateIWRM,toolsareneededandthoseshouldtakeintoaccount these elements.Oneof those tools is theWaterPovertyIndex(WPI),whichmakesitpossibletoevaluatewaterpoverty indifferentstudyscales–countries, regions or communities– taking intoaccountphysicalandsocioeconomicfactorsrelatedtotheavailabilityofwater(Lawrenceet al.2002).

TheWPIisevaluatedbasedonfivecomponents:water resources, access, capacity, usage and envi-ronment.These components enable establishingconnectionsbetweenpoverty,socialmarginalization,environmentalintegrity,wateravailabilityandhealth.TheWPIhasbeenappliedataninternationallevelbyLawrenceet al.(2002)andrecentlyinasemi-aridregionsuchastheSanLuisPotosíValley(SLPV)byLópez-Álvarezet al.(2013).

TheobjectiveofthisworkwastocalculatetheWPIinasemi-tropicalregionwithabundantwaterresources,specificallyattheRíoVallesBasin(RVB).ThisregionislocatedineasternMexicoonthebound-aryoftheEasternSierraMadre(Fig. 1),inthestatesofTamaulipasandSanLuisPotosí(SLP).Thelatterisfacingseriousproblemsregardingtheavailabilityofwaterresources.ThestudywasconductedinthespecificregionknownasHuastecaPotosinawhererainfallishigherthanthenationalmean(Santacruz2007).In2010theRVBhadapopulationof255452inhabitants(INEGI2010)with91%dependenceonsurfacewater.

TheRVB comprises the following cities andmunicipalities:municipalityofAquismón,CitiesofMaíz,CiudadValles,ElNaranjoandTamasopoinSanLuisPotosíand themunicipalitiesofAntiguoMorelos, Nuevo Morelos, Ocampo and Tula in Ta-maulipas (Fig. 1).

Development of the WPI for Huasteca PotosinaTheWPI is based on the structure andmeth-

odologies proposed byUNESCO in theHumanDevelopment Index as part of theUnitedNationsDevelopmentProgramme(2002).

ThemethodologyproposedbyLawrenceet al. (2002)includesfivekeycomponents.Nevertheless,theapplicationoftheWPItotheRVBincludedwaterquality as anadditional component (Table I) since Mexico’ssurfaceandgroundwaterhaveseriouslevelsofnaturaland/oranthropicpollution,therebylimitingitsuse(Santacruz2007,Carranco-Lozada2013).

Although thismethodology includes six basiccomponents, depending on different scenarios, subcomponents could be also considered. For in-stance,intheResourcecomponentwhereground-waterisincluded,theaquifersinthesystemcouldbethesubcomponents(López-Álvarezet al.2013).In terms of the subcomponents of surfacewaterthesecouldberepresentedbydifferentwaterbodies(reservoirsandrivers)inthestudyarea.Inaddition,fortheQualityoftheresourceboth,groundwaterorsurfacewatersubcomponenthasitsownqual-ityvalue (López-Álvarezet al.2013).RegardingtheUsage component this could be subdividedinto urban, agricultural and industrial usage as subcomponents. Socioeconomic data related to a population can be used as subcomponent of Access andCapacity.ForthecomponentofEnvironment,data such as land use, erosion rate, flood zones,naturalprotectedareas,vegetation types,anden-dangered and protected animal spatial distribution could be used as subcomponents. In general theevaluationofeachcomponentcanbeascomplexastheamountandqualityofinformationavailable.

ThemathematicalstructureonwhichtheWPIisbased is expressed as:

∑∑

=

== N

i Xi

N

i iXii

w

XwWPI

1

1 (1)

whereWPIi istheWaterPovertyIndexforaparticularregion, wXiistheweightedfactorandXiisthevalue

Page 3: WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

WATER POVERTY INDEX IN SUBTROPICAL ZONES 175

of component i.TheWPIistheresultoftheweightedsumofthecomponents:Resources(R),Access(A),Usage(U),Capacity(C),Environment(E)andWaterQuality(Q).

Equation(1)canalsobeexpressedinafurtherdevelopedform(equation2).Tostandardizethere-sultsandproduceaWPIvaluebetween0and1,thesumneedstobedividedbythesumoftheweights,asshown:

qeucar

qeucari wwwwww

QwEwUwCwAwRwWPI

+++++

+++++= (2)

Formost components aweight analysis is ap-pliedtodefinetheimportanceofeachsubcomponent(Ramos2002).Theweightanalysisisexpressedas(equation 3):

∑ =

= N

i i

iii

WXwXrWx1

* (3)

whereXri and Xwi arethescoresforeachXi compo-nentandtheirtheoreticalweightsandWiisthesumofthetheoreticalweights.

Sinceeachcomponentcanbeformedbymorethanone subcomponent, theweightw applied to eachsubcomponent(Xai)intheWPIstructurecanbe obtained from the values associatedwith thesubcomponents. For example, in the case of theResource component percentages related to themanagementofthedifferentsupplysourcescanbeusedasweights.FortheAccesscomponent,percent-agesofthepopulationwithaccesstodrinkingwaterorwithwatertreatmentsystemsandpercentagesofagriculturallandswithaccesstoirrigationcanbeconsideredasweightsforthesesubcomponents.FortheCapacitycomponentsocioeconomicconditions,populationincomedata,mortalityratesofchildrenunder5yearsofage,theeducationindexandtheGini coefficient can be used asweight elements.Percentageofwaterusedfordomestic,agricultural

102º0'0'' 100º0'0'' 98º0'0'' 92º20'0'' 99º0'0''

92º20'0'' 99º0'0''

102º0'0''

22º0

'0''

24º0

'0''

26º0

'0''

22º0

'0''

22º0

'0''

22º2

0'0'

'22

º40'

0''

22º0

'0''

22º2

0'0'

'22

º40'

0''

24º0

'0''

26º0

'0''

Latit

ude

Nor

th

Latit

ude

Nor

th

Longitude West

Longitude West

Municipal Head

Legend

Perenial streamIntermittent streamLa Lajilla damState dorder

Ciudad VallesAquismónAntiguo Morelos

Ciudad del MaízEl Naranjo

Tula

Nuevo Morelos

TamasopoOcampo

EE.UU.

100º0'0''

Tamaulipas

San Luis Potosí

Gulf of Mexico

Gulf of Mexico

Pacific Ocean

EE.UU.

98º0'0''

El Naranjo

Nuevo Morelos

Ciudad Valles

El S

alto

rive

r

Los

Gat

os ri

ver

Mes

illas

rive

r

Valles river

Fig. 1. LocationoftheRíoVallesBasin

Page 4: WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

B. López Álvarez et al.176

andindustrialpurposescanbeusedasweightsfortheUsagecomponent.Whereaspercentagesinlandusechangesinnaturalprotectedareascanbecon-sideredweightsforthecomponentofEnvironment.FinallyfortheQualitycomponentthemanagementofdifferentsupplysourcescanbeusedasweightforindicestoevaluatewaterquality.

Foreachcomponent,thesumofthesubcompo-nentsmultipliedbyaweightfactormustequal1.Toobtainthefinalvalue,theWPIneedstobenormal-izedbyweightingoncemorethesubcomponentsandthesumshouldequal1.Theassignedweightsdependon thedegreeof importanceor influenceofeachcomponentineachregion.Theweightwi is assigned to each component (Xi) in theWPIstructure for that region. It isworthmentioningthattheresultscanbeexpressedasascorerangingfrom0to100.

Theresultsforeachcomponentinthismethodol-ogycanbegraphedasapolygonwhoseedgesrep-resent100%ofeachcomponent.Whennormalized,themaximumis1andthecenterofthepolygonis0. TheidealpolygonisthatinwhichalltheWPIcom-ponentshavevaluesof1andformahexagon.Asmorevalueswithlessthan1arepresent,theymovefurtherawayfromthehexagonandformanirregularpolygon.

Resources (R)TheRVBisinHydrologicalRegion26.Ithasan

approximateareaof3216km2 and is divided into four subbasins: “Río Los Gatos”, “Río El Salto”, “Río Mesillas”and“RíoValles”.Itislocatedinthedrain-ageareaoftheEasternSierraMadreasevidencedbythelargespringsfoundintheHuastecaPotosinaregion (Fig. 1).

The climates are sub-humid with medium andhighhumidityandsummerrains,andsemi-hotand sub-humidwith summer rains.The annualmeanprecipitationis1100mm–higherthanthenationalmean of 772mm (Santacruz 2008).The volumeofwaterused in theRVB is81.33Mm3/year forsurfacewater,whichrepresents91%ofthetotalresource used and 8.17 Mm3/yearforgroundwater,representingtheremaining9%.Usually45Mm3/yeararestoredinLaLajilladam.Thesedataindi-cate thatsurfacewater is theprimaryresource inthestudiedbasin.

TheweightsassignedtotheResourcesubcompo-nentswerederivedfromthepercentagesofsurfaceandgroundwatersourcesusedasseeninequation4in the followingmathematical expression (López-Álvarez et al.2013):

AsubAR 09.0sup91.0 += (4)

TABLE I.KEYCOMPONENTSINTHEWATERPOVERTYINDEX(AdaptedfromLawrenceet al.2002)

WaterPovertyIndexComponent

Definition Sub-components

Resource (R) Physicalavailabilityofsurfaceandgroundwater,consideringitsuseandwaterbalance

•Surfacewater•Groundwater•Volume used

Access (A) Levelofaccesstocleanwaterforhumanuse •%ofthepopulationwithaccesstodrink-ingwater

•%ofpopulationwithaccesstowatertreatment.

•%ofagriculturallandwithaccesstoirrigation

Capacity(C) Efficacyofthehumanpopulation’scapacitytomanagewater

•Income•Mortalityrateofchildrenunder5years•Education index•Ginicoefficient

Usage (U) Waysinwhichwaterisusedfordifferentpurposes, including domestic, agricultural and industrial uses

•Domesticwateruse(L/day)•Adjusted%ofwaterusedforagricultureandindustry,basedonthesector’scontri-butiontotheGDP

Environment (A) Evaluationofenvironmentalintegrityrelatedtowater

•Land use•Natural Protected Areas

Waterquality(Q) Evaluationofwaterqualityforhumanuse •Surfaceandgroundwaterqualitydata

Page 5: WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

WATER POVERTY INDEX IN SUBTROPICAL ZONES 177

( )Vol. annual precipitation

Stored volumeMmAsur 3 = (4.1)

ExtractionExtractionMmAgrn

2Recharg)( 3 −

= (4.2)

Access (A)Seventy-five percent of the population in the

RVBlivesinCiudadValles,ElNaranjoandNuevoMorelos.Thesethreepopulationcenterscontainmostof the drinkingwater (90%coverage) andwatertreatment (30% coverage) services (Fig. 2).Therestofthepopulation(38694inhabitants)livesinsmallanddispersedlocalitieslackingpublicservices(INEGI2010a).

A total of 81.2%of theEconomicallyActivePopulation (EAP)works in the three populationcentersmentioned,performingsecondaryandtertiaryactivities.The remainingpercentageworks in theprimarysector(agricultureandlivestock).Forthissector thereare84405haofagricultural land,12399ofwhichhavesomekindof irrigationsystem(INEGI2007).

TheAccess(A)componentincludesthepercent-age of the populationwith access to pipedwater(Aap)fortheirbasicneeds,thepercentageofwater

thatistreated(At),andtherelationshipofagriculturallandwithandwithoutaccesstoirrigation(Ai).Theexpression(equation5)thatdefinesthiscomponentis(López-Álvarezet al.2013):

iAAAA tap 1.03.06.0 ++= (5)

Thesubcomponentswereweightedusingaweightanalysis(Ramos2002,López-Álvarezet al.2013)whichshowssubcomponentAapasthemostsignifi-cant and Aiastheleastsignificant.

Capacity (C)InMexico, the HumanDevelopment Index

(HDI)isevaluatedatmunicipallevel.AlthoughtheRVBcoversseveralmunicipalities,onlythreehavenotablesocialandeconomicinfluence(Santacruz2007):NuevoMorelos, ElNaranjo andCiudadValles.ThemunicipalityofNuevoMorelos,Tam-aulipas,hadaHDIof0.753 (placing itat35outof 43) in 2005,whichwasbelow the statemean(0.85)forthatyear.ElNaranjoandCiudadValles,inSanLuisPotosí,hadanHDIof0.810(9outof58)and0.838(4outof58),respectively.Ofthesemunicipalities onlyCiudadValleswas above thestatemeanof0.816.

The(C)componentwasevaluatedbasedontheHDI.Itevaluatesthesocioeconomicvariablesthatcanaffectaccesstowaterorreflectaccessaswellasitsthequality.TheGinicoefficientisintroducedtoadjustthecapacitytoaccesscleanwateraccording toameasurementoftheunequaldistributionofin-come(Lawrenceet al.2002).

Thesubcomponentsare:incomeindex(Ii), mor-tality rate for childrenunder 5 years of age (Mi), education index (Ie)andtheGinicoefficient(CG).

Capacityisevaluatedbytheequation6(López-Álvarez et al.2013):

Geii CIMIC 2.02.01.05.0 +++= (6)

Weightswereassignedtothesubcomponentsus-ingaweightanalysis(Ramos2002,López-Álvarezet al.2013),whichindicatesthatsubcomponentIiisthemostsignificant, Ie and CGhavemediumsignificanceand Miistheleastsignificant.

Usage (U)TheRVBpresents biophysical conditions that

favorcertainwateruses.Itssubbasinshaveparticularconditionsthatmakethemmoreor less“suitable”foraspecificuse.Sincethelastdecadesofthe19th centuryandtheearlydecadesofthe20thcentury,the

22º0

'0''

22º2

0'0'

'22

º40'

0''

22º0

'0''

22º2

0'0'

'22

º40'

0''

Latit

ude

Nor

th

Longitude West99º30'0'' 99º15'0'' 99º0'0''

99º30'0'' 99º15'0'' 99º0'0''

Population ≤ than 100 inhabitants

Population ≥ than 100 inhabitants

Population between 100 and 500 inhabitantsPopulation between 500 and 1000 inhabitantsState border

Urban settlement

Perenial streamIntermittent stream

Legend

Fig. 2. DistributionofthehumanpopulationintheRíoVallesBasin

Page 6: WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

B. López Álvarez et al.178

waterusagehasreflectedtheadvancesintechnologyoftheperiod.Thevolumeofwaterusedandextractedfromdifferentwater bodies, primarily theVallesRiver is 89.85 Mm3/year,accordingtotheComisiónNacional delAgua (NationalWaterCommission,CONAGUA,Spanish acronym) and theRegistroPúblicodeDerechosdelAgua(PublicWaterRightsRecord, REPDA, Spanish acronym). From this 89.85 Mm3/year,89.2%isused inagricultureforirrigatingcrops,suchassugarcane(Saccharum of-ficinarum).Atotalof81.06%ofthevolumeofwaterused in agriculture comes from surface sources and therestfromgroundwater(Fig. 3).

IntheRVB7.53%ofthewatervolumeextractedis for agro-industrial uses and2.43% for public-urban uses.

Thiscomponentincludesthreesubcomponents:waterfordomesticuse(Ud),waterforagro-industrialuse (Ui)andwaterforagriculturaluse(Ua). It is deter-minedfromequation7(López-Álvarezet al.2013):

aid UUUU 9.008.002.0 ++= (7)

Theweight assigned to the subcomponents isbasedonthepercentageofwaterusedintheRVB.

Itisworthmentioningthatfordomesticuse,theamountofdrinkingwaterusedperinhabitantperdaymustbetakenintoaccount.FortheRVBtheaver-ageamountofdrinkingwaterusedis200L/hab/day(PHE2000).

Todetermineagro-industrialwaterusage,arela-tionshipwasestablishedbetweentheproportionofthegrossdomesticproduct (GDP)generatedfrom

thisactivityandtheamountofwaterused.Thisre-lationshipwasappliedtowaterforagriculturaluseandprovides an approximatemeasurement of theefficiencyofwater usage (Lawrenceet al. 2002).Agro-industryandagricultureintheRVBrepresents 4 and1%of the stateGDP, respectively (INEGI2010b).

Environment (E)RainfedandirrigatedagricultureintheRVBare

basedonsugarcanecrops.Theincreasedareaplantedwiththiscrophadalsoledtoagrowingdemandforirrigationwater andhas expanded the agriculturalboundariesintoareasthatformerlycontainedtropi-cal forests.

Thisexpansionoftheagriculturalboundarieswasevaluatedwithinformationrelatedtolanduseandvegetationtypefromtheyears1970to2000(Table II). Rainfedagricultureexpandedduringthestudyfrom313.2km2to717.79km2.Whilethisactivityissig-nificantinallfoursubbasins,rainfedagriculturegrew177.66km2inthe“RíoLosGatos”and92.55km2 inthe“RíoValles”subbasins(Fig. 4).

Theincreaseinrainfedagriculturalareamostlycoincideswiththedecreaseinthelowlanddeciduousandsub-deciduouswoodlandduringthestudy.Over24yearstheareaofthe“RíoLosGatos”subbasin,with lowlanddeciduousandsub-deciduouswood-land,decreasedfrom546.63km2 to351.00km2.Thatisareductionof195.63km2(35.78%).Thesamesituationoccurredinthe“RíoMesillas”subbasinthatlost173.97km2ofdeciduouswoodlandduringthesameperiodoftime(Santacruz2007).

Total volumeSurface waterGroundwater

Agriculture IndustryWater uses

Urban-Public Others

80

70

60

50

40

30

20

10

Volu

me

(Mm

3 /yea

r)

9089.5

81.33

8.17

807060504030

2010

Volu

me

(Mm

3 /yea

r)

Total volume used in the

basin Rio Valles

Surfacewater

Groundwater

Source type

Fig. 3. Volumeofwaterusedandextractedfromdifferentwaterbodies,mainlyintheVallesRiver.Poner“mm”enminúsculalasdosenambasgráficas

Page 7: WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

WATER POVERTY INDEX IN SUBTROPICAL ZONES 179

TABLE II.RATEOFCHANGE(%ANDkm2)INVEGETATIONTYPEANDLANDUSEINTHERÍOVALLESBASINBETWEEN1976AND2000

Land use and vegetation

Entire basin

1976 2000Change

(km2) (%)

Irrigated agriculture 82.32 135.19 52.86 64.22Rainfed agriculture 313.02 717.79 404.78 129.31Introduced and cultivated pastures 372.2 481.86 109.65 29.46Junglemediumevergreensub-evergreen 48.4 32.51 -15.88 –32.83Lowlanddeciduousandsub-deciduouswoodland 1857.5 1329.11 –528.38 –28.44Palm forest 88.54 41.23 –47.31 –53.43Humansettlements 9.27 29.32 20.04 216.28Waterbodies 8.16 9.23 1.07 13.11Oakforests 399.94 410.78 10.84 2.71Mountainmesophyticforest 11.21 10.42 –0.79 7.04Xericshrublands 7.74 1.45 –6.28 81.13

Source:Santacruz(2007and2012).

1970

Longitude West

LegendLand use and vegetation

Irrigation agriculture Xeric shrublandsPalm grove

Induced and cultivated pasture

Lowland deciduous woodlandand sub-deciduousHigh evergreen and sub-evergreen jungle

Scale 1:250 000Perennial stream

Rainfed agriculture

Urban settlementBroadleaf forest

Mesophyll mountain forestWater

22º51'

22º00'

22º15'

22º30'

22º34'48''

99º3

4'12

''

99º3

0'

99º1

5'

99º0

0'

98º5

5'48

''

Latit

ude

Nor

th

Longitude West

22º51'

22º00'

22º15'

22º30'

22º34'48''

99º3

4'12

''99

º30'

99º1

5'

99º0

0'

98º5

5'48

''

Latit

ude

Nor

th

2000

Fig. 4. VegetationtypeandLandUseintheRíoVallesBasinbetween1970and2000.CAMBIAR“Lowdecidu-ousjungleandsub-deciduous”POR“Lowlanddeciduousandsub-deciduoustropicalforest”Y“Highevergreenjungleysub-evergreen”POR“Highlandevergreenandsub-evergreentropicalforest”

Page 8: WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

B. López Álvarez et al.180

OveralltheRVBlost544.26km2ofitsjunglesand10.84km2ofitsforestsbetween1976and2000,resultinginadeforestationrateof1.18%(Santacruz2007).Thisvalueisslightlyhigherthantheannual0.65and0.76%atnationallevel,withsimilarveg-etationtypesduringthesamestudiedperiod(Reyeset al.2006).

Theevaluationwascarriedoutatascaleof0to100%,wherethecategoryof0to20representsverysmallchanges,20to40smallchanges,40to60me-diumchanges,60to80largechangesand80to100verylargechanges.Therefore,thescoreof0to20%wouldbethemostfavorabletotheWPI,sinceitwouldrepresentlittlechangeinthenaturalvegetation.Ontheotherhand,thescoreof80to100%wouldrepresentnearlyatotallossofnaturalvegetationinthebasin.

Quality (Q)Waterisindispensableforhumanlife.Both,its

qualityandquantityareimportantanditsdegradationimpactstheenvironmentand,inparticular,humanhealth(Azqueta2002,Soares2003).Waterpollutioncanoccurfromnaturaloranthropogeniccauses.Theimpropermanagementofwaterresourcesisoneofthemain reasons for its deterioration.UNESCO(1998)indicatesthatanevaluationofthequalityandquantityofavailablewaterisaprerequisiteforthe

developmentandmanagementofwaterresources.In theRVB,CONAGUA has differentwater

qualitymonitoringstations,primarilyinthe“RíoElSalto”and“RíoValles”subbasins.Intermsofthephysical,chemicalandbacteriologicalinformationregardingwaterqualityatthesemonitoringstations,the temporal behavior of quality parametersweredetermined and comparedwith themaximum al-lowablelimitsaccordingtotheMexicanregulationNOM-127-SSA1-1994. It is important tomentionthat onlyCiudadValles haswastewater treatmentplants(whoseoperationsandefficiencyisquestion-able).Domesticwastewater is discharged directlyintoreceptorwaterbodies,increasingthepresenceofpollutants,especiallythosethatarebacteriological.

Thevaluesfortotalandfecalcoliforms(NMP/ 100mL)wereover0(Fig. 5)inallthesamplestakeninthe“RíoElSalto”subbasin.

Thepresenceofbacteriologicalpollution in themainwater supplysource reducesconsiderably theavailabilityofwaterforhumanusepurposesinthebasin.At themonitoring stationsnamedAADAPAand Birmania by CONAGUA –the latter beingdownstream from the former– themost probablenumber (MPN) in the samples taken in the year2005variedfrom47000to700000MPN/100mL. SánchezandHernández(1996)foundtotalcoliform

1

Sampling date

Total coliformsFecal coliformsNOM-127 (Zero CFU/100 mL)

07/0

8/19

9506

/10/

1995

01/0

3/19

9615

/05/

1996

15/0

8/19

9614

/12/

1996

26/0

2/19

9704

/06/

1997

22/1

2/19

9719

/02/

1998

20/0

5/19

9819

/08/

1998

18/1

1/19

9801

/09/

1999

27/1

0/19

9925

/11/

1999

10/0

2/20

0025

/04/

2000

15/0

6/20

0010

/08/

2000

04/1

0/20

0021

/02/

2001

25/0

4/20

0112

/06/

2001

14/0

8/20

0117

/10/

2001

20/0

2/20

0214

/05/

2002

05/0

8/20

0219

/11/

2002

18/0

9/19

97

100 000

10 000

1000

100

Tota

l anf

feca

l col

iform

s (M

PN

/100

mL)

10

Fig. 5. Bacteriologicalanalysisofwaterfromthe“RíoValles”andthe“RíoElSalto”sub-basins.Source:Santacruz(2007)andNOM-127-SSA1(1994)

Page 9: WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

WATER POVERTY INDEX IN SUBTROPICAL ZONES 181

valuesof2500MPN/100mLatdifferentpointslocatedthroughoutthemainchannelinthissubbasin.TheyalsodetectedthepresenceofenterobacteriasuchasEscherichia coli, Proteus, Klebsiella pneumoniae, Shigella dysenteriae and Serratia marcescens.

ThiscomponentwasevaluatedusingtheWaterQuality Index (WQI) developed byMcclelland(1974).Thisindexisanumericalrepresentationofthechemicalparameteranalyzed.Theindexisobtainedfromaddingandponderingthespecificweightsob-tained from a geometric mean (equation 8):

=i

ii

PPC

kWQA∑∑

(8)

whereCiisthepercentagevalueassignedtotheparam-eters, Piistheweightassignedtoeachparameter,k is theconstantwhichtakesthevalueof1forclearwaterwithnoapparentpollution,0.75forclearwaterwithaslightcolor,foam,andslightunnaturalapparentturbid-ity,0.50forwaterwithacontaminatedappearanceand0.25forsewagewithfermentationsandodors.

Toobtain thewater quality component for thesurfaceandgroundwateravailableinthestudyarea,thefollowingexpressionisused(López-Álvarezet al.2013,equation9):

AgrnAsur QQQ 09.091.0 += (9)

whereQAsur and QAgrnaretheWQIforsurfaceandgroundwater from the aquifer, respectively.Theweightfactors(0.91and0.09)usedinthiscomponentwereassignedaccordingtothepercentageofusagefromthesesourcesintheregion.

Onascaleof0 to100, themaximumvalueof100representsexcellentqualityandvaluesunder50represent serious pollution problems.

RESULTS AND DISCUSSION

Thefollowingresultswereobtainedafteranalyz-ingtheinformationtoevaluateeachcomponentfortheRVB.

ResourcesGiventheorographicandclimaticconditionsin

theRVB,duringtherainyseasonlargeflowsoccur,frequentlycausingfloodinginthelowerpartsofthebasin.Consequently,surfacewaterisabundantandprovidesthemainsource(91%)ofwaterfordifferentactivitiesintheregion.

Fromageologicalperspective,groundwatercir-culatesinhighlyfracturedlimestonewithdissolutioncavities(karstarea),resultinginlargerechargesoftheaquifer(Morán-Ramírezet al.2013).Theabundantsurfacewatergenerateslowdemandforgroundwater,therefore,theamountofdeepwellsislowcomparedtootherregionsinMexico.Verylittlegroundwaterisused,representingonly9%ofthetotalwateruseintheRVB.

ToevaluatethenormalizedRparameter,value1represents abundantwater resources.Thiscompo-nentwasevaluatedwithanequation that includesextremescenarios,inwhichthevalue0.5representsabalanceoftheresourceintheaquifersandvalueslessthan0.5representthedepletionoftheaquifer(López-Álvarezet al.2013).

InthecaseoftheRVB,avalueof0.97wasob-tainedforthiscomponent,whichisconsistentwiththeclimatologicalconditionsandtheabundantwaterresourcesinthestudyarea.

QualityAlthoughsurfacewaterisabundantandservesas

themainsourceforavarietyofeconomicactivities,itsdomesticuseislimitedbecauseitsqualityisverypoor forhumanconsumption.For example,waterfromtheRíoVallescontainstotalcoliformvaluesofasmuchas273000CFUandfecalcoliformvaluesof170000CFU,causinggastrointestinalandder-matologicalillnessesamongthehumanpopulation(Gómez and Velarde 1996).

TheWQIscorewas51forsurfacewaterand66.7fortheaquifer(SantacruzandRamos2010).Thesevalueswereused inequation (9),basedonwhichthe score of 0.52 for componentQwas obtained.Whilethislimitsitsuseforhumanconsumption,itis acceptable for agricultural irrigation (Santacruz andRamos2010).

UsageRegarding thiscomponent,agriculturalactivity

playsanimportantroleanddemandsahighvolumeoftheresourceforgravityirrigationsystems,whosemaximumefficiencyisestimatedat50%.Thevalueof itsproductionhas little influenceon the state’sGDPandtheregionaleconomy.

Domestic use is deficient becausemost of thedrinkingwaterservicesarelocatedinthemunicipalcapitalofCiudadValleswhiletherestofthelocalitieslacktheseservices.

Theevaluationof thiscomponent resulted inanormalizedUvalueof0.052,whichreflectstheso-cioeconomicconditionsinthestudyzone.

Page 10: WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

B. López Álvarez et al.182

TABLE III.VALUESOBTAINEDFOREACHCOMPONENTOFTHEWATERPOVERTY INDEXOFRÍOVALLES BASIN

Component Score Weight WaterPovertyIndexResource 0.97 30

59

Quality 0.52 20Use 0.05 10Access 0.31 15Capacity 0.35 15Environment 0.90 10

AccessThe rural population in theRVB is dispersed,

whilemostof theurbanpopulation isgathered inthreemunicipalitieswheredrinkingwaterservicesarecentralized,particularlywastewatertreatmentinCiudadValles.Therestof themunicipalitieshavelessanddispersedpopulation, therefore,access totheseservicesislimited.

Anormalizedvalueof0.31wasobtainedduetothe centralizationof drinkingwater and treatmentservicesinthemainpopulationcentersandthelackofthoseservicesinrurallocalities.

CapacityInthecityofSanLuisPotosí,anotableconcen-

trationofservicesandeconomicactivityexists.Thissituationpolarizesthesocioeconomicconditionsinthe rest of the state, and therefore theHDI in thestudyzoneislow.

Themortalityrate,incomeandGinicoefficientusedtoevaluatetheCapacitycomponentgavesimilarvaluestothoseobtainedintheSLPValley(López-Álvarez et al. 2013),while the education indiceswerelowerthanthoseobtainedintheSLPV,whichisreflectedinthenormalizedscoreof0.35forthiscomponent.

EnvironmentLandusechangesintheRVBwereconsideredto

evaluatetheenvironmentcomponent.Themodifiednaturalareaisapproximately588km2,whichrep-resents24%ofthetotalareaoftheRVB,avalueof0.9wasassignedtothiscomponent.Thisisconsistentwithlandusechangesintheregion,wheretropicalrainforestshavebeenconvertedintoirrigatedagri-culturalland.ThislandusechangehaslessimpactthaninotherregionsofSLPwherenaturalvegeta-tionhasbeenturnedintourbanuseordeforestationwithout recovery had occurred (López-Álvarezet al.2013).

Water Poverty Index for the RVBTheresultingpolygonfortheRVBreflectsseri-

ousproblemswithusage,accessandcapacity.Ontheotherhandwaterquality,forinstance,istheleastproblematicinitsevaluation,andtheenvironmentalandresourcecomponentsalsohavefavorablecondi-tions (Fig. 6).

Table IIIpresentsthescoresobtainedforeachcomponentandtheirweights,aswellastheoverallWPIfortheRVB,withascoreof59.

IfwecomparethisvaluewiththoseobtainedbyLawrenceet al. (2002),thatarenotnormalized,it

isfarfromthescoresofdevelopedcountries,suchasFinlandwithaWPIof78.TheWPIintheRVBis higher than those in underdeveloped countrieswithwaterpovertyproblems,suchasHaitiwithaWPIof35.1,andisevenhigherthantheWPIforMexicoandtheSLPV,withvaluesof57.5and46,respectively.

TheWPIvaluefortheRVB(59)isprobablyduetothehighavailabilityofwaterandthelowenviron-mentaleffectsinthisarea.Neverthelessitindicatesthattheruralpopulationdoesnothaveaccesstotheresource, its socioeconomic situation is unequal and theuseofwaterisdeficient(Fig. 6).

ContrastscanbeseenwhencomparingtheWPIintheSLPVwiththatoftheRVB(Fig. 7).TheresourceisabundantintheRVBwhilescarceintheSLPV.Inaddition,accessandthecapacitycomponentsaredeficientintheRVBwhereasintheSLPVthereisamoreefficientmanagementofthisresource.

0.97Resource

Environment

Capacity

Access

Use

Quality0.52

0.05

0.31

0.35

0.90

1.0

0.8

0.6

0.4

0.2

0.0

Fig.6. NormalizedWaterPovertyIndexHexagonfortheRíoValles Basin

Page 11: WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

WATER POVERTY INDEX IN SUBTROPICAL ZONES 183

Throughout history, the environment in theSLPVhasundergoneirreversiblechanges,suchasdeforestation and depletion and pollution of surface andgroundwaterresources.Nevertheless,theenvi-ronmental changes in theRVBare reversible anddeforestedzonesmayberecoveredinashortperiodof time. In termsof theresource, recharge ishighandflowsareverydynamicbecauseofthekarsticcharacteristicoftherock.

Theaboveanalysisshowsthattheabundanceoftheresourcedoesnotensurebettersocioeconomicdevelopment in a region.

CONCLUSIONS

Geographic,geological,orographicandclimaticconditionsarefactorsthatenhancetheabundanceoftheresource(R),resultinginavalueof0.97.

LandusechangesintheRVBhavehadlittleim-pactontheenvironmentbecausethelossofnatural

vegetationcoverwasreplacedbyirrigatedagricul-ture,resultinginavalueof0.9fortheenvironmentalcomponent (E).

In termsof thequality(Q)ofwaterforhumanconsumption,treatmentisrequired.Nevertheless,itisadequateforagriculturalusesandavalueof0.52wasobtained.

Regarding capacity (C), a value of 0.35wasachieved,which reflects the centralization of theeconomicalactivityinthearea,thatisfocusedmainlyinonemunicipality,whiletherestofthelocalitiesareleftbehind.

SeventyfivepercentofthehumanpopulationlivingintheRVBislocalizedinCiudadValles,ElNaranjoandNuevoMorelos.Thispopulationhasaccesstocleanwater, but there aredeficientwastewater treatmentservicesandadequateaccesstoirrigationwater.Therestofthepopulation(25%)hasdeficientornoaccess(A)totheresource,asreflectedbyascoreof0.31.

Themainuseofwaterisforagriculture,whichisthelargestactivityintheregion.Nonetheless,theusage (U) does not significantly contribute to thestate´sGDP,asreflectedbyavalueof0.05forthiscomponent. In addition, domestic use is centered primarilyinCiudadValles,whereasservicesfortherestofthepopulationintheRVBaredeficient.

TheevaluationoftheWPIfortheRVBdemon-stratesthatwaterpovertylevelsinaregionarenotdeterminedbythequantityoftheresourcebutratherbyitsefficientmanagementanduse.Therefore,theWPIcouldbeausefultoolforintegratedwaterre-sources management.

REFERENCES

AzquetaD.(2002).IntroducciónalaEconomíaAmbiental.Ed.McGraw-Hill.Madrid,Spain,456pp.

Carranco-LozadaS.,Ramos-LealJ.,Noyola-MedranoC.,Moran-RamírezJ.,López-ÁlvarezB.,López-QuirozP.andAranda-GómezJ.(2013).Effectsofchangeofuseoflandonanaquiferinatectonicallyactiveregion.Nat.Sc.5,259-267.

GómezN.A. andVelardeN.H. (1996).Deteccióndeenterobacterianas en el Río Valles como una fuente de contaminación. Universidad Autónoma de San Luis Potosí,UnidadZonaHuasteca.Mexico,74pp.

INEGI.(2007).Censoagropecuario,VIIIcensoagrícola,ganaderoy forestal. InstitutoNacionaldeEstadísti-ca yGeografía. [Online]: http://www.inegi.org.mx/prod_serv/contenidos/espanol/bvinegi/productos/metodologias/censo_agrope/2007/metodo_2007/Sin-MetCAGyF.pdf10/03/2014.

Fig. 7. NormalizedWaterPovertyIndexHexagonfortheRíoVallesBasinandtheSanLuisPotosíValley

Resource

Environment

Capacity

Access

Use

Quality

Component ScoreSLPV RVB

Resource 0.26Quality 0.74Use 0.29Access 0.75

Environment 0.40Capacity 0.63

0.970.700.050.31

0.900.35

San Luis Potosi Velley (SLPV)

Río Valles Basin (RVB)

1.0

0.8

0.6

0.4

0.2

0.0

Page 12: WATER POVERTY INDEX IN SUBTROPICAL ZONES… · water poverty index in subtropical zones: the case of huasteca potosina, mexico briseida lÓpez Álvarez1*, germán santacruz de leÓn1,

B. López Álvarez et al.184

INEGI.(2010a.)Censodepoblaciónyvivienda.InstitutoNacionaldeEstadísticayGeografía.[Online]:http://www.inegi.org.mx/sistemas/olap/proyectos/bd/consul-ta.asp?p=17118&c=27769&s=est15/03/2014

INEGI.(2010b).SistemadecuentasNacionalesdeMé-xico. Producto interno bruto por entidad federativa. InstitutoNacionaldeEstadísticayGeografía.[Online]:http://www.inegi.org.mx/prod_serv/contenidos/espa-nol/bvinegi/productos/derivada/regionales/pib/2007-2011/pibe2011.pdf15/03/2014

IWRM-UNESCO (2009). IntegratedWaterResourcesManagement inAction.WorldWaterAssessmentProgramme, United Nations Educational, Sci-entific and Cultural Organization. Report. Paris, France. 18 pp. [Online]: http://unesdoc.unesco.org/images/0018/001818/181891e.pdf26/02/2014.

LawrenceP.,Meigh J. andSullivanC.A. (2002).Thewaterpovertyindex:internationalcomparisons.KeeleEconomicsResearchPapers,KeeleUniversity,Staf-fordshire,UnitedKingdom,19pp. [Online]: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.2349&rep=rep1&type=pdf7/04/2015

López-ÁlvarezB.,Ramos-LealJ.A.,Santacruz-DeLeónG.,Moran-RamírezJ.,Moran-Ramírez,J.,Carranco-LozadaS.E.,Noyola-MedranoC.andPinedaMartínezL.F.(2013).CálculodelÍndicedePobrezadelAguaen zonas semi áridas: caso Valle de San Luis Potosí. Rev.Int.Contam.Ambie.29,249-260.

McclellandN.(1974).EPA-907/9-74-001.WaterQualityIndex.Application in theKansasRiverBasin.U.S.EnvironmentalProtectionAgency-RegionVII.,KansasCity,Missouri,USA,226pp.

Morán-RamírezJ.,Ramos-LealJ.A.,López-ÁlvarezB.,CarrancoLozadaS.andSantacruz-DeLeónG.(2013).Comportamiento hidrogeoquímico de flujos subte-rráneos en acuíferos cársticos fracturados, aplicando modelacióninversa:CasoHuastecaPotosina.Bol.Soc.Geol.Mex.1,71-82.

NOM-127-SSA1-1994(1994).NormaOficialMexicana.Modificacion a laNormaOficialMexicanaNOM-127-SSA1-1994,SaludAmbiental.Aguaparausoy

consumohumano.Limitespermisiblesdecalidadytratamientos a que debe someterse el agua para su potabilizacion.SecretaríadeSalud.DiarioOficialdelaFederación.20dejuniode2000.Mexico.

ReyesH.,AguilarM.,Aguirre J. andTrejo I. (2006).CambiosenlacubiertavegetalyusodelsueloeneláreadelproyectoPujal-Coy,SanLuisPotosí,México,1973-2000. InvestigacionesGeográficas.Bol. Soc.Geol.Mex.59,26-42.

SantacruzG. (2007).Hacia unagestión integral de losrecursoshídricosenlacuencadelRíoValles,Huasteca,México.TesisdeDoctorado,FacultaddeCienciasQuí-micas,IngenieríayMedicina,UniversidadAutónomadeSanLuisPotosí,Mexico,308pp.

SantacruzG.(2008).Generaciónytratamientodeaguaresidual en la Zona Metropolitana de la ciudad de San LuisPotosí.BoletíndelArchivoHistóricodelAgua.Comisión Nacional del Agua. Secretaria de Medio AmbienteyRecursosNaturales.Mexico,89pp.

SantacruzG.andRamos-LealJ.A.(2010).EstudiodelcomportamientohidrogeológicodelaReservaSierraAbraTanchipaysuzonadeInfluencia.ReporteTéc-nicoGTZ-CONANP-COLSAN-IPICYT. SanLuisPotosí, Mexico, 71 pp.

SantacruzG. (2012).ElEspejismode lacuencahidro-gráficacomoespacioparalagestióndelosrecursoshídricossuperficiales,elcasodelríoValles,Huasteca.Colección Investigaciones, El Colegio de San Luis, A.C., Mexico, 171 pp.

Siles J., SoaresD. andAlemánE. (2003). La fuerzade la corriente: gestión de cuencas hidrográficasconequidaddegénero.IUCN,RegionalOfficeforMeso-America.EditorialAbsoluto.SanJosé,CostaRica, 266 pp.

UNESCO (1998).Evaluaciónde los recursos hídricos:Manual para la estimación de las capacidades nacio-nales.Biblioteca virtual del Programa hidrológicointernacionalparaAméricaLatinayelCaribede laUNESCO,142pp.[Online]:http://www.unesco.org.uy/phi/biblioteca/archive/files/8402cc013900e2e09e3a026b75b704a8.pdf25/03/201.