8
Washington University in St. Louis Measurement Lab Introductory Physics Lab Fall 2015 1 Measurement PreLab: Introduction to Uncertainty A Bit of History You might never have thought about it, but the ability to measure accurately has had profound effects on the way humans (and not just scientists) see the universe. For example, the introduction of the first accurate clocks based on the motion of a pendulum radically changed the way humans thought about time. Even the meaning of the word hour was transformed by the introduction of accurate timekeeping. 1 Before the pendulum clock, an hour was simply onetwelfth the time between sunrise and sunset, which means that the length of an hour varied throughout the year. Our place in space has changed perhaps even more than our place in time. For starters, one of the great (and reasonable) objections to Copernicus’ heliocentric theory of the solar system was that the stars did not appear to move relative to each other throughout the year. Since the stars weren’t moving, it was absolutely logical to assume that they were all located on a sphere with the earth at the center. It was only with the introduction of better measuring devices that the stars finally moved and the earth was allowed to orbit the sun. 2 As a third example, the problem of making precise measurements on very small scales (which comes up when studying quantum mechanics) makes one wonder what is predictable and what is completely up to chance, certainly one of the great overlaps between science and philosophy. Even the brilliant scientists that developed quantum mechanics in the first half of the twentieth century had trouble wrapping their minds around its implications. The list could go on. For the sake of brevity, we’ll stop there. Reading from John R. Taylor’s Introduction to Error Analysis Over the course of this term (and perhaps the next) you will be making lots and lots of measurements in lab. Even a measurement seemingly as simple as using a ruler can pose subtle problems. In this PreLab, you will read an introduction to measurement from John R. Taylor’s An Introduction to Error Analysis after which you will complete a multiple choice quiz on Blackboard. Do This: The reading can be accessed through the Olin library’s Ares service. You can find a link to Ares using the PreLab Links page on the Measurements page of the lab website. Read the excerpt (about 18 pages) and answer the following questions. (You do not have to read the last half of the last page. Section 2.5 will not be addressed.) Note that the term “human error” is never used. We will never use the term “human error” because it doesn’t mean anything.

Washington*University*in*St.*Louis* * Measurement*Lab* … · 2018. 8. 20. · Washington*University*in*St.*Louis* * Measurement*Lab* Introductory*Physics*Lab* * Fall*2015*!! 3! Part)I:)Measurements)Have)Uncertainty)

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Washington*University*in*St.*Louis* * Measurement*Lab* … · 2018. 8. 20. · Washington*University*in*St.*Louis* * Measurement*Lab* Introductory*Physics*Lab* * Fall*2015*!! 3! Part)I:)Measurements)Have)Uncertainty)

Washington  University  in  St.  Louis     Measurement  Lab  Introductory  Physics  Lab     Fall  2015    

  1  

Measurement  Pre-­‐Lab:  Introduction  to  Uncertainty  

A  Bit  of  History  

You  might  never  have  thought  about  it,  but  the  ability  to  measure  accurately  has  had  profound  effects  on  the  way  humans  (and  not  just  scientists)  see  the  universe.  For  example,  the  introduction  of  the  first  accurate  clocks  based  on  the  motion  of  a  pendulum  radically  changed  the  way  humans  thought  about  time.  Even  the  meaning  of  the  word  hour  was  transformed  by  the  introduction  of  accurate  timekeeping.1  Before  the  pendulum  clock,  an  hour  was  simply  one-­‐twelfth  the  time  between  sunrise  and  sunset,  which  means  that  the  length  of  an  hour  varied  throughout  the  year.    

Our  place  in  space  has  changed  perhaps  even  more  than  our  place  in  time.  For  starters,  one  of  the  great  (and  reasonable)  objections  to  Copernicus’  heliocentric  theory  of  the  solar  system  was  that  the  stars  did  not  appear  to  move  relative  to  each  other  throughout  the  year.  Since  the  stars  weren’t  moving,  it  was  absolutely  logical  to  assume  that  they  were  all  located  on  a  sphere  with  the  earth  at  the  center.  It  was  only  with  the  introduction  of  better  measuring  devices  that  the  stars  finally  moved  and  the  earth  was  allowed  to  orbit  the  sun.2    

As  a  third  example,  the  problem  of  making  precise  measurements  on  very  small  scales  (which  comes  up  when  studying  quantum  mechanics)  makes  one  wonder  what  is  predictable  and  what  is  completely  up  to  chance,  certainly  one  of  the  great  overlaps  between  science  and  philosophy.  Even  the  brilliant  scientists  that  developed  quantum  mechanics  in  the  first  half  of  the  twentieth  century  had  trouble  wrapping  their  minds  around  its  implications.  The  list  could  go  on.  For  the  sake  of  brevity,  we’ll  stop  there.  

Reading  from  John  R.  Taylor’s  Introduction  to  Error  Analysis  

Over  the  course  of  this  term  (and  perhaps  the  next)  you  will  be  making  lots  and  lots  of  measurements  in  lab.  Even  a  measurement  seemingly  as  simple  as  using  a  ruler  can  pose  subtle  problems.  In  this  Pre-­‐Lab,  you  will  read  an  introduction  to  measurement  from  John  R.  Taylor’s  An  Introduction  to  Error  Analysis  after  which  you  will  complete  a  multiple  choice  quiz  on  Blackboard.  

Do  This:  The  reading  can  be  accessed  through  the  Olin  library’s  Ares  service.  You  can  find  a  link  to  Ares  using  the  Pre-­‐Lab  Links  page  on  the  Measurements  page  of  the  lab  website.  Read  the  excerpt  (about  18  pages)  and  answer  the  following  questions.  (You  do  not  have  to  read  the  last  half  of  the  last  page.  Section  2.5  will  not  be  addressed.)  Note  that  the  term  “human  error”  is  never  used.  We  will  never  use  the  term  “human  error”  because  it  doesn’t  mean  anything.    

Page 2: Washington*University*in*St.*Louis* * Measurement*Lab* … · 2018. 8. 20. · Washington*University*in*St.*Louis* * Measurement*Lab* Introductory*Physics*Lab* * Fall*2015*!! 3! Part)I:)Measurements)Have)Uncertainty)

Washington  University  in  St.  Louis     Measurement  Lab  Introductory  Physics  Lab     Fall  2015    

  2  

PL1.  What  is  the  meaning  of  the  term  error  in  scientific  settings?  

  PL2.  Which  of  the  following  physical  quantities  can  be  measured  with  complete  certainty?  

PL3.  When  George  measures  the  density  of  the  crown  (Section  1.3),  what  conclusion  can  he  draw?  

PL4.  When  Martha  measures  the  density  of  the  crown  (Section  1.3),  what  conclusion  can  she  draw?  

PL5.  What  is  the  discrepancy  between  George’s  and  Martha’s  values  for  the  density  of  the  crown  (Section  1.3)?  (The  term  discrepancy  is  defined  on  page  17  of  Taylor’s  book.)  

PL6.  According  to  the  reading  (Section  1.4),  error  analysis  is  important  to  which  of  the  following  people?  

PL7.  What  is  the  term  for  the  process  of  estimating  positions  between  scale  markings  on  an  instrument  such  as  a  ruler  or  a  voltmeter?    

PL8.  When  using  a  digital  stopwatch  to  perform  an  experiment,  which  of  the  following  sources  of  uncertainty  is  greater?  

PL9.  If  you  were  to  perform  an  experiment  using  a  stopwatch  that  consistently  runs  5%  too  fast,  then  all  of  your  measurements  will  be  5%  too  long.  What  is  the  term  for  an  error  of  this  sort?  

PL10.  Consider  using  a  ruler  with  millimeter  markings  to  measure  the  length  of  a  pencil.  Which  of  the  following  would  be  a  reasonable  estimate  of  the  uncertainty  in  the  measurement?  

PL11.  In  most  situations,  the  uncertainty  that  you  assign  to  a  measurement  should  be  rounded  to  one  significant  figure.  According  to  the  reading  (Section  2.2),  what  is  the  one  significant  exception  to  this  rule?  

PL12.  According  to  the  reading  (Section  2.4),  an  interesting  conclusion  must…  

PL13.  According  to  the  reading  (Section  2.4),  if  there  is  an  unexpectedly  significant  discrepancy  between  an  experimental  and  theoretical  value,  there  is  reason  to  think  that  something  must  have  gone  wrong.  Which  of  the  following  are  possible  explanations?  

PL14.  Which  of  the  following  terms  should  you  never  use  due  to  its  lack  of  meaning?  

End  of  Pre-­‐Lab  

   

Page 3: Washington*University*in*St.*Louis* * Measurement*Lab* … · 2018. 8. 20. · Washington*University*in*St.*Louis* * Measurement*Lab* Introductory*Physics*Lab* * Fall*2015*!! 3! Part)I:)Measurements)Have)Uncertainty)

Washington  University  in  St.  Louis     Measurement  Lab  Introductory  Physics  Lab     Fall  2015    

  3  

Part  I:  Measurements  Have  Uncertainty  

Getting  Ready  to  Write  a  Report  -­‐  Extremely  Important  Information  

This  lab  is  designed  to  practice  the  terms  and  skills  that  you  read  about  during  the  Pre-­‐Lab.  Another  equally  important  goal  of  this  experiment  is  to  introduce  you  to  the  format  that  we  would  like  to  see  in  your  reports.  The  In-­‐Lab  Links  page  on  the  Measurement  page  of  the  lab  website  gives  example  responses  for  questions  that  are  very  similar  to  the  Synthesis  Questions  that  you  will  be  tackling  today.    

Do  This:  Go  to  the  In-­‐Lab  Links  page  of  the  Measurement  page  of  the  lab  website  and  find  the  example  lab  reports.  Take  a  good  look  so  that  you  don’t  make  the  same  mistakes  that  can  be  found  in  the  poor  lab  report.  There  is  also  a  file  that  describes  in  some  detail  how  lab  reports  will  be  graded.    

Read  This:  To  respond  well  to  the  Synthesis  Questions,  you  will  have  to  become  familiar  with  the  tablet  and  the  drawing  software  (SketchBook  and/or  Paintbrush,  found  on  the  dock),  as  well  as  how  to  incorporate  the  images  you  produce  into  Word.  Instructions  for  all  of  the  software  can  be  found  on  the  Reference  page  of  the  lab  website.    

Do  This:  There  is  a  link  to  the  Reference  page  on  the  red  navigation  bar  on  the  homepage  of  the  lab  website.  Find  and  read  the  instructions  for  Word,  SketchBook,  and  Paintbrush.  Your  TA  will  be  sad  (L)  if  you  ask  a  question  that  is  answered  in  these  short  documents.  

Read  This:  Your  report  will  be  created  in  Microsoft  Word.  Every  report  will  start  with  the  same  template  so  that  it  is  easy  to  include  all  of  the  necessary  information.  

Do  This:  Go  to  the  In-­‐Lab  Links  page  of  the  Measurements  page  of  the  lab  website.  Download  and  open  the  Lab  Report  Template.  Then  rename  the  file  using  the  format:    

Partner1_Partner2_LabTopic.docx  

For  example,  if  Dan  Flanagan  and  Drew  Osterhout  were  completing  the  Measurement  lab,  they  would  title  the  file    

DanFlanagan_DrewOsterhout_Measurement.docx  

Read  This:  You  are  expected  to  save  and  back-­‐up  your  lab  report  often.  These  computers  will  not  save  files  after  you  log  off  or  shut  down,  whether  it  happens  intentionally  or  not.  Periodically  saving  your  report  on  a  thumb  drive  or  using  web-­‐based  storage  is  highly  recommended.  

Read  This:  Now  you’re  ready  to  go!  

   

Page 4: Washington*University*in*St.*Louis* * Measurement*Lab* … · 2018. 8. 20. · Washington*University*in*St.*Louis* * Measurement*Lab* Introductory*Physics*Lab* * Fall*2015*!! 3! Part)I:)Measurements)Have)Uncertainty)

Washington  University  in  St.  Louis     Measurement  Lab  Introductory  Physics  Lab     Fall  2015    

  4  

1.  Length  (At  Length)  

In  the  gray  plastic  case,  you  have  a  machine  key  (that  hunk  of  steel)  and  three  instruments  for  measuring  its  length:  a  ruler  with  1-­‐cm  divisions,  a  ruler  with  1-­‐mm  divisions,  and  digital  calipers  with  a  readability  of  0.01  mm.    

Equipment  

• Gray  Case  containing  o Machine  Key  o Centimeter  ruler  o Millimeter  ruler  o Calipers  

Equipment  Note:  Please  see  page  2  of  the  Cleanup!  Slideshow  before  you  put  the  rulers  back  in  the  case.  The  rulers  can  be  damaged  if  you  put  them  back  improperly.  

Read  This:  As  you  make  these  measurements,  you  have  to  keep  in  mind  the  properties  of  the  measuring  device  as  well  as  the  properties  of  the  machine  key.  With  the  two  rulers,  you  will  have  to  perform  interpolation.  That  is,  you’ll  have  to  estimate  where  between  the  lines  the  end  of  the  object  lies.  With  the  digital  calipers  you’ll  have  to  be  careful  to  make  sure  that  they  have  been  properly  zeroed.  An  improperly  zeroed  instrument  can  introduce  systematic  error  to  an  experiment.  

Read  This:  How  do  the  properties  of  the  machine  key  come  into  this?  Notice  that  the  machine  key  has  rounded  edges.  Maybe  the  last  millimeter  or  so  is  rounded.  The  rounded  edges  won’t  likely  make  it  difficult  to  use  the  ruler  with  1-­‐cm  markings.  Nor  will  the  rounded  edges  affect  how  you  use  the  calipers  because  they  can  clamp  onto  the  flat  ends  of  the  machine  key.  However,  the  rounded  edges  make  it  difficult  to  use  the  ruler  with  millimeter  markings.  This  might  mean  that  you  estimate  the  uncertainty  to  be  larger  than  the  0.5  mm  that  was  used  with  the  pencil  in  the  Pre-­‐Lab  reading.    

Checkpoint  1.1:  Measure  the  length  of  the  machine  key  using  the  ruler  with  1-­‐cm  divisions.  Further,  estimate  the  uncertainty  in  your  measurement.  That  is,  how  confident  are  you  in  your  measurement?  Record  the  length  of  the  machine  key  using  the  form  𝑥!"#$ ± 𝛿𝑥.  

Read  This:  Remember  that  your  lab  report  will  consist  of  responses  to  Synthesis  Questions.  Checkpoints  should  not  be  answered  directly  in  your  report.  However,  you  should  write  responses  to  Checkpoints  in  a  notebook  and/or  discuss  the  Checkpoint  thoroughly.  These  notes  and  discussions  will  help  you  when  you  get  to  the  Synthesis  Questions.  

Checkpoint  1.2:  Measure  the  length  of  the  machine  key  using  the  ruler  with  1-­‐mm  divisions.  Further,  estimate  the  uncertainty  in  your  measurement.  Be  honest  with  this  estimate!  The  rounded  edges  make  this  measurement  a  little  difficult.  Record  the  length  of  the  machine  key  using  the  form  𝑥!"#$ ± 𝛿𝑥.  

 STOP  

Page 5: Washington*University*in*St.*Louis* * Measurement*Lab* … · 2018. 8. 20. · Washington*University*in*St.*Louis* * Measurement*Lab* Introductory*Physics*Lab* * Fall*2015*!! 3! Part)I:)Measurements)Have)Uncertainty)

Washington  University  in  St.  Louis     Measurement  Lab  Introductory  Physics  Lab     Fall  2015    

  5  

Read  This:  When  working  with  digital  instruments,  the  instruction  manual  should  tell  you  what  the  uncertainty  in  the  measurement  is.  The  instruction  manual  for  these  digital  calipers  states  that  their  uncertainty  is  0.02  mm.    

Checkpoint  1.3:  Measure  the  length  of  the  machine  key  using  the  digital  calipers.  Further,  estimate  the  uncertainty  in  your  measurement.  Record  the  length  of  the  machine  key  using  the  form  𝑥!"#$ ± 𝛿𝑥.  

Checkpoint  1.4:  Was  your  best  guess  value  the  same  every  time?  Does  this  mean  some  of  your  measurements  were  wrong?  Discuss.  

Read  This:  Your  machine  key  is  supposed  to  be  3  inches  long.  However,  as  you  know,  making  something  exactly  a  given  length  is  impossible.  The  company  that  sold  us  the  machine  keys  knows  this  as  well  and  reported  a  tolerance  for  that  length.  The  company  states  that  the  machine  key  might  be  0.01  inches  longer  or  0.03  inches  shorter  than  the  quoted  length.    

Checkpoint  1.5:  Convert  the  quoted  length  of  the  machine  key  into  metric  units.  In  addition,  convert  the  maximum  and  minimum  lengths  (as  given  by  the  tolerance)  into  metric  units.  

Read  This:  In  Synthesis  Question  1,  you  will  be  asked  to  make  a  diagram  that  displays  several  measurements  graphically,  a  technique  that  was  shown  in  the  Pre-­‐Lab  reading.  In  order  to  make  your  task  easier,  you  can  download  a  premade  scale  from  the  In-­‐Lab  Links  page.  The  scale  can  be  pasted  into  either  Paintbrush  or  SketchBook.  Then  you  can  draw  over  it.  As  you  make  your  diagram,  it’s  possible  that  the  uncertainty  of  certain  values  will  be  too  large  or  too  small  to  show  up  well  on  the  scale.  That’s  okay!  Do  the  best  you  can.  

Read  This:  Before  you  type  your  response,  be  sure  to  check  out  the  example  reports  on  the  In-­‐Lab  Links  page.  

Synthesis  Question  1  (60  Points):  Do  any  of  the  measurements  that  you  made  strongly  suggest  that  the  length  of  your  machine  key  is  within  the  tolerance  quoted  by  the  manufacturer?  Respond  by  creating  a  graphical  representation  of  your  three  measurements  as  well  as  the  range  of  lengths  allowed  by  the  manufacturer.  Then  write  a  paragraph  analyzing  the  diagram  that  you  have  created.  (Note:  See  the  In-­‐Lab  Links  page  to  find  a  pre-­‐made  scale  that  you  can  use  to  help  create  your  diagram.)  

Do  This:  Save  a  copy  of  your  report  on  a  thumb  drive  or  using  some  web-­‐based  storage.  Remember  that  you  are  responsible  for  having  a  back-­‐up  copy  of  your  report.  These  computers  will  not  save  files  after  you  log  off  or  shut  down,  whether  it  happens  intentionally  or  not.  Periodically  saving  your  report  on  a  thumb  drive  or  using  web-­‐based  storage  is  highly  recommended.  

Equipment  Note:  Please  see  page  2  of  the  Cleanup!  Slideshow  before  you  put  the  rulers  back  in  the  case.  The  rulers  can  be  damaged  if  you  put  them  back  improperly.    

 S1

 STOP  

Page 6: Washington*University*in*St.*Louis* * Measurement*Lab* … · 2018. 8. 20. · Washington*University*in*St.*Louis* * Measurement*Lab* Introductory*Physics*Lab* * Fall*2015*!! 3! Part)I:)Measurements)Have)Uncertainty)

Washington  University  in  St.  Louis     Measurement  Lab  Introductory  Physics  Lab     Fall  2015    

  6  

Part  II:  A  Clever  Measurement  

The  Story  

Mark  Twain’s  immortal  character  Tom  Sawyer  is  known  for  being  a  clever  kid.  (Just  check  out  Chapter  2  of  The  Adventures  of  Tom  Sawyer,  the  famous  whitewashing  scene.)  In  the  upcoming  experiment,  you’ll  have  to  be  equally  clever  in  order  to  measure  the  thickness  of  a  page  of  Tom’s  text.  

Equipment  

• Mark  Twain’s  The  Adventures  of  Tom  Sawyer  • Millimeter  ruler  • Digital  calipers  

2.  The  Thickness  of  a  Sheet  of  Paper  

Checkpoint  2.1:  Try  to  directly  measure  the  thickness  of  a  single  page  of  The  Adventures  of  Tom  Sawyer  using  your  millimeter  ruler.  Discuss  why  this  is  impossible  in  terms  of  uncertainty.  

Read  This:  While  directly  measuring  the  thickness  of  a  single  sheet  of  paper  is  impossible  with  the  millimeter  ruler,  an  indirect  measurement  can  be  easily  accomplished.  By  measuring  the  thickness  of  many  pages  at  once,  you  can  reduce  the  uncertainty  in  your  measurement  so  that  the  measurement  becomes  meaningful.    

Checkpoint  2.2:  Determine  the  thickness  of  a  page  in  The  Adventures  of  Tom  Sawyer  by  measuring  the  thickness  of  many  pages  at  once.  (We  will  address  the  uncertainty  in  the  next  Checkpoint).  

Read  This:  How  can  we  assign  an  uncertainty  to  your  response  to  Checkpoint  2.2?  All  you  have  to  do  is  divide  the  uncertainty  in  the  total  thickness  by  the  number  of  pages  that  you  measured.  For  example,  let’s  say  you  measured  the  thickness  of  100  pages  to  be  0.78   ± 0.05  𝑐𝑚.  Then  the  thickness  of  a  single  page  would  be  0.078   ± 0.005  𝑐𝑚  or  78   ± 5  𝜇𝑚.  See  Appendix  A  if  you  are  interested  in  the  rigorous  proof  of  this  extremely  useful  trick.  

Checkpoint  2.3:  Write  your  response  to  Checkpoint  2.2  in  the  form  𝑥!"#$ ± 𝛿𝑥.  

Checkpoint  2.4:  Use  the  digital  calipers  to  directly  measure  the  thickness  of  a  single  page  of  The  Adventures  of  Tom  Sawyer.  Write  your  response  in  the  form  in  the  form  𝑥!"#$ ± 𝛿𝑥.  

   

Page 7: Washington*University*in*St.*Louis* * Measurement*Lab* … · 2018. 8. 20. · Washington*University*in*St.*Louis* * Measurement*Lab* Introductory*Physics*Lab* * Fall*2015*!! 3! Part)I:)Measurements)Have)Uncertainty)

Washington  University  in  St.  Louis     Measurement  Lab  Introductory  Physics  Lab     Fall  2015    

  7  

Synthesis  Question  2  (40  Points):  Evaluate  the  success  of  the  clever  measuring  trick  that  you  just  learned  and  practiced.  A  successful  evaluation  will  include    

• the  thickness  of  a  page  as  determined  using  a  millimeter  ruler  written  as  𝑥!"#$ ± 𝛿𝑥  • a  brief  (two  or  three  sentences)  description  of  how  that  thickness  was  found  • the  thickness  of  a  page  measured  directly  using  digital  calipers  written  as  𝑥!"#$ ± 𝛿𝑥  • an  analysis  of  the  discrepancy  between  the  two  measurements  (a  figure  is  NOT  

required,  though  you  may  certainly  include  one  if  you’d  like)  • conclusion  about  the  success  of  the  trick  

 

Time  to  Clean  Up!  

Please  clean  up  your  station  according  to  the  Cleanup!  Slideshow  found  on  the  lab  website.  

 References  

[1]  Dohrn-­‐van  Rossum,  Gerhard.  (1996).  History  of  the  Hour.  University  of  Chicago  Press,  Chicago,  IL.  

[2]  Danielson,  Dennis  and  Graney,  Christopher  M.  (2014).  The  Case  Against  Copernicus.  Scientific  American,  January  2014,  Volume  310,  no.  1,  72-­‐77.    

   

 S2

Page 8: Washington*University*in*St.*Louis* * Measurement*Lab* … · 2018. 8. 20. · Washington*University*in*St.*Louis* * Measurement*Lab* Introductory*Physics*Lab* * Fall*2015*!! 3! Part)I:)Measurements)Have)Uncertainty)

Washington  University  in  St.  Louis     Measurement  Lab  Introductory  Physics  Lab     Fall  2015    

  8  

Appendix  A:  Reducing  Uncertainty  by  Measuring  Many  Pages  at  Once  

The  Problem  at  Hand  

Consider  a  measured  thickness,  𝑥!"!#$,  that  represents  the  total  thickness  of  some  number  of  pages  𝑁.  Mathematically,  the  thickness  of  a  single  page,  𝑥!"#$,  can  be  given  by  

𝑥!"#$ =𝑥!"!#$𝑁

 

Here  the  thickness  of  a  page  is  a  function  of  only  one  uncertain  measurement  (𝑥!"!#$).  Before  we  continue  with  this  specific  case,  let  us  investigate  the  general  form  of  this  problem.  

The  General  Case  

Consider  a  quantity  𝑞  that  is  a  function  of  a  single  measured  value  𝑧.  We  could  write  this  in  a  very  general  way  as  

𝑞 = 𝑓(𝑧)  

When  we  have  such  a  relationship  (a  function  of  a  single  variable),  the  uncertainty  𝛿𝑞  in  the  calculated  value  𝑞  is  given  by  

𝛿𝑞 =𝑑𝑓𝑑𝑧𝛿𝑧  

where  𝛿𝑧  is  the  uncertainty  in  the  measurement  of  𝑧.    

Back  to  the  Problem  at  Hand  

In  our  problem,  𝑥!"#$  is  like  𝑞,  𝑥!"!#$  is  like  𝑧,  and  !!"!#$!

 is  like  𝑓 𝑧 .    

That  means  to  find  the  uncertainty  in  𝑥!"#$,  we  just  take  the  derivative  of  !!"!#$!

 with  respect  to  𝑥!"!#$  

and  then  remember  to  multiply  that  by  𝛿x!"!#$.  We  find  

𝛿𝑥!"#$ =1𝑁𝛿x!"!#$  

Since  𝛿x!"!#$  does  not  change  as  x!"!#$  increases  or  decreases,  this  equation  shows  that  increasing  𝑁  will  reduce  𝛿𝑥!"#$.  

Note  that  this  calculation  relies  on  the  assumption  that  there  is  very  little  variation  in  thickness  from  page  to  page.