146
Theory of Machines and Automatic Control Winter 2016/2017 Lecturer: Sebastian Korczak, PhD, Eng. Warsaw University of Technology The Faculty of Automotive and Construction Machinery Engineering Institute of Machine Design Fundamentals Department of Mechanics http://www.ipbm.simr.pw.edu.pl/

Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

Embed Size (px)

Citation preview

Page 1: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

Theory of Machines and Automatic ControlWinter 2016/2017

Lecturer: Sebastian Korczak, PhD, Eng.

Warsaw University of TechnologyThe Faculty of Automotive

and Construction Machinery EngineeringInstitute of Machine Design Fundamentals

Department of Mechanicshttp://www.ipbm.simr.pw.edu.pl/

Page 2: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 2

Lecture 14

Material repeat.Informations about the exam.

Questionnaires.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 3: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 3

Degrees of freedom

material point (2D)

material point (3D)

rigid body (2D)

rigid body (3D)

2 DoF

3 DoF

3 DoF

6 DoF

Page 4: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 4

Kinematic pairs (3D)

Class V

rotary

= 6 - 1

translatory screw-type

Page 5: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 5

Kinematic pairs (3D)

Class IV

cylindrical

= 6 - 2

Page 6: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 6

Kinematic pairs (3D)

Class III = 6 - 3

spherical

Page 7: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 7

Kinematic pairs (3D)

Class II = 6 - 4

Page 8: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 8

Kinematic pairs (3D)

Class I = 6 – 5

Page 9: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 9

Kinematic pairs (2D)

Class V

rotary

= 6 - 1

translatory

Page 10: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 10

Kinematic pairs (2D)

Class IV = 6 - 2

cam joint

cam follower (tapper)

Page 11: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 11

Kinematic pairs

lower kinematic pair – surface contact

higher kinematic pair – line or point contact

closed pair (self-closed pair) – contact because of shape

open pair (force-closed pair) – force required for constant contact

Page 12: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 12

Kinematic chain - examples

Four-bar chain

a

d

b

c

Page 13: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 13

Kinematic chain - examples

connecting rod

piston

crank

crank pin

gudgeon pin (wrist pin)

Reciprocating motion (reciprocation)

Crank-slider mechanism

Page 14: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 14

Kinematic chain - examples

rcrank

yoke

Page 15: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 15

Kinematic chain mobility

F > 1 – movableF = 1 – constrainedF < 1 – locked or overconstrained

(3 D chain) F=6 N−p1−2 p2−3 p3−4 p4−5 p5

(2 D chain) F=3 N−p4−2 p5

N−number of moving bodies

pi−number of i−type classes

kinematic chain mobility – structural formula

(the Chebychev–Grübler–Kutzbach criterion)

Page 16: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 16

Kinematic chain - examples

F = 0 Locked? No!

overconstrained

Page 17: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 17

Classification of kinematic chains

Simple kinematic chain – every member has maximum two kinematic pairs.

Complex kinematic chain – at least one member has three kinematic pairs.

Open kinematic chain – at least one member has only one kinematic pair.

Closed kinematic chain – every member has minimum two kinematic pairs.

Page 18: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 18

Kinematics of mechanisms

Kinematic analysis of a mechanism – determination of velocities and accelerations of selected mechanism members' points at considered configuration. Mechanism structure must be given (geometry of members, kinematic pairs) and drive method must be known.

Page 19: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 19

Methods of velocities and accelerationdetermination

Graphical methods - velocity projection method, - instantaneous center of rotation method, - instantaneous center of acceleration method, - method of rotated velocities, - velocity decomposition method, - acceleration decomposition method, - velocity scheme method, - accelerations scheme method.

Analytical method

Page 20: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 20

Velocity projection method

A

B

v A

vB

Projections of velocities of two rigid body's points onto common line are equal.

Page 21: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 21

Instantaneous center of rotation method

A

Bv A

vB

α

S

α

center of instantaneous rotation(center of velocities)

Page 22: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 22

AB

+AB

AB =

vB= v A+ vBA

absolute velocity of point B velocity of a linear motion

Angular velocity of point B in rotation around point A.

vBA=ω× AB

Velocity decomposition method2nd example

ω

Page 23: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 23

Velocity scheme method

Velocity scheme of a rigid body – geometry created by the ends of it's velocity vectors moved to the common starting point (pole).

Velocity scheme is similar to the corresponding rigid body: it is

scaled and rotated by an 90o angle in the direction of body's

angular velocity.

Page 24: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 24

Velocities in relative motion

A1

A2

v A 2=v A 1+ v A 2 A 1

absolute velocity of

point A2

transportation velocity

relative velocity

A

Page 25: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 25

Instantaneous center of acceleration

A

BaA

aB

α

P

α

center of acceleration

ψψ

ψ=atan εω2

Page 26: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 26

AB

AB

ω+A

B

=

aB=aA+ aBA=aA+ aBAn + aBA

t

absolute acceleration of point B

Angular acceleration of point B in rotation around point A.

Acceleration decomposition methodExample

AB

ε+

absolute acceleration of point A Centripetal acceleration

(normal)

Rotary acceleration (tangential)

aBA=ω×(ω× AB )=−ω2 AB

aBA=ε× AB

Page 27: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 27

Acceleration scheme (diagram)

Acceleration scheme of a rigid body – geometry created by the ends of it's acceleration vectors moved to the common starting point (acceleration scheme's pole).

Acceleration scheme is similar to the corresponding rigid body:

it is scaled and rotated by (180o-ψ) angle in the direction of

body's angular velocity if sgnω=sgnε (or opposite direction if sgnω≠sgnε).

Page 28: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 28

Accelerations in relative motion

B1

B2

B

aB 2=aB 1u + aB 2 B1

w + ac

absolute acceleration of point B2

Transportation acceleration (absolute acceleration of point B1)

Relativeacceleration

Coriolisacceleration

ac=2 ωu×vB 2B 1

Page 29: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 29

Procedure of analytical determination of velocities and accelerations in planar mechanisms.

1. Set up Cartesian coordinate system OXY

.

2. Substitute the mechanism's members with set of vectors. All vectors can move with mechanism's elements, change their size, location and orientation.3. Vectors must to create closed polygons.4. Define “directed angles” for all vectors defined in the same manner. Assume that this angles are created by the positive x axis counter- clockwise rotation.5. Fore each of polygon write down sum of vectors, e.g.:

∑i=1

i=n

l i=0

Page 30: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 30

Procedure of analytical determination of velocities and accelerations in planar mechanisms.

6a. Write down projections of each polygon onto coordinate system's axes:

x: ∑i=1

i=n

li cosφ i=0 y: ∑i=1

i=n

li sin φ i=0

(we do not need to analyze signs because of „directed angles” setup procedure)6b. Define which vectors' lengths and angles are given and/or constant (related to geometry), and which are variable in time and unknown.(for a proper defined system number of unknown variables is equal to the number of equations)7. Solve the equations. The resulting functions describes motion of the mechanism.

Page 31: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 31

Procedure of analytical determination of velocities and accelerations in planar mechanisms.

8. Differentiate functions achieved in p.7 to obtain velocities. Differentiate once again to obtain accelerations.

9. If desired informations was not obtained in p.8, differentiate equations from p.6. Sometimes rotation of the coordinate system is useful here.

Page 32: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 32

Cam-follower

Cam-follower mechanism – mechanism build of a cam and a follower (tappet) connected as a IV class kinematic pair.

Cam is rotating (sometimes is translating)

follower is reciprocating (sometimes is swinging/oscillating)

advantages• simple to construction,• simple to create,• any dimensions,• simple to create advanced motions.

disadvantages• small strength with hight loads,• no adaptation possible.

Page 33: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 33

Cam-follower

Classification

flat / spatial

with in-line (central) follower / with offset (eccentric) follower

closed with geometry / closed with force

Page 34: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 34

Cam-follower

Followers

rollerknife-edge

spherical-faced

source: T. Kołacin, „Podstawy teorii maszyn i automatyki”, OW PW

flat-faced

flat-faced

Page 35: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 35

Cam-follower

Followers

swingingeccentric follower

flat frame

source: T. Kołacin, „Podstawy teorii maszyn i automatyki”, OW PW

Page 36: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 36

Cam-follower

examples

cylindrical cam

globoidal

translating cam

source: T. Kołacin, „Podstawy teorii maszyn i automatyki”, OW PW

Page 37: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 37

Analysis and synthesis of cam-follower mechanism

Analysis – calculation of displacement, velocity and acceleration functions for a follower motion with respect to a cam's rotations angle for arbitrary given geometry.

Synthesis – calculation of a cam geometry needed to obtain given displacement/velocity/acceleration functions. Limitations must be included, i.e. some maximum values, geometry limitations and jerk values (third derivative).

Page 38: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 38

Analysis and synthesis of cam-follower mechanisms

Analysis Syntesis

● substitution of IV. class kinematic pair with V. class kinematic pairs + graphical method (velocity and acceleration scheme)

● graphical determination of a follower movement and graphical differentiation

● analytical method (substitution with polygones of vectors)

● graphical determination of cam outline by a base circle rotation with follower movement

● analytical designing with a function description

Page 39: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 39

Analytical method

Synthesis of cam-follower mechanisms

For a given function of velocity or acceleration, function of a follower displacement can be found by integration.

Follower displacement as a function of cam angle could be used to obtain cam outline directly (or after change of coordinates).

For a knife-edge follower we will obtain exact real displacement.For a roller-ended follower some errors are possible.

Roller-ended follower give us limitation of a maximum velocity (there is a relation between roller radius and cam size).

Usually we are designing symmetric and smooth cams.

Page 40: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 40

Minimal cam size

Cam-follower mechanisms

1st condition: minimum cam radius in case of material strength and wear resistance.

2nd condition: maximum angle of contact in case of follower bending resistanceand pressure inside the socket.

3rd condition: maximum distance of contact in case of follower's stem bending (for a flat-faced followers).

Follower offset towards direction opposite to direction of rotation decrease angle of contact

Page 41: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 41

Overview

Dynamics of planar mechanisms

Members description as rigid bodies and and material points.

Graphical determination of inertial forces and torques.

Reaction forces in kinematic pairs.

Driving and operating forces/torques.

Inverse and direct dynamics problems.

Graphical, analytical and graphical-analytical method.

Friction in kinematic pairs.

Page 42: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 42

Members description

Dynamics of planar mechanisms

For a planar mechanism member represented by a rigid body:

● mass

● location of a center of a mass

● mass moment of inertia wrt the axis perpendicular to the motion

plan in center of a mass

● location of connection points

Page 43: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 43

Members description

Dynamics of planar mechanisms

a set of material points

Material points method

● same masses● same center of mass

● same inertia

Page 44: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 44

Inverse dynamics problem – calculation of forces and torques that cause given motion of a mechanism.

Direct dynamics problem – calculation of mechanism's motion caused by external forces and torques.

Dynamics of planar mechanisms

Page 45: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 45

Inverse dynamics problem

Dynamics of planar mechanisms

Calculation of forces and torques that cause given motion of a mechanism

0. Mechanism and it's geometry, driving and operating forces/torques, displacement, velocity and acceleration functions are given.

1. Calculation of inertia forces and torques acting moving members of the mechanism.

2. Decomposition of the mechanism with reaction disclosure.

3. Write down vector sums of external forces, reactions and inertia forces (d'Alembert equations).

4. Solve the equations with graphical and/or analytical method.

Page 46: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 46

Overview

Machine dynamics

time

angu

lar

velo

city

starting steady-state motion

stopping

Page 47: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 47

Kinetic energy

Reduction of masses

mr(t)F r(t )

xr( t)

I r(t)

M r(t)

φ r (t)

Total kinetic energy

T = 12

I r ωr2

reduced moment of inertia

T = 12

mr v r2

reduced mass

or

v r=dxr (t )

dt

ωr=d φ r (t)

dt

T=∑i=1

n

(12

mi v i2+1

2I iωi

2)

Page 48: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 48

System power

Reduction of forces

Total system's power

P=M rωr

reduced torque

P (F i , M i ,ωi , v i , ...)

P=Fr vr

reduced force

or

mr(t)F r(t )

xr( t)

I r(t)

M r(t)

φ r (t)

v r=dxr (t )

dt

ωr=d φ r (t)

dt

Page 49: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 49

Linear motion

Machine equation of motion

dT=dW

d ( 12

m(t) v (t)2)=F ( t)dx

12

dm(t )v (t)2+m( t)v ( t)dv (t)=F (t)dx

12

dm( t)v ( t)2+m(t )dx (t )

dtdv (t )=F (t )dx

dm(t)dx

v (t)2

2+m

dv (t)dt

=F (t )

dm(t )dt

v (t )2

+mdv (t )

dt=F (t)

if m=const . ⇒ mdv (t)

dt=P(t) o r m x ( t )=F (t )

m(t)F (t)

v (t)

Page 50: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 50

Angular motion

Machine equation of motion

dT=dW

d (I ω(t)2

2 )=M ( t)d φ

...

...dI (t)d φ

ω(t)2

2+ I (t)

dω(t )dt

=M (t )

dI ( t)dt

ω( t)2

+ I ( t)dω(t)

dt=M ( t)

if I=const . ⇒ Idω( t)

dt=M (t ) o r I φ (t)=M (t )

I (t)

M (t)

φ ( t)

Page 51: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 51

engine machine

φ ( t) I R

φ ( t)

t

ωmax

ωmin

T max=12

I Rωmax2 T min=

12

I Rωmin2

W=T max−Tmin=δ I Rωmean2

δ=ωmax−ωmin

ωmeanωmean=

ωmax+ωmin

2

Non-uniformity of machine motion

Non-uniformity of machine motionSteady-state motion

Page 52: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 52

ω( t)

φ ( t )

engine machine

φ ( t) I R

MD MP

φ ( t)

MD MP

π 2π

W

W=∫φmin

φmax

(M D−M P)d φ

δ=W

I Rωmean2

Non-uniformity of machine motionSteady-state motion

Example

ωmax

ωminW=T max−Tmin=δ I Rωmean2

Page 53: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 53

engine machine

φ ( t) I RI FW

I FW=( δ1

δ2−1) I R

W=δ1 I Rωmean2

assume I R≈const .

Flywheel

engine machine

φ ( t) I R

φ ( t )

t

ωmax

ωmin

Steady-state motion

φ ( t)

t

ωmax

ωmin

W=δ2( I R+ I FW )ωmean2

δ1 I Rωmean2 =δ2(I R+ I FW )ωmean

2

Page 54: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 54

Automatic control

“Automatic control in engineering and technology is a wide generic term covering the application of mechanisms to the operation and regulation of processes without continuous direct human intervention.” - wikipedia

Control theory – branch of mathematics and cybernetics that deals with analysis and mathematical modeling of objects and processes threated as dynamical systems with feedback.

Page 55: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 55

Automatic control

Classical control theorymodern control theory

(1950-now)

single input, single output (SISO) multiple input, multiple output (MIMO)

usually linear systems often nonlinear systems

time independent systems time dependent systems

description by a transfer functions description by a state equations

time and frequency domain analysis time domain analysis

system response is the most important system state is the most important

Page 56: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 56

Linear time-invariant (LTI) system

Linear system

x (t ) - input, y (t )=h(x (t )) - output

h(α x (t ))=αh(x (t ))=α y (t ) scaling

h(x1(t)+x2(t))=h(x1(t))+h(x2(t )) superposition

Page 57: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 57

Linear time-invariant (LTI) system

Time-invariant system

output does not depend explicitly on time

if y (t)=h(x (t )) then y (t−τ)=h(x (t−τ))

Time-varying system

if y (t)=h(x (t )) then y (t−τ)≠h(x (t−τ))

Page 58: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 58

Closed loop control

SYSTEMu(t)=x (t ) y (t )

CONTROLLER

yd (t )

desiredoutput control

function

system output

system input

+

-

e(t)

Page 59: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 59

Laplace transform

Assumption: x (t ) - signal such that for t<0 x (t )=0

X (s)=L{x (t )}=∫0

x (t)e−st dt

where: s∈ℂ , s=σ+ jω , j=√−1

A necessary condition for existence of the integral is that x(t) must be locally integrable on t in <0, ∞).

Laplace transform of x(t):

Inverse Laplacetransform of x(t): x (t )=L−1{X (s)}= 1

2π jlimω→∞

∫γ− jω

γ+ jω

X (s)est ds

Page 60: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 60

Page 61: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 61

Page 62: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 62

Transfer function

dn y (t )dtn +a1

dn−1 y (t )dt n−1 +...+an−1

dy (t)dt

+an y (t )=dm x (t )

dtm +b1

dm−1 x (t )dtm−1 +...+bm−1

dx (t)dt

+bm x (t)

Linear time-invariant SISO system for continuous-time input signal x(t) and output y(t) in a form

after Laplace transformation with zero initial conditions

sn Y (s)+a1 sn−1 Y (s)+...+an−1 s Y (s)+an Y (s)=sm X (s)+b1 sm−1 X (s)+...+bm−1 s X (s)+bm X (s)

(sn+a1 sn−1+...+an−1 s+an)Y (s)=(sm+b1 sm−1+...+bm−1 s+bm)X (s)

H (s)=Y (s)X (s)

=sm+b1 sm−1+...+bm−1 s+bm

sn+a1 sn−1+...+an−1 s+an

Transferfunction

Page 63: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 63

Transfer function

H (s)=Y (s)X (s)

=sm+b1 sm−1+...+bm−1 s+bm

sn+a1 sn−1+...+an−1 s+an

H (s)=Y (s)X (s)

=(s−z1)(s−z2)...(s−zm)(s−p1)(s−p2)...(s−pn)

z1, z2 , ... , zm - zeroes

p1, p2 , ... , pn - poles

Page 64: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 64

Input and output

x (t ) y (t )=h(t)∗x (t )h(t)

X (s) Y (s)=H (s)X (s)H (s)

time domain

complex domain

Page 65: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 65

H (s) H ( jω)=P (ω)+ j Q(ω)

A (ω)=|H ( jω)|=√P2(ω)+Q2(ω)

φ (ω)=Arg H ( jω)=arctanQP

P(ω)

Q(ω)

ω=0ω=∞

y (t)=A sin (ω t+φ )

Transfer function – frequency response

input: x (t)=sin (ω t) output:H (s)transfer function:

Nyquist plot

A (ω)

φ (ω)

s= jω

Page 66: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 66

φ(ω

) [r

ad]

gain (magnitude) plot

Bode Plot

y (t)=A sin (ω t+φ )input: x (t )=sin (ω t ) output:H (s)transfer function:

phase (phase shift) plot

Transfer function – frequency response

ω [rad/s]

L(ω

) [d

B]

ω [rad/s]

L(ω)=20 log A (ω)

Page 67: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 67

Transfer function – frequency responseRC circuit example

A (gain) 20logA

1000 60

100 40

10 20

1 0

0.1 -20

0.01 -40

0.001 -60

Page 68: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 68

Classification of basic automatic systems

Element name Equation Transfer function

proportional k

first order (inertial)

integrator or

y (t )=ku (t )

Tdy (t )dt

+y (t )=ku (t )

y ( t )=k∫0

t

u (t )dt

dy (t )dt

=ku (t )

kTs+1

ks

Page 69: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 69

Classification of basic automatic systems

Element name EquationTransfer function

derivative

derivative with inertia

y (t )=kdu (t )

dt

Tdy (t )dt

+y (t )=kdu (t )

dt

ks

ksTs+1

Page 70: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 70

Classification of basic automatic systems

Element name EquationTransfer function

delay

second order (oscillator)

y (t )=u (t−τ )

T 12 d 2 y (t )

dt 2 +T 2

dy ( t )dt

+

+y (t )=ku (t )

e−τ s

k

T 12 s2 +T 2 s+1

Page 71: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 71

Proportional element

1. Element equation: y (t )=ku (t ) u(t ) - input, y (t ) - output

2. Static characteristic (steady state): y=ku for dydt=0∧ du

dt=0

3. Transfer function: H (s)=k

4. Step response: y (t)=k u0 1(t )

u

y

for u(t)=u0 1(t)

t

u0

u(t)k u0

y (t )

t

Page 72: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 72

Proportional element

5. Frequency response: H ( jω)=k P (ω)=k , Q (ω)=0

6. Nyquist plot:

P(ω)

Q(ω)

7. Bode plot:

φ(ω

) [r

ad]

ω [rad/s]

L(ω

) [d

B]

ω [rad/s]

L(ω)=20 log A (ω)A(ω)=√P2+Q2=|k| φ (ω)=arctan

QP={0 , dla k≥0

π , dla k<0 }

20 log|k|

Page 73: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 73

Proportional elementExamples

1

GEARBOX:input – angular velocity ω

1(t)

output – angular velocity ω2(t)

GEARBOX:input – rotation angle φ

1(t)

output – rotation angle φ2(t)

ω1(t)

ω2(t)

1(t)

φ2(t)

Page 74: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 74

Proportional elementExamples

4BEAM in steady state:input – force F

1

output – force F2

F1 F

2

3 OPERATIONAL AMPLIFIER:input – voltage v

1(t)

output – voltage v2(t)

Vsupply

0Vv

2(t)

v1(t)

R2

R1

v2 ( t )=v1 (t )(1+ R2

R1)

Page 75: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 75

Proportional elementExamples

5HYDRAULIC LEVER:input – displacement x

1(t)

output – displacement x2(t)

x1(t) x

2(t)

6 PRESSURE ACTUATOR:input – pressure p

1(t)

output – displacement x(t)

x(t)

p(t)

Page 76: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 76

First-order inertial element

1. Element equation: u(t) - inputy (t ) - output

2. Static characteristic (steady state): y=ku for dydt=0∧ du

dt=0

3. Transfer function: H (s)= kTs+1

u

y

Tdy (t )dt

+y (t )=ku (t )

Page 77: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 77

First-order inertial element

4. Step response:input: u (t)=u0 1(t)

u0

u(t)

Laplace of input: U ( s)=u01s

Laplace of output: Y (s)=H ( s)U (s)=k u0

s (Ts+1)

output: y (t)=L−1{Y (s)}=k u0(1−e−t /T )

k u0

y (t )

tT 2T 3T

0.950 k u0

0.865 k u0

0.632 k u0

t

Page 78: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 78

First-order inertial element

5. Frequency response: H ( jω)= kTjω+1

6. Nyquist plot:

P (ω)= kT 2ω2+1

, Q (ω)= −k T ωT 2ω2+1

P(ω)

Q(ω)ω=0ω=∞

k /2 k0

−k /2ω=1/T

for k>0

Page 79: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 79

First-order inertial element

7. Bode plot:

L(ω)=20 log A (ω)=20 log|k|−20 log√T 2ω2+1

A(ω)=√P2+Q2=|k|/√T 2ω2+1

φ (ω)=arctanQP=arctan (−T ω )

L(ω

) [d

B] ω [rad/s]1

10 T1T

20 log|k|−3

10 /T

20 log|k|−20φ(ω

) [r

ad]

−π2

−π4

1T

10T

ω [rad/s]

100T

110T

1100T

20 log|k|

20 log|k|−40

for k>0

Page 80: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 80

First-order inertial elementExamples

1LINEAR MOTION OF A MATERIAL POINT WITH LINEAR DAMPING:input – force F(t)output – velocity v(t)

F(t)

v(t)

example: car driving on a flat surface with air resistance proportional to velocity, described using machine equation of motion, with assumption of constant reduced mass.

2ANGULAR MOTION OF A RIGID BODY WITH LINEAR DAMPING:input – torque M(t)output – angular velocity ω(t)

M(t)

ω(t)

Page 81: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 81

First-order inertial elementExamples

3p

1(t)

p2(t) AIR CONTAINER:

input – pressure p1(t)

output – pressure p2(t)

4 HEATED OBJECT WITH SMALL INERTIA:input – heater power h(t)output – object temperature T

i(t)

Page 82: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 82

Integrator

1. Element equation:u(t) - inputy (t ) - output

2. Static characteristic (steady state): for dydt=0∧ du

dt=0

3. Transfer function: H (s)= ks

dy (t)dt

=k u(t )

u=0

u

y

Page 83: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 83

Integrator

4. Step response:

input: u (t)=u0 1(t)

u0

u(t)

u0

y (t )

t

Laplace of input: U ( s)=u01s

Laplace of output: Y (s)=H ( s)U (s)=k u0

s2

output: y (t)=L−1{Y (s)}=k u0 t

1/kt

Page 84: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 84

Integrator

5. Frequency response: H ( jω)= kjω

6. Nyquist plot:

P (ω)=0 , Q(ω)=− kω

P(ω)

Q(ω)

ω=∞0

for k>0

Page 85: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 85

Integrator

7. Bode plot:

L(ω)=20 log A (ω)=20 log| kω|

A(ω)=√P2+Q2=| kω|

φ (ω)=arctanQP=arctan(−∞)

φ(ω

) [r

ad]

−π2

ω [rad/s]

for k>0

L(ω

) [d

B] ω [rad/s]

k /10 k

−20dB/dek

10k0

20

40

100k

Page 86: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 86

IntegratorExamples

1PRISM LIQUID TANK:input – liquid inflow f(t)output – liquid level h(t)

h(t)

f(t)

2 OPERATIONAL AMPLIFIER:input – voltage v

1(t)

output – voltage v2(t)V

supply

0Vv

2(t)

v1(t)

CR

v2(t )=1

RC∫0t

v1(t)dt

Page 87: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 87

IntegratorExamples

3GEARBOX:input – angular velocity ω(t)output – rotation angle φ(t)

ω(t)

φ(t)

4 HYDRAULIC CYLINDER:input – volume inflow f(t)output – displacement x(t)

x(t)

f(t)

Page 88: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 88

Differentiator

1. Element equation:u(t) - inputy (t ) - output

2. Static characteristic (steady state): y=0 for dydt=0∧ du

dt=0

3. Transfer function: H (s)=k s

u

y

y (t)=kdu(t)

dt

Page 89: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 89

Differentiator

4. Step response:

input: u (t)=u0 1(t)

u0

u(t) y (t )

t

Laplace of input: U ( s)=u01s

Laplace of output: Y (s)=H ( s)U (s)=k u0

output: y (t)=L−1{Y (s)}=k u0δ(t )

t

Page 90: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 90

Differentiator

5. Frequency response: H ( jω)= j k ω

6. Nyquist plot:

P (ω)=0 , Q(ω)=k ω

P(ω)

Q(ω)

ω=00

for k>0

Page 91: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 91

Differentiator

7. Bode plot:

L(ω)=20 log A (ω)=20 log|kω|

A(ω)=√P2+Q2=|k ω|

φ (ω)=arctanQP=arctan(∞)

φ(ω

) [r

ad]

π2

ω [rad/s]

for k>0

L(ω

) [d

B]

ω [rad/s]k /10

k

+20dB/dek

10k0

20

40

−20

−40

Page 92: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 92

DifferentiatorExamples

1GEARBOX:input – rotation angle φ(t)output – angular velocity ω(t)

ω(t)

φ(t)

2 OPERATIONAL AMPLIFIER:input – voltage v

1(t)

output – voltage v2(t)

v2(t )=−RCdv1(t )

dt

Vsupply

0Vv

2(t)

v1(t)

C R

Page 93: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 93

Real differentiator (derivative+1st order)

1. Element equation: u(t) - inputy (t ) - output

2. Static characteristic (steady state): for dydt=0∧ du

dt=0

3. Transfer function: H (s)= k sTs+1

Tdy (t)

dt+ y (t )=k

du(t )dt

y=0

u

y

Page 94: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 94

Real differentiator (derivative+1st order)

4. Step response:input: u (t)=u0 1(t)Laplace of input: U ( s)=u0

1s

Laplace of output: Y (s)=H ( s)U (s)=k u0

Ts+1

output: y (t)=L−1{Y (s)}=k u0 e−t /T

k u0

y (t )

tT 2T 3T0.050 k u0

0.135 k u0

0.368 k u0u0

u(t)

t

Page 95: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 95

Real differentiator (derivative+1st order)

5. Frequency response: H ( jω)= k jωTjω+1

6. Nyquist plot:

P (ω)= k T ω2

T 2ω2+1, Q(ω)= k ω

T 2ω2+1

P(ω)

Q(ω)

ω=0 ω=∞k

2TkT

0

−k /2ω=1/Tfor k>0

Page 96: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 96

Real differentiator (derivative+1st order)

7. Bode plot:

L(ω)=20 log A (ω)=20 log|kω|−20 log√T 2ω2+1

A(ω)=√P2+Q2=|k ω|/√T 2ω2+1

φ (ω)=arctanQP=arctan ( 1

T ω )

φ(ω

) [r

ad]

π2

π4

1T

10T

ω [rad/s]

100T

110T

1100T

for k>0

L(ω

) [d

B]

ω [rad/s]110T 1

T

20 log|k /T|−3

10 /T

20 log|k /T|−20

20 log|k /T|

20 log|k /T|−40

0

Page 97: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 97

Real differentiator (derivative+1st order)Examples

1 RC CIRCUIT:input – voltage u

1(t)

output – voltage u2(t)

Page 98: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 98

Delay

1. Element equation:u(t) - inputy (t ) - output

2. Static characteristic (steady state): y=u for dydt=0∧ du

dt=0

3. Transfer function: H (s)=e−τ s

u

y

y (t)=u(t−τ)

Page 99: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 99

Delay

4. Step response:input: u (t)=u0 1(t)Laplace of input: U ( s)=u0

1s

Laplace of output: Y (s)=H ( s)U (s)=u0

se−τ s

output: y (t)=L−1{Y (s)}=u01(t−τ)

u0

u(t)

t

u0

y (t )

t

Page 100: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 100

Delay

5. Frequency response: H ( jω)=e−τ jω

6. Nyquist plot:

P (ω)=cos(τω), Q (ω)=−sin (τ ω)

P(ω)

Q(ω)

ω=00

ω= π2 τ

ω=πτ

ω=3π2 τ

1

1

−1

−1

for k>0

Page 101: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 101

Delay

7. Bode plot:

L(ω)=20 log A (ω)=20 log 1=0A(ω)=√P2+Q2=1

φ (ω)=arctanQP=arctan (−tan( τω))=−τω

φ(ω

) [r

ad]

−π

πτ

ω [rad/s]

10πτ

L(ω

) [d

B]

ω [rad/s]

110 T

1T

10T

0

Page 102: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 102

DelayExamples

1 WIRELESS TRANSMISSION:input – sent dataoutput – received data

data pocket data pocket

Page 103: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 103

Second-order inertial element

1. Element equation:

2. Static characteristic (steady state): y=ku for dydt=0∧ du

dt=0

3. Transfer function: H (s)= k

T 12 s2+T 2 s+1

u

y

T 12 d 2 y (t)

dt 2 +T 2

dy (t )dt

+ y (t )=k u(t)

Page 104: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 104

Second-order inertial element

4. Step response:

u0

u(t)

t

k u0

y (t )

t

h<ω0

h=ω0

h>ω0

Page 105: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 105

Second-order inertial element

5. Frequency response: H ( jω)= k

−T 12ω2+T 2 jω+1

6. Nyquist plot:

P (ω)=k (1−T 1

2ω2)

(1−T 12ω2)2+T 2

2ω2 , Q (ω)=−k T 2ω

(1−T 12ω2)2+T 2

2ω2

P(ω)

Q(ω)ω=0ω=∞

k0

ω=1/T

for k>0

for h<ω0

for h=ω0

for h>ω0

Page 106: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 106

Second-order inertial element

7. Bode plot:

L(ω)=20 log A (ω)

A(ω)=√P2+Q2

φ (ω)=arctanQP

L(ω

) [d

B]

ω [rad/s]

110 T 1

1T 1

20 log|k|−20

20 log|k|

20 log|k|−40

for k>0

10T 1

for h<ω0

for h=ω0

for h>ω0

φ(ω

) [r

ad]

π

π2

1T

10T

ω [rad/s]

100T

110 T

1100 T

Page 107: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 107

Second-order inertial elementExamples

material point of mass m

linear spring with stiffness k

linear damper with damping c

1 VIBRATING SYSTEM:input – force F(t)output – displacement y(t)

y(t)

F(t)

Page 108: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 108

Second-order inertial elementExamples

LINEAR MOTION OF A MATERIAL POINT WITH LINEAR DAMPING:input – force F(t)output – displacement x(t)

F(t)

x(t)

example: car driving on a flat surface with air resistance proportional to velocity, described using machine equation of motion, with assumption of constant reduced mass.

2

3ANGULAR MOTION OF A RIGID BODY WITH LINEAR DAMPING:input – torque M(t)output – angle φ(t)

M(t)

φ(t)

Page 109: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 109

Second-order inertial elementExamples

4 HEATED OBJECT WITH HIGH INERTIA:input – heater power h(t)output – object temperature T

i(t)

Page 110: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 110

Classification of basic automatic systems

Element name Transfer function

proportional k

first order (inertial)

integrator

differentiator

differentiator with inertia

delay

second order (oscillator)

kTs+1

ksksks

Ts+1

e−τ s

k

T 12 s2 +T 2 s+1

Page 111: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 111

BLOCK DIAGRAM ALGEBRAinformation node

X(s)

one input,a few outputs,

X(s) X(s)

X(s)

Page 112: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 112

BLOCK DIAGRAM ALGEBRAsum node

A(s) +

B(s)

+

A(s)+B(s)-C(s)–

C(s)

Page 113: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 113

BLOCK DIAGRAM ALGEBRAserial connection

G1(s)

x(s) y(s) x(s) y(s)G

R(s)G

2(s)

GR(s)=G

1(s) G

2(s)

Page 114: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 114

BLOCK DIAGRAM ALGEBRAparallel connection

G1(s)x(s) y(s) x(s) y(s)

GR(s)

G2(s)

GR(s)= - G

1(s) + G

2(s) + G

3(s)

-

+

G3(s)

+

Page 115: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 115

BLOCK DIAGRAM ALGEBRAfeedback

G2(s)

+

x(s) y(s) x(s) y(s)G

R(s)G

1(s)

GR=G1

1+G1G2

Page 116: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 116

Closed loop control

SYSTEMu(t)=x (t ) y (t )

CONTROLLER

yd (t )

desiredoutput control

function

system output

system input

+

-

e(t)

Page 117: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 117

Types of controllers

● ON/OFF● three state

● proportional● integrator

● differentiator● proportional-inegral-derivative

Page 118: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 118

RELAY / ON-OFF / TWO STATE / BANG-BANG CONTROLLER

input

output

input

output

input

output

real(with hysteresis)

Page 119: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 119

THREE STATE CONTROLLER

input

output

Page 120: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 120

Types of controllers

Page 121: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 121

SATURATION

input

output

Symmetric hard limiting saturation

Page 122: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 122

DEAD ZONE

input

output

Page 123: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 123

PID CONTROLLERstep responses

Page 124: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 124

P - CONTROLLER

time

input

output

G(s)=K p

K p x0

x0

Page 125: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 125

I - CONTROLLER

time

input

output

T i

G(s)= 1T i s

x0

Page 126: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 126

PI - CONTROLLER

time

input

output

T i

G(s)=K p( 1+ 1T i s )

K p x0

x0

2 K p x0

Page 127: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 127

D - CONTROLLER

time

input

output

G(s)=T d s+∞

x0

Page 128: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 128

D - CONTROLLER

time

input

output

G(s)=T d s

T s+1

x0

T

x0

T d

T

Page 129: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 129

PD - CONTROLLER

time

input

output

G(s)=K p( 1+T d s

T s+1)

x0

T

K p x0

K P x0( 1+T d

T )

Page 130: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 130

PID - CONTROLLER

time

input

output

G(s)=K p(1+ 1T i s

+T d s

T s+1 )

x0

K p x0

K P x0(1+T d

T )2 K p x0

T i

Page 131: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 131

PID CONTROLLERimportant notes

Proportional term – necessary part of the controller, creates a main part of control signal that bring output of the system closer to desired value; higher K

P coefficient gives lover errors;

control signal is based on present error;

Integral term – this part of the controller accumulates error; for nonzero error control signal increases that helps to achieve zero error; control signal is based on past error values; “integral windup” problem;

Derivative term – this part of the controller reacts on error changes; for constant error control signal is zero; control signal is based on the trend of feature error; this term is very sensitive to noise;

Page 132: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 132

PID CONTROLLERintegral windup problem

After a large change in a setpoint the integral term can produce very large control signal (higher than maximum possible) – system input is very hight until accumulated error goes back close to zero.

Possible solution: disabling and zeroing integral term outside the small region around the setpoint.

Page 133: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 133

PID CONTROLLERtuning methods

Analytical With a simulation Experimental

1st step: calculation of the system's reduced

transfer function2nd step: calculation of

the system's step response

3rd step: tuning of the Kp, Ki and Kd

coefficients to obtain desired shape of step

response

1st step: calculation of the system's reduced

transfer function2nd step: numerical

implementation of the system's reduced transfer function

3rd step: tuning of the Kp, Ki and Kd

coefficients to obtain desired shape of the system's simulated

outputs

Manual tuning

or

Ziegler-Nichols method

Page 134: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 134

PID CONTROLLERZiegler-Nichols tuning method (PID in standard form)

1. Disable integral and derivative terms of the controller. Set proportional gain to small value.2. Observe a step response of the output of control loop. Go to point 3, if you observe stable and consistent oscillations. If not, increase proportional gain and repeat step 2.

3. For the ultimate gain Ku

from step 2 and oscillation period Tu

calculate

parameters of the controller according to the table:

kp

Ti

Td

classic Z-N 0.6 Ku

0.5 Tu

0.125 Tu

Pessen 0.7 Ku

0.4 Tu

0.15 Tu

no overshoot 0.2 Ku

0.5 Tu

0.333 Tu

Page 135: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 135

General stability criterion

Re p1<0 ∧ Re p2<0 ∧...∧ Re pn<0

G (s)=(s−z1)(s− z2)...( s−zm)( s− p1)(s− p2)...( s− pn)

LTI SISO system is assymptotically stable if real part of every pole of the system's transfer function is less than zero.

Page 136: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 136

Hurwitz criterion

LTI SISO system with a transfer function

H (s)=bm sm+bm−1 sm−1+...+b1 s+b0

an sn+an−1 sn−1+...+a1 s+a0

=(s−z1)(s−z2) ...(s−zm)(s−p1)(s−p2)...(s−pn)

an>0 , an−1>0 , ... , a1>0 , a0>01

2

M n=[ an−1 an 0 0 0 0 an−3 an−2 an−1 an 0 0 an−5 an−4 an−3 . . . . . . . . . 0 0 0 a0 a1 a2

0 0 0 0 0 a0

]Δ2 Δ3 Δn−1

detΔ2>0detΔ3>0...detΔn−1>0

is stable if:

- leading principal minor of order i

Δi

Page 137: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 137

Nyquist stability criterion

G z (s)=y( s)x (s)

=G1(s)

1+G1(s)G2(s)

G1(s)

G2(s)

+

x(s) y(s)

G1G2 =−1Unstable if:

G1(s)

G2(s)

Gopen(s)=a(s)x (s)

=G1(s)G2(s)

a(s)

y(s)x(s)

a(s)

ω=0

ReGopen

Im G open

ω→−∞ω→+∞

Page 138: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 138

Nyquist stability criterion (particular)

The closed-loop system is stable if:1) open-loop transfer function is stable AND

2) open-loop transfer function not enclosing the point (-1,j0).

ReGopen

Im G open

ReGopen

Im G open

-1 -1

stable unstable

Page 139: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 139

TRANSFER FUNCTION

P(ω)

Q(ω)

Δ M

-1

gain margin

Page 140: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 140

TRANSFER FUNCTION

P(ω)

Q(ω)

-1

Δφ

phase margin

Page 141: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 141

Theory of Machines and Automatic ControlWinter 2016/2017

Field of studies: Electric and Hybrid Vehicle Engineering (full-time)

form of studies: 30 hrs lecture, 15 hrs projects

ECTS: 4

Page 142: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 142

EXAM – TERM 1

3rd February 2017 (Friday)

13:25 – lecture hall (room 2.5) openning

13:25-13:30 – preparation

13:30-14:30 – exam

6th February 2017 (Monday)

to 12:00 – publication of exam effects on the website

myinventions.pl/dydaktyka/ and USOSweb

12:00-14:00 – filling of indexes and erasmus papers

Page 143: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 143

EXAM – TERM 2

10th February 2017 (Friday)

13:25 – lecture hall (room 2.5) openning

13:25-13:30 – preparation

13:30-14:30 – exam

12th February 2017 (Sunday) – last session day

do 23:59 – publication of exam effects on the website

myinventions.pl/dydaktyka/ and USOSweb

13th February 2017 (Monday)

12:00 – 14:00 – filling of indexes and erasmus papers

Page 144: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 144

EXAM – IMPORTANT NOTES

● You have to pass the project class to attend the exam.● Index, student card or erasmus paper is needed on the exam.● Please write the exam clearly on the A4 paper.● Everyone must to return the exam.● You can not use any electronic devices during the exam

(mobile phones, smart watches, calculators).● Table of Laplce transform will be displayed on the screen.● Additional persons are delegated to help during the exam.● Any cheating behaviors will cause exam failure.● Topics will be distributed in printed form.

Page 145: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 145

EXAM – IMPORTANT NOTES

● Your answers will be rated with points.● Exam mark will be based on the total number of points

achieved with the rules: < 50% - mark 2 (exam failed) 51%-60% - mark 3,0 61%-70% - mark 3,5 71%-80% - mark 4,0 81%-90% - mark 4,5 >90% - mark 5,0

● Final_mark = 0.5 * project_mark + 0.5 * exam_mark

Page 146: Warsaw University of Technology - myinventions.plmyinventions.pl/dydaktykaSiMR/TMAC_16-17-Lecture_14.pdf · Warsaw University of Technology ... (3D) rigid body (2D) rigid body (3D)

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 146

EXAM – IMPORTANT NOTES

MAIN GROUPS OF TOPICS

1. Mechanisms – kinematic pairs, movability, velocities and accelerations, dynamics.2. Machine dynamics – system reduction, equation of machine motion, flywheel.3. Laplace transform. Transfer function.4. Clasification of basic automatic systems and their characteristics (step responses, Nyquist and Bode plots).5. Block diagram algebra (information and sum nodes, serial, parallel and feedback connections).6. Controllers (on/off, PID).7. Stability criterions.

Please prepare carfully for the exam.