24
Warm Up Factor each expression. 1. 3x – 6y 2. a 2 b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a b) a 3 + a 2 + a + 1 Find each product.

Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Embed Size (px)

Citation preview

Page 1: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Warm UpFactor each expression.

1. 3x – 6y

2. a2 – b2

3. (x – 1)(x + 3)

4. (a + 1)(a2 + 1)

x2 + 2x – 3

3(x – 2y)

(a + b)(a – b)

a3 + a2 + a + 1

Find each product.

Page 2: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Use the Factor Theorem to determine factors of a polynomial.Factor the sum and difference of two cubes.

Objectives

Page 3: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Recall that if a number is divided by any of its factors, the remainder is 0. Likewise, if a polynomial is divided by any of its factors, the remainder is 0. The Remainder Theorem states that if a polynomial is divided by (x – a), the remainder is the value of the function at a. So, if (x – a) is a factor of P(x), then P(a) = 0.

Page 4: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Determine whether the given binomial is a factor of the polynomial P(x).

Example 1: Determining Whether a Linear Binomial is a Factor

A. (x + 1); (x2 – 3x + 1) Find P(–1) by synthetic substitution.

1 –3 1 –1

–1

1 5–4

4

P(–1) = 5

P(–1) ≠ 0, so (x + 1) is not a factor of P(x) = x2 – 3x + 1.

B. (x + 2); (3x4 + 6x3 – 5x – 10)

Find P(–2) by synthetic substitution.

3 6 0 –5 –10 –2

–6

3 0

1000

–500

P(–2) = 0, so (x + 2) is a factor of P(x) = 3x4 + 6x3 – 5x – 10.

Page 5: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Check It Out! Example 1

Determine whether the given binomial is a factor of the polynomial P(x).

a. (x + 2); (4x2 – 2x + 5) Find P(–2) by synthetic substitution.

4 –2 5 –2

–8

4 25–10

20

P(–2) = 25

P(–2) ≠ 0, so (x + 2) is not a factor of P(x) = 4x2 – 2x + 5.

b. (3x – 6); (3x4 – 6x3 + 6x2 + 3x – 30)

1 –2 2 1 –10 2

2

1 0

1040

520

P(2) = 0, so (3x – 6) is a factor of P(x) = 3x4 – 6x3 + 6x2 + 3x – 30.

Divide the polynomial by 3, then find P(2) by synthetic substitution.

Page 6: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

You are already familiar with methods for factoring quadratic expressions. You can factor polynomials of higher degrees using many of the same methods you learned in Lesson 5-3.

Page 7: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Factor: x3 – x2 – 25x + 25.

Example 2: Factoring by Grouping

Group terms.(x3 – x2) + (–25x + 25)

Factor common monomials from each group.

x2(x – 1) – 25(x – 1)

Factor out the common binomial (x – 1).

(x – 1)(x2 – 25)

Factor the difference of squares.

(x – 1)(x – 5)(x + 5)

Page 8: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Example 2 Continued

Check Use the table feature of your calculator to compare the original expression and the factored form.

The table shows that the original function and the factored form have the same function values.

Page 9: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Check It Out! Example 2a

Factor: x3 – 2x2 – 9x + 18.

Group terms.(x3 – 2x2) + (–9x + 18)

Factor common monomials from each group.

x2(x – 2) – 9(x – 2)

Factor out the common binomial (x – 2).

(x – 2)(x2 – 9)

Factor the difference of squares.

(x – 2)(x – 3)(x + 3)

Page 10: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Check It Out! Example 2a Continued

Check Use the table feature of your calculator to compare the original expression and the factored form.

The table shows that the original function and the factored form have the same function values.

Page 11: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Check It Out! Example 2b

Factor: 2x3 + x2 + 8x + 4.

Group terms.(2x3 + x2) + (8x + 4)

Factor common monomials from each group.

x2(2x + 1) + 4(2x + 1)

Factor out the common binomial (2x + 1).

(2x + 1)(x2 + 4)

(2x + 1)(x2 + 4)

Page 12: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Just as there is a special rule for factoring the difference of two squares, there are special rules for factoring the sum or difference of two cubes.

Page 13: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Example 3A: Factoring the Sum or Difference of Two Cubes

Factor the expression.

4x4 + 108x

Factor out the GCF, 4x.4x(x3 + 27)

Rewrite as the sum of cubes.4x(x3 + 33)

Use the rule a3 + b3 = (a + b) (a2 – ab + b2).

4x(x + 3)(x2 – x 3 + 32)

4x(x + 3)(x2 – 3x + 9)

Page 14: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Example 3B: Factoring the Sum or Difference of Two Cubes

Factor the expression.

125d3 – 8

Rewrite as the difference of cubes.

(5d)3 – 23

(5d – 2)[(5d)2 + 5d 2 + 22] Use the rule a3 – b3 = (a – b) (a2 + ab + b2).

(5d – 2)(25d2 + 10d + 4)

Page 15: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Check It Out! Example 3a

Factor the expression.

8 + z6

Rewrite as the difference of cubes.

(2)3 + (z2)3

(2 + z2)[(2)2 – 2 z + (z2)2] Use the rule a3 + b3 = (a + b) (a2 – ab + b2).

(2 + z2)(4 – 2z + z4)

Page 16: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Check It Out! Example 3b

Factor the expression.

2x5 – 16x2

Factor out the GCF, 2x2.2x2(x3 – 8)

Rewrite as the difference of cubes.

2x2(x3 – 23)

Use the rule a3 – b3 = (a – b) (a2 + ab + b2).

2x2(x – 2)(x2 + x 2 + 22)

2x2(x – 2)(x2 + 2x + 4)

Page 17: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Example 4: Geometry ApplicationThe volume of a plastic storage box is modeled by the function V(x) = x3 + 6x2 + 3x – 10. Identify the values of x for which V(x) = 0, then use the graph to factor V(x).

V(x) has three real zeros at x = –5, x = –2, and x = 1. If the model is accurate, the box will have no volume if x = –5, x = –2, or x = 1.

Page 18: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Use synthetic division to factor the polynomial.

1 6 3 –10 1

1

1 0

V(x)= (x – 1)(x2 + 7x + 10)

107

107

Write V(x) as a product.

V(x)= (x – 1)(x + 2)(x + 5) Factor the quadratic.

Example 4 Continued

One corresponding factor is (x – 1).

Page 19: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Check It Out! Example 4

The volume of a rectangular prism is modeled by the function V(x) = x3 – 8x2 + 19x – 12, which is graphed below. Identify the values of x for which V(x) = 0, then use the graph to factor V(x).

V(x) has three real zeros at x = 1, x = 3, and x = 4. If the model is accurate, the box will have no volume if x = 1, x = 3, or x = 4.

Page 20: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Use synthetic division to factor the polynomial.

1 –8 19 –12 1

1

1 0

V(x)= (x – 1)(x2 – 7x + 12)

12–7

12–7

Write V(x) as a product.

V(x)= (x – 1)(x – 3)(x – 4) Factor the quadratic.

Check It Out! Example 4 Continued

One corresponding factor is (x – 1).

Page 21: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

4. x3 + 3x2 – 28x – 60

Lesson Quiz

2. x + 2; P(x) = x3 + 2x2 – x – 2

1. x – 1; P(x) = 3x2 – 2x + 5

8(2p – q)(4p2 + 2pq + q2)

(x + 3)(x + 3)(x – 3)3. x3 + 3x2 – 9x – 27

P(1) ≠ 0, so x – 1 is not a factor of P(x).

P(2) = 0, so x + 2 is a factor of P(x).

4. 64p3 – 8q3

(x + 6)(x – 5)(x + 2)

Page 22: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find

Homework!

Holt Chapter 6 Sec 4Page 433 # 17-37, 41-44, 46-

48

Page 23: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find
Page 24: Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find