242
WaNuLCAS 4.0 Background on a model of Meine van Noordwijk, Betha Lusiana, Ni’matul Khasanah, Rachmat Mulia World Agroforestry Centre Wa ter , Nu trient and L ight Capture in A groforestry S ystem

WaNuLCAS 4.0

Embed Size (px)

Citation preview

Page 1: WaNuLCAS 4.0

WaNuLCAS 4.0

Background on a model of

Meine van Noordwijk, Betha Lusiana, Ni’matul Khasanah, Rachmat Mulia

World Agroforestry Centre

Water, Nutrient andLight Capture

in Agroforestry System

Page 2: WaNuLCAS 4.0

WaNuLCAS 4.0

Meine van NoordwijkBetha Lusiana

Ni’matul KhasanahRachmat Mulia

INTERNATIONAL CENTRE FOR RESEARCH IN AGROFORESTRY

Background on a model ofWater, Nutrient and Light Capture

in Agroforestry Systems

Page 3: WaNuLCAS 4.0

Van Noordwijk M, Lusiana B, Khasanah N and Mulia R. 2011. WaNuLCAS version 4.0, Background on a model of water nutrient and light capture in agroforestry systems. Bogor, Indonesia. World Agroforestry

Van Noordwijk, M. and Lusiana, B., 1999 WaNuLCAS, a model of water, nutrient and light capture in

Disclaimer and copyright

commercial research purposes in the interest of the smallholder agroforesters of the world. The STELLA

Sadewa

World Agroforestry Centre

PO Box 161, Bogor 16001, Indonesia

Page 4: WaNuLCAS 4.0

i

Chapter 1Introduction and Objectives

Dr. Jules Bayala, Dr. Catherine Muthuri, Dr. Simone Radersma and Dr. Didik Suprayogo have

Dr. Luis Fernando Guedes-Pinto, Johan Iwald, La Nguyen, Lina Nolin, Vincent Cheylan have

acknowledged.

Acknowledgements

Page 5: WaNuLCAS 4.0
Page 6: WaNuLCAS 4.0

iii

Chapter 1Introduction and Objectives

Table of Content

1.3. Intercropping, crop-weed and agroforestry models

2.1. Model features

3.1. Agroforestry systems 3.1.1. Zoning of the agroforestry system into four zones.

3.1.3. Calendar of events 3.1.4. Crops, weeds and trees

3.2. Soil and climate input data

3.2.2. Temperature

3.2.4. Rainfall

3.3.2. Water uptake

3.4.1. Nutrient inputs and outputs 3.4.2. Nutrient inputs 3.4.3. Leaching

1 2 3 6

16 19

2626 29 30 31 31 32 32 33 33 34

39 41 43

46

49 49

Page 7: WaNuLCAS 4.0

iv

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

2

3.4.9. N

3.6. Light capture

3.10.3 Tree mortality 3.10.4. Weed growth

3.10.6. Fence

3.10.10. Grazing 3.11. Model output

3.11.1. General 3.11.2. Financial analysis

60 61 62 63 66 66

90 90 91

Page 8: WaNuLCAS 4.0

v

Table of Content

4.2. The use of the main switches and changes in crop or tree type

4.6. Contour hedgerows on sloping land

Bagassugarcane yield

References

Appendix 10. Rainfall simulator within WaNuLCAS 4.0 Appendix 11. Water uptake module in WaNuLCAS

9394

100 102

106 109 110 111 113

114

116

119 123

129 136 140

166

209

210 212 216

Page 9: WaNuLCAS 4.0
Page 10: WaNuLCAS 4.0

vii

List of Figures

Figure 1.1.complexity; agroforestry models should explore the diagonal, rather than try to introduce

Figure 1.2.

Figure 2.1A. Figure 2.1B. Figure 2.2A.

Figure 2.2B. Figure 2.3A. A Middle level overview of the WaNuLCAS model in version 4.0. Figure 2.3B. Middle level view on the WaNuLCAS model with examples of 1 sectors. Figure 2.4. Example of output graphs. Figure 3.1.

Figure 3.2.

Zone 4 at RelPos 0.3; arrow explained in the text Figure 3.3.Figure 3.4.

Figure 3.5.

Figure 3.6.

Figure 3.7.

2

2021212223

26

30

33

36

40

Page 11: WaNuLCAS 4.0

viii

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Figure 3.8.Figure 3.9

mm year-1

Figure 3.10

Figure 3.11. General lay out of soil column uphill in WaNuLCAS model. Figure 3.12.Figure 3.13

2

Figure 3.14. A. Conceptual scheme of P pools in the soil as represented in the WaNuLCAS model B.

2

Figure 3.16.

Figure 3.17.

2

Figure 3.18.maximum Lrv rv from

rv with depth idem

Figure 3.19.

Figure 3.20.

Figure 3.21. Light capture in a two-component leaf canopy, as used in WaNuLCAS; three zones

Figure 3.22.

model. Figure 3.23Figure 3.24.

41

43

46

60

63

64

66

Page 12: WaNuLCAS 4.0

ix

List of Figures

Figure 3.25.

growth rate and LAI. Figure 3.27.Tree canopy shape during a pruning - regrowth cycle Figure 3.28

Figure 3.29. AB

Figure 3.30.

Figure 3.31.Figure 3.32.

Figure 3.33Figure 3.34.

decisions to tap the tree. Figure 3.35

Figure 3.36.

Figure 4.1.

Figure 4.2A…C

Figure 4.2.D…G

Figure 4.2 H...K

Figure 4.3. A…F.

-1 crop-1,

Figure 4.4.

Peltophorum and Gliricidia, et al

inputs were derived form the Lampung site.

69

91

94

96

99

100

Page 13: WaNuLCAS 4.0

x

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Figure 4.5.

Figure 4.6.crops with increasing distance to this fallow plot, over two cycles of a two year fallow and 2

zone 1 to zone 2 and again from zone 2 to zone 3; no tree roots in zone 4; B. Tree root length

Figure 4.7.

Figure 4.8.

Figure 4.9.

Figure 4.10.et al

Figure 4.11.Paraserianthes Mahogany Hevea

Figure 4.12.monoculture, Paraserianthes Mahogany Hevea

Figure 4.13.

in Saponé, Burkina Faso. Figure 4.14. Figure 4.15.

scenario. Figure 4.16.

G. robusta A. acuminata P. fortunei

scenarios at Thika. Figure 4.17.

G. robusta A. acuminata P. fortunei

scenarios at Naro Moru.

101

103

106

110

111

112

112

113

Page 14: WaNuLCAS 4.0

xi

List of Figures

Figure 4.18.mm year

Figure 4.19.local response of the tree, with and without a grass sward.

Figure 4.20

Figure 4.21.

Figure 4.22.

Figure 4.23.

Figure 4.24.

Figure App2.1. View of WaNuLCAS Main Menu Figure App2.2.Figure App2.3.Figure App2.4Figure App2.5. View of input menu

119

121

122

123

124

126142143144

Page 15: WaNuLCAS 4.0
Page 16: WaNuLCAS 4.0

xiii

List of Tables

4

3034

49

90

101101

104

Table 1.1.

et al

Table 1.2.

the tree. Table 3.1. Table 3.2.Table 3.3.Table 3.4.Table 3.5. Table 3.6. Table 3.7.Table 4.1.Table 4.2.Table 4.3.Table 4.4.

parameters to retain.

Page 17: WaNuLCAS 4.0
Page 18: WaNuLCAS 4.0

1

Chapter 1

1. Agroforestry researchers who are not very familiar with modelling or with

2.

Chapter 1

Chapter 2

Chapter 3

Chapter 4The appendices

parameters.

Page 19: WaNuLCAS 4.0

2

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

1.1.

et al

Patterns, spatial complexity

WaNuLCAS

GIS

Crop&Soil

Models

Figure 1.1.

models.

Page 20: WaNuLCAS 4.0

3

Chapter 1Introduction and Objectives

1. 2. 3.

food crops,4.

6.

1.2.

and Akeampyong et al

C, and not if F < C.

Cannell et al

comp

noncomp

recycl

nonrecycl

One may argue that Fcomp recycl and that in the longer run

1. the complementarity of the resource use, 2. nonrecycl

3.

recycl.

Page 21: WaNuLCAS 4.0

4

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Table 1.1.

et al.,

Yc = Y0 + F1 + F + Cl + Cw+n + M

Crop yield in Crop yield in monoculture

Long term for light for water and

nutrients

Micro-climate

1. Experimental Mulch transfer Residual Tree removal

2. Process-level understanding rates

SOM Canopy shape, light

Root archi--

3. Synthesis model W a N u L C A S

from the cropping period, as occurs with water in the Grevilleapers. comm

noncomp nonrecycl. With increasing

et al As light is not stored in ecosystems, complementarity in light use is easy to measure. For water

Page 22: WaNuLCAS 4.0

5

Chapter 1Introduction and Objectives

pronounced, there is more chance that an agroforestry system improves crop yields than at

keep track of resource stocks outside and inside the plants and use these to calculate daily

1 and F

l and C et al.

crop [1]

et al

Table 1.2.

zones with increasing distance to the tree.

Term in eq. 1 Water Nitrogen Light

Input imports

Recycleroot zone crop residues -

Crop

-takecrop

top 1,2

Tree,Noncomp

-taketree 3

Losses -est zone zone

-

point of view, unless there is at least some complementarity in resource capture. Direct

Page 23: WaNuLCAS 4.0

6

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

1.3. Intercropping, crop-weed and agroforestry models

et al

from more specialized component models, such as drivers for physiological development

is in models for monocultural stands.

Page 24: WaNuLCAS 4.0

7

Chapter 1Introduction and Objectives

e.g. maize, cassava

or a weed (Imperata)

A Crop

or fruit trees

or woody fallows

e.g. hedge-row trees

A Tree

Nitrogen Water

Light

Figure 1.2. Components of the WaNuLCAS model.

shootbiomass LAI PAR

H O2

N

}

N captureTranspiration

Photosynthesis

rootbiomass

RAI

Above-groundinter-action

Below-groundinter-action

Figure 1.2.

et al

Page 25: WaNuLCAS 4.0

8

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

further integrated and applied simultaneously, avoiding priority assignment. One way of

In developing a generic model for water, nutrient and light capture in agroforestry systems

1. at patch scale

complementarity and ,

2. well-established modules (models)

3. term as the outcome of resource capture

4. agroforestry systems

independently measured

6. within each type of agroforestry system,

regards soil and climate8. be user-friendly

open to improvement9. generate output10.

STELLA

seen as a prototype; in the STELLA

Page 26: WaNuLCAS 4.0

9

Chapter 1Introduction and Objectives

development

Environment

yields for an agroforestry project

Page 27: WaNuLCAS 4.0

10

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

the STELLA environment

light, atmospheric CO2

Page 28: WaNuLCAS 4.0

11

Chapter 1Introduction and Objectives

rate of photosynthesis that depends on factors such as CO2

rainfall.

Page 29: WaNuLCAS 4.0

12

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Page 30: WaNuLCAS 4.0

13

Chapter 1Introduction and Objectives

improved, used, expanded

Sector map Control Screen

Page 31: WaNuLCAS 4.0
Page 32: WaNuLCAS 4.0

The model is formulated in the STELLA

and crop.

of the climate.

and-burn land clearing.

Chapter 2

Page 33: WaNuLCAS 4.0

16

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

2.1. Model features

The model was developed to emphasize the common principles underlying a wide range of

Agroforestry systems

pruning.

Climate

Soil

Page 34: WaNuLCAS 4.0

17

Chapter 2Overview of the model

Figure 2.1A.

Figure 2.1B.

Core Module

Climate

CropTree

Soil : Water & Nutrient

Planting Schedule

Soil Erosion and Sedimentation

Soil StructureDynamic

Additional

Module

Pest and Diseases

Labour use and Profitability

ParasitismSemi-parasitic (cendana)Loranthus

Slash and Burn

Tree Product:Oil PalmRubber/Latex

Grazing

Management:Soil TillagePruningFruit HarvestingTimber HarvestingKilling TreesMulchingWeed Growth

Additional

Module

Page 35: WaNuLCAS 4.0

18

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

The Water balance

Growth

allocate growth over tree organs.

Uptake

uptake [2]

Demand[1] [2]

[3]

rv.

Page 36: WaNuLCAS 4.0

19

Chapter 2Overview of the model

k1. rv2. i in a monoculture with the same Lrv,3.

Root growth

root decay or can follow dynamic rules roots similar to those for crop.

The

Light capture

STELLA1.

2.

3.

STELLA shell does,

In STELLA

Page 37: WaNuLCAS 4.0

20

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

various used in the model, see the array editor within the STELLA model.

Figure 2.2A.

Page 38: WaNuLCAS 4.0

21

Chapter 2Overview of the model

Figure 2.2B.

Figure 2.3A. A Middle level overview of the WaNuLCAS model in version 4.0.

LAYER 1

LAYER 2

LAYER 3

LAYER 4

Page 39: WaNuLCAS 4.0

22

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Figure 2.3B. Middle level view on the WaNuLCAS model with examples of 1 sectors.

Page 40: WaNuLCAS 4.0

23

Chapter 2Overview of the model

Figure 2.4. Example of output graphs.

Page 41: WaNuLCAS 4.0
Page 42: WaNuLCAS 4.0

25

1. 2. 3. a proven ability of the model to predict measured outputs on the basis of

appropriate input parameters.

for the full list of parameter names.

Chapter 3

Page 43: WaNuLCAS 4.0

26

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

3.1. Agroforestry systems 3.1.1. Zoning of the agroforestry system into four zones.

Figure 3.1.

AF_TreeZone[Tree]

is located,

Page 44: WaNuLCAS 4.0

27

Chapter 3Description of model sectors

Table 3.1.

Geometry canopyTopsoildepth

- Time sequence

Alley cropping Linear, half al- Zone 1, Zone 1 - 4 Homogeneous

Homogene-ous, except for canopy

Alley cropping

hedgerow two hedgerows Zone 1 - 4

Homogeneous

Homogene-ous, except for canopy

Alley cropping on slopes one hedgerow

symmetrical canopy

GradientHeterogeneous -

Taungya transi-

cropsLinear Zone 1 - 4 Homogeneous

Homogene-ous, except for canopy

of grasslands

Linear, start with

or whole alleyZone 1 - 4 Homogeneous

Homogene-ous, except for canopy

treesLinear, use cof-

Zone 1 - 4 Homogeneous

Homogene-ous, except for canopy

Homegarden Linear or Circle Zone 1 - 4 Homogeneous Homogeneous

Parkland trees Circle Zone 1,Zone 1 - 4 Homogeneous Heterogeneous

mosaicLinear

Zone 1,Homogeneous Homogeneous or Switching

and crop stage

Tests

, while the results for Zone 1 . The current

Basic concept

Page 45: WaNuLCAS 4.0

28

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Example of results

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

RelCanWidth

Rel

Can

Wid

thZo

ne

Zone1Zone2Zone3Zone4

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

RelCanWidth

Rel

Can

Wid

thZo

ne

Zone1Zone2Zone3Zone4

Figure 3.2.

explained in the text

Page 46: WaNuLCAS 4.0

29

Chapter 3Description of model sectors

else 0

else 0

2

i] and are calculated such that they add up to 1.0.

[4]

i2 - ri-1

24

2

i

i

[5]

Page 47: WaNuLCAS 4.0

30

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

i

3.1.3. Calendar of events

Figure 3.3.

Table 3.2.

No. Date Year in WaNuLCAS Day in WaNuLCAS

1. 0

2. Pruning Gliricidia 1

3. Maize harvest 1 69

4. Pruning Gliricidia 1

1

6. Pruning gliricidia 1

Groundnut harvest 1 214

Pruning Gliricidia 1 219

Page 48: WaNuLCAS 4.0

31

Chapter 3Description of model sectors

3.1.4. Crops, weeds and trees

-2 day-1

i

3.1.5. Animals and soil biota

Page 49: WaNuLCAS 4.0

32

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

3.2. Soil and climate input data

et al

the tropics than in temperate regions.

et al

the spreadsheet itself.

Page 50: WaNuLCAS 4.0

33

Chapter 3Description of model sectors

-10

-8

-6

-4

-2

0

2

4

6

0.0 0.1 0.2 0.3 0.4 0.5

Volumetric water content

Log

Con

duct

ivity

-- L

og H

ydra

ulic

hea

dpFlog KField Cap by pFField Cap by K crit

-10

-8

-6

-4

-2

0

2

4

6

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Volumetric water content

Log

Con

duct

ivity

-- L

og H

ydra

ulic

hea

d

pFlog KField Cap by pFField Cap by K crit

80% Clay

10% Silt

10% Sand

10% Clay

10% Silt

80% Sand

Figure 3.4.

rain event.

3.2.2. Temperature

Wanulcas.xls spreadsheet

of cropping season. Current default values for air temperature ensure the length of cropping

Page 51: WaNuLCAS 4.0

34

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

3.2.4. Rainfall

Table 3.3.

Rain_AType 1 = Tabulated daily rainfall

2 = rainfall simula-tor

3 = Random gen-erator

around monthly total

rain on a given dayrainfall occur-

Amount of rain

-

-ter models.

Normal distri-

-

Normal distri-

rainfallImplicit in data

heavy rain catego-ry, for light rain a

STELLA

rainfall data outside of WaNuLCAS copy the results to the Wanulcas.xls spreadsheet and set

Page 52: WaNuLCAS 4.0

35

Chapter 3Description of model sectors

STELLA

[6]

STELLA

Page 53: WaNuLCAS 4.0

36

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

[7]

1. 2. 3.

Change of slope

Figure 3.5.

[8]

[9]

[10]

wA

A'

A*

B

C

C'

C*

O

x1

x2

h}h*

h‘

}h*

hx + h*

hx

v v

P

Soil moved

Page 54: WaNuLCAS 4.0

37

Chapter 3Description of model sectors

Hence,

[11]

[12]

-3

decline of topsoil height, without change in slope angle.

3.2.7. Soil erosion

3.3. Water balance

1.

2.

3.

4.

6. open,

9.

Page 55: WaNuLCAS 4.0

38

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Figure 3.6.

solutes.

Table 3.4.

In

Final soil water content for all zones and layers

Patch-level run on

Rainfall

the deeper soil layer.

rainfall andirrigation

surfaceinfiltration

evapo-transpi-ration

plantwateruptake

surfaceevapo-ration

leaching

run-on

subsurfa-ce lateralflow

run-off

subsurfa-ce lateralflow

soil waterretention(storage)

soil waterretention(storage)

top-soil

sub-soil

bypass flow

drought signals

drainage

root hydraulic equilibration

deepinfiltration

1

2

3

4

5

67

8

9

Page 56: WaNuLCAS 4.0

39

Chapter 3Description of model sectors

3.3.2. Water uptake

has access.

implemented as such in a STELLA environment, we chose for an approximate procedure, where

1. p

2.

3. p on et al

4. p Ep rh for all voxels

p

s,i and hrh and their

Page 57: WaNuLCAS 4.0

40

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

6. p p

sh

shX*E p

pL Lrv

avg soilwaterpotential

transport

uptakeresistance

hp hrh hs,i

hp

fp

0

12

fp E p

E p

pL Lrv

i

fp E p

potentialuptakerate layer i

real uptake rate = min(demand, supply)

5

1

6

7

8

3

4wat

er p

oten

tial,

cm

Potentialgrowth

Light

WUE

Real growth

plant rhizosphere soil

Figure 3.7.

Page 58: WaNuLCAS 4.0

41

Chapter 3Description of model sectors

Shared by tree & crop ~ Lrv * s

Tree only

Soil in the voxel

Potential uptake is a linear function of ‘matric flux potential’, , allowing for a split of the overall gradient

Wat

er p

oten

tial

Actual uptake for each plant from any cell

Potential uptake for each plant from any cell

s

l

h

( l - s), LrvC,pLrvT,( h - l),LrvT

Hp,T Fest,TLp,T

Hp,C crop in this voxel

Hp,C Fest,CLp,C

Hp,T tree in this voxel

Figure 3.8.

et al et al

rich dry topsoil layers and thus facilitate nutrient uptake. The reverse process, deep water

increase their overall resource capture vis-a-vis shallow rooted plants.

i into or out of each cell i

[13]

where i and j i and j i and rj to the

root systems that are connected to the soil.

Page 59: WaNuLCAS 4.0

42

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

1.

2.

3.

4.

0.1 day-1

matches total demand.6.

1. 2. 3. 4.

Page 60: WaNuLCAS 4.0

43

Chapter 3Description of model sectors

Figure 3.9 -1 of the

1.

2.

3.

the amount that can cross the surface in a day, which depends on saturated hydraulic

4.

Page 61: WaNuLCAS 4.0

44

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

1. W1

[14]

[15]

[16]

and for j ij

2. W2

not

3. W3

W1

4.

N1

Page 62: WaNuLCAS 4.0

45

Chapter 3Description of model sectors

N2

column underneath the surface.

[17]

With

[18]

Figure 3.10

from rainfall and rain intensity.

Page 63: WaNuLCAS 4.0

46

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

[19]

Rate is expresses in mm hr-1

mm hr-1

and

[20]

-1

Figure 3.11. General lay out of soil column uphill in WaNuLCAS model.

Page 64: WaNuLCAS 4.0

47

Chapter 3Description of model sectors

Figure 3.12.

depth

Page 65: WaNuLCAS 4.0

48

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

3.4. Nutrient (nitrogen and phosphorus) balance3.4.1. Nutrient inputs and outputs

et al

3.4.2. Nutrient inputs

and pruning.

Page 66: WaNuLCAS 4.0

49

Chapter 3Description of model sectors

Table 3.5.

In

Final inorganic N or P stock in soil

Final organic N or P in SOM-pools

N or P in external inputs or organic material N or P in harvested crop yield

N or P in harvested tree components

3.4.3. Leaching

BypassMacroi

i

1) Target nutrient content

of 0.2 kg m-2 -1

. The target N content is then contrasted with the current nutrient

Page 67: WaNuLCAS 4.0

50

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

N uptake

Bio

mas

s

closed cropcanopy

Relative N content

N p

os g

row

N_Pos_GrowActualbiomass

N-min in soil

currentN-demand

potentialuptake

actualuptakeRoots

Water content from n*m layers and zones

Actual Ncontent

Target N content

N deficit

N fixation2

1

4

3B2

3A

6

7

5

Figure 3.13

2

[21]

ijk from each cell ij k is

[22]

-30

1 and a0

Page 68: WaNuLCAS 4.0

51

Chapter 3Description of model sectors

stock is the current amount of mineral N per

0 is the root radius.

5) Actual uptake. Actual uptake Sijkcomponent k for all cells ij in which it has roots. Total uptake will not exceed plant demand.

grow[nutrient].

[23]

. Actual uptake and N2

a theta

a

3 3

3

a

[24]

Page 69: WaNuLCAS 4.0

52

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

3 aNH4

3 is also treated

plant uptake.

a a

Figure 3.14. A. Conceptual scheme of P pools in the soil

B.

a

A

B

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1 2 3 4 5 6 7 8 9

P stock

Ka

Layer1Layer2Layer3Layer4

Page 70: WaNuLCAS 4.0

53

Chapter 3Description of model sectors

3.4.7. N2

2

N content and daily N2

parameter is set at 1.

N2

2

2

2

2

N_target/N_biomass0.0 0.2 0.4 0.6 0.8 1.0

N_F

ixda

ilyFr

ac

0.0

0.2

0.4

0.6

0.8

1.0

0 NFixRespi 0.25 0.5 1 2 4 8

N_Posgrow

Page 71: WaNuLCAS 4.0

54

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

2

2

N2

disappear,

in a soil compartment are such that they are mixed or occur in separate clusters. This

-1

-3

-1 cm2

-1 cm2

3.4.9. N15 labeling

The standard version of WaNulCAS no longer includes the sector that represents N

Page 72: WaNuLCAS 4.0

55

Chapter 3Description of model sectors

3.4.11. Green House Gas (GHG)

2, N2et al.,

4

1.

2. for N2

Details for nitrogen oxides

xto Verchot et al

all gaseous N losses the N2

Verchot et al

[25]

-1 day-1

-1 day-1 -2 day-1 -1 year-1

Page 73: WaNuLCAS 4.0

56

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

[26]

[27]

actual.

From Verchot et al

[28]

2,

2

2 part is added.

2to the overall N2 2

2.

predicted N2

Details for methane

-1 y-1 -1 day-1 or 0.0011 g m-2 day-1

et al

Figure 3.16 provides examples for a range of values of the Km parameter.

Page 74: WaNuLCAS 4.0

57

Chapter 3Description of model sectors

Figure 3.16.

An example

Figure 3.17.

2

Page 75: WaNuLCAS 4.0

58

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

3.5.1. Crop root length density

Rt_ACType = 0 user input of maximum root length density for each layer i of zone j. Crop roots

Rt_ACType = 1

[29]

i -2 i ; -1

zonesi.

Table 3.6.

Rt_ACType Dynamics of root growth and decay

0

1 As in 0

2

-

uptake- -

Page 76: WaNuLCAS 4.0

59

Chapter 3Description of model sectors

i

Rt_ACType = 2

not easily measured independently and the user may have to explore a range of values.

at 0.

i-1

version 1.2 root turnover is not

Figure 3.18.

of maximum Lrv

rv from

rv idem

under no, mild and severe water or N stress

Lrv

Dep

th

Lrvlog

Dep

th

Lrv

Dep

th

0 1 2Stage

1

Rel

.root

leng

th

A. B.

C. D. E.

Root DW

Sho

ot D

W

severe

nonemild

Page 77: WaNuLCAS 4.0

60

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

values of this responsiveness are chosen, the calculated change in root length of an individual layer could exceed the total change in root length from decay and new root growth. We prevent

Figure 3.19.

3.5.2. Tree root length density

Rt_ATType = 0 user input of root length density for each cell ij, and

Rt_ATType = 1

[30]

-2

-1

determined.

[31]

where the Lrv00 .. Lrv11

Page 78: WaNuLCAS 4.0

61

Chapter 3Description of model sectors

For Rt_ATType = 2

Rt¬ATType = 3

STELLA

For Rt_ATType = 2

[32]

[33]

[34]

1 1DiamSlopeRtWght, a2 2

[35]

[36]

[37]

r2.

max

Page 79: WaNuLCAS 4.0

62

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

[38]

t and SumDr2

[39]and

[40]

t

[41]

[42]

t

[43]

3.5.4. Root diameter and mycorrhiza

[44]

Page 80: WaNuLCAS 4.0

63

Chapter 3Description of model sectors

[45]

Figure 3.20.

root diameter exists when root length

3.6. Light capture

Faidherbia albida is during the crop growing season.

The current approach has evolved from that in WaNuLCAS where only a single tree plus crop

If light capture of n 2n-1 canopy layers

of one of the components. In WaNuLCAS we chose, however, to use only n canopy layers, using

Page 81: WaNuLCAS 4.0

64

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

leaves spread evenly within that layer.

h 1

l 1

h2

l 2

LAI(1) LAI(2) Light intensity

Hei

ght

e-k LAI1 11

e-k LAI1 1

-k LAI2 22

e-k LAI1 1

-k LAI2 2

h 1

l 1h2

l 2

Light intensity

Hei

ght

e-k LAI1 1

e-k LAI1 1

-k LAI2 2

1

2

3

1

2

3

A.

B.

Figure 3.21.

1. pi2. j j

the highest, for j3. calculate the LAI of each plant component i in each canopy layer j

[46]

i

Page 82: WaNuLCAS 4.0

65

Chapter 3Description of model sectors

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

I

IIIII

IV

X

X

X

X

X

X

X

X

X

I

II

III

IV

X

X

X

X

X

X

X

X X

X

X

X

I

II

III

IV

X

X

X

X

X

X

A B CCanopy Layer Canopy Layer Canopy Layer

Calculated in 7-layer model0.0 0.1 0.2 0.3 0.4 0.5

Cal

cula

ted

in 4

-laye

r mod

el

0.0

0.1

0.2

0.3

0.4

0.5

y = 1.006x-0.0009R2 = 0.9988

Calculated in 7-layer model

0.0 0.1 0.2 0.3 0.4 0.5

Erro

r in

usin

g 4-

laye

r mod

el

-0.02

-0.01

0.00

0.01

0.02 5% error

-5% error

Figure 3.22.

4.

[47]

[48]

6.

Page 83: WaNuLCAS 4.0

66

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

3.7. Crop growth

1. 2 g-1

2.

3.

4.

-2 day-1

which will depend on the crop species, 6.

9.

Figure 3.23

demand is decreasing.

Rel_Light_Capture MaxGroLUE* *PotGro =

Biomass LWR SLA

LAI

shading

min(NPosGro,WaterPosGro)

climatedata, orinput

1

0 1 2Physiological stage

LightUseEffi-ciency

*

TranspDemand

1

34

6

5

7

8

Canopy Height

Page 84: WaNuLCAS 4.0

67

Chapter 3Description of model sectors

-1 day-1

-1 day-1

-1 day-1

2 g-1

-1 day-1

DwSt is recorded

TimeVeg

Page 85: WaNuLCAS 4.0

68

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

2

STELLA

the harvest index.

procedure outlined.

Page 86: WaNuLCAS 4.0

69

Chapter 3Description of model sectors

Days after planting0 10 20 30 40 50 60 70 80

Dry

wei

ght,

Mg

ha-1

0

2

4

6

8

10

12

14Rice

total dry weight

grain

stem

leaf

Days after planting0 20 40 60 80

Dry

wei

ght,

Mg

ha-1

0

2

4

6

8

10

12

14

16

Maize

grain

stem

leaf

Days after planting0 20 40 60 80

Dry

wei

ght,

Mg

ha-1

0

1

2

3

4

5

6

7

8

9

Groundnut

grain

stem

Days after planting0 20 40 60

Dry

wei

ght,

Mg

ha-1

0

1

2

3

4

5

6

7Cowpea

grain

stem

leaf

Days after planting0 50 100 150 200 250 300 350

Dry

wei

ght,

Mg

ha-1

0

5

10

15

20

25

30

35Cassava

tuber

stem

leaf

total dry weight

leaf

Figure 3.24.

Page 87: WaNuLCAS 4.0

70

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Stage0.0 0.5 1.0 1.5 2.0

LWR

and

HI

0.0

0.2

0.4

0.6

0.8

1.0

1.2 ReILUE LWR HarvAlloc

Stage0.0 0.5 1.0 1.5 2.0

LWR

and

HI

0.0

0.2

0.4

0.6

0.8

1.0

1.2 ReILUE LWR HarvAlloc

Stage0.0 0.5 1.0 1.5 2.0

LWR

and

HI

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ReILUE LWR HarvAlloc

Stage0.0 0.5 1.0 1.5 2.0

LWR

and

HI

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ReILUE LWR HarvAlloc

Stage

0.0 0.5 1.0 1.5 2.0

LWR

and

HI

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ReILUE LWR HarvAlloc

Cassava Rice

Maize Groundnut

Cowpea

Figure 3.25.

Page 88: WaNuLCAS 4.0

71

Chapter 3Description of model sectors

Crop Stage0.0 0.5 1.0 1.5 2.0 2.5

dDW

/dt

0

100

200

300InterpolatedWOFOST

Crop stage0.0 0.5 1.0 1.5 2.0

Bio

mas

s, g

/m2

0

4000

8000

12000

16000

wofost vegetativeinterpolated vegetativewofost graininterpol grain

Cumulative DM production

LAI0 2 4 6 8

dDW

/dt

0

100

200

300

wofostinterpolated

DM production vs LAI

1.

decrease in reserves,2.

value of 0 all the rest is ignored

Page 89: WaNuLCAS 4.0

72

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

These parameters are set within the STELLA

3.8. Tree growth 3.8.1. Tree growth stage

PrunHarvFrac.

FruitHarvFrac part of it is harvested from the plot, the remainder returned as mulch.

3.8.2. Canopy and support structure

Page 90: WaNuLCAS 4.0

73

Chapter 3Description of model sectors

[49]

[50]

min and LAImax.

LAImin min and the shape of

Page 91: WaNuLCAS 4.0

74

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

ellips-shapemax-width

max-green-height

min-LAImax-LAI

parameters:Wanulcas canopy shape during a pruning/regrowth cycle

1. Bare trunk of given height2..4. Lateral expansion of canopy with a fixed LAI-canopy, and constant LWR inside the canopy, and constant width/height ratio

6,7. When maximum canopy-width is obtained, the LAI inside the canopy may increase to its maximum value, still at constant LWR8. Beyond this point the canopy will increase in height, with concommittant litterfall and formation of 'thick stem' category

5. When canopyheight exceeds max-greenheight, litterfall ~ inner ellips

1. 2. 3. 4. 5.

6.7.8.

Figure 3.27.Tree canopy shape during a pruning - regrowth cycle

[51]

[52]

LAImin to LAImax.

[53]

If LAIcan reaches LAImax

Page 92: WaNuLCAS 4.0

75

Chapter 3Description of model sectors

[54]

[55]

[56]

[57]

[58]

3.8.5. Tree phenology

Page 93: WaNuLCAS 4.0

76

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Case 2. Deciduous, reaching ‘steady state’

Case 1. Deciduous, single flush & ageing

Case 3. Deciduous, reaching ‘steady state’

LeafFlush DOY

LeafFall DOY

0.5*Leaf

Figure 3.28

min, and

min

[59]

Lmincan expect that for a diameter increment from Dx to Dx

al min

[60]

min to

max

Page 94: WaNuLCAS 4.0

77

Chapter 3Description of model sectors

[61]

For any Dmax value more then 2.4 Dmin the error made when ignoring the Dmin term in the

max

min

min

[62]

and is this independent of BiomD1 and decreases with increasing slope of the link length

l l

0

[63]

[64]

0 according

[65]

Page 95: WaNuLCAS 4.0

78

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

LogDiam0 1 2 3

LogB

iom

ass

0

1

2

3

4

5

6

7

8

9

BiomassCumLittFall

Theor.Eq

Stem diameter, cm0 50 100 150

Rel

. allo

catio

n to

litte

rfal

l

0.0

0.2

0.4

0.6

0.8

1.0defaultb+25%b-25%2*Lslope

A B

Figure 3.29. AB

3.8.7. Tree products

day

in their demand for growth resources.

Page 96: WaNuLCAS 4.0

79

Chapter 3Description of model sectors

Phyllochron as time unit

Sex determination ~

stress

Competition between bunches

Shift-thorughbunch ageing

Harvest cycle ~ phyllochron

Fruit number within bunch

Figure 3.30.

phyllochron

internal growth reserves, as well as in response to current water stress; as in the model

Page 97: WaNuLCAS 4.0

80

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

sink strength,

book keeping

stage.

Hevea brasiliensis Dyera costulata Acacia senegalensis

parameter values.

Figure 3.31.

Page 98: WaNuLCAS 4.0

81

Chapter 3Description of model sectors

Figure 3.32.

Page 99: WaNuLCAS 4.0

82

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Figure 3.33

per ha, using the appropriate area scaling factor.

Figure 3.34.

Page 100: WaNuLCAS 4.0

83

Chapter 3Description of model sectors

3.9. Carbon balance

This terminology is derived from the Century model. This part of the model was developed

Types 2 and 3.1. 2.

3. the procedure of Type 2

with low and high polyphenolic content are mixed.

Page 101: WaNuLCAS 4.0

84

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

1.

Georg Cadisch.2.

Page 102: WaNuLCAS 4.0

85

Chapter 3Description of model sectors

NC Lignin Polyphe-olics

MetabolicC&N

StructuralC&N

SlowC&N

ActiveC&N

123

cropresi-dues

litterfall

pru-nings

tree

leaf stem

PassiveC&N

N fertilizer

LEACHING

Soil N min

Figure 3.35

3.9.2. Carbon stocks

2

response to actual crop performance.

Plot size and tree spacing,

Predetermined pruning events

Page 103: WaNuLCAS 4.0

86

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Building a fence around the plot

Crop residue removal,Maintaining the fence.

At this stage only two types of plants are considered and thus we imply that there are no weeds.

3.10.2. Slash-and-burn events

temperature increase in the topsoil is derived from the temperature increase at the soil surface,

2content to mineral nutrients at the soil surface,

Page 104: WaNuLCAS 4.0

87

Chapter 3Description of model sectors

FireWEvap

TreeTempTol[tree]

3.10.3 Tree mortality

3.10.4. Weed growth

-2 for all

temperature on the topsoil.

Page 105: WaNuLCAS 4.0

88

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

3.10.6. Fence

[67]

3.10.7. Tree pruning

and allow the user to specify pruning dates, similar to the cropping

and only if there is a crop in one of the zoneswill ensure that no tree pruning is implemented in the later part of the

For each pruning event, the parameter

every event.

Page 106: WaNuLCAS 4.0

89

Chapter 3Description of model sectors

3.10.8. Tillage

3.10.10. Grazing

level.

1. 2.

1.

2. 3.

4.

in managing the system.

3.11. Model output3.11.1. General

the STELLA environment allows a user to interrogate the model for the value of any parameter

Page 107: WaNuLCAS 4.0

90

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

3.11.2. Financial analysis

The WaNuLCAS model can predict the outcome of patch-level performance of agroforestry

[68]

Table 3.7.

Costs Returns

Harvested crop yields

-

Organic inputs

-ing

-

et al et al

[69]

[70]

[71]

Page 108: WaNuLCAS 4.0

91

Chapter 3Description of model sectors

[72]

[73]

cell 11 cell 21 cell 31 cell 41

cell 12 cell 22 cell 32 cell 42

cell 13 cell 23 cell 33 cell 43

cell 14 cell 24 cell 34 cell 44

= total = edge = local

Figure 3.36.

Page 109: WaNuLCAS 4.0
Page 110: WaNuLCAS 4.0

Chapter 4

Page 111: WaNuLCAS 4.0

94

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

system of maize and Peltophorum dasyrrachis

Figure 4.1.

The only inputs of water were due to rainfall directly on the simulated area, as the default slope

-1

-13

-2

atmospheric N2-2 -2 -2 was exported with crop

-2 and the error term of -14

Page 112: WaNuLCAS 4.0

95

Chapter 4Examples of model applications

-2. In contrast to N, -2 -13 again

-2

to 24 Mg ha-1

-2

-2

-2

-2 -1

-1

The maize grain yield of 0.94 kg m-2 or 9.4 Mg ha-1 -1 per crop,

4.2. The use of the main switches and changes in crop or tree type

Page 113: WaNuLCAS 4.0

96

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Peltophorumzones at year 2. Changing the tree type from Peltophorum to Gliricidia

a cropping period is due to pruning and use of internal reserves in the tree. For Gliricidia

Gliricidia Peltophorum.

Figure 4.2A…C

P.

Figure 4.2 H and I show the impact of tree and weed presence in the systems. Current default

refers to a crop and weed, while the weed growth in zone 1 is out of phase with the weed

reducing weed growth, except for those in zone 1.

Page 114: WaNuLCAS 4.0

97

Chapter 4Examples of model applications

Figure 4.2.D…G

Figure 4.2 J compare the results for four crop types, each grown in separate zones and each

Figure 4.2 H...K

Page 115: WaNuLCAS 4.0

98

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

zone 3 and 120 in zone 4, kg N ha-1 crop-1

-2

Table 4.1.

-

New Value

0

0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2,2 -

-

1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 10, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1

-

N1[Zn1,2,3,4] N2[Zn1,2,3,4]

-

P[Zn2,3,4] 0,60,90,120-

0.364

Page 116: WaNuLCAS 4.0

99

Chapter 4Examples of model applications

-2 -1

Figure 4.3. A…F.

-1 crop-1

Page 117: WaNuLCAS 4.0

100

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

spacing

Peltophorum as we know that in Lampung experiments Gliricidia

et al

Figure 4.4.

approximate Peltophorum and Gliricidia et al

derived form the Lampung site.

et al.

control crop while for the G hedgerow intercropping system are slightly higher than this control crop. Hedgerow intercropping will clearly give increased crop growth in zone 4, where the

Page 118: WaNuLCAS 4.0

101

Chapter 4Examples of model applications

2

Table 4.2.

New Value

0.1

Table 4.3.

New Value

-

1, 1, 1, 11, 1, 1, 1

Agroforestry zone

0.1, 0.3

Figure 4.5.

pruned from Gliricidia higher than Peltophorum. From the third crop onwards, however yields

Page 119: WaNuLCAS 4.0

102

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

fallows currently

st nd

crop zones while we need to start the tree zone with the weighted average of output from crop st soil layer.

Page 120: WaNuLCAS 4.0

103

Chapter 4Examples of model applications

Tectonareviewed in Van Noordwijk et al

Figure 4.6.

Page 121: WaNuLCAS 4.0

104

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Table 4.4.

st run

New Value

1023

Agroforestry zone

20 Agroforestry Zone

0, 1, 1, 2, 2, 3, 3, 4 Crop Management

Crop Management

12

0

2 Tree Management

300 Tree Management

Tree Management

100 Crop Management

Graph A Graph B

4, 1.6, 0.64, 0 4, 4, 4, 0

1, 0.4, 0.16, 0 1, 1, 1, 0

0.1, 0.04, 0.016, 0 0.1, 0.1, 0.1, 0

Remarksnd

run

Page 122: WaNuLCAS 4.0

105

Chapter 4Examples of model applications

nd run

New Valuest

Agroforestry Zone

3

2

20 Agroforestry Zone

0, 1, 1, 2, 2, 3, 3, 4 Crop Management

Crop Management

4.6. Contour hedgerows on sloping land

Page 123: WaNuLCAS 4.0

106

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

the alleys gives the highest yield, for others the lower alley, or even the upper alley. Although

Control Bare strip no terrace mild strong

Cum

ulat

ive

yiel

d, k

g m

-2

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Half-uneven Half-even Full-uneven Full-even

formation

Rainfall, Infiltr.

With pruned hedgerows

Zone1 2 3 4

Yiel

d, k

g m

-2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

1234

Crop #

Full rain, even infiltration,strong terrace formation

Full rain, unequal infiltration,strong terrace formation

Crop #

Zone1 2 3 4

Yiel

d, k

g m

-2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

3 4

21

A.

D.C.

B.

Figure 4.7.

-3

Page 124: WaNuLCAS 4.0

107

Chapter 4Examples of model applications

-2

3 for the four depth layers directly under the

Page 125: WaNuLCAS 4.0

108

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

agroforestry system. The narrow tree morphology produced more wood, as it invested less

Figure 4.8.

Page 126: WaNuLCAS 4.0

109

Chapter 4Examples of model applications

systems

et al et al et al

et al

rv

Page 127: WaNuLCAS 4.0

110

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Figure 4.9.

et al-3

length density of 0 and 1 cm cm-3

et almodel.

Page 128: WaNuLCAS 4.0

111

Chapter 4Examples of model applications

Figure 4.10.

et al

high soil pH values.

et al and .

water c tEwaterTcTt

Nutrient c t Leach c tNtNcNLeach

Paraserianthes-maize is the systems with highest water use

Mahogany

Page 129: WaNuLCAS 4.0

112

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Figure 4.11. Paraserianthes Mahogany Hevea

Figure 4.12. Paraserianthes Mahogany Hevea

Page 130: WaNuLCAS 4.0

113

Chapter 4Examples of model applications

agroforestry parkland system in Burkina Faso or was analysed using the Water Nutrient and et al

The tree was focus on two species and Parkia biglobosa with associated crops of and

Figure 4.13.

Figure 4.13 shows crop performance for the various zones and pruning regimes tended to

Page 131: WaNuLCAS 4.0

114

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

et al. et al

harvest residue (trash) and Bagas (sugarcane processing waste) on soil carbon and sugarcane yield

-1

One of the main crops in North Lampung is sugarcane. Sugarcane yields tend to drop rapidly if

trash Bagas Thrash and Bagas

-1 -1

ha-1 and -1

Based on this experiment, we simulate the systems using WaNuLCAS model to see the long-term et al

Page 132: WaNuLCAS 4.0

115

Chapter 4Examples of model applications

soil causing a decrease in sugarcane yield.

Figure 4.14.

Page 133: WaNuLCAS 4.0

116

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Figure 4.15.

phenologies on water balance and tree and crop growth

and P. fortunei associated with maize. G. robusta is evergreen, A. acuminata is semi-deciduous and P. fortunei is

Page 134: WaNuLCAS 4.0

117

Chapter 4Examples of model applications

deciduous in term of tree water uptake.

Figure 4.16.G. robusta A. acuminata P. fortunei

Page 135: WaNuLCAS 4.0

118

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Figure 4.17.G. robusta A. acuminata P. fortunei

et almay depend on tree root length density in the layer underneath the crop root zone. WaNuLCAS

Page 136: WaNuLCAS 4.0

119

Chapter 4Examples of model applications

Figure 4.18.

maize.

response

Level 0.

Page 137: WaNuLCAS 4.0

120

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Level 2.

et alet al

Level 3. models that consider plants as organisms with the capacity to adjust the total amount of

et al

-1, this environment would not provide enough

response curve for the tree.

Page 138: WaNuLCAS 4.0

121

Chapter 4Examples of model applications

Figure 4.19.tree, with and without a grass sward.

Page 139: WaNuLCAS 4.0

122

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Figu

re 4

.20

Page 140: WaNuLCAS 4.0

123

Chapter 4Examples of model applications

Figure 4.21.

project, we use WaNuLCAS model to explore these choices.

separate monocultures. However, the points for A. mangium suggest virtually no intercropping

P. falcataria has a low intercept

Page 141: WaNuLCAS 4.0

124

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

P. falcataria

an appropriate tree spacing.

Figure 4.22.in Lampung.

Page 142: WaNuLCAS 4.0

125

Chapter 4Examples of model applications

Figure 4.23.

tree establishment

years of most tree crops or agroforestry systems to maintain income and pay for the suppression

species choice of the trees.

Page 143: WaNuLCAS 4.0

126

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

of Paraserianthes falcataria. Although Acacia mangium is a fast growing tree, a more intensive

0 5 10 15

Narrow

Wide

Narrow

Wide

Narrow

Wide

Narrow

Wide

Aca

cia

Par

aser

iant

hes

Hev

eaM

ahog

any

Age of tree when Imperata die (year)

PartialWeeding

NoWeeding

Figure 4.24.

Page 144: WaNuLCAS 4.0
Page 145: WaNuLCAS 4.0
Page 146: WaNuLCAS 4.0

129

References

st

in intercropping. et al

111-119

eds

Page 147: WaNuLCAS 4.0

130

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

eds

eds

No. 1

of agroforestry on crop performance and water resources in semi-arid central Kenya. PhD

ineds

in

Page 148: WaNuLCAS 4.0

131

References

eds

229-244.

eds

ineds

Page 149: WaNuLCAS 4.0

132

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Tomich TP, Van Noordwijk M, Budidarseno S, Gillison A, Kusumanto T, Murdiyarso D, Stolle F and

of Phase II. ICRAF S.E. Asia, Bogor, Indonesia, 139 pp.

tree root-system dynamics. eds

agricultural systems. in eds

in

Page 150: WaNuLCAS 4.0

133

References

320 pp.

changes under agriculture, agroforestry and forestry. ACIAR Technical Reports Series No. 41,

Page 151: WaNuLCAS 4.0
Page 152: WaNuLCAS 4.0

Appendix

Page 153: WaNuLCAS 4.0

136

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

STELLASTELLA is similar to ModelMaker.

STELLA. The purpose of this session is to familiarize yourself with STELLASTELLA

STELLA

Start STELLA

STELLA [3]

Page 154: WaNuLCAS 4.0

137

Appendix

STELLA

1. Stocks

2. Flows

3. Converters

into outputs.

4. Connectors

elements.

Page 155: WaNuLCAS 4.0

138

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

and length of fallow year

[4]

Making an Output

the right. Then click OK.

Running the Program

To run the program choose Run Ctrl-R

right.

Time SpecRun the model again and see what happen.

Page 156: WaNuLCAS 4.0

139

Appendix

STELLA -

Choose Sensi Specright.

Set then .

Now Run the model and see the result.

Exercises

-low are several exercises you may like to try out.

Page 157: WaNuLCAS 4.0

140

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Appendix 2. User’s guide to WaNuLCAS

WaNuLCAS model. Throughout

Windows.

TM

64 MB RAM

1. a. change most of the parameter values within the ranges set

run the model and explore the result2.

a. run the model

c. d. save graphs as pictures for printer

3. a.

modify the parameter rangesc. d. e. f. modify the layout of the modelg.

com/

Installing WaNuLCAS

Page 158: WaNuLCAS 4.0

141

Appendix

allow any macro to run, you may need to change the security level for macros.

If you are working with MS Excel 2003, to change the security level go to “Tools” and “Macro”

properly.

WaNuLCAS.stm from appropriate directory.

in Excel.

If you working with STELLA 9, to update the linked input from Wanulcas.xls into GenRiver.stm

Page 159: WaNuLCAS 4.0

142

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Most of the contents of Wanulcas.xls are linked to WaNuLCAS model as input parameters.

File name

If you working with STELLA 9, you can give any name for the Wanulcas.xls.

You are now inside the Main Menu of WaNuLCAS and ready to work! In your screen you will see something like Figure App2.1.

Figure App2.1. View of WaNuLCAS Main Menu

Page 160: WaNuLCAS 4.0

143

Appendix

Main Menu

exercise.

To view model

To return to Main Menu

Figure App2.2.

Page 161: WaNuLCAS 4.0

144

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Main Menu click on

Run

Pause

Stop

Resume

Time Spec

Figure App2.3.

Page 162: WaNuLCAS 4.0

145

Appendix

Figure App2.4

parameters are listed in Appendix 4 of this document.

Page 163: WaNuLCAS 4.0

146

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

A. Graphs

Output Content Graph Type

Page 1 Time series

Page 2 Time series

Page 3 Time series

Time series

Page 6 Time series

Time series

Time series

Page 10 Time series

Page 11-12 Time series

Time series

Page 16 Time series

Time series

Time series

Page 19 Time series

Page 20 Histogram

Page 21 Water stock Histogram

Page 22 - 23 Nutrient stock Histogram

Pore volume Histogram

related to zone 1, 2, 3 and 4

Content

Page 1

Page 2

Page 3-4

Page 6

Page 11-12

Page 164: WaNuLCAS 4.0

147

Appendix

Content

Page 1-3

Page 4 Biomass and oil harvested

Tree comp

Content

Page 1

soil.

than 40 parameters.allowable

NEW

Page 165: WaNuLCAS 4.0

148

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

To view input-output summary

in the Main Menu.

This screen gives you summary of input and output in the current system simulated. A list of Appendix 4 under Balance.

Main Menu. It will lead you to list of input parameters.

Figure App2.5. View of input menu

Page 166: WaNuLCAS 4.0

149

Appendix

To modify input value just write over the current value. It will change if the new input value

Please refer to STELLA

All input parameters in Wanulcas.xls are linked to WaNuLCAS model. For these parameters you

3.

Sheet Content

READ ME

Pedotransfer

Soil Hydraulic Soil Hydraulic input parameters for each soil layer and zone. Linked to WaNuLCAS STELLA model

PhosphorusProgram to generate Ka -

Weather

Slash and Burn

Crop Management

Tree Management

Pedo SOM

output produced.

Julian day

Link output

Page 167: WaNuLCAS 4.0

150

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

To make Changes in the Model

dependent.

Page 168: WaNuLCAS 4.0

151

Appendix

Wanulcas.xls

There are two ways to change input parameters in excel, making sure changes also occur inside

1. Change input values in excel ONLY if you run the model and excel simultaneously with links

2.

update climate parameters.

READ ME sheet.

AF System sheet

This sheet stores design of the system simulated includes tree density, tree spacing, tree

WEATHER sheet

linked.

Page 169: WaNuLCAS 4.0

152

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

WaNuLCAS input parameters

Pedotransfer sheet

et al

head.

sat

crit-1

calculated inside the STELLA model.

generated values are input parameters for WaNuLCAS model.

WaNuLCAS input parameters

N11

M11

O11

Page 170: WaNuLCAS 4.0

153

Appendix

the parameters for soil layer i and zone j i and j

i jcells.

Phosphorus sheet

the WaNuLCAS.stm model.

Stella model.

WaNuLCAS input parameters

i[P,Zone]; i

Nitrogen

Slash&Burn sheet

Page 171: WaNuLCAS 4.0

154

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

increased temperature at the soil surface. The values in this sheet is the current default values

WaNuLCAS input parameters

CROP MANAGEMENT sheet

YEAR 0.

. The type of crop you choose here determine the parameter values copied to sheet and , where the values are linked to model.

column D, I, N and S.

WaNuLCAS input parameters

Page 172: WaNuLCAS 4.0

155

Appendix

CROP LIBRARY sheet

e.g. there are three mutually exclusive ways of determining root length density in each cell in

default values, that is for crop Cassava, Maize, Upland Rice, Groundnut and Cowpea. If you Yours1, ..., Yours5. For the

whole list of input parameters stored, please refer directly to the excel sheet.

MANAGEMENT.

TREE MANAGEMENT sheet

MANAGEMENT YEAR 0.

TREE LIBRARY. The type of crop you choose here determine the parameter values copied to sheet and , where the values are linked to model.

WaNuLCAS input parameters

TREE PARAMETERS sheet

Page 173: WaNuLCAS 4.0

156

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

sheet

sheet.

PROFITABILITY sheet

The sheet contains input needed in the simulated systems and output produced. There are

. See directly in the excel sheet the whole list of input parameters.

Soil Hydraulic sheet

This sheet contains soil hydraulic input parameters as generated and copied from Pedotransfer

command has lead to the expected results or not.

Pedo_SOM sheet

organic reference value and to

organic reference organic measured in the

organic value for forest top soils of the same texture and pH.. This value

organic content. There are two types of reference

Main

Page 174: WaNuLCAS 4.0

157

Appendix

Survey

certain category.

WaNuLCAS

WanFBA

links.

Input

WaNuLCAS.

Sumoutput

value.

FBA.xls

diameter.

Rainfall simulator.xls

Page 175: WaNuLCAS 4.0

158

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

1.AF

2.B

3.C

4.E

Eros

ion

Ligh

tLi

ght

6.P Ra

inRa

in

T

9.TF

Oil

palm

No.

Acr

onym

Uni

ts

1.m

Soil

Bala

nce

2.kg

m-2

Yiel

d

3.g

m-2

4.g

m-2

g m

-2

6.g

m-2

g m

-2

g m

-2

9.g

m-2

10.

necr

omas

s an

d w

eed

g m

-2

11.

g m

-2

12.

22

-g

m-2

13.

g m

-2

14.

g m

-2

Page 176: WaNuLCAS 4.0

159

Appendix

No.

Acr

onym

Uni

ts

-g

m-2

16.

g m

-2

g m

-2

-g

m-2

19.

g m

-2

20.

g m

-2

21.

g m

-2

22.

g m

-2

23.

g m

-2

24.

g m

-2

g m

-2

26.

g m

-2

g m

-2

g m

-2

29.

g m

-2N

Bal

ance

, P B

alan

ce

30.

g m

-2N

Bal

ance

, P B

alan

ce

31.

dim

ensi

onle

ssYi

eld

32.

g m

-2N

Bal

ance

33.

g m

-2

34.

g m

-2N

Bal

ance

, P B

alan

ce,

g m

-2

36.

Curr

ent a

mou

nt o

f nut

rient

loss

from

the

syst

em th

roug

h cr

op h

arve

sted

, lea

ch-

g m

-2N

Bal

ance

Page 177: WaNuLCAS 4.0

160

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Uni

ts

Tota

l am

ount

of n

utrie

nt e

nter

ed th

e sy

stem

from

ext

erna

l org

anic

inpu

tg

m-2

N B

alan

ce, P

Bal

ance

g m

-2N

Bal

ance

, P B

alan

ce

39.

g m

-2N

Bal

ance

, P B

alan

ce

40.

g m

-2N

Bal

ance

, P B

alan

ce

41.

exte

rnal

org

anic

inpu

t, et

cg

m-2

N B

alan

ce

42.

g m

-2N

Bal

ance

, P B

alan

ce

43.

g m

-2N

Bal

ance

, P B

alan

ce

44.

g m

-2N

Bal

ance

, P B

alan

ce

g m

-2N

Bal

ance

, P B

alan

ce

46.

g m

-2N

Bal

ance

, P B

alan

ce

g m

-2N

Bal

ance

, P B

alan

ce

g m

-2N

Bal

ance

, P B

alan

ce

49.

g m

-2N

Bal

ance

, P B

alan

ce,

g m

-2N

Bal

ance

, P B

alan

ce

g m

-2N

Bal

ance

, P B

alan

ce

g m

-2N

Bal

ance

, P B

alan

ce

g m

-2N

Bal

ance

, P B

alan

ce

g m

-2N

Bal

ance

, P B

alan

ce

dim

ensi

onle

ssYi

eld

g m

-2N

Bal

ance

g m

-2N

Bal

ance

, P B

alan

ce

g m

-2N

Bal

ance

, P B

alan

ce

g m

-2N

Bal

ance

, P B

alan

ce

Page 178: WaNuLCAS 4.0

161

Appendix

No.

Acr

onym

Uni

ts

60.

g m

-2N

Bal

ance

, P B

alan

ce

61.

Curr

ent a

mou

nt o

f soi

lkg

m-2

Soil

Bala

nce

62.

kg m

-2So

il Ba

lanc

e

63.

kg m

-2So

il Ba

lanc

e

64.

kg m

-2So

il Ba

lanc

e

Tota

l am

ount

of s

oil l

oss

kg m

-2So

il Ba

lanc

e

66.

l m-2

Wat

er B

alan

ce

l m-2

Wat

er B

alan

ce

l m-2

Wat

er B

alan

ce

69.

l m-2

Wat

er B

alan

ce, G

raph

l m-2

Wat

er B

alan

ce, G

raph

l m-2

Wat

er B

alan

ce

l m-2

Wat

er B

alan

ce

l m-2

Wat

er B

alan

ce

l m-2

Wat

er B

alan

ce

l m-2

Wat

er B

alan

ce, G

raph

l m-2

Wat

er B

alan

ce G

raph

Agro

nom

ic y

ield

for e

ach

type

of c

rop

kg m

-2Yi

eld

kg m

-2

kg m

-2

-Yi

eld

Page 179: WaNuLCAS 4.0

162

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Uni

ts

mm

Wat

er B

alan

ce

kg m

-2G

raph

Zon

ei

dim

ensi

onle

ss

g m

-2

g m

-2 d

ay-1

g m

-2N

Bal

ance

, P B

alan

ce

dim

ensi

onle

ssG

raph

Zon

ei

Curr

ent s

oil t

hick

ness

in la

yer 1

mSo

il Ba

lanc

e

4 g

m-2

N B

alan

ce

90.

4 and

NO

2.

2

-N

Bal

ance

91.

2 em

issi

ondi

men

sion

less

N B

alan

ce

92.

dim

ensi

onle

ssN

Bal

ance

93.

2O e

mis

sion

dim

ensi

onle

ssN

Bal

ance

94.

g m

-2G

raph

Zon

ei

-Li

ght

96.

g m

-2N

Bal

ance

, P B

alan

ce

g m

-2 d

ay-1

Gra

ph Z

onei

dim

ensi

onle

ss

99.

dim

ensi

onle

ss

100.

g m

-2

101.

Amou

nt o

f nut

rient

leac

hed

out f

rom

i-th

laye

r of e

ach

zone

g m

-2G

raph

Zon

ei

102.

dim

ensi

onle

ss

103.

Amou

nt o

f nut

rient

sto

ck in

eac

h zo

ne o

f lay

er i

g m

-2G

raph

Zon

ei

Page 180: WaNuLCAS 4.0

163

Appendix

No.

Acr

onym

Uni

ts

104.

dim

ensi

onle

ss

i-th

soil

laye

r of e

ach

zone

per

day

g m

-2 d

ay-1

Gra

ph Z

onei

106.

Aver

age

cost

of c

rop

man

agem

ent

curr

ency

unit

ha-1

Bala

nce

curr

ency

un

it ha

-1Ba

lanc

e,Yi

eld

man

day

sYi

eld

109.

Tota

l cos

t nee

ded

to m

aint

ain

the

syst

emcu

rren

cyun

it ha

-1

Bala

nce

110.

Net

pre

sent

val

ue o

f the

syst

emcu

rren

cyun

it ha

-1Ec

onom

ic a

nd F

inan

-ci

al B

alan

ce

111.

Tota

l cos

t of c

rop

man

agem

ent

curr

ency

un

it ha

-1Ec

onom

ic a

nd F

inan

-ci

al B

alan

ce

112.

curr

ency

unit

ha-1

Yiel

d

113.

cur

renc

yun

it ha

-1Ec

onom

ic a

nd F

inan

-ci

al B

alan

ce, Y

ield

114.

Rain

Amou

nt o

f rai

n pe

r day

l m-2

day

-1

l m-2

116.

Actu

al a

mou

nt o

f rai

n go

ing

into

eac

h zo

nel m

-2 d

ay-1

Amou

nt o

f wat

er e

vapo

rate

d fr

om in

terc

epte

d w

ater

l m

-2W

ater

Bal

ance

kg m

-2

119.

-kg

m-2

Yiel

d

120.

Tota

l lat

ex h

arve

sted

kg m

-2Yi

eld

121.

dim

ensi

onle

ssYi

eld

Page 181: WaNuLCAS 4.0

164

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Uni

ts

122.

Tota

l fru

it ha

rves

ted

kg m

-2Yi

eld

123.

kg m

-2

124.

mm

Wat

er B

alan

ce

Tree

Lea

f Are

a In

dex

dim

ensi

onle

ssG

raph

Tre

e Co

mp

126.

kg m

-2

dim

ensi

onle

ss

g m

-2N

Bal

ance

, P B

alan

ce,

129.

g m

-2 d

ay-1

130.

g m

-2N

Bal

ance

131.

dim

ensi

onle

ss

132.

g m

-2 d

ay-1

133.

g m

-2 d

ay-1

134.

kg m

-2

Stem

dia

met

er o

f tre

em

136.

kg m

-2

kg m

-2Yi

eld

Tot

al w

eigh

t of o

il pa

lm fr

uit p

er fr

uit s

tage

skg

m-2

Gra

ph O

ilPal

m

139.

kg m

-2G

raph

OilP

alm

140.

kg m

-2G

raph

OilP

alm

141.

kg m

-2G

raph

OilP

alm

142.

Frui

tper

Bunc

h[Tr

ee,F

ruitB

unch

]kg

m-2

Gra

ph O

ilPal

m

Page 182: WaNuLCAS 4.0

165

Appendix

No.

Acr

onym

Uni

ts

143.

dim

ensi

onle

ssG

raph

OilP

alm

144.

l m-2

day

-1

dim

ensi

onle

ss

146.

l m-2

day

-1

l m-2

day

-1

l m-2

day

-1

149.

l m-2

Amou

nt o

f wat

er e

ach

zone

in i-

th s

oil l

ayer

l m-2

l m-2

day

-1

Page 183: WaNuLCAS 4.0

166

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

[A1]

[A2]

[A3]

[A4]

[A5]

2.d-1 is the up--2.d-1

0 1 the radius of the soil cylinder surround-

[A6]

[A7]

Page 184: WaNuLCAS 4.0

167

Appendix

[A8]

where D0 -

stock-2

[A9]

Ka

[A10]

Page 185: WaNuLCAS 4.0

168

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

-

step towards mending it.

Links can not be established

columns or moving cell contents around,; it may help to remove all memory de-

-

Running speed -ested in.Links are not working; Wanulcas.xls is developed using MS Excel with English language as

--

Error message at start or during RUN

-

example.

Page 186: WaNuLCAS 4.0

169

Appendix

A second class of error is that trees or crops do not grow as expected, or trees or crops do not grow at all

A second class of error is that trees or crops do not grow as expected, or other events do not

-

--

-

Page 187: WaNuLCAS 4.0

170

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No

Acr

onym

No

Acr

onym

1.AF

14.

Mn

2.C

Mn2

3.Ca

16.

N

4.Ce

ntP

Cent

2PD

Pest

and

Dis

ease

6.19

.Ra

inRa

in

EEr

osio

n20

.Rt

Root

Evap

21.

Slas

h an

d Bu

rn

9.G

Gra

zing

22.

SSo

il St

ruct

ure

10.

LFLa

tera

l Flo

w23

.T

11.

Ligh

tLi

ght

24.

TF

12.

Mc

Tem

pTe

mpe

ratu

re

13.

Mc2

26.

WW

ater

Page 188: WaNuLCAS 4.0

171

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

1.Va

lue

0 m

eans

syst

em w

ithou

t tre

es, v

alue

1 m

eans

syst

em w

ith

dim

ensi

onle

ss-

TIO

N

2.di

men

sion

less

3.Va

lue

0 m

eans

syst

em w

ithou

t cro

p, v

alue

1 m

eans

syst

em w

ith

crop

dim

ensi

onle

ss-

TIO

N

4.m

Agro

fore

stry

Zon

e

Sw

icth

for m

akin

g th

e de

pth

of s

oil l

ayer

1 o

n sl

opin

g la

nd s

yste

m

a dy

nam

ic p

rope

rty

dim

ensi

onle

ss-

ing

Land

and

Par

klan

d Sy

stem

6.-

mAg

rofo

rest

ry Z

one

i-th

soil

laye

r, i

2, 3

, 4. F

or s

lopi

ng la

nd s

yste

ms

the

valu

e fo

r the

laye

r 1 is

use

d as

ave

rage

tops

oil d

epth

at t

he s

tart

of t

he ru

n; a

ctua

l dep

th o

f

m

impa

ct.

Val

ue 0

mea

ns n

o dy

nam

ic p

est i

mpa

cts,

val

ue 1

mea

ns

dim

ensi

onle

ss-

TIO

N

9.di

men

sion

less

Agro

fore

stry

zone

10.

dim

ensi

onle

ss-

TIO

N

11.

dim

ensi

onle

ssAg

rofo

rest

ry Z

one

12.

dim

ensi

onle

ss-

TIO

N

Page 189: WaNuLCAS 4.0

172

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

13.

Valu

e 0

mea

ns n

o w

eed

grow

th, v

alue

1 m

eans

wee

d w

ill s

tart

-

TIO

N

14.

-

-in

g La

nd a

nd P

arkl

and

Syst

em

the

tops

oil,

used

to c

alcu

late

act

ual t

opso

il de

pth

per z

one.

-in

g La

nd a

nd P

arkl

and

Syst

em

16.

dim

ensi

onle

ssAg

rofo

rest

ry Z

one

dim

ensi

onle

ss

dim

ensi

onle

ssG

row

th

19.

m

20.

Tota

l wid

th o

f agr

ofor

estr

y sy

stem

sim

ulat

ed

m

21.

each

cro

pdi

men

sion

less

22.

dim

ensi

onle

ssM

aint

enan

ce R

espi

ra-

23.

--1

Gro

wth

24.

cm3 c

m-1

dim

ensi

onle

ssM

aint

enan

ce R

espi

ra-

26.

-di

men

sion

less

Mai

nten

ance

Res

pira

-

dim

ensi

onle

ssM

aint

enan

ce R

espi

ra-

Page 190: WaNuLCAS 4.0

173

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

dim

ensi

onle

ssM

aint

enan

ce R

espi

ra-

29.

30.

dim

ensi

onle

ssM

aint

enan

ce R

espi

ra-

31.

dim

ensi

onle

ssRe

spTe

mp

Mai

nten

ance

Res

pira

-

32.

Min

imum

Air

Tem

pera

ture

for C

rop

0 Ce

lsiu

s20

Tem

pera

ture

33.

0 Ce

lsiu

s21

Tem

pera

ture

34.

new

opp

ortu

nity

aris

es, e

.g. a

t the

end

of a

cro

ppin

g se

ason

Gro

wth

kg m

-2

Gro

wth

36.

kg m

-2 d

ay-1

Gro

wth

A gr

aphi

cal i

nput

par

amet

er g

over

ning

the

type

of c

rop

plan

ted

dim

ensi

onle

ss

julia

n da

ys-

TIO

N

39.

exte

rnal

org

anic

inpu

t or n

ot. V

alue

0 m

eans

not

app

lyin

g ex

ter-

nal o

rgan

ic in

put,

valu

e 1

mea

ns a

pply

ing

exte

rnal

org

anic

inpu

t

dim

ensi

onle

ss

40.

dim

ensi

onle

ss

41.

Amou

nt[Z

one]

-ca

l inp

ut p

aram

eter

.g

m-2

Page 191: WaNuLCAS 4.0

174

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue (D

efau

lt va

lue)

Exce

l)

42.

Fert

OrE

xtO

rgAp

pDoY

[SiN

ut]

grap

hica

l inp

ut p

aram

eter

. ju

lian

days

-

43.

Fert

OrE

xtO

rgAp

pYea

r[Si

Nut

]gr

aphi

cal i

nput

par

amet

er.

dim

ensi

onle

ssex

cel s

heet

Cro

p M

an-

-

44.

para

met

erg

m-2

para

met

erju

lian

days

-

46.

para

met

erdi

men

sion

less

inpu

t par

amet

er.

julia

n da

ys-

para

met

erdi

men

sion

less

exce

l she

et C

rop

Man

--

49.

dim

ensi

onle

ss

-kg

m-2

-

stag

e.

g m

-2

dim

ensi

onle

ss-

dim

ensi

onle

ss-

dim

ensi

onle

ss-

-di

men

sion

less

Page 192: WaNuLCAS 4.0

175

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

crop

gro

wth

sta

ge.

dim

ensi

onle

ss-

julia

n da

ys

julia

n da

ys

kg m

-2 d

ay-1

60.

kg m

-2

61.

dim

ensi

onle

ss

62.

dim

ensi

onle

ss

63.

-di

men

sion

less

64.

dim

ensi

onle

ss

dim

ensi

onle

ss

66.

entr

y re

sist

ance

to w

ater

per

uni

t roo

t len

gth

and

unit

grad

ient

. cm

day

-1

day-1

dim

ensi

onle

ss-

69.

2da

y-1-

for N

2

day-1

-

Page 193: WaNuLCAS 4.0

176

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

2-

kg [d

w]

g-1 [N

]-

Resp

onsi

vene

ss o

f N2

dim

ensi

onle

ss-

2

dim

ensi

onle

ss-

-3m

2 day

-1

cm

-

depe

nd o

n cr

op ty

pe.

cm-1

6000

mm

grow

thdi

men

sion

less

per u

nit c

rop

root

leng

th d

ensi

ty

m2 d

ay-1

day-1

dim

ensi

onle

ss

upta

ke.

cm

-di

men

sion

less

Page 194: WaNuLCAS 4.0

177

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

m2 g

-1

days

days

l kg-1

the

rule

s of

cro

p gr

owth

. It

take

s th

e sa

me

type

of p

aram

eter

s as

cr

op.

All t

he re

late

d in

put p

aram

eter

s ar

e in

Exc

el s

heet

dim

ensi

onle

ssG

row

th

dim

ensi

onle

ss

90.

volu

me

of to

psoi

l per

zone

g cm

-3

91.

dim

ensi

onle

ss

92.

-Pl

ot

-1

m2

Soil

Eros

ion

and

Sedi

-

93.

dim

ensi

onle

ssSo

il Er

osio

n an

d Se

di-

94.

julia

n da

ys

dim

ensi

onle

ss

96.

Dat

e of

plo

ughi

ngju

lian

days

Year

of p

loug

hing

dim

ensi

onle

ss

dim

ensi

onle

ssSo

il Er

osio

n an

d Se

di-

Page 195: WaNuLCAS 4.0

178

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

99.

kg m

-2

Soil

Eros

ion

and

Sedi

-

101.

dim

ensi

onle

ssSo

il Er

osio

n an

d Se

di-

101.

dim

ensi

onle

ss

102.

103.

104.

dim

ensi

onle

ss1

106.

-Ca

n In

terc

epte

dWat

er

outs

ide

the

plot

.

Fact

or d

eter

min

ed o

f wat

er o

f sla

shed

woo

d w

ill e

vapo

rate

d

-ge

n ox

ide

emis

sion

dim

ensi

onle

ssN

ox e

mis

sion

s

109.

2di

men

sion

less

See

grap

h

2perN

Ox

Nox

em

issi

ons

110.

-di

men

sion

less

Agro

fore

stry

Zon

e

111.

dim

ensi

onle

ssAg

rofo

rest

ry Z

one

Page 196: WaNuLCAS 4.0

179

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

112.

mm

day

-1Ag

rofo

rest

ry zo

ne

113.

dim

ensi

onle

ss

Qua

lity

114.

dim

ensi

onle

ssEx

t. O

rgan

ic In

put

dim

ensi

onle

ss

116.

dim

ensi

onle

ss

Ext.

Org

anic

Inpu

t

dim

ensi

onle

ss

Ext.

Org

anic

Inpu

t

is th

e sa

me.

dim

ensi

onle

ss

119.

dim

ensi

onle

ss

120.

-

dim

ensi

onle

ss

121.

--

dim

ensi

onle

ss

Page 197: WaNuLCAS 4.0

180

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

va

lue

(Def

ault

valu

e)

122.

--

dim

ensi

onle

ss

123.

dim

ensi

onle

ss

124.

type

2

dim

ensi

onle

ss

dim

ensi

onle

ss

N in

SO

M P

ool

126.

3.gr

cm

-2

3.gr

cm

-2

gr c

m-2

129.

dim

ensi

onle

ss

130.

dim

ensi

onle

ss

Page 198: WaNuLCAS 4.0

181

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

va

lue

(Def

ault

valu

e)in

Exc

el)

131.

dim

ensi

onle

ss

132.

dim

ensi

onle

ss

133.

-

134.

dim

ensi

onle

ss

dim

ensi

onle

ss

136.

dim

ensi

onle

ss

dim

ensi

onle

ss

pool

dim

ensi

onle

ss

.001

Tran

sfer

139.

dim

ensi

onle

ss

140.

dim

ensi

onle

ss

141.

SOM

poo

ldi

men

sion

less

Tran

sfer

Page 199: WaNuLCAS 4.0

182

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

va

lue

(Def

ault

valu

e)in

Exc

el)

142.

-

143.

-

data

,-

wis

e fo

llow

s th

e pr

oced

ure

of T

ype

2

dim

ensi

onle

ss

SOM

Poo

l

144.

pool

dim

ensi

onle

ss

Tran

sfer

dim

ensi

onle

ss

146.

dim

ensi

onle

ss

dim

ensi

onle

ss

dim

ensi

onle

ss

149.

dim

ensi

onle

ss

Org

anic

Inpu

t

Dim

ensi

onle

ss-

lizer

Mov

emen

t

Page 200: WaNuLCAS 4.0

183

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

va

lue

(Def

ault

valu

e)in

Exc

el)

mg

cm-3

mg

cm-3

mg

cm-3

mg

cm-3

mg

cm-3

-liz

er to

mov

e to

the

next

zone

m

m-

lizer

Mov

emen

t

dim

ensi

onle

ss

dim

ensi

onle

ss

dim

ensi

onle

ss

160.

dim

ensi

onle

ss

161.

dim

ensi

onle

ss

Page 201: WaNuLCAS 4.0

184

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

162.

mg

cm-3

N in

SO

M P

ool

163.

mg

cm-3

N in

SO

M P

ool

164.

mg

cm-3

N in

SO

M P

ool

mg

cm-3

N in

SO

M P

ool

166.

mg

cm-3

N in

SO

M P

ool

Pass

RelL

ayer

[Soi

lLay

er]

N in

SO

M P

ool

dim

ensi

onle

ssSo

il W

ater

and

Nut

ri-

Flow

169.

cm2 d

ay-1

Soil

Wat

er a

nd N

utrie

nt

3 of t

otal

N in

i-th

soi

l lay

erdi

men

sion

less

Soil

Wat

er a

nd N

utri-

mg

cm 3

Soil

Wat

er a

nd N

utri-

Nut

rient

NH

4i-t

h la

yer

mg

cm-3

So

il W

ater

and

cons

tant

for N

Page 202: WaNuLCAS 4.0

185

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

NO

3

mg

cm-3

Soil

Wat

er a

nd N

utrie

nt

for N

mg

cm-3

i -

that

laye

r acr

oss

all z

ones

in th

e si

mul

ated

are

a

dim

ensi

onle

ssAg

rofo

rest

ry Z

one

mg

cm3

-

day-1

-

mod

ifyin

g th

e rh

izos

pher

e

dim

ensi

onle

ssRo

ots

and

Myc

orrh

iza

dim

ensi

onle

ss

in s

oil l

ayer

i of

eac

h zo

nem

g cm

-3N

mod

el s

ecto

r

pers

on d

ays

ha-1

curr

ency

uni

t kg

-1

Page 203: WaNuLCAS 4.0

186

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

dry

wei

ght

pers

on d

ays

Mg-1

pe

r cro

ppin

g se

ason

-

-Se

ason

dim

ensi

onle

ssAn

y in

tege

r

pers

on d

ays

ha-1

pe

r cro

ppin

g se

ason

-

per c

ropp

ing

seas

oncu

rren

cy u

nit p

er

ha-1

per

cro

ppin

g se

ason

pers

on d

ays

ha-1

pe

r cro

ppin

g se

ason

-

Curr

ency

uni

tCr

op C

ycle

curr

ency

uni

t kg

-1-

190.

pers

on d

ays

ha-1

pe

r cro

ppin

g se

ason

-

191.

Pric

e of

cro

p yi

eld

per u

nit d

ry w

eigh

t at s

ocia

l and

priv

ate

pric

es,

curr

ency

uni

t kg

-1-

192.

pric

es

-1

193.

Pric

e of

ext

erna

l org

anic

inpu

tcu

rren

cy u

nit

kg-1

194.

curr

ency

uni

t ha

-1

dim

ensi

onle

ss0

or 1

196.

dim

ensi

onle

ss0

or 1

Page 204: WaNuLCAS 4.0

187

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

pers

on d

ays

kg-1

-

Pric

e of

tree

frui

t yie

ld p

er u

nit d

ry w

eigh

t at s

ocia

l and

priv

ate

curr

ency

uni

t kg

-1-

199.

pers

on d

ays

kg-1

-

200.

Pric

e of

tree

late

x yi

eld

per u

nit d

ry w

eigh

t at s

ocia

l and

priv

ate

curr

ency

uni

t kg

-1-

201.

dim

ensi

onle

ssAn

y in

tegr

202.

pers

on d

ays

kg-1

-

203.

pers

on d

ays

kg-1

-

204.

curr

ency

uni

t kg

-1-

curr

ency

uni

t tr

ee-1

-

206.

dry

wei

ght

pers

on d

ays

-

Pric

e of

tree

woo

d pr

oduc

t yie

ld p

er u

nit d

ry w

eigh

t at s

ocia

l and

cu

rren

cy u

nit

kg-1

-

curr

ency

uni

t pe

rson

day

s-1

209.

grow

th c

rop

dim

ensi

onle

ssCr

op C

ycle

210.

-di

men

sion

less

Page 205: WaNuLCAS 4.0

188

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

211.

-di

men

sion

less

Pest

and

Dis

ease

212.

dim

ensi

onle

ssPe

st a

nd D

isea

ses

213.

-di

men

sion

less

Pest

and

Dis

ease

214.

dim

ensi

onle

ssPe

st a

nd D

isea

ses

-di

men

sion

less

Pest

and

Dis

ease

216.

dim

ensi

onle

ssPe

st a

nd D

isea

ses

Sche

dule

for d

ay o

f fen

cing

for e

ach

fenc

ing

even

t. A

gra

phic

al

inpu

t.ju

lian

days

-Bu

ildD

OY

Pest

and

Dis

ease

A gr

aphi

cal i

nput

.pe

rson

day

s-

Pest

and

Dis

ease

219.

Sche

dule

for y

ear o

f fen

cing

for e

ach

fenc

ing

even

t A g

raph

ical

in

put.

dim

ensi

onle

ss-

Pest

and

Dis

ease

220.

day-1

Pest

and

Dis

ease

s

221.

dim

ensi

onle

ssPe

st a

nd D

isea

ses

222.

dim

ensi

onle

ssPe

st a

nd D

isea

se

223.

-di

men

sion

less

Pest

and

Dis

ease

224.

used

to re

pair

the

fenc

edi

men

sion

less

Pest

s an

d D

isea

se

days

Pest

and

Dis

ease

Page 206: WaNuLCAS 4.0

189

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

226.

-in

g th

e pl

ot-

Pest

and

Dis

ease

s

PopD

ensO

utsi

de[a

nim

als]

-0

or 1

Pest

and

Dis

ease

s

229.

-di

men

sion

less

Pest

and

Dis

ease

230.

-Pe

st a

nd D

isea

ses

231.

-di

men

sion

less

Pest

and

Dis

ease

232.

-Pe

st a

nd D

isea

ses

233.

-Pe

st a

nd D

isea

ses

234.

-di

men

sion

less

Pest

and

Dis

ease

-di

men

sion

less

Pest

and

Dis

ease

236.

-Pe

st a

nd D

isea

ses

-di

men

sion

less

Rain

fall

mm

Rain

fall

239.

dim

ensi

onle

ssRa

infa

ll

240.

dim

ensi

onle

ssRa

infa

ll

Page 207: WaNuLCAS 4.0

190

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

241.

Para

met

er g

over

ning

way

s to

read

rain

fall

data

. Cor

resp

onds

to

dim

ensi

onle

ssRa

infa

ll

242.

mm

exce

l she

et

243.

dim

ensi

onle

ssRa

infa

ll

244.

dim

ensi

onle

ssRa

infa

ll

mm

day

-1Ra

infa

ll

246.

dim

ensi

onle

ssRa

infa

ll

-

-

dim

ensi

onle

ssRa

infa

ll

mm

hr-1

Rain

fall

249.

mm

hr-1

Rain

fall

Indi

cate

s th

e m

axim

um te

mpo

rary

sto

rage

of w

ater

on

inte

rcep

-di

men

sion

less

Ra

infa

ll

mm

day

-1Ra

infa

ll

-pi

ngm

m h

r-1Ra

infa

ll

mm

mon

th-1

Mon

thTo

t Ra

infa

ll

dim

ensi

onle

ss-

TIO

N

Page 208: WaNuLCAS 4.0

191

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

mm

hr-1

per

m o

f zo

ne w

idth

Rain

fall

The

stor

age

capa

city

of w

ater

pon

ding

on

the

surf

ace

mm

Rain

fall

Inpu

t wei

ght v

alue

to d

ecid

e am

ount

of r

ain

falli

ng o

n ea

ch z

one

dim

ensi

onle

ssRa

infa

ll

dim

ensi

onle

ssan

y in

tege

r Ra

infa

ll

dim

ensi

onle

ss2

Rain

fall

260.

dim

ensi

onle

ssRa

infa

ll

261.

rain

fall

at d

ry s

easo

n.di

men

sion

less

Rain

fall

262.

dim

ensi

onle

ssRa

infa

ll

263.

Min

imum

val

ue o

f sha

pe.

dim

ensi

onle

ssRa

infa

ll

264.

adju

sted

to th

e m

axim

um a

nd m

inim

um v

alue

of t

otal

mon

thly

ra

infa

ll.

dim

ensi

onle

ss0.

06Ra

infa

ll

dim

ensi

onle

ss-0

.01

Rain

fall

266.

-so

n1di

men

sion

less

1Ra

infa

ll

-so

n2di

men

sion

less

Rain

fall

peak

. di

men

sion

less

1Ra

infa

ll

269.

The

shar

pnes

s of

the

seco

nd p

eak.

Hig

h va

lue

indi

cate

s sh

arpe

r pe

ak.

dim

ensi

onle

ss12

Rain

fall

dim

ensi

onle

ss0.

93Ra

infa

ll

Page 209: WaNuLCAS 4.0

192

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

-fa

llMax

Max

imum

val

ue o

f mon

thly

mea

n ra

infa

llm

m33

3Ra

infa

ll

-fa

llMin

Min

imum

val

ue o

f mon

thly

mea

n ra

infa

llm

m10

2Ra

infa

ll

day

See

grap

hRa

infa

ll

-ra

infa

ll [M

onth

]M

onth

ly m

ean

rain

fall

on th

e w

et d

aym

mSe

e gr

aph

Rain

fall

[Mon

th]

dim

ensi

onle

ssSe

e gr

aph

Rain

fall

-

dim

ensi

onle

ssCr

op R

oot

-ca

lly c

hang

es a

ccor

ding

to w

ater

or N

str

ess

dim

ensi

onle

ssTr

ee R

oot

Para

met

er g

over

ning

dec

reas

e of

cro

p ro

ot w

ith d

epth

; cor

re-

m-1

dim

ensi

onle

ss

days

Tota

l roo

t len

gth

per u

nit a

rea.

It is

use

d to

cal

cula

te c

rop

root

-

cm c

m-2

Max

imum

cro

p ro

ot le

ngth

den

sity

in i-

th s

oil l

ayer

; cor

resp

onds

cm

cm

-3

Page 210: WaNuLCAS 4.0

193

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

dens

itydi

men

siol

ess

Root

and

Myc

orrh

iza

m g

-1

Dia

met

er o

f cro

p m

ycor

rhiz

al h

ypha

ecm

Myc

orrh

iza

Leng

th o

f cro

p m

ycor

rhiz

al h

ypha

e pe

r uni

t inf

ecte

d ro

ot le

ngth

dim

ensi

onle

ssM

ycor

rhiz

a

laye

r di

men

sion

less

Myc

orrh

iza

Dia

met

er o

f tre

e m

ycor

rhiz

al h

ypha

e cm

Myc

orrh

iza

Leng

th o

f tre

e m

ycor

rhiz

al h

ypha

e pe

r uni

t inf

ecte

d ro

ot le

ngth

dim

ensi

onle

ssM

ycor

rhiz

a

290.

dim

ensi

onle

ssM

ycor

rhiz

a

291.

dim

ensi

onle

ss

292.

-di

men

sion

less

293.

-m

-1

294.

dim

ensi

onle

ss

1 ro

ot le

ngth

den

sity

dec

reas

es a

s m

uch

with

hor

izon

tal a

s w

ith

dim

ensi

onle

ss

Page 211: WaNuLCAS 4.0

194

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)-

296.

days

root

dim

ensi

onle

ss

299.

dim

ensi

onle

ss

300.

cm c

m-2

301.

cm c

m-2

exce

l she

et T

ree

302.

dens

itydi

men

sion

less

Root

and

Myc

orrh

iza

303.

dim

ensi

onle

ss

304.

-

kg c

m

dim

ensi

onle

ss

306.

days

Burn

-l k

g-1

Burn

Page 212: WaNuLCAS 4.0

195

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)-

-Li

tTra

nsf

-1 S

lash

and

Bur

n

309.

-1 S

lash

and

Bur

n

310.

o C kg

-1

Burn

311.

-tu

re in

crea

sedi

men

sion

less

exce

l she

et

Burn

312.

-di

men

sion

less

exce

l she

et

Burn

313.

surf

ace

tem

pera

ture

incr

emen

tdi

men

sion

less

exce

l she

et

Burn

314.

o C kg

-1

Burn

days

Burn

316.

days

Burn

-tu

re a

t the

soi

l sur

face

. di

men

sion

less

exce

l she

et

Burn

of s

oil s

urfa

ce te

mpe

ratu

re in

crem

ent

dim

ensi

onle

ssex

cel s

heet

319.

soil

surf

ace

tem

pera

ture

incr

emen

tdi

men

sion

less

exce

l she

et

320.

Burn

321.

Burn

Page 213: WaNuLCAS 4.0

196

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)-

322.

Burn

323.

Burn

324.

perf

orm

edju

lian

days

-Bu

rn

dim

ensi

onle

ssan

y in

tege

r val

ue

Burn

326.

incr

emen

t

dim

ensi

onle

ssex

cel s

heet

Bu

rn

dim

ensi

onle

ssex

cel s

heet

Bu

rn

days

Burn

329.

woo

dda

ysBu

rn

330.

0 C

331.

Burn

332.

cont

ent o

f the

fuel

Burn

333.

day-1

Soil

Stru

ctur

e

334.

Soil

Stru

ctur

e

to ru

n pe

dotr

anfe

r ref

er to

the

shee

t ped

otra

nfer

cm d

ay-1

Page 214: WaNuLCAS 4.0

197

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)-

336.

dim

ensi

onle

ss

-

the

shee

t ped

otra

nfer

cm d

ay-1

-cm

day

-1So

il St

ruct

ure

339.

defa

ult v

alue

dim

ensi

onle

ssSo

il St

ruct

ure

340.

dim

ensi

onle

ssSo

il St

ruct

ure

341.

of th

e so

il su

rfac

edi

men

sion

less

Soil

Stru

ctur

e

342.

day-1

Soil

Stru

ctur

e

343.

[Zon

e]-

dim

ensi

onle

ssSo

il St

ruct

ure

344.

Soil

Stru

ctur

e

m2 k

g-1So

il St

ruct

ure

346.

m2 k

g-1So

il St

ruct

ure

m2 k

g-1So

il St

ruct

ure

orga

nic

inpu

ts in

the

SOM

str

uctu

ral p

ool

m2 k

g-1So

il St

ruct

ure

349.

-

dim

ensi

onle

ssTr

ee P

aram

eter

s

Page 215: WaNuLCAS 4.0

198

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)-

dim

ensi

onle

ss

Bark

thic

knes

s to

cal

cula

te ta

rget

of l

atex

con

tent

, the

thic

knes

s is

fo

llow

ing

the

grow

th o

f the

tree

. cm di

men

sion

less

kg p

er tr

eeTr

ee p

aram

eter

s

Max

imum

hei

ght o

f tre

e ca

nopy

m dim

ensi

onle

ss

Fact

or d

eter

min

ing

in w

hich

par

t of t

he tr

ee le

aves

are

con

cen-

trat

ed.

A va

lue

of 1

giv

es a

n ev

en s

prea

d of

tree

leav

es o

ver t

he

hedg

erow

dim

ensi

onle

ss

m dim

ensi

onle

ss-

dim

ensi

onle

ss-

360.

dim

ensi

onle

ss-

361.

dim

ensi

onle

ss-

362.

dim

ensi

onle

ss-

363.

dim

ensi

onle

ss-

364.

kg

Page 216: WaNuLCAS 4.0

199

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)-

kg

366.

-kg

-

dim

ensi

onle

ss

369.

dim

ensi

onle

ss

dim

ensi

onle

ss

dim

ensi

onle

ss

cm10

0

julia

n da

ys

julia

n da

ysle

af p

heno

logy

julia

n da

ysle

af p

heno

logy

Day

whe

n th

e se

cond

sea

son

of le

af s

tart

s dr

opdo

wn

julia

n da

ysle

af p

heno

logy

Page 217: WaNuLCAS 4.0

200

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue (D

e-fa

ult v

alue

)

julia

n da

ysTr

ee le

af p

heno

logy

Day

whe

n th

e se

cond

sea

son

of le

af c

ompl

etel

y dr

opdo

wn

julia

n da

ysTr

ee le

af p

heno

logy

julia

n da

ys

julia

n da

ys

dim

ensi

onle

ssSe

e gr

aph

dim

ensi

onle

ss

kg m

-2 d

ay-1

dete

rmin

e ho

w m

uch

frui

t will

pro

duce

from

max

imum

frui

t di

men

sion

less

-

dim

ensi

onle

ss

each

tree

dim

ensi

onle

ss

dim

ensi

onle

ss

-m

ine

how

man

y fr

uit w

ill d

rop

dim

ensi

onle

ss-

390.

usin

g gr

aph.

Val

ue 0

mea

ns tr

ee p

heno

logy

usi

ng p

heno

logy

pa

ram

eter

s, v

alue

1 m

eans

tree

phe

nolo

gy u

sing

gra

ph

dim

ensi

onle

ssle

af p

heno

logy

391.

Max

imum

gro

wth

rate

of h

edge

row

s at

full

cano

py c

losu

rekg

m-2

day

-1

Page 218: WaNuLCAS 4.0

201

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

392.

day-1

393.

grow

thkg

per

tree

Tree

par

amet

ers

394.

--

dim

ensi

onle

ss

396.

dim

ensi

onle

ss

Sche

dule

dat

e, d

ay o

f yea

r to

kill

tree

julia

n da

ysTr

ees

Sche

dule

dat

e, y

ear t

o ki

ll tr

eedi

men

sion

less

any

inte

ger v

alue

Tr

ees

399.

-di

men

sion

less

400.

Max

imum

val

ue o

f LAI

in th

e tr

ee c

anop

ydi

men

sion

less

401.

thic

knes

sdi

men

sion

less

402.

403.

dim

ensi

onle

ss

404.

tree

dim

ensi

onle

ss

Tim

e fo

r lat

ex to

reco

ver.

406.

day-1

-

Page 219: WaNuLCAS 4.0

202

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

dim

ensi

onle

ss-

dim

ensi

onle

ss

409.

dim

ensi

onle

ss

410.

dim

ensi

onle

ss

411.

dim

ensi

onle

ss

412.

dim

ensi

onle

ss

413.

dim

ensi

onle

ss

414.

416.

dim

ensi

onle

ss

Min

Dia

mfo

rTap

ping

cm[T

ree]

Min

imum

tree

dia

met

er fo

r tap

ping

cm dim

ensi

onle

ss-

rhiz

a

419.

2da

y-1-

420.

for N

2

day-1

-

421.

2kg

[dw

] g-1

[N

]-

Page 220: WaNuLCAS 4.0

203

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

422.

Resp

onsi

vene

ss o

f N2

dim

ensi

onle

ss-

423.

2

dim

ensi

onle

ss-

424.

depe

nd o

n ty

pe o

f tre

edi

men

sion

less

-

-3m

2 day

-1

Impa

cts

on N

utrie

nt

426.

next

per

iod

of ta

ppin

gda

ys

429.

julia

n da

ysin

exc

el s

heet

Tre

e

430.

dim

ensi

onle

ssan

y in

tege

r val

ue

shee

t Tre

e M

an-

431.

dim

ensi

onle

ss

432.

dim

ensi

onle

ss

433.

dim

ensi

onle

ss

434.

Sche

dule

for d

ate

of p

runi

ng.

Ente

red

from

Wan

ulca

s.xl

sju

lian

days

for e

very

pru

ning

dim

ensi

onle

ss-

ingE

vent

s

436.

dim

ensi

onle

ss-

ingE

vent

s

Page 221: WaNuLCAS 4.0

204

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

dim

ensi

onle

ss

-di

men

sion

less

-in

gEve

nts

439.

dim

ensi

onle

ss

440.

prun

ing

even

t di

men

sion

less

-

ingE

vent

441.

dim

ensi

onle

ss

442.

prun

ed

dim

ensi

onle

ss-

ingE

vent

443.

days

-in

gEve

nt

444.

dim

ensi

onle

ss-

ingE

vent

-

Man

agem

ent,

Wan

ulca

s.xl

s

dim

ensi

onle

ss-

ingE

vent

s

446.

Inpu

t wei

ght v

alue

gov

erni

ng a

mou

nt o

f tre

e pr

unin

g go

ing

into

di

men

sion

less

-in

gEve

nt

Sche

dule

for y

ear o

f pru

ning

. En

tere

d fr

om W

anul

cas.

xls

dim

ensi

onle

ssan

y in

tege

r val

ue

dim

ensi

onle

ss

449.

dim

ensi

onle

ss

Page 222: WaNuLCAS 4.0

205

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

its zo

ne.

dim

ensi

onle

ss

days

-de

f per

uni

t tre

e ro

ot le

ngth

den

sity

m2 d

ay-1

-

upta

ke. F

or a

ll ro

ot ty

pe.

cm dim

ensi

onle

ss

hear

twoo

d. D

efau

lt va

lue

1 m

eans

no

incr

easi

ng o

f dia

met

er

hear

twoo

d

dim

ensi

onle

ss

wei

ght

m2 k

g-1

-pe

rson

day

s

and

Burn

460.

dim

ensi

onle

ssan

d Bu

rn

461.

dim

ensi

onle

ss

462.

tapp

ed o

r not

dim

ensi

onle

ss

463.

dim

ensi

onle

ss

464.

cm

Tapp

ing

day

of w

ork

days

466.

-ry

day

dim

ensi

onle

ss

Page 223: WaNuLCAS 4.0

206

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

dim

ensi

onle

ss

Bark

thic

knes

s of

tapp

ing

cm

469.

dim

ensi

onle

ss

-di

men

sion

less

-

days

any

inte

ger v

alue

days

any

inte

ger v

alue

l kg-1

--

-Tr

ee P

aram

eter

Tree

pla

nt d

ensi

tydi

men

sion

less

any

inte

ger v

alue

kg p

er tr

eeTr

ee P

aram

eter

s

Woo

d de

nsity

of e

ach

tree

spe

cies

kg m

-3

m

Para

met

ers

Sche

dule

for d

ate

of p

runi

ng.

Ente

red

from

Wan

ulca

s.xl

sju

lian

days

dim

ensi

onle

ss

dim

ensi

onle

ssAn

y in

tege

r val

ue

mTr

ee P

aram

eter

s

Page 224: WaNuLCAS 4.0

207

Appendix

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

dim

ensi

onle

ss

tree

dim

ensi

onle

ss

dim

ensi

onle

ssSo

il Te

mpe

ratu

re

0CSo

il Te

mpe

ratu

re

0C mm

day

-1

cove

r m

m d

ay-1

490.

0C-

Soil

Tem

pera

ture

491.

dim

ensi

onle

ss

492.

-di

men

sion

less

493.

PotS

uctA

lphM

ax[T

ree]

-cm

494.

PotS

uctA

lphM

in[T

ree]

cm

-

pedo

tran

sfer

refe

r to

the

shee

t ped

otra

nsfe

r

m3 w

ater

m-3

so

ilex

cel s

heet

Soi

l

Page 225: WaNuLCAS 4.0

208

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

No.

Acr

onym

Dim

ensi

ons

Rang

e of

val

ue

(Def

ault

valu

e)

496.

dim

ensi

onle

ss

Soil

Wat

er a

nd N

utri-

ent

Inpu

t nee

ded

to ru

n pe

dotr

anfe

r ref

er to

the

shee

t ped

otra

nfer

cm2 d

ay-1

exce

l she

et S

oil

499.

Inpu

t nee

ded

to ru

n pe

dotr

anfe

r ref

er to

the

shee

t ped

otra

nfer

cm2 d

ay-1

exce

l she

et S

oil

cont

ent a

nd p

ress

ure

head

in i-

th s

oil l

ayer

of e

ach

zone

. Rea

d an

d

pedo

tran

fer r

efer

to th

e sh

eet p

edot

ranf

er

cmex

cel s

heet

Soi

l

Amou

nt o

f vol

umet

ric s

oil w

ater

in i-

th s

oil l

ayer

of e

ach

zone

not

Inpu

t nee

ded

to ru

n pe

dotr

ansf

er re

fer t

o th

e sh

eet p

edot

rasn

fer

l m-2

day

-1

exce

l she

et S

oil

laye

r of e

ach

zone

and

vol

umet

ric s

oil w

ater

con

tent

. Rea

d an

d

pedo

tran

sfer

refe

r to

the

shee

t ped

otra

nsfe

r

cmin

exc

el s

heet

Soi

l

Inpu

t nee

ded

to ru

n pe

dotr

ansf

er re

fer t

o th

e sh

eet p

edot

rans

fer

cmex

cel s

heet

Soi

l

Page 226: WaNuLCAS 4.0

209

Appendix

and Green (1991)

Criterion Symbol Range

Maximum error ME 0 0

RMSE 0 0

- CD 0 1

EF 1 1

residual massCRM 1 0

Pi i mean

Page 227: WaNuLCAS 4.0

210

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

not y

et a

t use

rs in

terf

ace

laye

r)

No

Acr

onym

Dim

ensi

ons

Def

ault

valu

eM

odel

Sec

tor

1.ro

ot c

ompo

nent

dim

ensi

onle

ssCr

op G

row

th

2.kg

ha-1

outp

utCr

op G

row

th

3.To

tal a

mou

nt o

f Nitr

ogen

or P

hosp

horu

s in

all

soil

laye

rs p

oten

-g

m-2

outp

utCr

op G

row

th

4.l m

-2ou

tput

Crop

Wat

er

in e

ach

zone

l m-2

outp

utCr

op W

ater

6.-

Crop

Gro

wth

Amou

nt o

f wat

er e

vapo

rate

s fr

om to

p so

il pe

r day

in e

ach

zone

l m-2

outp

ut

-

9.-

310

10.

g m

-2ou

tput

11.

g m

-2ou

tput

12.

g m

-2ou

tput

N L

ayer

1

13.

g m

-2ou

tput

N L

ayer

2-4

14.

cm c

m-3

day

-1ou

tput

Crop

Roo

t

dim

ensi

onle

ssSo

il St

ruct

ure

Dyn

amic

16.

kg m

-2ou

tput

Tree

Gro

wth

Page 228: WaNuLCAS 4.0

211

Appendix

No

Acr

onym

Dim

ensi

ons

Def

ault

valu

eM

odel

Sec

tor

kg m

-2ou

tput

Tree

Gro

wth

kg m

-2ou

tput

Tree

Gro

wth

19.

kg m

-2ou

tput

Tree

Gro

wth

20.

-Tr

ee W

ater

Par

amet

er

21.

Inpu

t par

amet

er in

oil

palm

mod

ule

-2

Tree

Fru

it

22.

Aver

age

dry

wei

ght o

f oilp

alm

frui

tkg

m-2

-Tr

ee F

ruit

23.

--

Tree

Fru

it

24.

[Tre

e]de

velo

pmen

t-

Tree

Fru

it

Inpu

t par

amet

er in

OilP

alm

mod

ule

-Tr

ee F

ruit

26.

--

Tree

Fru

it

Inpu

t par

amet

er in

OilP

alm

mod

ule

-Tr

ee F

ruit

Inpu

t par

amet

er in

OilP

alm

mod

ule

-0

Tree

Fru

it

29.

Inpu

t par

amet

er in

oil

palm

mod

ule

-Tr

ee F

ruit

30.

oil p

alm

mod

ule

-Tr

ee F

ruit

31.

--

Tree

Fru

it

32.

Inpu

t par

amet

er in

OilP

alm

mod

ule

-0.

1Tr

ee F

ruit

33.

-0.

1Tr

ee W

ater

34.

-0.

02Tr

ee W

ater

cm d

ay-1

10Tr

ee W

ater

36.

cmTr

ee w

ater

par

amet

er

cm0

Wat

er la

yer 1

0

Page 229: WaNuLCAS 4.0

212

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Appendix 10. Rainfall simulator within WaNuLCAS 4.0

WaNuLCAS, like many other hydrological and ecological models, needs daily rainfall data as

determine the amount of rainfall.

Determining whether or not a day is a rainy day

exceeded 1 mm.

[A11]

n

2

Page 230: WaNuLCAS 4.0

213

Appendix

in the third-order 23x2. For these higher orders of Markov chain, the same principle applies to

et al

[A12]

[A13]

[A14]

state.

Determining the amount of rainfall in a wet day

Page 231: WaNuLCAS 4.0

214

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

[A15]

[A16]

[A17]

et al.,

[A18]

[A19]

[A20]

Page 232: WaNuLCAS 4.0

215

Appendix

[A21]

Where and

[A22]

[A23]

,

Page 233: WaNuLCAS 4.0

216

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

Appendix 11. Water uptake module in WaNuLCAS

et al.,

pathway. The water uptake module only pertains to a part of the path, i.e. the transport of water

model.

integrates uptake and transport over rooted voxels.

sp

[A24]

Lrvi-3

vi3

isp.

sp

sp -3 3

cm-3 3

rhizp

[A25]

sp

Page 234: WaNuLCAS 4.0

217

Appendix

radp

[A26]

Epot -2

et al pot

pot is an input value of the water uptake module.Krad

3water

cm-1 cm-1root length

-2

3 cm-1 cm-1 -2

longp

[A27]

LiRlongsap

mm-1water demand m-1soil

-3 3 -3 3 -1 m-1

[A28]

radp and longp rhizp is independent on

Page 235: WaNuLCAS 4.0

218

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

[A29]

[A30]

traspmax

traspmin

[A31]

[A32]

[A33]

Page 236: WaNuLCAS 4.0

219

Appendix

[A35]Recalling that only radp and longp pot, rhizp

demand.

III. Voxel level

et alet al

irhiz

i

[A36]

-1

ithat rhiz

i

ipot

i

et al

[A34]

Page 237: WaNuLCAS 4.0

220

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

R0

R1 soil

root

K, dh K, dh

K, dh

[A37]

root soildrying closer to the root surface. Therefore, soil

[A38]

Where 2 day-1ref is a reference value of the pressure head

-1

root < soil

[A39]

refsoil and pFroot

Page 238: WaNuLCAS 4.0

221

Appendix

[A40]

[A41]

[A42]

[A43]

Where alpha, Ksat, , n are Van Genuchten parameters.

-1

[A46]Where

3

[A45]

[A44]

Page 239: WaNuLCAS 4.0

222

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

soil weak

strong soil - weak and exclusively weak - strong

For weak plant

[A47]

[A48]

[A49]

[A50]

[A51]

For strong plant in the common range

[A52]

And for strong plant in the exclusive range

[A53]

Page 240: WaNuLCAS 4.0

223

Appendix

[A54]

[A55]

i

[A57]

[A58]

Where soil weak and strong to calculate weak and strong

[A59]

[A56]

Page 241: WaNuLCAS 4.0

224

WaNulCAS 4.0Background on model of Water, Nutrient and Light Capture in Agroforestry Systems

adjpoti

[A60]

12. Actual water uptakei i

[A61]

[A62]

Page 242: WaNuLCAS 4.0