41
RC Core Walls – Testing and Modeling of Coupling Beams John Wallace and David Naish, UCLA Andy Fry and Ron Klemencic, MKA PEER Center Annual Meeting – October 2009 Tall Buildings Initiative Session

Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

  • Upload
    stef22

  • View
    38

  • Download
    5

Embed Size (px)

Citation preview

Page 1: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

RC Core Walls – Testing and Modeling of Coupling Beams

John Wallace and David Naish, UCLA Andy Fry and Ron Klemencic, MKA

PEER Center Annual Meeting – October 2009 Tall Buildings Initiative Session

Page 2: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

2

Tall Buildings – Modeling

Publications: Thomsen and Wallace, ASCE JSE, April 2004 Orakcal and Wallace, ACI SJ, Oct 2004, March 2006 Wallace, Tall & Special Buildings, Dec. 2007 ATC 72 Report (PEER TBI)

Page 3: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

3

Tall Buildings – System Modeling

Publications: Wallace JW Tall & Special Buildings Dec. 2007

Salas Marisol MS Thesis, UCLA June 2008

ATC 72 Report Modeling & Acceptance Criteria (PEER TBI)

Rigid-plastic hinges

equivalent slab-beam

equivalent column

core wall

Page 4: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Tall Buildings - Coupling Beams

 Background  Test Program

 Aspect ratio  Transverse reinforcement  Slab (RC and PT)

 Test Results  Effective stiffness  Deformation capacity

 Modeling  Shear hinge

 Conclusions

WALL BOUNDARY

WALL BOUNDARY

SLAB RC & PT

Page 5: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Core Wall Coupling Beams

Link Beams

Page 6: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Project Motivation

 Aspect ratio, ln/h  2.4 & 3.33

  f’c  Residual strength  Effect of slab

 RC

 PT

 Detailing  Ash and 1/2Ash

Page 7: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Project Motivation

 Aspect ratio, ln/h  2.4 & 3.33

  f’c  Residual strength  Effect of slab

 RC

 PT

 Detailing  Ash and 1/2Ash

Page 8: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Project Motivation

 Aspect ratio, ln/h  2.4 & 3.33

  f’c  Residual strength  Effect of slab

 RC

 PT

 Detailing  Ash and 1/2Ash

Page 9: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Project Motivation

 Aspect ratio, ln/h  2.4 & 3.33

  f’c  Residual strength  Effect of slab

 RC

 PT

 Detailing  Ash and 1/2Ash Wall boundary Wall boundary

Slab (RC,PT)

Link Beam

Page 10: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Project Motivation

 Aspect ratio, ln/h  2.4 & 3.33

  f’c  Residual strength  Effect of slab

 RC

 PT

 Detailing  Ash and ½*Ash

Page 11: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

ACI 318 Code Provisions

 ACI 318-05 S21.7.7   Must have diagonal bars

enclosed in transverse reinforcement.

 ACI 318-08 S21.9.7   Option to enclose entire

beam cross-section with transverse reinforcement

Diagonal Confinement SECTION

Spacing measured perpendicular to the axis of the diagonal bars not to exceed 14 in., typical

*

*

(b)

Full Section Confinement

Alternate consecutive crosstie 90-deg hooks, both horizontally and vertically, typical

Spacing not to exceed 8 in., typical

SECTION

* Spacing not to exceed 8 in., typical

* *

(c)

Page 12: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Specimen ln/h α (º) Transverse Reinforcement

f'c, psi fy, psi fu, psi Description Entire Section Diagonals

CB24F

2.4 15.7

#3 @ 3" N.A. 6850

70000 90000

Full section confinement (ACI

318-08)

CB24D #2 @ 2.5" #3 @ 2.5" 6850 Diagonal

confinement (ACI 318-05)

CB24F-RC #3 @ 3" N.A. 7305 Full section conf. w/

RC slab (ACI 318-08)

CB24F-PT #3 @ 3" N.A. 7242 Full section conf. w/

PT slab (ACI 318-08)

CB24F-1/2-PT #3 @ 6" N.A. 6990 Full section conf.

(reduced) w/ PT slab (ACI 318-08)

CB33F

3.33 12.3

#3 @ 3" N.A. 6850 Full section

confinement (ACI 318-08)

CB33D #2 @ 2.5" #3 @ 2.5" 6850 Diagonal

confinement (ACI 318-05)

Specimen ln/h α (º) Transverse Reinforcement

f'c, psi fy, psi fu, psi Description Entire Section Diagonals

CB24F

2.4 15.7

#3 @ 3" N.A. 6850

70000 90000

Full section confinement (ACI

318-08)

CB24D #2 @ 2.5" #3 @ 2.5" 6850 Diagonal

confinement (ACI 318-05)

CB24F-RC #3 @ 3" N.A. 7305 Full section conf. w/

RC slab (ACI 318-08)

CB24F-PT #3 @ 3" N.A. 7242 Full section conf. w/

PT slab (ACI 318-08)

CB24F-1/2-PT #3 @ 6" N.A. 6990 Full section conf.

(reduced) w/ PT slab (ACI 318-08)

CB33F

3.33 12.3

#3 @ 3" N.A. 6850 Full section

confinement (ACI 318-08)

CB33D #2 @ 2.5" #3 @ 2.5" 6850 Diagonal

confinement (ACI 318-05)

Page 13: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Test Beams: ln/h = 2.4

 CB24F (-RC,PT)  ACI 318-08 (full)

 Shear stress =

 CB24D  ACI 318-08 (diag.)

 Shear stress =

Section A-A Section A-A Section B-B

Page 14: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Laboratory test setup

Page 15: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Loading Protocol

  Estimate for Vy based on M-φ analysis

  Load-controlled testing   3 cycles each   Vlat = 1/8*Vy, 1/4*Vy, 1/2*Vy, and

3/4*Vy

  Displacement-controlled testing   3 cycles each (Δ/ln = θ)   θ = 0.75%, 1.0%, 1.5%, 2.0%, and

3.0%   2 cycles each (Δ/ln > CP for FEMA

356)   θ = 4.0%, 6. 0%, 8.0%, 10.0%, and

12.0%

Page 16: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

ACI: vn= 9.0√f ’c

CB24F: vmax= 11.5√f ’c

CB24D: vmax= 10.7√f ’c

Load-Deformation

ACI: vn= 9.0√f ’c

CB24F: vmax= 11.5√f ’c

CB24D: vmax= 10.7√f ’c

ACI: vn= 9.0√f ’c

CB24F: vmax= 11.5√f ’c

CB24D: vmax= 10.7√f ’c

ACI: vn= 9.0√f ’c

CB24F: vmax= 11.5√f ’c

CB24D: vmax= 10.7√f ’c

Page 17: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

CB24F

Rotation = 0.04

Page 18: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

CB24F

Rotation = 0.08

Rotation = 0.08

Page 19: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

CB24F

Rotation = 0.10

Rotation = 0.10

Page 20: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

NEES Remote Data Viewer

Page 21: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Load-Deformation

ACI: vn= 9.0√f ’c

CB24F-RC: vmax= 12.4√f ’c

CB24F-PT: vmax= 13.8√f ’c

ACI: vn= 9.0√f ’c

CB24F-RC: vmax= 12.4√f ’c

CB24F-PT: vmax= 13.8√f ’c

Page 22: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Moment-Curv. Slab v. No Slab

Mn+ Mn

-

Mn+

(slab) = 3550 in-k

Mn+(no slab) = 2850 in-k

Mn- (slab) = 3350 in-k

Mn-(no slab) = 2850 in-k

Page 23: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

CB24F-PT

Rotation = 0.06

Slab

Wall Boundary

Wall Boundary

Coupling Beam

Page 24: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

CB24F-PT

Rotation = 0.10

Slab

Wall Boundary

Wall Boundary

Coupling Beam

Page 25: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

CB24F-PT

Rotation = 0.14

Slab

Wall Boundary

Wall Boundary

Coupling Beam

Page 26: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Load-Deformation

ACI: vn= 9.0√f ’c

CB24F-PT: vmax= 13.8√f ’c

CB24F-1/2-PT: vmax= 12.9√f ’c

Page 27: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

CB24F-1/2-PT

Rotation = 0.04

CB24F-1/2-PT

Page 28: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

CB24F-1/2-PT

Rotation = 0.06

CB24F-1/2-PT

Page 29: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

CB24F-1/2-PT

Rotation = 0.08

CB24F-1/2-PT

Page 30: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

CB24F-1/2-PT

Rotation = 0.10

CB24F-1/2-PT

Page 31: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Axial Growth

Page 32: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Axial Growth

Page 33: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Load-Deformation Backbone

Page 34: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Modeling – Perform 3D

 Frame Model  Elastic beam concrete

cross-section (EIeff = 0.5*EIg)

 Concentrated plastic Mn-θ hinges

  Slip hinges: Based on Alsiwat and Saatcioglu (1992)

 Shear Hinge Model  Elastic beam concrete

cross-section (EIeff = 0.5*EIg)

 Plastic Vn-δ hinge

 Slip hinges: Based on Alsiwat and Saatcioglu (1992)

Rotation springs

Slip/Extension springs

Shear Hinge (displacement type)

Slip/Extension springs

Page 35: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Modeling Parameters

 Vn-δ hinge  Vn ACI 318-08 Eq 21-9

 Displacement δ  based on test results

(Backbone)

 Rigid – no elastic stiffness

Page 36: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Modeling Parameters

 Cyclic energy dissipation factors Vn-δ hinge

 DY – 0.5  DU – 0.45  DL – 0.4

 DR – 0.35  DX – 0.35

Page 37: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Slip Hinge Calculations

At yield of tension reinforcement:

θ d

x

δtot

Page 38: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Modeling Results: Perform 3D

Page 39: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Concluding Remarks

 Coupling beam load-displacement response is similar for the two detailing options included in ACI 318-08

 Slab provides for modest increase in strength, but has little impact on ductility

 Effective elastic stiffness ~0.15*EIg

 Simple nonlinear models can accurately capture load-deformation response

 New project to investigate SRC coupling beams [steel W-section, Steel plate]

Page 40: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

Acknowledgements

 Charles Pankow Foundation  Webcor Concrete  Materials – Catalina Pacific, Hanson, SureLock   Lab Technicians (NEES staff) – Steve Keowen,

Alberto Salamanca, Steve Kang  Brian Morgen (MKA)   Lab Assistants – Joy Park, Nolan Lenahan, Cameron

Sanford  A. Lemnitzer, D. Skolnik, S. Taylor-Lange, M. Salas

Page 41: Wallace_PEER - Coupling Beams - Wallace - Oct 13 2009 Final

41

http://nees.ucla.edu http://nees.ucla.edu/wallace