Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

Embed Size (px)

Citation preview

  • 8/17/2019 Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

    1/12

    (c)2002 American Institute of Aeronautics Astronautics or Published with Permission of Author(s) and/or Author(s) ' Sponsoring Organization.

    AIAA

    A02-14371

    AIAA

     2002

     -

      0555

    Wake-Integral Determination

      of

      Aerodynamic Drag,

    Lift  and Moment in Three-Dimensional Flows

    J.C. Wu

    Applied Aero, L L C

    Zephyr Cove, N V

    C.M. Wang

    Applied A ero,

     L L C

    Zephyr Cove, N V

    K.W.

      McAlister

    Army Aeroflightdynamics Directorate

    Moffett

      Field,  CA

    40

    th

     AIAA

     Aerospace

      Sciences Meeting  Exhibit

    14-17 January 2002

    Reno, Nevada

    For

     permission

     to

     copy

     or to

     republish contact

     the

     copyright owner

     named on the

     first page.

    For

     AIAA-held copyright,

      write to

     A I A A Permissions Department,

    1801 Alexander Bell Drive, Suite  500, Reston,  VA, 20191-4344.

  • 8/17/2019 Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

    2/12

    ( c )2 0 0 2 A m e r i c a n I n s t it u te o f A e r o n a u t i c s A s t r o n a u t i c s o r P u b l is h e d w i t h P e r m i s s i o n o f A u t h o r ( s ) a n d / o r A u t h o r ( s ) ' S p o n s o r i n g O r g a n i z a t i o n .

    AIAA 2002-0555

    WAKE-INTEGRAL

     DETERMINATION

     OF AERODYNAMIC DRAG, LIFT A ND

     MOMENT

    IN

     THR EE-DIEMENSIONAL FLOWS

    J. C. Wu*

    Applied Aero,  L L C ,  Zephyr Cove, Nevada

    C.

     M. Wangt

    Applied Aero,  L L C ,  Zephyr Cove,

     Nevada

    K.

     W .

     M cAlistert

    Army

      Aeroflightdynamics

     D irectorate, Ames

     Research Center,

     Moffett  Field,

     California

    Abstract

    New   wake-integral expressions  for the

      determination

      of aerodynamic

      load

      on  finite  wings  an d  rotors  are

    established  using

      a vorticity-moment

      theorem.

      Com pared to  previous

      wake-integral  expressions

      based on the

    momentum

      theory,

      the new

     expressions

      connect  the wake

      flow

      properties

      more

      directly to the aerodynamic load.

    They offer

      enhanced  physical understanding

     of the  flow

      mechanisms

     responsible for the

      production

     of

      aerodynamic

    force

     and moment and are

     simpler

     an d more efficient  to  u s e .

      Wind-tunnel

      experiments are performed to

      validate

     the

    wake-integral

     expressions

     for the thrust and the  torque o n

      rotors

      in slow

      climb.

      A three-dime nsional particle-image

    velocimetry  system is used to obtain velocity values in the near-wake of a model

      rotor.

      Thrust and torque

      values

    determined

     using

     the wake data are presented and compared  with balance-measured values.

    1. INTRODUCTION

    A

      lifting  body

      in flight

      always

      leaves

     behind

      in the

    fluid  a  footprint  - the

      wake.

      Fo r

      more  than

      a

      century,

    the

      aerodynamicist

      ha s

      searched

      for the  connection

    between

      this footprint

      and the aerodynamic  load  on the

    body.  L. Prandtl  connected  the down

     wash

      induced by

    trailing

      vortices -  parts  of the wake - to the induced

    drag  on the  finite  wing. The

      profound

      contribution of

    the resulting

      lifting-line

      theory

      to  theoretical

    aerodynamics cannot be overemph asized. The research

    described  in the present paper  is centered  on the wake-

    integral

      approach,

      which

      also connects

      the wake to the

    aerodynamic

     load.

      This

      method, however,  differs from

    the  lifting-line  theory in that it focuses not on the

    downwash induced by the wake, but on the

     wake

     itself.

    Th e  wake-integral method

     does

     not require the  inviscid

    fluid

      idealization

      and is  useful  in  evaluating  both  the

    inviscid

     drag and the viscous

     drag.

    A

      wake integral in a

      general context

      is an

      integral

    over  a transverse  surface

      downstream

      of a  lifting  solid

    body. For the present work, the term

      4

    wake

      integral'  is

    used

      in a

     more

     restricted

      context

      to

      designate

      a

      special

    surface integral  whose

      integrand vanishes

      outside  the

    vortical  wake

      region.  A.  Betz

      2

      pioneered

      the

      wake-

    integral

      concept

      an d

      successfully  established

      a wake-

    integral expression for the

      steady  profile

      drag

      (also

    *

     President,

     A ssociate Fellow

    t  Chief  Aerodynamicist

    t Research Sc ientist

    Copyright ©

      2002

      by J. C. Wu. Published by the

    American Institute of Aeronautics and Astronautics,

    I n c .  with permission

    called

      the

     parasite dra g

    3

    )

      in

      1 9 2 5 .

      E. C.

     Maskel l

    4

     and

    J. C. Wu et  a l .

    5

     derived

      a

     w ake-integral expression

      fo r

    the induced

      drag

      in the

      1970s.  These

      wake-integral

    expressions  allow

      the

      separate  determination

      of the

    induced  drag  and the

      profile

      drag  on the  lifting  body

    through

      wake surveys  over  a single wake plane. Since

    measurements

      ar e

      required  only

      in small

      wake regions

    where the

      vorticity

      is

      non-zero,  both

      the

      profile  drag

    and the  induced drag  can be

      determined

      efficiently  an d

    accurately. The

      advantages

      offered  by the method in

    design diagnostics are obvious.

    Efforts

      have

      been

      in

      progress

      in

      recent

      years  at

    several

      universities and

      governmental

      an d

      industrial

    laboratories  at various  points  of the world to

      further

    develop the wake-integral  method.  Wind

     tunnel

     studies

    of

      many

      aerodynamic  shapes  of  practical  importance,

    including  ca r  shapes,  have  been  performed

      using

      the

    method.

      In a

     recent  review article

     6

      on drag

      prediction

    and reduction,

      I.

      Kroo referred

      to

      many

      recent

      efforts,

    noting that  successes

      have  been

      reported

      along

      with

    several open

     issues

     that require further  investigations.

    Previous

      studies

      of the wake-integral method are

    mostly  concerned

      with

      steady aerodynamic

      drag. The

    present paper  reports

      selected

      results of a research

    program initiated in

      1 9 9 6

      and  completed  recently

      7

    .

    The aim of the

      program

      is to

      generalize

      the

      wake-

    integral

      method

      for

      unsteady

      flow  applications,  in

    particular

      helicopter  rotor

      applications.

      Under

      this

    program, new wake-integral  expressions are derived for

    the

     finite wing.  New wake-integral expressions a re

      also

    derived  for the

      thrust

      and the torque on the  rotor  in

    axial  flight,

      including  hover.

      Wind-tunnel experiments

    are performed  to validate the rotor

     expressions.

    1

    American

     Institute

     o f

      Aeronautics

     a nd

     Astronautics

  • 8/17/2019 Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

    3/12

    (c)2002  American Institute of Aeronau tics Astronau tics or Published with Permission of Author(s) and/or Author(s) ' Sponsoring Organization.

    2. VORTICITY

     M OM E N T

     A ND

     VORTEX LOOP

    Th e

      conceptual

      foundation  of the  present research

    is

     described

      in

     detail

      in a

     recent report

      .

      Several

      long-

    standing

      issues

      of

      viscous aerodynamics

      are examined

    from

      the vorticity-dynamics

      viewpoint

      in the  report

      8

    .

    In this

      paper,

      a  vorticity-loop method  fo r  aerodynamic

    analyses is

      described. This

      method is

      based

      on the

    previously developed

     vorticity-mom ent

     theorem

     9

    .

      New

    wake-integral  expressions  are derived for the

      finite

    wing

     and for the

     rotor

     in

     axial flight  using this method.

    Th e  vorticity-moment  theorem

      9

      contains

      several

    mathematical statements  involving  integrals of vorticity

    moments. These

     statements

     are derived

     mathematically

    rigorously  from  the Nav ier-Stokes equations. For the

    aerodynamic force F on a solid

     body,

     the statement is:

    =

     -^-p—f  r x c o d R +

     p — f v d R

    2

      dt JR. dt

      J R

    S

    (1)

    where  p is the

      density

      of the  fluid;  R«,  is the  infinite

    unlimited

      region  composed  of the solid region R

    s

      and

    the  fluid  region R

    f

    ; r is a  position  vector; v is the

    velocity vector;  and  CO  is the

      vorticity

      vector

      defined

    by co = V x v.

    Th e

      last

      term in (1)

      vanishes

      if the

     solid

      motion  is

    rectilinear and  does  no t  change  with  time. For

      most

    practical applications, the

      contribution

      of  this  term to

    the

      aerodynamic  force

      is negligibly

      small

      even  if the

    solid

      is  accelerating  or

      rotating.

      In

      such

      applications,

    the  first

      term

      in (1)

      determines

      the

      aerodynamic

      force.

    This term  states  that  F is equal to  -Vip times the

     rate

     of

    change  of the  first  moment  of  vorticity  in  R o o .  This

    region reduces to R

    f

     if the

     solid

     is not rotating.

    A

     Cartesian system of coordinates (x,y,z)  with  the

    unit-vector se t

     ( i

     j,k) is used in the  following  discussion

    of the

      vortex

      loop method.  If the freestream

      velocity,

    V

     = Ui, is

     aligned

      to the

     x-axis

     and the span of the

     solid

    is in the

      y-direction, then

      the  lift  L and the  drag  D on

    the  solid  are the z- and the x- components of F

    respectively. The  vectors  r, v, and

      C O

      are  stated  as r =

    xi + yj + zk, v = ui + vj + wk, and   C O  = £ i  -f   T j j +

      £k.

    The vorticity  field,  as the  curl  of a  vector  field

    (specifically, the velocity

      field),

      is

      solenoidal, i.e.,

    divergence free.

      It has

     been  show n

    8

     that

     the  regions R

    f

    an d

      R

    s

      can be  considered

      together  kinematically.

      A

    vorticity

      field

      in  R

    f

      (or more  generally  in

     RJ

      can be

    viewed

      as being composed  of closed  tubes of vorticity

    8

    whose

     walls a re  vorticity

     lines, i.e.,

     lines

      whose tangent

    at each point is in the

     direction

     of the vorticity

     vector

     at

    that  point. The

      strength

      of

      each

      tube

      (the  integrated

    vorticity

     strength

      co

     over

      the

     tube's cross-section)

     is the

    circulation  F around the

      tube.

      Since the

      vorticity

      is

    solenoidal,  F  is the  same  at all

      sections

      of the tube.

    Hence the vorticity strength co is inversely  proportional

    to the

     cross-sectional area

     of the vorticity tube.

    If

      on e  views  the vorticity

      field

      in  R

    f

      (or  R^)  as

    composed

      of a system of  vorticity  tubes  with  small

    cross-sectional

     areas, then  the  vorticity in each tube can

    be approximated by a vortex  loop F = Ft, where t is the

    unit

      tangent  vector  of the  loop's  path C, as

      shown

      in

    Figure  la. The vector t

      points

      in the

      direction

      of the

    vorticity

      vector

      in the

      tube.

      The term  'vortex  loop'  is

    used  in the

      following

      discussion  for

      convenience.

      Th e

    conclusions are obviously  valid  for the  closed

      tubes

      of

    vorticity that t he

     vortex loops approximate.

    Th e  elemental

      vorticity moment  rXCOdR

      of an

    elemental

      region  dR is approximated by

      rxFds,

      or

    F(rxtds), where ds is an elemental

     segment

     of the

     loop.

    If  the vortex

      loop lies

     in the x-y plane z = z

    h

     then

      tds =

    id x

      + jdy and

      rxtds

      =  Zi(-idy  +  jdx)  + k(xdy -

      ydx).

    The integration of rxcodR  over  the vorticity  tube  R

    t

      is

    frxcodR^-Fziif  d y +

     Fzjfdx+rkf

      ( x d y - y d x ) .

    J R ,

      Jc J c J c

    Th e  first  two integrals in

      this

      expression  are  zero.

    Using  Green's  theorem,  it can be shown that the last

    integral gives  twice the area  enclosed by C.  Hence the

    vorticity

      moment  A of the

      vortex  loop F

      is

      normal

      to

    the

      plane

      of the

      loop

      and its magnitude is

      twice

      the

    loop's

     circulation

     F times the loop-enclosed area A:

    A = 2FA

      =

     2FAn

    (2)

    where n is the  unit  vector

      normal

      to the

      plane

      of the

    loop  an d

      points

      in the

     direction

      of

      advance

     of a

      right-

    handed  screw

      as the  loop  is

      traveled

      in the

      direction

      t.

    A change with  time of the vorticity  moment A

      causes

     a

    force

     F

    r

     on the solid

      which

     is, according to (1) an d (2):

    F

    r

    =-p-(FA)

     3)

    The

      force

      F on the

      solid

      is the sum of

     F

    r

      over

      al l

    loops of the system representing  the vorticity  field.

    If the

     path

     C is

     divided

     into two

     parts,

     C \ and C

    2

    , as

    shown

      in  Figure

      Ib ,

      and the two dividing

      points

      ar e

    connected by a

     line

     C', then one has two closed paths: a

    path Cy  formed  by  joining  C'  to

      C\

      and another  path

    C

    2

    '  formed

      by

     joining

     C'  to

     C

    2

    .

      Consider a

     vortex

      loop

    FI on the path

     Q'

      an d

     another

      loop F

    2

     on the path

     C

    2

    '.

    Am erican Institute of

      Aeronautics

     and A stronautics

  • 8/17/2019 Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

    4/12

    (c)2002

     American

     Institute of Aeronau tics Astronautics or Published with Permission of Author(s) and/or Author(s) ' Sponsoring Organization.

    If F

    = T

    2

     an d

     t

    2

     = - t j on the

      line

     C ',

      then

     F, +

     F

    2

     = 0

    and

      the combined

      strength

      of the

      vortex line

      on  C'  is

    zero.

      The two smaller  vortex

      loops

      FI and

     F

    2

      together

    are  thus

      equivalent

      to a single vortex F on the path  C.

    This

     means

     that

     any vortex

      loop F

     is

      divisible into

      tw o

    smaller loops.

      Successive  divisions give an arbitrary

    number

      of smaller

      loops

      that

      are,

      in

      aggregate,

    equivalent to the

     loop

     F.  A non-planar vortex  loop can

    be divided  into  a

      number

      of  small  loops  that  are

    approximately planar.

      Any specific vorticity

    distribution

      can be approximated by various systems of

    vortex loops configured  with a great deal of flexibility.

    The

      vector area

      A  can be  expressed  in the

    component  form

     A

      = A

    x

    i + A

    y

     j +

     A

    z

      k,

      where A

    x

    , A

    y

    , A

    z

    are the

      projected

      areas  of

      A

      in the

      y-z,

      z-x and x-y

    planes

      respectively.  Also,  (2) indicates  that  the

    vorticity moment

      A of a vortex loop

      depends  only

      on

    the strength of the  loop  and its

      size

      and

      direction.

    Hence

     A is independent of the shape and location of the

    loop.  In other words, a planar

      vortex  loop  with

      a

     fixed

    enclosed

     area

     m ay deform  in its own plane and undergo

    rectilinear

      motions

      without  altering its

      vorticity

    moment.  These  facts

      greatly

      facilitate  the use of the

    vortex-loop method

      in

     aerodynamic analyses.

    3.

      LIFTING

     LINE THEORY

    The   lifting-line

      theory  models

      the  steady

      flow

    around a

      wing

      of

      finite

      span  by a

      horseshoe-shaped

    vortex system

     l

     

    This

      system is composed of a  lifting

    line

      representing

      the circulation F(y)

      around

      the

      wing

    and a trailing

      vortex  sheet representing

      a thin

      wake.

    With this

      flow

      model,  the Kutta-Joukowski

      theorem

      is

    used to

     derive

      expressions for the

     lift

     L and the induced

    drag  Dj  on the  wing.  Th e  downwash,  w, at the  lifting-

    line

      location

      is

      viewed

      as a

      modifier

      of the fresstream

    velocity, hence also the ang le of attack, thus causing the

    induced

     drag.

      The

     expressions

     for L and D j are then:

    fb/2

    =

     pUj

      r(y)dy

    J—

    b/2

     4)

     5)

    Th e

     vortex

     loop method is used to re-derive (4) and

    (5) as  follows.  Consider

      first

      the idealized  case  of a

    wing with  a

     constant

     circulation F.  The vortex theorem

    of   Helmholtz  -squires that this  lifting  line not to end in

    the fluid.  Th e

      lifting-line flow

      model  is, in this case,  a

    vortex

      line

      composed

      of the

      lifting

      line and two  semi-

    infinite  vortex lines, called tip  vortices, trailing from  the

    tips  of the

      lifting

      line. O ne

      thus

      has an  open-ended

    horseshoe-shaped

      vortex system. This system is

    complete

      if the  presence  of the  starting vortex  is

    recognized

      8

    .

      The  complete

      system

      is a

      rectangular

    vortex  loop.  The starting vortex  connects  the tip

    vortices

      and

      closes

      the  horseshoe-shaped  system far

    downstream.

      As the

      starting

      vortex

      moves  away  from

    the

     wing,

     the tip

      vortices

     grow. The rectangular

      closed

    vortex loop

     elongates and the

     loop remains closed.

    Let the

      lifting  line

      lie on the

      y-axis

      an d

      extend

    between  y =  -b/2 an d

     b/2,

     b being the span of the

      wing.

    If  the  rectangular  vortex loop lies in the z = 0 plane,

    then t = j, i, - j, and -i  respectively on the lifting  line,

    the tip  vortex at y =

     b/2,

     the starting vortex, and the tip

    vortex

     at y = -b/2. Then n = -k and the area A  enclosed

    by  the  loop increases  at the rate  Ub.  Hence,  according

    to  (3), the  growth  of the

      rectangular

      vortex loop

      causes

    a

      l i f t

     on the

     wing

     in the amount pUbF.

    With the  wing circulation F(y),  the

      strength

     y(y) of

    the trailing

     vortex

     sheet in the  lifting-line  flow  model  is

    required

     by the Helmholtz

     vortex

      theorem to be

    l

    = -dF/dy

    (6 )

    The

      complete

      flow

      model includes

      the

      starting

    vortex  'closing'  the  trailing  vortex sheet  far

    downstream  of the

      lifting

      line.  Consider  a  system  of

    rectangular vortex

     loops placed side b y side in the z = 0

    plane. The vortex  loops a re

     labeled sequentially

     from  1

    to J. The

     vortex

     loop j has a

     lifting-line

      segment on the

    y-axis  with  the

      strength

      Fj =F(Vj)  and the

      length

      8y =

    b/J.

      Let yj =

      -(b/2)+j8y

      and the jth  lifting-line

      segment

    be in the  range  y

    }

    .\   < y < yj.  There  are two trailing

    vortices  belonging  to the

      vortex  loop

     j,  one at y = y^

    with

     t = - i and the

     other

     at y = yj

     with

     t = i. Coexisting

    at

      y = ^

     (except

      the tip points  j = 0 and j = J) are two

    vortex

      lines: the

      vortex  line Fj i  belonging

      to the vortex

    loop

      j and the

      vortex

      line  -Fj+ii

      belonging

      to the

      loop

    j+1. The combined strength of the two vortices is  [F(Vj)

    -  Fty,)].

      As

     8y-»0,  [F(

    yj

    ) -  r(y

    H

    )]/8y ->

      -dF/dy.

    The tip

     vortices

     of the J

      vortex

      loops  in the vortex

      loop

    system   become

      the trailing

      vortex  sheet

      with  the

    strength given  by (6). The set of J vortex  loops  is  thus

    an approximation of the lifting-line

      vortex

     system.

    With the  lifting-line  flow  model, the trailing

     vortex

    sheet lies in the z = 0 plane. The jth vortex

      loop

     has the

    strength

      Fj and its

      area  A j  increases

      at the

      rate U8y.

    According  to  (3),  this vortex  loop causes a  lift  pUFjSy.

    Th e total

      l i f t

      caused by the system o f  vortex loops is the

    summation of this  quantity  over  all the  loops  in the

    vortex loop system.

      In the limit 8y  — •»  0, the

      summation

    becomes (4).

    American Institute of Aeronautics and Astronautics

  • 8/17/2019 Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

    5/12

    (c)2002

     American

     Institute of Aeronau tics Astronau tics or Published with Permission of Author(s) and/or Author(s) ' Sponsoring Organization.

    With  the vortex

      sheet

      lying  in the z = 0  plane,  the

    lifting-line

      flow

      model  predicts  a  zero  induced  drag.

    Prandtl developed

      the flow

      model

      by

      assuming  *   th e

    vortices move

      away

     from the

      wing  backwards with

      th e

    rectilinear  velocity  V .

      To

      re-derive

      the induced

      drag

    expression

      (5 )

     using

     the

      vorticity-moment

      theorem, this

    assumption

     needs

     to be

      modified

      to

     include

     the velocity

    component,  w, in the

      analysis.  With

      vortices  moving

    with

      the

      flow,

      w

     causes

      the vortex  loops  to be inclined

    to the z = 0

     plane.

      The

      disturbance  velocity caused

      by

    the  wing  is  small

      compared

      to the  freestream  velocity.

    Thus w«U and the angle of

      inclination

     of  each vortex

    loop to the z = 0 plane is  very  small. The z-component

    of the

      area

      Aj ,

      (Aj)

    z

    ,

      is  =

      A-

    r

      This component

      area

    grows at the rate U5y and  causes,  as shown, the

      l i f t

    pUFjSy.  Th e

      x-components

      of the

      area

     Aj,  (Aj)

    x

    ,  is  =

    (w/U)Aj  . This component  area  grows at the

     rate  W j 5 y

    and, according to (3),

      causes

      a drag in the

      amount

      -

    W jp

      Fj8y.  Th e

      total

      drag

      caused

      by the

      loop system

      is

    the

      summation

      of this

      amount

      over all

      loops.

      In the

    limit

     8y—»0,

     one has

     (5).

    As  discussed,  vortex

      loops

      can be divided into

    smaller

      loops.

      This

      fact

      leads  to a simpler way to re-

    derive

      (4) and  (5).  At the  time

      level

      t = T, introduce  a

    cut

     at the

     plane

     x=xi >0 to

     divide

     the

     system

     of J

     vortex

    loops

     into two systems each

      containing

     J smaller

      loops:

    a system

      S

    u

     upstream  of the cut (in the region x <

     \\

    containing the  lifting

      line

      and a  second  system S

    d

    downstream of the cut (in the  region  x > x  ̂ containing

    the starting vortex, as  shown  in Figure 2a. At the

    subsequent time level  T + 8t, the  system S

    u

      has

    expanded  and the system  S

    d

      has moved downstream

    with

      the

      flow.

      If the

      shape

      and the inclination of the

    vortex

      loops  in

     S

    d

      collectively remain unaltered

      during

    the time

     period

      8t,

      then, according

     to the discussions  in

    the last paragraph  of

      Section

      2, the vorticity  moment of

    the  system of

      loops

      in

     S

    d

     at the new time

      level

     T + 8t is

    the

      same

     as

      that

     at the old  time

      level

      T. The  system S

    d

    therefore

     does no t cause a force. At the new

     time level

    T  + St, again introduce a cut at the plane x =  X i  to divide

    the

      system

      S

    u

      into two new  systems.

      With

      a  steady

    flow,

      the new

      upstream

      system at the new

      time  level

      is

    identical

      to the

      system

      S

    u

      at the old

      time level  I.

    Therefore  the change of vorticity moment that  took

    place

      during 8t is

      attributable entirely

      to the

      vorticity

    moment  of the new  downstream

      system,

      shown in

    shade in Figure 2b.  This

      system

      occupies  the  region  xi

    < x   0, one

    has (4) and

     (5).

    4.

      W A K E

     INTEGRALS FOR THE FINITE WING

    Using  (6),  on e  obtains  F  =

      d(yF)/dy

      +  yy.  The

    integration of

     d(yF)/dy

     over the

     span

     of the

     wing

     is

     zero

    since F=0

     outside the wing

     tips.

     O ne thus

     has,

     from

      (4),

    pb/2

    L =

     pU

      yydy

    J-b/2

     7)

    Using

      (6),  one has  wF  = wd(yF)/dy

      +ywy.

      For a

    symmetric wing,  the

      term

      wd(yF)/dy is  anti-symmetric

    with  respect

      to y=0. The

      integration

      of  this  term

      over

    the span of the

     wing

     is therefore

     zero

     and (5) becomes

    f

    /2

    yw(y)y (y )dy

    b / 2

    (8)

    The strength

     y

     approximates th e  integrated vorticity

    value

     across

     the wake  layer.  With  the

      layer

      inclined at

    a  very  small  angle to the plane

     z=0, y

      is the  integration

    of

     £

      respect

      to z over the

      wake

      region. O ne

      thus

      re-

    expresses

     (7) and (8) in the

     w ake-integral form:

    (9)

    (10)

    puJ

    =p f  yw^dydz

    where Wis th e

     wake

     cross-section.

    Equation

      (10)  is a new

      wake-integral

      expression

    for

      the

      induced  drag.

      An

      wake-integral

      expression

      for

    the induced drag, developed previously

     5

    on the basis the

    momentum  theory, is in the form

    (11)

    where \|/ is a stream function in the y-z plane.

    It ha s been

      shown

     8

     that

     the new expression  (10)  is

    equivalent

      to the previous  expression (11).  With

    measured  wake

     velocity

      values,

      corresponding

      vorticity

    values can be

      computed

      easily. The induced

      drag

      can

    then

     be ev aluated

     using

     (10).

      Th e

     numerical

     procedure

    required  is  simple and

     efficient.

      In

     contrast,

      the use of

    (11)

      requires the

      computation

      of the  stream

      function

    \|/ by integrating the velocity  values. The

     procedure

     for

    the integration is relatively complex and

     prone

     to

     error.

    The use of the new wake-integral

      expression

      (10) is

    therefore

      preferred

      over  the previous  expression  (11).

    The equivalence of  (10)  and (11)

      endorses

      the use of

    the  vortex-loop

     method

      in

     aerodynamic analysis.

    American Institute of Aeronautics and Astronautics

  • 8/17/2019 Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

    6/12

    (c)2002

     American

     Institute of Aeronau tics Astronautics or Published with Permission of Author(s) and/or Author(s) ' Sponsoring Organization.

    A

     wake-integral

      expression for the profile  drag

    8

     o n

    the

      finite  wing

      can be

      established

      using the vorticity

    moment  theorem.

      The wake-integral  expressions  link

    the

      footprints

      of the

      wing

      to the

      aerodynamic  force

      on

    the  wing.  This linkage  is  discussed  in  Section  6 in

    connection

     with

     wake-integral

     results

     for the rotor.

     

    W A K E INTEGRALS FOR THE ROTOR

    A  cylindrical  coordinate  system (r,

     0,

      z)  with  the

    unit-vector set (e

    r

    , e

    e

     , e

    z

    ) is used  in the present study o f

    the hovering

     rotor problem.

      Th e  vectors  r, v, and

      C O

     are

    stated

     as r = e

    r

    r + e

    z

     z, v = e

    r

     v

    r

    +

     e

    e

     v

    e

     + e

    z

     v

    z

    , and (0 =

    e

    r

      0 )r

     + ee  (O e  +

      e

    z

      civ  A  stationary reference  frame  at

    rest  relative

      to the  fluid  far

     from

      the rotor  is  used.  Th e

    rotor

     disk

     is placed in the z = 0 plane. The

      rotor

      rotates

    about the z-axis with the angular velocity

     Q.

    Th e

      circulation

      F(r)

      around

      the blade  depends  on

    the span location.

      According

      to the Helmholtz vortex

    theorem,

      the blade

     must  leave behind  wake  vorticity

      as

    it

      advances azimuthally.  For a

     thin

      wake,  the vorticity

    content

      of the  wake  can be approximated by a vortex

    sheet

      with

      the strength

     y

     =

      dF/dr.  (The negative

      sign in

    (6) is absent  with  the

     ordering

     of the unit-vector set e

    r

    ,

    e

    e

    ,

     e

    z

    .)

      For a rotor in hover or in

     climb,

      the

     velocity

      v

    z

    transports

      the wake

      vorticity

      continually in the

      axial

    direction.

      A

     helical wake

     is

     therefore

      present

     under

      the

    rotor

      disk. The blade circulation is connected

      through

    this

      helical

      wake,  which

      is in

      turn  connected

      to the

    starting vorticity

     at the far end of the

     helical

      wake.

    Consider

      a system of J

      helical

      vortex

      loops.

      Let

    the j th

      loop

     contain a lifting-line  segment of  strength  Fj

    =

      F(VJ).

      Let

      this  segment

      be on the

      r-axis

      in the z = 0

    plane  and

      occupy

      the  radial range  T J \   < r

    61 ,

     containing the

      blade,

      and a

      second

      system

      S

    d

      in the

    region

      0<

      61,  containing  the starting

      vortex.

      At the

    subsequent time

      l^^el

      T + 8t, the

      system S

    u

      ha s

    expanded.

      Introduce

     a new cut at the plane 0 =0i+  QSt

    to  divide  the system

      S

    u

      into

      two new systems each

    containing

      J

      smaller  loops.

      Following the

      discussions

    of  Section  4, the

      newly  emerged

      vorticity  moment  in

    the  pie-shaped region

      0

    t

      < 0

  • 8/17/2019 Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

    7/12

    (c)2002  American Institute of Aeronau tics Astronau tics or Published with Permission of Author(s) and/or Author(s) ' Sponsoring Organization.

    6. EXPERIMENTS AND

     RESULTS

    Rotor

      tests

      were

      performed in the U.S. Army

    Aeroflightdynamics

      Directorate

      (AFDD)

      7'  by  10'

    Wind Tunnel

      at the

     NASA

      Ames

      Research Center.

      A

    two-bladed model

      rotor

      was

      mounted

      in the settling

    chamber  of the

      wind

      tunnel. The  axis  of the  model

    rotor

      was aligned  with  the  tunnel

      flow

      direction.

      The

    wake of the model rotor passed  through  the contraction

    section

     and the test section  of the  tunnel.  In previous

    rotor

      tests  in the

      AFDD  7'

      x

      10'

      wind  tunnel,  F.

    Caradonna

      et al.

      M

      demonstrated

      the advantages of

    simulating

      rotor  climb  flows using this  test

    configuration.  Descriptions

     n

     of the test configuration ,

    the

     physical layout, the rotor, and the instrumentation of

    these previous  tests  are for the most  part applicable  to

    the  present  tests.  Modifications and

      additions

      were

    made

     to

     obtain particle images

     in the

     wake

     of the

     model

    rotor

      and to

      address

      the  issue  of rotor-driven

      flow

    returning

     to the

     settling

     chamber.

    The

      flow

      circuit of the wind

      tunnel

      is  shown  in

    Figure

     3. A flow

      seeder

     was used to introduce particles

    into the  flow  for particle imaging.  A three-dimensional

    particle-image   velocimetry  (PIV)  system was  used  to

    obtain particle images  in the  near  wake  of the  model

    rotor.

      Major

      components

      of the PIV

      system

      are two

    2,000

      x  2,000  pixel

      digital

      cameras,  lens

      sets,

      remote

    focus

      system,

      high-speed  interface  and digital

      links,

    control

      cables, computers  for acquiring and  storing

    particle images,

      and

      laser  light

      source  and

      mirror

    systems.

      Figure 4 shows the camera and

      light

      sheet

    configuration  used.

    The AFDD 7'  x  10' wind tunnel is a closed-circuit

    tunnel.  The cross-section of the  settling

     chamber

     is 30 '

    x   31'.

      The cross-section of the

     test

     section is 7 '  x 10'.

    The

     model rotor

     has a

     nominal

     diameter of

     7'

     and a

     true

    diameter

      of 6.283'.  The wake of the model

      rotor

      was

    expected  to

      flow

      through  the  test section  with

      minimal

    interaction

      with

      test-section  walls.

      With

      the  tunnel

    drive-fan

      o f f ,  the model rotor

     acted

     as a substitute drive

    f a n

      and created a flow  through the tunnel's flow  circuit.

    Thus,

      with  the tunnel drive-fan  o f f ,  a climb

      condition

    rather

     than

     a true hover condition  was expected  to exist

    in the settling

     chamber.

    To evaluate the strength of the rotor-driven  flow,  a

    curtain was installed at the air exchanger section of the

    tunnel

      to  block  the rotor-driven  flow from  returning to

    the  settling chamber.  Fresh  air was  admitted  to the

    settling  chamber  through  openings  downstream  of the

    curtain, as

      shown

      in Figure  3.  Prior  to acquiring  wake

    data

      using the PIV  system, tests were run both  with  the

    curtain in  place  and  with  it  removed.  During  these

    tests, the tunnel drive-fan was off and the

     rotor

     operated

    at 870

      rpm.  Tests

      were  run

      with

      the  collective  pitch

    angles of the

     rotor

     blade set at 1°, 3°, 5°, 7°, 9° and  11°.

    Thrust and  torque were measured  using the  balance

    mounted on the

     rotor's drive  shaft.

      The measurements

    showed

     that

     the thrust and the torque on the model rotor

    were  not

      significantly affected

      by the  blockage  of the

    rotor-driven flow.

    In

     these

     test

     runs,

      flow  velocities

     were measured

      in

    the test

      section

      using vane- and

      thermo-anemometers.

    Total

      volume

      flow  rates  through

      the  test section  were

    determined  from

      the  measured

     test

     section velocities.  It

    was

      found  that

      the

      flow

      through the  test section  was

    reduced between  14% and 21% by the blockage of the

    rotor driven flow.  Balance-measured thrust values were

    used  to estimate  the

      flow

      through  the  rotor  disk  using

    the axial

      momentum theory.

      It was

      found

      that

      flow

    through

      the

      test section

      was

      between

      2.5 and 2.9

      times

    the

      estimated  flow  through

      the

      rotor

      disk,

      indicating

    that

      a  sizeable

      portion

      of the

      flow  through

      the

      test

    section

     did not go through the

     rotor

     disk.

    Measured  velocity  contours  in the  test section

    indicated

     that

     the rotor wake was diffused by the time it

    entered  the test

      section.

      It is  postulated  that  the wake,

    together with the  fluid  it entrained on its way to the

     test

    section, accelerated

      slightly

      in the

      contraction

      section.

    The

      acceleration lowered

      the static

      pressure

      in the

     test

    section

      slightly.

      This

      lowered

      test

      section pressure

    created  a

     flow  external

      to the

      'slipstream'

      of the

      wake.

    The  flow

     through

     the

      test section

      is

     therefore  composed

    of the rotor

     wake

     and a

     flow

     external to the rotor wake.

    The  momentum

      f l u x

      at the

      test section

      was

    estimated using measured average velocities and  found

    to be

     greater than

     the

     thrust

     on the rotor.

      This excess

     of

    momentum

      f l u x

      supported

      the

      view that

      a  pressure

    difference

      existed

     between

      the settling chamber and the

    test  section.

      The average settling chamber  flow

    velocity was very  low.

      (With

      the curtain installed,

     this

    velocity was  1.55 fps for the 11° case, of which 0.54 fps

    was due to the estimated  flow of the rotor  wake.)  Only

    a  minuscule  pressure  difference would  produce  the

    measured amount of  flow  through  the  test section.

    Experimental

      verification

      of this

      minute

      pressure

    difference

      is therefore  d i f f ic u l t .

    Wake-integral  expressions presented in Section 5

    are  applicable  to

      rotors

      in

      axial

      flight,  with  hover  as a

    special

     case.

      The question as to what  specific  flow

      rate

    corresponds to the true hover state is not essential to the

    present  work.  Future test

      runs

      with  the  test  section

    access doors open

      to

     equalize

      the static

     pressure

      in the

    test  section  with  ambient air are  desirable.  With  the

    access

     doors

     open,

      the measured  flow  rate

      through

      the

    test section

     can be used to

     establish

     the

     true hover

     state.

    American

     Institute of Aeronautics and

     Astronautics

  • 8/17/2019 Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

    8/12

    (c)2002  American Institute of Aeronau tics Astronau tics or Published with Permission of Author(s) and/or Author(s) ' Sponsoring Organization.

    Th e

      curtain

      at

      the

      air exchanger  section  of the

    tunnel  was installed to block the  return  of the  rotor-

    driven  flow  during PIV  test  runs.  The  tunnel  drive  fan

    was   o f f .  Two pulsed laser-light  sheets were

      introduced

    in a plane

     parallel

     to the rotor's

     axis,

     as shown in Figure

    4. As the

      rotor  rotated,

      its

      blades  passed

      through

      this

    light  sheet

      repeatedly.

      Th e  rotor  was

      operated

      at 870

    rpm to

     match

     the

     maximum pulse

     rate of the

     laser.

      Th e

    blade-tip speed

      wa s

      about

      286

      f j p s

      and

      compressibility

    effects

      were

     not

      important.

      Th e  light  sheet was aligned

    to the  trailing edge  of the blade at the  instant  the

     blade

    advanced

      passed

      the  sheet.  This instant  of time was

    used as a reference time  level.  A set of 25 images was

    acquired at the  same blade  azimuth during  a  series  of

    blade

      revolutions. The images

      were  combined

      to

    produce  time-averaged

      velocity

      fields

      at specific

    relative positions

      between

      the

      blade

      and the wake-

    survey

     plane.

    Figure 5 shows the

     geometry

     of the rotor blade and

    the position of the

     light

     sheet

     relative to the

     blade

     at the

    time levels particle images w ere acquired. The

      light

    sheet  was stationary while the  blade  advanced  during

    the  tests.  Th e  distance  between the  blade  tip and the

    light  sheet designates  the relative position of the

    particle  images (wake-survey

     plane)

     and the blade.  Fo r

    example,

      a  2.0-c  (two-chord)

      wake-survey

      plane

    designates

      particle images  acquired

      at the

      instant

      the

    blade tip advanced two chords

     from

      th e

     plane.

    Particle

      images were

      acquired for two

      collective

    pitch

     angles, 5° and

      11°,

      in three contiguous

     rectangular

    data patches along  the blade

     span.

      Each patch  covered

    approximately 6 of span and 10 of

      axial

      distance.

    The three patches together

     covered

      about

      17.6"

     of span

    extending between

      2 0 . 9 from  the  rotor

      axis

      to

     0.8

    outboard

      of the

      blade

      t i p .  In the

      axial  direction,

      the

    boundaries

     of

     each zone

     were

     about

     3

    upstream

     and 7

    downstream

     of the rotor

     disk.

    Figures

      6 and 7 show  contours  of the velocity

      v

    e

    and the vorticity

      C f l e

     at the

      wake survey

     planes  2 . 0 - c   for

    the 5° and the  11° cases.  The  v

    e

      velocity

      deficit  layer

    represents

      a

      layer

      of

      ov

      This

      layer

      is the

      footprint

      of

    the two boundary

      layers

      on the blade

      surface.

      This

    layer is

      composed

      of two sub-layers, one

      from

      the

    upper boundary layer and the

      other

      from

      the

      lower

    boundary layer.

      The

      (O r contents

      of the two

      sub-layers

    have  different  signs.  The positive and  negative

    vorticity  o\

      in the two  layers  are  connected  by  c i > z   to

    form  closed  vorticity  loops

      in the

      9-plane.

      The

    presence  of the vorticity  co

    z

    ,  though  not shown, can be

    inferred  from

      the presence of the 0^ sub-layers.  As

      time

    progresses,

      vorticity

      loops

      emerge in successive 0-

    planes.

      With

      downwash, a

      helical

      wake layer

    composed

     of

     vorticity

      loops

     that lay in

     planes normal

      to

    the   helical layer is  formed.  In  order  to determine the

    profile

      drag, the sub-structure of the helical  o\  layer

    must

     be

      recognized.

      If the

      a^  layer

      is

     approximated

      as

    a

     vortex  sheet,

     in other w ords, a layer of zero

     thickness,

    then

      the

      profile  drag cannot

      be  detected.

      This

      is

    because

      the approximation makes vorticity

      moment

     zo\

    zero  and therefore  (16)

      gives

      a  zero  profile

      drag.

      Th e

    approximation

      masks  the

      deficit

      of

      v

    e

      in the wake and

    thus

     (17)

     gives a zero

     profile  drag.

    The   (O e

      vorticity

      in the

      wake

      is the footprint of the

    circulation change

      along the

      span

      of the  blade.

      This

    footprint

      is

     linked

      by

      ( 1 4 )

      an d

      ( 1 5 )

      to the thrust and the

    induced  torque on the rotor.

      Figures

     6 and 7  show

      that

    the   c o e  wake

      associated  with

      each blade  is  composed  of

    a

      strong

      tip

      vortex,

      i . e . ,  a

      helical

      tube  of

      intense  c o &

    trailing the  blade  t i p ,  and a  weak helical layer  of

      c o &

    inboard of the tip vortex. The

      blades

      of the

      present

    tests

      are

      twisted.

      The

      observed

      (0 &

      distribution

    indicates

      that

      the circulation around the

      blade

      changes

    slowly

      along the  span  an d

      drops  abruptly

      to

      zero

    outside

     th e

      t i p .

    The  sign  of

      co ^

      in the

      inboard

      layer  is

      opposite

      to

    that in the tip  vortex.  The  (O e  layer  can be

    approximated

      by a

      vortex  sheet,  without losing  pivotal

    information  about

     either the thrust or the induced torque

    on the  rotor.

      This

      is  because

      this inboard

      co ^

     layer,

    unlike the

      co ^

      layer,  is not  composed  of  sub-layers

    containing

     vorticity  of different  signs. This

      O G

    layer  is

    a  part  of the vortex

      loops  lying

      in the helical  wake

    sheet,

      no t

      normal

      to the

      sheet.

      Th e

      presence

      of a hub

    vortex and a starting vortex is  inferred  by the  presence

    of the  helical  layer  of  c o g .  The hub  vortex  and the

    starting

     vortex, together  with  the circulation

      around

      the

    blade, complete

      the

      vorticity

      loops

      containing

      the

    vorticity

      0 0 9 .

      The hub

     vortex

      and the

      starting vortex

     are

    both outside the three data patches of the present tests.

    Th e presence  of tip vortices is

     evident

      in

     Figures

     6

    and

      7. Two

      traces

     of tip  vortices

     appear

      in

     Figure

     7 for

    the 11° case.

      The one

      very  close

      to the  rotor

      disk

      is

    associated  with  the blade  that  most recently passed

    through  the  wake-survey  plane. For convenience,  this

    blade is called the

      first

      blade. The

      second

      trace is

    associated  with  the  second blade,  which  is

      about

      1 8 0 °

    from

      the survey plane at the

      instant

      particle

      images

     are

    taken.

      A

      third  trace

      of a tip

      vortex

      is  observed  in

    Figure 6 for the 5°

     case.  This third  trace

     is the

     footprint

    of

      the  first

      blade  during

      its  previous

      passage  through

    th e wake-survey plane.

    The

      layers

      of

      C 0 r

      and

      0 )9

      leave  the  blade

      together

    and they are  transported  in the  fluid  by  identical

    American

     Institute

     of

     A eronautics

     a nd

      Astronautics

  • 8/17/2019 Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

    9/12

    (c)2002 American Institute

     o f

     Aeronautics

     

    Astronautics

     or

     Published with Permission

     o f

     Author(s)

     and/or

     Author(s) '

     Sponsoring Organization.

    physical

      processes

      of

      convection

      an d  diffusion.  Th e

    two

      layers

     therefore

     occupy the same

     physical

     space.

    The structures of the  rotor

      wake

      described  above

    are

      evident

      at all

      wake-survey  planes.

      Th e

      thinness

      of

    the

      inboard

      vorticity  layers in

     Figures

     6 and 7

      indicates

    that

      for both the 5° and the  11°

     cases,

      any significant

    flow  separation,  if  present,  is restricted to the  root

    portion

     of the blade not covered by the data

     patches.

    As the tip

      vortex  moves  axially,

      it

      also moves

    inboard.

      Figure 6 shows  that,  for the 5°

     case,

      the tip

    vortices  move  axially  at a  speed  substantially  slower

    than

     that of the inboard

      wake layer.

      Th e movements of

    the   second blade's  tip  vortex bring it to the path of the

    first

      blade's  inboard wake layer. A strong interaction

    between  the inboard wake layer of the

      first

      blade  and

    the

      tip vortex of the  second blade  then  occurs.  For the

    11°

      case,  the  axial

      speed

      of the tip vortex is  greater.

    Th e

      strong interaction

      between  the inboard vorticity

    layer of the

      first

      blade

      and the tip vortex of the

      second

    blade is not

     observed

     in

     Figure

     6 .

    Spurious  vorticity

      along the

      boundaries

     connecting

    the   three  data

      patches

      is  observed  in

      Figures

      6 and 7.

    This spurious vorticity  is  attributable  to an  inexact

    matching

      of the  three

     data

      patches  in the

     tests.

      Fo r

    wake-integral analyses, this  spurious vorticity  is filtered

    and  disregarded. Figure  7  also

      shows

      widespread

    traces  of

      background  noises.

      The  noises  are

      weak

      and

    do not  have

     significant effects

      on  wake-integral results.

    Wake

      data at the

     0.5-c

      wake-survey plane contain

    excessive

     spurious

     values.

      Th e

     quality

      of

     these data

      is

    no t  sufficiently  high for meaningful

      aerodynamic

    analyses.

      For the

      11° case, wake data

     for the

     innermost

    data

     patch are either

      missing

     or not of

      sufficiently  high

    quality at the 1.0-c,

     4.0-c

     and

     5.0-c

      wake-survey planes.

    The qualities of all  other

      acquired

      wake

      data

      are

    comparable

     to those

     shown

     in

     Figures

     6 and 7.

    Because

      of the

      strong

      interaction

      between

      the

    vorticity layers

      left

      behind by the  first  blade and the tip

    vortex

      left  behind by the

      second  blade,

      the wake  data

    for  the 5° case are not  suitable for the evaluation of the

    profile  torque.

      Profile

      torque values

      are

      determined

    using (17) and wake

      data

      for the 11°  case.  As

      noted,

    the three data patches cover  only  the outboard r >

     20.9

    portion

      of the wake. In evaluating the

      profile  torque,

    the contribution of the  missing inboard  wake

      data

      is

    estimated by  assuming  the inboard  o\  layer  does  no t

    change  with  the  span  in the  root  portion  of the wake.

    Based

      on

      this

      assumption, the missing

     c\

      layers in the

    wake-survey  planes

      2.0-c

      and

      3.0-c

      are estimated to

    contribute

      17% of the

      total  profile

      torque. For the

    wake-survey planes  1.0-c, 4.0-c

      and

     5.0-c,

      the  missing

    (O r

     layer

     in the

     root portion

     of the

     blade,

     including those

    in  the innermost

      data patch,

      is  estimated  to contribute

    36% of the total

     profile

     drag.

    Wake data at the

     2.0-c

      and the 3.0-c  wake-survey

    planes

     for the

      11° case

      show

      that

      the

     o\

     content  in the

    wake

      layer

     does

      no t

      change

      rapidly in the two inboard

    data  patches.

      Th e

      estimated contributions

      of the

    missing  inboard data do, however,

      introduce

    uncertainties in the evaluation of the profile

      torque.

    This uncertainty is due in part  to the  physical

      presence

    of

      the

     root structure

      of the

     model rotor Also,  with

      the

    twisted  blade,  it is possible  that

      flow

      separates  over a

    root portion of the blade , especially in the  11° case.

    The vorticity

      0 )9

     in the

      inboard

      layer is

      found

      to be

    very weak. For  example,  for the

      11°

      case,  the

    magnitude

      of the

      integrated  c o &   value

      in the

      inboard

    layer is

      determined

      to be

      1.4%

      of

      that

      in the tip

     vortex

    at

     the

     2.0-c

     wake-survey

     plane.

      As

     (15)

     and (14)

     show,

    the  contributions  of  (Oeto  the  induced torque  and the

    thrust

     a re

     weighted

     by the

     factor  r

    2

    .

      Th e

      missing

     data in

    the   root

      portion

      of the  blade

      span

      is therefore

    unimportant in the evaluation of the  induced torque a nd

    the

     thrust

      using

     wake-integrals.

      Since  the tip vortex is

    located in the outermost data patch, the induced  torque

    an d the

     thrust

     on the

     rotor

     can be

     accurately determined

    using only

      wake data in this outermost

     data patch.

    Induced  torque

      values, determined

      using

      (15),  are

    shown in Figure 8 for the  11° case.  Total torque

     values

    are

      obtained

      by adding the

      values

      of profile

      torque,

    determined   using

      (17), to the induced

      drag

      values. The

    very

      good

      agreement

      between  the  balance-measured

    value

     and the

     total torque

     values

     determined using wake

    data

      at survey  planes

      1.0-c

      and

      2.0-c

      is

      unforeseen

    since,  as  discussed,  the  missing  inboard  wake-data

    introduce uncertainties

     in computing the profile torque.

    Figure 9 shows the  thrust  on the rotor

      determined

    using

      (14).  Th e  agreements

     between

      the wake-integral

    results and the  balance-measured  thrust at all wake

    survey  planes

      for both the 5° and the 11°  cases  are

    reasonably  good

     and

     encouraging.

    Wake-integral  expressions are derived in Section 5

    by analyzing  the

      rate

      of

      emergence

      of new  vorticity

    moment in the  wake.  It is

      therefore

      preferable  to use

    wake-survey  planes close  to the blade. As discussed,

    the   o> r  layer  is  composed  of two  sub-layers  containing

    OT   with  opposite  signs.  As the  wake  ages,  diffusion

    disperses

      the vorticity and partially

      annihilates

      the

    positive

      Or  and the

      negative  0 )r

      in the two

      sub-layers.

    The

     wake-integral

     expression (16), or equivalently (17),

    therefore  provides more

      accurate  profile  torque  values

    8

    Am erican Institute of

      Aeronautics

     and Astronautics

  • 8/17/2019 Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

    10/12

    (c)2002  American Institute of Aerona utics Astronau tics or Published with Permission of Author(s) and/or Author(s) ' Sp onsoring O rganization.

    at wake-survey  planes

      closer

      to the

     blade.

      Diffusion

    effects  are

      less  important

      in the

      determination

      of the

    thrust and the

      induced  torque since

      (0 &

     resides

      nearly

    wholly in tip

     vortices.

    7.

    CONCLUSIONS

    Th e

      wake-integral

      method connects the  footprints

    left

      behind by a

     solid

     body in  flight  to the aerodynamic

    force  and moment on the

      body.

      Through  this

    connection,

      the task of solving a

      three-dimensional

    aerodynamic

      flow

      problem  is  reduced  to one of

    evaluating the footprints in a

      two-dimensional

      planar

    area.  Information  about

      these  footprints

      can be

    acquired

      either

      experimentally or comp utationally. By

    reducing  the  dimensionality of the information  required

    to

      determine

      the

      aerodynamic

      load

      from

      three to two,

    the  method  offers  major

      advantages

      in all

      three

    branches  of

     aerodynamics

      -  theoretical, experimental

    an d

      computational.

      Th e

      method

      is

      efficient  since

      the

    required

      footprint  information is

     restricted

      to the small

    vortical

      wake

     region

     of the

     flow.

    The central  theoretical  task of the

      wake-integral

    method  is the  establishment  of wake-integral

    expressions.

      In the

     present  research,

      a vorticity-loop

    method  was

     developed

      and used to derive new wake-

    integral

      expressions

      for the

      finite wing

      problem.

    Compared to previous

      wake-integral

     expressions for the

    induced and the  profile

      drags,

      the new wake-integral

    expressions

     are

     remarkably simpler

     a nd more

     efficient.

    New   wake-integral

      expressions  are also derived,

    using the  vorticity-loop

      method,

      for the thrust, the

    induced torque and the

      profile

      torque on the  rotor.

    These

      expressions

      connect  the

      footprints

      of the  rotor

    blade to the aerodynamic  load  on the

      rotor.

      Th e

    azimuthal component of the wake vorticity  is

     connected

    to the  thrust  and the induced torque. The  radial

    component

      of the

      wake vorticity

      is

      connected

      to the

    profile

      torque. The

      axial component

      of the wake

    vorticity

      does  no t

      need

      to be  known

      explicitly.

      Its

    presence

      in the wake and its contribution to the

    aerodynamic load

      are

      inferred  from  those

      of the

    azimuthal

     and radial components of the wake vorticity.

    With  the new wake-integral

     expressions,

      the use of

    wake

      data

      very close  to the

      trailing

      edge  of the  lifting

    body

      is

      preferred.  This

      fact

      offers

      an

      important

    advantage to the use of

     CFD

    in wake-integral analyses.

    Numerical

      methods  capable

      of accurately

      simulating

    the near

      wake

      are useful,

      even

      i*  ihe far

     wake cannot

     be

    accurately simulated

     because

     of

     numerical

     diffusion.

    Experiments performed

      in the  present  research

    have

     validated

      the p racticality and the major  advantages

    of

      the

      wake-integral

      method.  Th e  power  of  three-

    dimensional

      particle-image velocimetry

      in

      experimental

    aerodynamics  has  also been demonstrated.  In addition

    to providing  quantitative  wake

      data,  particle

      imaging

    has brought  into  focus  wake

      features

      often

      disregarded

    in  the  past.  These  wake

      features

      are relatively

    inconspicuous, but important to

      viscous

      an d

      unsteady

    aerodynamic analyses.

    Efforts  of the

      present

      program  have

      laid

      the

    foundation   for continued  efforts  to

      construct

      a

     practical

    aerodynamic  design tool

      using the wake-integral

    method.

    Acknowledgements

    The contribution of the wind-tunnel  task-team  fo r

    the

      present  research

      is

      gratefully  acknowledged.

    Members

     o f  this

     team  include

     Anita I.

     Abrego,

     Brian H .

    Chan, Steven Chan, Lauura

      Galvas,  Joel  T.

      Gunter,

    Elizabeth M.  Hendley,  Jon L.  Lautenschlager  an d

    David

      W . Pfluger.

      Samuel

      S.

      Huang

      served  as the on-

    site

      engineer

      of

      Applied Aero

      throughout the

      planning

    an d

     execution

     phases

     of the wind

      tunnel tests.

      Dr.  Luiz

    Lourenco designed  the particle  image

      velocimetry

    system

      an d  provided related  technical

      support,

    including  the processing of particle images.  Dr. Chee

    Tung's  support  an d

      timely

      advice  throughout

      this

    research program is also gratefully  acknowledged.

    References

    1.

      Prandtl, L.

      Applications

     of

     Modern

     Hydrodynamics

    to Aerodynamics ,

     Report

     No.l

     16 ,

     National  Advisory

    Committee

     on Aeronautics,

     1921

    2. Betz, A.

     "Ein

     Verfahren zur  Direkten

     Ermittlung

     d es

    Profilwiderstandes ,  Zeitschrift  fur  Flugtechnik  und

    M otorluftschiffahrt,

      Vol. 3,

     1925

    3. Anderson, Jr., J. D.  "AHistory of  Aerodynamics",

    Cambridge  1997

    4.

      Maskell,

      E. C.  "Progress  Towards  a Method of

    Measurement of the

      Components

      of the

      Drag

      of a

    Wing

     o f Finite

     Span", Technical Report 72232,

     Royal

    Aircraft

      Establishment,

     1973

    5.

      Wu, J.

      C.,  Hackett,

      J.

      E.,

      and

      Lilley,

      D. E. A

    General

      Wake

      Integral

      Approach  for Drag

    Determination in  Three-Dimensional

      Flows",

     AIAA

    Paper No.

     79-0279,

     1979

    6.

      Kroo,

      I.  Drag  due to  Lift:  Concepts for Prediction

    an d Reduction", Annual Review  of Fluid  Mechani cs ,

    Vol.

     33 ,

     2001

    American

     Institute of A eronautics and Astronautics

  • 8/17/2019 Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

    11/12

    (c)2002  American Institute of Aeronau tics Astronau tics or Published with Permission of Author(s) and/or Author(s) ' Sponsoring Organization.

    7.

      W u,

      J.  C. and

      Wang,

      C. M.

      Separate

    Determination  of  Coexisting

      Components

      of

    Aerodynamic Drag

     o n

      Rotors , USAAM CO M

     T R-

    01-D10, Aviation Applied

      Technology

      Directorate,

    U.S. Army

     Aviation

     a nd

      Troop

      Command, 2001

    8. Wu, J. C.

      Theoretical

      Aerodynamics

      based

      on

    Vorticity  Dynamics ,  Applied  Aero  LLC,  Report

    2001-A1231,2001

    9. Wu, J. C.

      Theory

      for Aerodynamic

      Force

      an d

    Moment in

      Viscous  Flows",  AIAA  Journal,

      Vol.

    19,  1981

    10 .

      Caradonna,

      F.,  Henley,  E.,  Silva,  M .,  Huang,  S.,

    Komerath,

      N. , Reddy, U. ,  Mahalingam,  R.,  Funk ,

    R.,

      Wong,

      O .,

      Ames,

     R., Darden, L.,  Villareal,  L .,

    and

      Gregory,  J.,

      An Experimental  Study  of a

    Rotor  in  Axial  Flight Proceedings, Specialists'

    Meeting

      for  Rotorcraft

      Aeroacoustics

      and

    Aerodynamics,  American Helicopter  Society,

      1997.

    Closed tube

    of

     varticitv

    Figure  la .  Vortex

     loop approximation

      of

      vorticity tube.

    or

    2

    Figure Ib.

     Division

     of

      vortex

     loop  into smaller loops.

    Air

     Exchanger Section

    J

    Settling Chamber

    Figure 3.

      Wind tunnel  flow  circuit.

    r

    Figure 4. Particle imaging system layout.

    Figure

      2a. Lifting-line

      vortex-loop

     systems a t time  t = T.

    -1

      K U S t

    New

      upstream

     system Transported  Sd

    Expanded  S

    u

    Figure

     2b. Lifting-line vortex-loop systems at time t = T + 5t.

    75.40-

    4.03

    7.55 degree linear

     twist

    Figure 5.

     Blade

     geometry and wake-survey planes.

    10

    American

     Institute

     o f

      Aeronautics

     a nd

     Astronautics

  • 8/17/2019 Wake-Integral Determination of Aerodynami Drag Lift and Moment in 3d Flows

    12/12

     c)2002 American Institute of Aeronautics Astronautics or Published

     w ith Permission

     of Author(s)

      and/or

     Author(s) ' Sponsoring Organization.

     

    velocity

    -

    :

    /

      , .  i i   .

    _______©

    1

      1

      1

     

    1

    u

    S

    -6.00

    -7.36

    -8.71

    I  1007

     -~

    11.43

    ^ s w 12.79

    te a

      14

    -

    14

    15̂ 0

    B

    1 6 > 8 6

    S

    18̂ 1

    P19̂ 7

    B

    Ks>

      20.93

    22.29

    23.64

    25.00

    -  vorticity

    : i

    -C*=>

     o

      =>

     0 o

      -=>

     °•*•

     

    •  , , ,  1  ,  (

    c o «

      £K̂ OĈ C-K

    <

    -f)

    , , , , ,

    t

     

    e

    ^-^~^~-^S^

    ~ r

     

    ,

    1

      1

     

    . r

    VORX

     

    500.00

     463.57

    >W 427.14

    M390.71

    r*-n  354̂ 9

    r-TJ 317.86

    n

    281

    -

    43

    H

    245

    -°°

    li

    208

    -

    57

    S172.14

    135.71

    id

    99-29

    S

    62.86

     26.43

     

    -10.00

    r ln)

    Figure 6. Streamwise velocity and vorticity contours.

    2-chord wake survey plane

    5-degree

     collective-pitch angle

    _ _ _ _  Batence-MeasuredJotal

    a

      Wake-Integral,

     Induced

      Wake-Integral,

     Total

      2 3 4 5

    Distance between Blade and

     Wake

     Plane chord)

    Figure

     8.  Rotor torque, 11-degree

     collective

     pitch.

    velocity

    30

    tin)

     

    vorticity

    5-degree collective

    _ _ _ _

      Balance-Measured

    •  Wake-Integral

     

    VORX

    500.00

    463.57

    427.14

    390.71

    H354.29

    317.86

    281.43

    245.00

    208.57

    172.14

    135.71

    9929

    62.86

    26.43

    |  -10.00

    Distance between Blade

     and

     Wake Plane chord)

    t  11 -degree collective

    - - - -Balance-Measured

      Wake-Integral

    rlane chord)

    Figure 9.  Rotor thrust, 5- and 11-degree

     collective

     pitch.

    11

    American Institute of Aeronautics an d Astronautics