24
VTCS overview 13 April 2006 NIKHEF Bart Verlaat 1 NIKHEF involvement in VELO ~1 m module support CO 2 cooling detector "hood" kapton cables Vacuum vessel repeater electronics LHC collision point8 « RF box » rectangul ar bellows VELO exit window Silicon modules Wake field suppress or

VTCS overview 13 April 2006 NIKHEFBart Verlaat 1 NIKHEF involvement in VELO ~1 m module support CO 2 cooling detector "hood" kapton cables Vacuum vessel

Embed Size (px)

Citation preview

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 1

NIKHEF involvement in VELO

~1 m

module support

CO2 cooling

detector "hood"

kapton cables

Vacuum vessel repeater electronicsLHC collision point8

« RF box »

rectangular bellows

VELO exit window

Silicon modules

Wake field suppressor

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 2

Overview

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 3

Vacuum system & mechanics

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 4

VELO tank

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 5

right-hand side rf-box

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 6

Capillary and T-Sensor channel

Cooling blocks

Flexible in and outlet lines

Cooling vacuum feed

trough

Liquid inlet

Vapor outlet

PT100 Interface board

PT100 cables

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 7

Fully assembled evaporator

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 8

Hood with flanges with feedthroughs

Transport trolley

Testbeam position

Cooling blocks with heaters

Module support

Right detector half under assembly

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 9

Module with cooling blocks, mounted on detector support at NIKHEF

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 10

Cooling system: overview

2-phase

gas

R404a chiller

22

33

6677

11

88

44

2-phase2-phase

liquid liquid liquid

2-phase

Con

den

ser Evaporators

Concentric tubePump

Rest

rict

ion

AccumulatorCooling plant area

Transfer lines(~50m) VELO area

55

liquid

Fully assembled under testingInstalled nowUnder design

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 11

Full evaporator test with dummy heaters using the NIKHEF test system including:• Real pump•Transfer tube•HAPTAS read-out (In Labview)

CO2 test system

Transfer tube set-up

Pump with damper

Right detector half thermal testing

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 12

Right detector cooling and slow control testing

Test station

Right detector

Evaporator inlet

Vacuum connection

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 13

blow-system for ≤5 modules for assembly area

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 14

• LEWA Pump operates well, according specs

• Fine tuning of pressure damping level

• Implementation of oil reservoir heater

• Implementation of pump head cooling under investigation

• Flow control is manual and is adjusted once (~12.5 g/s; 0.75 l/min)

Components: CO2 Pump Status

Pump head

Double membrane with membrane leak detection

Motor

Damper

Pump test panelA LEWA dedicated CO2 pump

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 15

Accumulator liquid level as a function of Accumulator volume

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00 5.00 10.00 15.00 20.00 25.00

Accumulator Volume (L)

Liqu

id le

vel (

%)

Start up warm

Start up cold

operational 1

operational 2

Components: Accumulator design

R404a evaporator spiral /CO2 condenser

Accumulator design volume

Loop volume: 8.8 LAccu volume: 13.2 LiterSystem filling: 580 g/LCO2 mass: 10.2 kg

Liquid heater in thermo siphon

Loop connection

Start-up warm: Taccu=27ºC, Tloop=20ºC Start-up cold: Taccu=10ºC, Tloop=-40ºCOperational 1: Taccu=-25ºC, Tloop=-40ºC ,Q=400WattOperational 2: Taccu=-25’C.,Tloop=-40ºC, Q=1200Watt

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 16

Components: reinforced SWEP plate condenser, modified for high pressure

High pressure Swep plate heatexchanger (50 bar) reinforced for use at 100 bar

Prototype is (almost) ready for pressure testing

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 17

Components: Transfer tube

Ø4mm

Ø6mmØ14mm

Ø16mm

Ø66mm

Sub-cooled liquid feed line

2-phase return line

25mm Armaflex NH Isolation

Protective cover

Transfer line is a 55m long concentric 2-fase liquid-vapor line overcoming a 4m heightFunctions:•Transferring liquid to evaporators•Regulate liquid temperature•Pick up environmental heat in return line for unloaded evaporator cooling

•Provide low-pressure drop return flow for distant evaporator pressure control

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 18

Left

Right

VELO Detector

Insulated concentric tube

TR-PT02

Insulated concentric tube

TR-PT03

50 meter

Shi

eldi

ng w

all

TR-HX28

TR-VL02

TL-PT03TL-PT08

TL-HX28

TL-VL03

TL

-HX

1

TL-HX27

TR-HX1 TR-HX27

TR-PT01

TL-FL2

TR-FL2

VTCS Right Local Control Box

VTCS Left Local Control Box

TL-VL09 TL-PT04

TL-BD03

TR-VL09TR-PT04

TR-BD03

Left Tertiary vacuum control

Right Tertiary vacuum control

Liquid in

Vapor mixture return

Liquid in

Vapor mixture return

Secondary vacuum

Primary vacuu

m

Tertiary vacuum

TR-FL1TR-VL01

TR-VL03TR-VL06

TR-VL05

TR-VL04

TL-VL06

TL-VL04

TL-VL05

TL-VL02TL-FL1TL-VL01

TR-VL08

TRL-VL01

TRL-VL02

TL-PT02TL-PT01

Test-Connection

Test-Connection

TR-VL07

TL-VL07

Secondary

Vacuum

Secondary

Vacuum

TL-BD01

TL-BD02

TR-BD01

TR-BD02

(48)

(45)

(46)

(47)

(48)

(45)

(46)

(47)

(01) = Tx-TT01(02) = Tx-TT02……(48) = Tx-TT48

Temperature sensor labeling:

Tertiary System Layout at VELO

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 19

TR-AC101

TR-PM101

Tertiary VTCS Right Detector (TR)

TR-PT101TR-PT104

TR-PT102TR-VL101

TR-VL103

TR-VL104 TRL-VL105

TR-VL106

TR-VL107

TR-VL108

TR-VL109

TR-VL110

TR-VL111

TR-VL113

TR-LT101

TR-BD103

SA-HX04 / TR-HX101

SB-HX04 / TR-HX102

SA-HX06 / TR-HX103

TL-HT103

TR-HT104

SB-HX06 / TR-HX104

TR-HT101

TR-BD105

TR-VL102

TR-PT103TR-HT102

TR-BD101

TR-BD102

TR-BD104

TR-BD106

TR-BD107

TRL-VL101

TRL-PM101

TRL-VL107

TRL-VL109

TRL-VL110

TRL-VL111

Liquid to concentric tube

Vapor mixture from concentric

tube

Vapor mixture from concentric

tube

Liquid to concentric tube

TL-AC101

TL-PM101

Tertiary VTCS Left Detector (TL)

TL-PT101TL-PT104

TL-PT102TL-VL101

TL-VL103

TL-VL104TL-VL105

TL-VL106

TL-VL107

TL-VL108

TL-VL109

TL-VL110

TL-VL111

TL-VL113

TL-LT101

TL-BD103

SA-HX03 / TL-HX101

SB-HX03 / TL-HX102

SA-HX05 / TL-HX103

TL-HT103

TL-HT104

SB-HX05 / TL-HX104

TL-HT101

TL-BD105

TL-VL102

TL-PT103TL-HT102

TL-BD101

TL-BD102

TL-BD104

TL-BD106

TL-BD107

TRL-VL106

TRL-VL1108

TRL-BD105

TRL-PT103

TRL-HT102

(101)

(103) (104)

(106)(105)

(111)

(112)

(115)

(116)

(117)

(118)

(121)

(123)

(122) (114)

(113)

(120)

(107)

(102)

(119)

(110)

(108)

(109)

(101)

(103)(104)

(106) (105)

(111)

(112)

(115)

(116)

(117)

(118)

(121)

(123)

(122)(114)

(113)

(120)

(107)

(102)

(119)

(110)

(108)

(109)

Tx = TL for left detector half, TR for right detector half, TRL for combined hardware

(124) (124)

(112)

(115)

(122) (114)

(113)

TL-VL112 TR-VL112

Tertiary VTCS schematics at RB84 plant

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 20

Tertiary VTCS design

Pumps

AccumulatorCondenser

s

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 21

VTCS CO2 cycle in the Pressure – Enthalpy diagram

-450 -400 -350 -300 -250 -200 -1505x102

103

104

2x104

h [kJ/kg]

P [k

Pa]

-40°C

-30°C

-20°C

-10°C

0°C

10°C

0.2 0.4 0.6

Tertiary VTCS in P-H diagram

1

23

4

5

67

Accumulator pressure = detector temperature

Transfer tube heat exchange brings evaporator pre expansion per definition right above saturation

Saturation line

Capillary expansion brings evaporator blocks in saturation

Detector load

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 22

Cooling system: evaporator performance

VTCS Evaporator Performance (Heatload 24 Watt)

-25

-20

-15

-10

-5

0

5

10

15

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401 2601 2801 3001

Time (seconds)

Te

mp

era

ture

(ºC

)

.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mas

sflo

w (

g/s

)

.

Block 1 Temperature

Block 3 Temperature

Block 5 Temperature

CO2 Temperature

Hybrid Temperature

Silicon Temperature

Massflow (g/s)

Nominal flow condition Reduced flow condition

Critical Flow condition

(~0.22 g/s)

Serious dry-out

Flow increase restoresmodule and silicon temperature.

Module and silicon temperature is seriously affected by dry-out.

Last cooling block shows serious signs of dry-out, module is not yet affected

Last cooling block shows the first signs of a near dry-out

Block 1Block 3Block 5

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 23

Module temperature distribution

VTCS overview 13 April 2006 NIKHEF Bart Verlaat 24

Evaporator pressure drop and heat transfer tests results

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Mass flow (g/s)

Pre

ssur

e dr

op (b

ar)

.

Q=9.9W

Q=24W

Q=30.6W

Q=50W

Capillary liquid pressure drop calculation

Expected measurement

Higher measured pressure drop due to vapor generation in capillaries (Heatleak in test-setup)

Data was expected to be exponential and follow this fit to point zero

Dry-outs

No significant pressuredrop variation due to heatload. Pressure drop is dominated by the capillary => High stability

Measured and Calculated Heat Transfer Coeficients for the VTCS Evaporator as a function of heatflux and massflux (Tevap =-25°C)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600 700 800

Mass flux (kg/m2s)

HTC

(W/m

2K)

HTC Measured (17.3 kW/m2)

HTC Kandlikar (17.3 kW/m2)

HTC Measured (21.9 kW/m2)

HTC Kandlikar (21.9 kW/m2)