22
Discrete Methods in Mathematical Informatics Lecture 1: What is Elliptic Curve? 9 th October 2012 Vorapong Suppakitpaisarn http://www-imai.is.s.u-tokyo.ac.jp/~mr_t_dtone/ [email protected], Eng. 6 Room 363 Download Slide at: https://www.dropbox.com/s/xzk4dv50f4cvs18/Lecture %201.pptx?m

Vorapong Suppakitpaisarn mr_t_dtone

  • Upload
    dyan

  • View
    56

  • Download
    0

Embed Size (px)

DESCRIPTION

Discrete Methods in Mathematical Informatics Lecture 1 : What is Elliptic Curve? 9 th October 2012. Vorapong Suppakitpaisarn http://www-imai.is.s.u-tokyo.ac.jp/~mr_t_dtone/ [email protected] , Eng. 6 Room 363 - PowerPoint PPT Presentation

Citation preview

Page 1: Vorapong Suppakitpaisarn mr_t_dtone

Discrete Methods in Mathematical InformaticsLecture 1: What is Elliptic Curve?

9th October 2012

Vorapong Suppakitpaisarnhttp://www-imai.is.s.u-tokyo.ac.jp/~mr_t_dtone/

[email protected], Eng. 6 Room 363Download Slide at: https://www.dropbox.com/s/xzk4dv50f4cvs18/Lecture

%201.pptx?m

Page 2: Vorapong Suppakitpaisarn mr_t_dtone

First Section of This Course [5 lectures]

Lecture 1: What is

Elliptic Curve?

Lecture 2: Elliptic Curve

Cryptography

Lecture 3-4:

Fast Implementation

for Elliptic Curve Cryptography

Lecture 5: Factoring

and Primality Testing

L. C. Washington, “Elliptic Curves: Number Theory and Cryptography”, Chapman &

Hall/CRC, 2003.

• Lecture 1: Chapter 1, Chapter 2 (2.1, 2.2)

• Lecture 2: Chapter 6 (6.1 – 6.6)

• Lecture 5: Chapter 7

Recommended Reading

H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren, "Handbook of Elliptic and Hyperelliptic

Curve Cryptography", Chapman & Hall/CRC, 2005.

A. Cilardo, L. Coppolino, N. Mazzocca, L. Romano, "Elliptic Curve Cryptography Engineering", Proc. of IEEE Vol. 94,

No. 2, pp. 395-406 (2006).

In each lecture, 1-2 exercises will be given,

Choose 3 Problems out of them.

Submit to

[email protected]

before 31 Dec 2012

Grading

Page 3: Vorapong Suppakitpaisarn mr_t_dtone

First Section of This Course [5 lectures]

Lecture 1: What is

Elliptic Curve?

Lecture 2: Elliptic Curve

Cryptography

Lecture 3-4:

Fast Implementation

for Elliptic Curve Cryptography

Lecture 5: Factoring

and Primality Testing

L. C. Washington, “Elliptic Curves: Number Theory and Cryptography”, Chapman &

Hall/CRC, 2003.

• Lecture 1: Chapter 1, Chapter 2 (2.1, 2.2)

• Lecture 2: Chapter 6 (6.1 – 6.6)

• Lecture 5: Chapter 7

Recommended Reading

H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren, "Handbook of Elliptic and Hyperelliptic

Curve Cryptography", Chapman & Hall/CRC, 2005.

A. Cilardo, L. Coppolino, N. Mazzocca, L. Romano, "Elliptic Curve Cryptography Engineering", Proc. of IEEE Vol. 94,

No. 2, pp. 395-406 (2006).

In each lecture, 1-2 exercises will be given,

Choose 3 Problems out of them.

Submit to

[email protected]

before 31 Dec 2012

Grading

Page 4: Vorapong Suppakitpaisarn mr_t_dtone

Problem 1: The Artillerymens Dilemma (is not a) Puzzle

http://cashflowco.hubpages.com/

?

Height = 0: 0 Ball Square

Height = 1: 1 Ball Square

Height = 2: 1 + 4 = 5 Balls Not Square

Height = 3: 1 + 4 + 9 = 14 Balls Not Square

Height = 4: 1 + 4 + 9 + 16 = 30 Balls Not Square

2232222

61

21

31

6121321 yxxx)x)(x(xx...

Elliptic Curve

Page 5: Vorapong Suppakitpaisarn mr_t_dtone

Problem 1: The Artillerymens Dilemma (is not a) Puzzle (cont.)

223

61

21

31 yxxx

(0,0)

(1,1)

y = x

223

61

21

31 xxxx

021

23 23 xxx

0)()(

0))()((23

abcxbcacabxcbaxcxbxax

a,b,cequation the of roots

are that Suppose

solution. another is 21 y ,

21 x thatknow We

21

2310

c

ccba

(1/2,1/2)

Page 6: Vorapong Suppakitpaisarn mr_t_dtone

Problem 1: The Artillerymens Dilemma (is not a) Puzzle (cont.)

223

61

21

31 yxxx

(0,0)

(1,1)

y = x

(1/2,1/2)

(1/2,-1/2)

y = 3x-2

223 )23(61

21

31

xxxx

0...251 23 xx

2511

21

x

70,24 yx

2222 7024...21

70 Length Square for 24 Height Pyramid

Page 7: Vorapong Suppakitpaisarn mr_t_dtone

Problem 2: Right Triangle with Rational Sides

We want to find a right triangle with rational sides

in which area = 5

3

4

5

6

15

8

17

60

15/2

4

17/2

155

5

510

Page 8: Vorapong Suppakitpaisarn mr_t_dtone

Problem 2: Right Triangle with Rational Sides (cont.)

a

b

c

ab/2 = 5

22210 cb, aab

524

1024

22

22222

ccbababa

524

1024

22

22222

ccbababa

numbers rational of square are 2c

2c

numbers rational are

5,2

,5

2,

2,

2222

c

bacba

23 25)5()5( yxxxxx

Elliptic Curve

425

x

num rational of square

a not is 45 but

curve,elliptic of solution a is

445,

Note

Page 9: Vorapong Suppakitpaisarn mr_t_dtone

Problem 2: Right Triangle with Rational Sides (cont.)

23 25 yxx

(-4,6)1223

)6(225)4(3

2253

2)253(

)()25(

22

2

23

yx

xy

yyxxyxx

341)4(

1223)6(

1223

c

cxy341

1223

xy

Page 10: Vorapong Suppakitpaisarn mr_t_dtone

Problem 2: Right Triangle with Rational Sides (cont.)

23 )341

1223(25 xxx

0...144529 23 xx

0)()(

0))()((23

abcxbcacabxcbaxcxbxax

a,b,cequation the of roots

are that Suppose

2

641

1441681

14452944

0)))(4())(4((

x

x

cxxx

23 25 yxx

(-4,6)

341

1223

xy

(1681/144,62279/1728)

Page 11: Vorapong Suppakitpaisarn mr_t_dtone

Problem 2: Right Triangle with Rational Sides (cont.)

22

22

22

21249

14424015

21231

1449615

21241

bax

bax

cx

23,

320

6492

1249

6312

1231

6412

1241

ba

ba

ba

c

20/3

3/2

41/6

5

23 25 yxx

(-4,6)

341

1223

xy

(1681/144,62279/1728)

Page 12: Vorapong Suppakitpaisarn mr_t_dtone

Exercises

5. area withtriangle right another find to

at line tangent the Use )172862279,

1441681(),( yx

Exercise 1

Exercise 2

numbers. rational of squares are that such point a in curve the intersects

at curve this to line tangent the then , and

satisfying numbers rational are if thatShow integer. an be Let

nn,x,xx),y(x(x,y)n,xxnxy

x, yn

11111

232 0,

Page 13: Vorapong Suppakitpaisarn mr_t_dtone

Problem 3: Fermat’s Last Theorem

http://wikipedia.com/

nnn cba

a,b,cn

that such integers nonzero no is there

, Given 3

• Conjectured by Pierre de Fermat in Arithmetica (1637).

“I have discovered a marvellous proof to this theorem, that this margin

is too narrow to contain”

• There are more than 1,000 attempts, but

the theorem is not proved until 1995 by

Andrew Wiles.

• One of his main tools is Elliptic Curve!!!

Page 14: Vorapong Suppakitpaisarn mr_t_dtone

Problem 3: Fermat’s Last Theorem (cont.)

nnn cbaa,b,c

n

that such integers nonzero no is there

, Given 3• Fermat kindly provided the proof for the case when n = 4

2

22

2

22 )(4,a

cbbya

cbx

xxy 432 Elliptic Curve

By several elliptic curves techniques, Fermat found that all rational solutions of the elliptic curve are (0,0),

(2,0), (-2,0)

Page 15: Vorapong Suppakitpaisarn mr_t_dtone

Formal Definitions of Elliptic Curve

0274 2332 BABAxxy when

B}AxxL|yL{(x,y)}{E(L) 32

223

61

21

31 yxxx

(0,0)

(1,1)

y = x

(1/2,1/2)

(1/2,-1/2)

Weierstrass Equation

Elliptic Curve

.

)(),(),,(

33

33

21

2211

)y,(xQP

),y(xRQP

Q PxxLEyxQyxP

3.curve. the cut line the that

point another , point Find 2. and point pass that line aDraw 1.

:follows as define we, If

Point Addition

)21,

21()1,1()0,0(

Page 16: Vorapong Suppakitpaisarn mr_t_dtone

Formal Definitions of Elliptic Curve (cont.)

.

)(),(),,(

33

33

21

2211

)y,(xQP

),y(xR

QPQ Pxx

LEyxQyxP

3.

curve. the cut line the thatpoint another , point Find 2.

and point pass that line aDraw 1.:follows as define we, If

Point Addition

)( 11

12

12

xxmyyxxyym

0...

))((223

311

32

xmx

BAxxyxxmBAxxy

212

3 xxmx

1133 )( yxxmy

Page 17: Vorapong Suppakitpaisarn mr_t_dtone

Formal Definitions of Elliptic Curve (cont.)

223

61

21

31 yxxx

x = 1/2

(1/2,1/2)

(1/2,-1/2)

QPyyxxLEyxQyxP

, , If 2121

2211 )(),(),,(

Point Addition

,PP

)y, (xP P PQ P

),y(xR

yyxxLEyxQyxP

33

33

221

2211

2

)(),(),,(

3.curve. the cut

line the that point another Find 2.P. point at curve the touching line aDraw 1.

, If 1

Point Double

172862279,

1441681)6,4()6,4()6,4(2

23 25 yxx

(-4,6)

341

1223

xy

(1681/144,62279/1728)

Page 18: Vorapong Suppakitpaisarn mr_t_dtone

Formal Definitions of Elliptic Curve (cont.)

Point Double

)( 11 xxmyy

0...

))((223

311

32

xmx

BAxxyxxmBAxxy

12

3 2xmx

1133 )( yxxmy

)y, (xP P PQ P

),y(xR

yyxxLEyxQyxP

33

33

221

2211

2

)(),(),,(

3.

curve. the cutline the that point another Find 2.

P. point at curve the touching line aDraw 1. , If 1

yAx

xym

xAxyyBAxxy

23

)3(22

2

32

Page 19: Vorapong Suppakitpaisarn mr_t_dtone

First Section of This Course [5 lectures]

Lecture 1: What is

Elliptic Curve?

Lecture 2: Elliptic Curve

Cryptography

Lecture 3-4:

Fast Implementation

for Elliptic Curve Cryptography

Lecture 5: Factoring

and Primality Testing

L. C. Washington, “Elliptic Curves: Number Theory and Cryptography”, Chapman &

Hall/CRC, 2003.

• Lecture 1: Chapter 1, Chapter 2 (2.1, 2.2)

• Lecture 2: Chapter 6 (6.1 – 6.6)

• Lecture 5: Chapter 7

Recommended Reading

H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren, "Handbook of Elliptic and Hyperelliptic

Curve Cryptography", Chapman & Hall/CRC, 2005.

A. Cilardo, L. Coppolino, N. Mazzocca, L. Romano, "Elliptic Curve Cryptography Engineering", Proc. of IEEE Vol. 94,

No. 2, pp. 395-406 (2006).

In each lecture, 1-2 exercises will be given,

Choose 3 Problems out of them.

Submit to

[email protected]

before 31 Dec 2012

Grading

Page 20: Vorapong Suppakitpaisarn mr_t_dtone

Exercises

5. area withtriangle right another find to

at line tangent the Use )172862279,

1441681(),( yx

Exercise 1

Exercise 2

numbers. rational of squares are that such point a in curve the intersects

at curve this to line tangent the then , and

satisfying numbers rational are if thatShow integer. an be Let

nn,x,xx),y(x(x,y)n,xxnxy

x, yn

11111

232 0,

Page 21: Vorapong Suppakitpaisarn mr_t_dtone

Thank you for your attentionPlease feel free to ask questions or comment.

Page 22: Vorapong Suppakitpaisarn mr_t_dtone

Scalar Multiplication• Scalar Multiplication on Elliptic Curve

S = P + P + … + P = rP

when r1 is positive integer, S,P is a member of the curve• Double-and-add method• Let r = 14 = (01110)2

Compute rP = 14P r = 14 = (0 1 1 1 0)2 Weight = 3

P 3P 7P 14P

6P2P 14P

3 – 1 = 2 Point Additions

4 – 1 = 3 Point Doubles

r times

O