15
1 Voltage distribution (400 kV) scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in western region Additional measures necessary, Redispatch actions Scenario 1.c (2020): Severe voltage drop in Western and Southern region Additional measures necessary, 3 Gvar operational equipment

Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

1

Voltage distribution (400 kV) – scenario 1

Scenario 1.a (2011): Voltages within limits

Scenario 1.b (2015): Severe voltage drop in

western region Additional measures

necessary, Redispatch actions

Scenario 1.c (2020): Severe voltage drop in

Western and Southern region Additional measures

necessary, 3 Gvar operational equipment

Page 2: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

Stationary simulations

2

• Voltages within the transmission grid depend on line utilization

• Severe voltage drops within scenario 2020

• Grid calculation with optimized operation of HVDC lines

• Voltage increase by decraesing the load within the AC-grid

Realer Lastfall 2011 Szenario 2020Szenario 2020 mit HGÜScenario 2020 with HVDC

Vol

tage

in k

V

Page 3: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

Line

Util

izat

ion

in %

Scenario 2040

3

Page 4: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

4

Overview

European power system

VGB research project

Stationary aspects

Dynamic aspects

Outlook

Conclusions

Page 5: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

5

Dynamic simulations

Excitation of the system by a major power imbalance

Simulation of the transient grid dynamics

Page 6: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

6

Comparison of transient frequency behavior –scenario 1

Scenario 1.a Scenario 1.b

Page 7: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

7

Transient frequency behavior – scenario 1excitation within Germany

Page 8: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

8

Transient voltage behavior – Scenario 1excitation of 500 Mvar

Significant impact of increasing intermittent generation on transient voltage behavior

Scenario 1.a

Scenario 1.b

Page 9: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

9

Inertial response in future

Increasing frequency drop with decreasing inertia

Page 10: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

10

Conclusions

Stationary aspects Transmission limits violated on a few lines Severe voltage drops in different regions due to increasing power flows Additional measures necessary, especially for voltage control HVDC lines contribute to system stability

Transient system dynamics Transient frequency behavior shows no significant changes concerning the

whole system by 2020 (joint-action) Local frequency deviations are increasing Significant impact on transient voltage behavior can be seen Possible impact on synchronous generators of power plants

Page 11: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

11

Overview

European power system

VGB research project

Stationary aspects

Dynamic aspects

Outlook

Conclusions

Page 12: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

Bottleneck of DPGS-integration

110 kV

20 kV400 V20 kV

Voltage

Allowed voltage range

Peak load, w/o DPGS

Legend

DPGS: Decentralised power generation systems

nom 10%U

transU

nom 10%U

loadU

reserveUload flow

12

Distance to feed-in point

Page 13: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

transU

nom 10%U

load genU Uload flow

Bottleneck of DPGS-integration

110 kV

20 kV400 V20 kV

Voltage

Allowed voltage range

Off-peak load, with DPGS

Distance to feed-in point

10%nomU

13

Legend

Page 14: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

Bottleneck of DPGS-integration

genloadU U

loadU

~ ~

110 kV

20 kV400 V20 kV

Spannung

nom 10%U

transU

10%nomU

Allowed voltage range

Peak load, w/o DPGS

Off-peak load, with DPGS

Legend

load flow

load flow

14

Distance to feed-in point

Page 15: Voltage distribution (400 kV) scenario 1€¦ · Voltage distribution (400 kV) –scenario 1 Scenario 1.a (2011): Voltages within limits Scenario 1.b (2015): Severe voltage drop in

Dipl.-Ing. Florian GutekunstPhone: +49 711 / 685 65580

[email protected]

University of StuttgartInstitute of Combustion and Power Plant TechnologyDepartment Power Generation and Automatic ControlPfaffenwaldring 23 70569 StuttgartGermany

Thank you for your attention