67
Visual Motion Analysis and Representation

Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Visual Motion

Analysis and Representation

Page 2: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Example

Ullman’s concentric counter-rotating cylinder experiment

Two concentric cylinders of different radii

W. a random dot pattern on both surfaces (cylinder

surfaces and boundaries are not displayed)

Stationary: not able to tell them apart

Counter-rotating: structures apparent

Page 3: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Motion helps in

segmentation (two structures)

identification (two cylinders)

Example (cont.)

Page 4: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Classes of Techniques

Feature-based methods

Extract visual features (corners, textured areas) and track them

Sparse motion fields, but possibly robust tracking

Suitable especially when image motion is large (10s of pixels)

Direct-methods (Pixel-based methods)

Directly recover image motion from spatio-temporal image brightness

variations

Global motion parameters directly recovered without an intermediate

feature motion calculation

Dense motion fields, but more sensitive to appearance variations

Suitable for video and when image motion is small (< 10 pixels)

Szeliski

Page 5: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Optical flow and motion analysis

Now we move to considering images that vary over time –

image sequences

Typical case is video – images captured at 30 frames/second (or

15, or 60, or ...)

I(x, y, t) I1(x,y) = I(x, y, t1) , I2(x,y) = I(x, y, t2) , etc.

“Spatial-temporal space” describes (x, y, t)

t

x

y

What can change between It

and It+1?

What do images close in time

have in common?

Page 6: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Spatio-temporal image data

(examples)

Page 7: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Frames

x-t slice

t

x

Page 8: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Optical flow and motion analysis

Optical flow is the apparent motion of brightness patterns

in the image sequence

A 2D vector at each point – a vector field

The motion field is the true motion (3D) at each point,

mapped onto the 2D image

A vector field

They are not always

the same

E.g., white, featureless ball?

In general, we estimate the motion field by

computing the optical flow

The motion field is not directly

observed

Page 9: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Example

Page 10: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Example

Page 11: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder
Page 12: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder
Page 13: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Caveats

Motion analysis a very important and popular area in

computer vision

A large body of literature exits with maybe hundreds of

different formulations (At CVPR, you will find at least 2 or 3 sessions on

motion)

Many of them can be very mathematical

Apparent motion != True motion

Page 14: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Rigid vs. nonrigid motion

Camera motion is 6 DOF rigid motion

Object motion may be rigid or nonrigid

Rigid: coffee mugs, silverware, baseballs, jets, ...

Nonrigid: humans, face, medical imagery, beach

balls, scissors, grass, ...

Includes articulated motion

Page 15: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Nonrigid motion

Nonrigid motion is complicated and difficult, especially

with little prior knowledge on what is being viewed

Typical problem: What are the parameters of the known nonrigid

model of the object being viewed?

We’ll just focus on rigid motion

Page 16: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

The barber’s pole illusion

Motion

field

Optical

flow

Web example

Page 17: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

The aperture problem

In local processing, we can only measure

motion perpendicular to the image

gradient

Page 18: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

First steps

Motion processing starts with estimating optical flow from frame to frame, either densely or sparsely

The typical approaches are:

Dense correspondence:

Differential methods, local area/correlation based

This could be hierarchical (coarse-to-fine approach)

Sparse correspondence

Matching methods, feature based

Asumption: Points/features can be matched in nearby images

Page 19: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Brightness constancy equation

0)),(),((

==td

ttytxId

td

Id

0)),(),((

=∂

∂+

∂+

∂=

dt

dt

t

I

dt

dy

y

I

dt

dx

x

I

td

ttytxId

0,, =∂

∂+

t

I

dt

dy

dt

dx

y

I

x

IT

0=+⋅∇ tII v

I∇

v

tI

Image gradient

Optical flow

Time difference

For a given scene pointTotal

derivative

Page 20: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Brightness constancy equation

(method #2)

),,(),,( ttyyxxItyxI δ+δ+δ+= For a given scene point

0),,(),,( =−δ+δ+δ+ tyxIttyyxxI

dtt

tyxIdy

y

tyxIdx

x

tyxIzyxI

∂+

∂+

∂+

),,(),,(),,(),,(

0),,(),,(),,(

=∂

∂+

∂+

∂dt

t

tyxIdy

y

tyxIdx

x

tyxI

by Taylor expansion

0=∂

∂+

∂+

t

I

dt

dy

y

I

dt

dx

x

I0=+⋅∇ tIvI

Page 21: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Brightness constancy equation

(method #2)

),,( ttyyxxI δ+δ+δ+),,( tyxI

Image at time t Image at time t+δt

=

Page 22: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Back to the aperture problem

0=+⋅∇ tIvI

I∇

2v

tI

1v

tIvI −=⋅∇

Many vectors v satisfy this

Only the normal direction is constrained

3v

Page 23: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

On images…

t

x

yx

I

y

I

t

I

t

x

yx

I

y

I

t

I

dt

dy

dt

dx,

0=+⋅∇ tIvI

This equation defines and constrains the optical flow v (x, y)

Page 24: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

What is the image gradient?

Image gradient – the first derivative (slope) of the intensity variation in (x, y)

Page 25: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

What is the temporal gradient?

Page 26: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

t1 t2

t

I

Page 27: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Brightness constancy of a point

Scene

I1 I2 I3

I(x(t1),y(t1),t1)

I(x(t2),y(t2),t2)

I(x(t2),y(t2),t2)

I(x(t3),y(t3),t3)

= =

Image

sequence

Page 28: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Difficulty

One equation with two unknowns

Aperture problem

spatial derivatives use only a few adjacent pixels (limited aperture

and visibility)

many combinations of (u,v) will satisfy the equation

Constraint line

u

v

Page 29: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

intensity gradient is zero

no constraints on (u,v)

interpolated from other places

intensity gradient is nonzero

but is constant

one constraints on (u,v)

only the component along the gradient

are recoverable

intensity gradient is nonzero

and changing

multiple constraints on (u,v)

motion recoverable

( , ) ( , )0 0 0⋅ =u v

( , ) ( , )∂

I

x

I

yu v

I

t⋅ = −

( , ) ( , )

( , ) ( , )

( , )

( , )

I

x

I

yu v

I

t

I

x

I

yu v

I

t

x y

x y

1 1

2 2

1 1

2 2

⋅ = −

⋅ = −

Page 30: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

( )∑Ω∈

++=yx

tyx IvyxIuyxIvuE,

2),(),(),(

Minimizing

Assume a single velocity for all pixels within an image patch

−=

∑∑

∑∑∑∑

ty

tx

yyx

yxx

II

II

v

u

III

III2

2

( ) t

TIIUII ∑∑ ∇−=∇∇

r

LHS: sum of the 2x2 outer product of the gradient vector

Patch Translation [Lucas-Kanade]

Szeliski

Page 31: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Image motion

How do we determine correspondences?

Assume all change between frames is due to motion:

),(),( ),(),( yxyx vyuxIyxJ ++≈

I J

Page 32: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

The Aperture Problem

( )( )∑ ∇∇=T

IIMLet

• Algorithm: At each pixel compute by solving

• M is singular if all gradient vectors point in the same direction

• e.g., along an edge

• of course, trivially singular if the summation is over a single pixelor there is no texture

• i.e., only normal flow is available (aperture problem)

• Corners and textured areas are OK

and

−=

∑∑

ty

tx

II

IIb

U bMU=

Szeliski

Page 33: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

SSD Surface – Textured area

Page 34: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

SSD Surface -- Edge

Page 35: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

SSD – homogeneous area

Page 36: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Limits of the gradient method

Fails when intensity structure in window is poor

Fails when the displacement is large (typical operating range is

motion of 1 pixel)

Linearization of brightness is suitable only for small displacements

Also, brightness is not strictly constant in images

actually less problematic than it appears, since we can pre-filter images

to make them look similar

Szeliski

Page 37: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

image Iimage J

av

Jwwarp refine

av

aΔv

+

Pyramid of image J Pyramid of image I

image Iimage J

Coarse-to-Fine Estimation

u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Szeliski

Page 38: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Iterative Refinement

Estimate velocity at each pixel using one iteration of Lucas

and Kanade estimation

Warp one image toward the other using the estimated flow

field

(easier said than done)

Refine estimate by repeating the process

Szeliski

Page 39: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Optical Flow: Iterative Estimation

xx0

Initial guess:

Estimate:

estimate

update

(using d for displacement here instead of u)

Szeliski

Page 40: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Optical Flow: Iterative Estimation

xx0

estimate

updateInitial guess:

Estimate:

Szeliski

Page 41: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Optical Flow: Iterative Estimation

xx0

Initial guess:

Estimate:

Initial guess:

Estimate:

estimate

update

Szeliski

Page 42: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Temporal coherency

t t t+ δ t t+ 2δ

( , )u v( , )u v

( , ) ( , )∂

I

x

I

yu v

I

t⋅ = − ( , ) ( , )

I

x

I

yu v

I

t⋅ = −

• Caveat:– (u,v) must stay the same across several frames

– scenes highly textured

– (u,v) at the same location actually refers to different object points

Page 43: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Spatial coherency

neighboring pixels should have “similar” flow vector

Q: What do you mean by “similar”

A1: identical

A2: change slowly ∂

u

x

u

y

v

x

v

y= = = = 0

u

x

u

y

v

x

v

y

u

x

u

y

v

x

v

y

, , ,

( ) ( ) ( ) ( )

+ + +

0

2 2 2 2 sm all

Page 44: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Mathematical formulation

Based on Lagrange Multiplier

Incorporate smoothness as an additional constraint

Can be thought of as a weighting of two terms:

optical flow constraint

smoothness constraint

( , ) ( , )∂

I

x

I

yu v

I

t⋅ = −

( ) ( ) ( ) ( )∂

u

x

u

y

v

x

v

y

2 2 2 2+ + +

Page 45: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

EI

xu

I

yv

I

t

u

x

u

y

v

x

v

ydxdy= + + + + + +∫∫ ( ) [( ) ( ) ( ) ( ) ]

∂λ

2 2 2 2 2

Optimize over all image plane:

Discretize the governing equation, at (i,j):

∂∂

u

xu u

u

yu u

v

xv v

v

yv v

i j i j i j i j

i j i j i j i j

= − = −

= − = −

+ +

+ +

1 1

1 1

, , , ,

, , , ,

Discretized expression:

EI

xu

I

yv

I

t

u u u u v v v v

i j

i j

i j

i j

i jji

i j i j i j i j i j i j i j i j

= + +

+ − + − + − + −

∑∑

+ + + +

( )

[( ) ( ) ( ) ( ) ]

,

,

,

,

,

, , , , , , , ,

λ

2

1

2

1

2

1

2

1

2

Page 46: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

• At a pixel location (k,l):

λ

E

u

I

xu

I

yv

I

t

I

x

u u u u u u u u

k l k l

k l

k l

k l

k l k l

k l k l k l k l k l k l k l k l

, ,

,

,

,

, ,

, , , , , , , ,

( )

[( ) ( ) ( ) ( )]

= + +

− − + − + − + − =− − + +

2

2 01 1 1 1

λ

E

v

I

xu

I

yv

I

t

I

y

v v v v v v v v

k l k l

k l

k l

k l

k l k l

k l k l k l k l k l k l k l k l

, ,

,

,

,

, ,

, , , , , , , ,

( )

[( ) ( ) ( ) ( )]

= + +

− − + − + − + − =− − + +

2

2 01 1 1 1

∂ λ

E=L

Page 47: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

• Putting it all together:

4/)(

4/)(

0)(4)(

0)(4)(

1,,11,,1

1,,11,,1

,

,,

,

2

,

,

,,

,

,,

,

,,

,

2

,

++−−

++−−

+++=

+++=

=−−++

=−−++

lklklklk

lklklklk

lk

lklk

lk

lk

lk

lklk

lk

lklk

lk

lklk

lk

lk

vvvvv

uuuuu

vvt

I

y

Iv

y

Iu

y

I

x

I

uut

I

x

Iv

y

I

x

Iu

x

I

λ∂

λ∂

Page 48: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

• Or:

[ ( ) ]

[ ( ) ]

,

,

, ,

,

, ,

, ,

,

,

,

, ,

4 4

4 4

2

2

λ∂

∂λ

∂λ

∂λ

+ + = −

+ + = −

I

xu

I

x

I

yv u

I

x

I

t

I

x

I

yu

I

yv v

I

y

I

t

k l

k l

k l k l

k l

k l k l

k l k l

k l

k l

k l

k l k l

u u

I

xu

I

yv

I

t

I

x

I

y

I

x

v v

I

xu

I

yv

I

t

I

x

I

y

I

y

k l

k l k l k l

k l k l

k l

k l

k l k l k l

k l k l

k l

,

, , ,

, ,

,

,

, , ,

, ,

,

( ) ( )

( ) ( )

= −

+ +

+ +

= −

+ +

+ +

λ∂

λ∂

4

4

2 2

2 2

Page 49: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

u u

I

xu

I

yv

I

t

I

x

I

y

I

x

v v

I

xu

I

yv

I

t

I

x

I

y

I

y

k l

k l k l k l

k l k l

k l

k l

k l k l k l

k l k l

k l

,

, , ,

, ,

,

,

, , ,

, ,

,

( ) ( )

( ) ( )

= −

+ +

+ +

= −

+ +

+ +

λ∂

λ∂

4

4

2 2

2 2

•estimate based on smoothness

•how much does the smooth estimate violate

optical flow constraint

•how much does the optical flow constraint matters

•direction for correction

Page 50: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Algorithms

1 . C o m p u te fro m a p a ir o f in p u t im ag es

2 . C h o o se a w eigh tin g fac to r

3 . C o m p u te (

A t each p ix e l lo ca tio n ( ), d o

λ

λ∂

I

x

I

y

I

t

u v

k ,l

u u

I

xu

I

yv

I

t

I

x

I

y

I

x

v v

I

xu

I

y

k l

n n k l

n

k l

n

k l

k l k l

k l

k l

n n k l

n

, ,

, )

.

( ) ( ),

( ) ( ) ,

( )

,

( )

,

, ,

,

,

( ) ( ) ,

( )

4

4

1

2 2

1

+

+

= −

+ +

+ +

= −

+k l

n

k l

k l k l

k l

vI

t

I

x

I

y

I

y

,

( )

,

, ,

,( ) ( )

.

+

+ +

λ∂

∂4

5

2 2

Ite ra te s tep s 3 an d 4 u n til n o ch an g e o r co u n t ex ceed s

Page 51: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Results

Page 52: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Motion representations

How can we describe this scene?

Szeliski

Page 53: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Block-based motion prediction

Break image up into square blocks

Estimate translation for each block

Use this to predict next frame, code difference (MPEG-2)

Szeliski

Page 54: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Layered motion

Break image sequence up into “layers”:

÷ =

Describe each layer’s motion

Szeliski

Page 55: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Layered motion

Advantages:

• can represent occlusions / disocclusions

• each layer’s motion can be smooth

• video segmentation for semantic processing

Difficulties:

• how do we determine the correct number?

• how do we assign pixels?

• how do we model the motion?

Szeliski

Page 56: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Layers for video summarization

Szeliski

Page 57: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Background modeling (MPEG-4)

Convert masked images into a background sprite for

layered video coding

+ + +

=

Szeliski

Page 58: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder
Page 59: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder
Page 60: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder
Page 61: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder
Page 62: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Optical flow summary

Optical flow techniques:

Techniques that estimate the motion field from the image

brightness constancy equation

Optical flow:

Is best estimated (least noisy) at image points with high spatial

image gradients. (Why?)

Works best for Lambertian surfaces (Why?)

Works best for very high frame rates (Why?)

From optical flow, we can compute shape/structure/depth,

motion parameters, segmentation, etc.

But if you primarily want to track an object, other methods may be

preferred

Page 63: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Tracking

Tracking is the process of updating an object’s position

(and orientation, and articulation?) over time through a

video sequence

Estimate the object pose at each time point

“Pose” – position and orientation

Applications

Surveillance

Targeting

Motion-based recognition (e.g., gesture recognition, computation

of egomotion)

Motion analysis (golf swing, gait, character animation)

……..

Page 64: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Tracking vs. optical flow

In tracking, we are generally acknowledging that some sparse features are the points to track

Corners, lines, regions, patterns, contours....

Rather than computing the full motion field from optical flow, let’s keep track of the time-varying position of these sparse features

Then compute egomotion, object pose, etc. from this

This typically involves a loop of prediction, measurement, and correction

Often with presumed models of motion dynamics and measurement noise

Page 65: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Tracking vs. Matching

Tracking requires

videos

Small displacement is

assumed

Simple features

Use image constraint

(similar to optical flow

constraint)

Matching can be done

on discrete frames

Displacement can be

large (>10 pixels)

Often more elaborate

features

Independent detection

in each frame and then

match

Page 66: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

Examples LKT tracker

F(x)G(x)

Page 67: Visual Motion Analysis and Representationyfwang/courses/cs281b/notes/7-motion2.… · Visual Motion Analysis and Representation . Example Ullman’s concentric counter-rotating cylinder

KLT tracker

An iterative update algorithm

The estimate is more accurate if F is indeed linear

Penalize pixels with large 2nd derivatives (w(x))