228
VISCOSITY OF SILICATE MELTS by Hejiu Hui A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in The University of Michigan 2008 Doctoral Committee: Professor Youxue Zhang, Chair Professor Eric J. Essene Professor John Kieffer Professor Rebecca A. Lange Professor Lars P. Stixrude

VISCOSITY OF SILICATE MELTS

  • Upload
    others

  • View
    53

  • Download
    0

Embed Size (px)

Citation preview

Page 1: VISCOSITY OF SILICATE MELTS

VISCOSITY OF SILICATE MELTS

by

Hejiu Hui

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Geology)

in The University of Michigan

2008

Doctoral Committee

Professor Youxue Zhang Chair

Professor Eric J Essene

Professor John Kieffer

Professor Rebecca A Lange

Professor Lars P Stixrude

copy Hejiu Hui

2008

ii

To

Xiaoqing and our families

iii

ACKNOWLEDGEMENTS

I would first of all like to thank my dissertation advisor Dr Youxue Zhang who

offered me this great opportunity to be a scientist and guided my academic development

with patience I have great respect and admiration of his enthusiasm in science critical

thinking and hard work I would like to thank other members in my dissertation

committee Drs Eric Essene Becky Lange Lars Stixrude and John Kieffer Special

thanks go to Dr Eric Essene for his advice and encouragements along my study I

benefited a lot from his wealth of knowledge and directness during my study here My

sincere thanks go to Dr Becky Lange I learned a lot on the melt not only in her igneous

petrology class but also in her group meeting I would like to thank Dr Lars Stixrude I

benefited a lot from his scientific thoughts and insightful comments on this dissertation

Finally I would like to thank my cognate Dr John Kieffer He provided helpful

comments and fresh perspectives from the outside of geology

I would also like to thank all other people who have contributed to my dissertation

in various ways My sincere thanks go to Zhengjiu Xu who taught me a lot of things in

the lab Dr Harald Behrens at University of Hannover who provided advice on various

aspects of the research in this disseration and his hospitality during my stay in Hannover

Perio Del Gaudio Francesco Vetere Jan Schuuml ler Otto Diedrich and other people in

Hannover who gave me a lot of help during this visit Tony Withers provided a lot of

instructions from temperature recording system of piston cylinder to salt cell

iv

Yang Liu taught me a lot to do experiments Yang Chen provided help in glass

composition analysis with EMPA Wenjun Yong and Lixing Jin helped me with XRD

Huaiwei Ni helped in pressure calibration

I would like to express my gratitude to my fellow students for their friendship and

support including Yang Liu Daming Wang Maodu Yan Kate Kenedi Zeb Page Qiong

Liu Matt Mannon Yang Chen Huaiwei Ni Wenjun Yong Xiqiao Xu Ni Sun Steven

Ownby Lixing Jin Lin Ma and Tie Sun I also would like to express my special thanks

to my friend and former landlord Bob Trees for his support and help during my hard

time at Ann Arbor

My deepest gratitude goes to my wife Xiaoqing and our families Their love and

support are critically important for me to accomplish this work

v

TABLE OF CONTENTS

DEDICATIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipii

ACKNOWLEDGMENTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipiii

LIST OF FIGUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipvii

LIST OF TABLEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipix

LIST OF APPENDICEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipx

CHAPTER

I INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip1

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip5

II TOWARD A GENERAL VISCOSITY EQUATION OF NATURAL

ANHYDROUS AND HYDROUS SILICATE MELTShelliphelliphelliphelliphelliphellip7

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip7

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip8

TEMPERATURE DEPENDENCE OF VISCOSITYhelliphelliphelliphellip10

VISCOSITY OF BINARY MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip12

VISCOSITY MODELS FOR NATURAL ANHYDROUS AND

HYDROUS SILICATE EMLTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip19

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip42

III PRESSURE DEPENDENCE OF THE SPECIATION OF DISSOLVED

WATER IN RHYOLITC MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip52

EXPERIMENTAL METHODShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip53

ANALYTICAL PROCEDUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip59

RESULTS AND DISCUSSIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip62

CONCLUSIONShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip80

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip81

vi

IV PRESSURE DEPENDENCE OF VISCOSITY OF RHYOLITIC

MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip86

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip86

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip87

EXPERIMENTAL AND ANALYTICAL METHODShelliphelliphellip90

DISCUSSIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip107

CONCLUDING REMARKShelliphelliphelliphelliphelliphelliphelliphellip117

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip118

V CONCLUSIONShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip125

APPENDICEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip129

vii

LIST OF FIGURES

Figure

21 Comparisons of fitting results using Equations 2 3 and 4a for viscosityhelliphelliphelliphellip13

22 Comparisons of experiments viscosity data with calculated valueshelliphelliphelliphelliphelliphelliphellip16

23 Viscosity as a function of composition in four binary systemshelliphelliphelliphelliphelliphelliphelliphellip18

24 Comparison of experimental viscosity data with calculated valueshelliphelliphelliphelliphelliphellip23

25 Total alkalis versus SiO2 diagramhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip29

26 Comparison of experimental viscosity values with calculated valueshelliphelliphelliphelliphelliphellip36

27 The prediction of Equation 12helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip39

31 Experimental results for temperature distribution in piston cylinderhelliphelliphelliphelliphelliphellip57

32 The temperature dependence of lnK at some pressureshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip67

33 Two sets of reversal experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip69

34 Temperature dependence of K and pressure dependence of enthalpyhelliphelliphelliphelliphelliphellip72

35 The distribution of differences between experimental and predicted temperatureshellip76

36 Pressure effect on lnK at some temperatures and water concentrationshelliphelliphelliphelliphellip77

41 Sketch of kinetics of reaction 1 during coolinghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip93

42 Temperature dependence of viscosity of rhyolitic melts at various pressureshelliphelliphellip99

43 Comparison of viscosities of given rhyolitic melts at various pressureshelliphelliphelliphellip104

44 Pressure effect on crystallization in the rhyolitic meltshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip106

viii

45 Comparison of measured viscosity data of rhyolites with calculated valueshelliphelliphellip111

46 P-T-XH2Ot range of all experimental data of the modelhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip112

47 Pressure effect on viscosity at some temperatures and water concentrationshelliphelliphellip113

48 Pressure dependence of glass transition temperature of hydrous rhyoliteshelliphelliphellip115

B1 FTIR spectra for Chapter IIIhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip176

C1 FTIR spectra for Chapter IVhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip195

ix

LIST OF TABLES

Table

21 Fitting parameters of Equation 5 in four binary systemshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip17

22 Fitting parameters for Equation 8helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip22

23 Melt composition on anhydrous basishelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip26

24 Fitting parameters for Equation 11helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip33

25 Examples of calculation using Equation 12helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip35

26 The 2 deviations and data points of sub-groups in the viscosity databasehelliphelliphelliphellip37

31 Chemical compositions of KS and GMR rhyolite on anhydrous basishelliphelliphelliphelliphellip55

32a Experimental results for pressure calibration at 1073 Khelliphelliphelliphelliphelliphelliphelliphelliphelliphellip60

32b Literature data on quartz-coesite transition pressure at 1073 Khelliphelliphelliphelliphelliphelliphelliphellip60

33 The equilibrium speciation of water in rhyolitic melts under various pressureshelliphellip63

34 Fitting parameters for Equations 3 4 and 6helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip74

41 Chemical composition of KS GMR and EDF rhyolite on anhydrous basishelliphelliphellip91

42 Viscosity of EDF under pressures 02 and 04 GPa and KS at 04 GPahelliphelliphelliphelliphellip98

43 Viscosity of hydrous rhyolitic melts under various pressureshelliphelliphelliphelliphelliphelliphelliphellip100

A1 Viscosity database used to fit Equation 11helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip130

D1 Pressure dependence of easiness of crystallization for different meltshelliphelliphelliphelliphellip211

x

LIST OF APPENDICES

Appendix

A Viscosity data of natural silicate meltshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip130

B FTIR spectra for equilibrium speciation experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip176

C FTIR spectra for cooling experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip195

D Database for easiness of crystallization for different melts at different P-T

conditionhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip211

1

CHAPTER 1

INTRODUCTION

Knowledge of viscosity of silicate melts is necessary in order to quantitatively

model volcanic and magmatic processes and in turn to provide insights into the structure

and dynamics of silicate melts A mechanistic study of xenolith dissolution may aid in

understanding the diagenesis of magmatic system (eg Morgan et al 2006 Shaw

2006) A numerical model of bubble growth may advance in predicting the mode of

volcanic eruption (eg Proussevitch and Sahagian 1998 Liu and Zhang 2000) The

success of these models in accurately predicting kinetic and dynamic processes in

igneous systems is critically dependent on the quality of viscosity data of silicate melts

Laboratory viscosity measurements are performed to better understand detailed

physicochemical behaviors and the results of these studies are then used to understand the

behavior of the melts in nature (eg Scaillet et al 1996) Because the conditions that

pertained in laboratory experiments cannot always be identical to those occurring in

nature it is also important to have means of interpolating or extrapolating laboratory

results to different (T P X) conditions In this study one of the primary aims is to

establish a general viscosity model to estimate viscosity of silicate melts at ambient

pressure Furthermore hydrous species reaction viscometer based on the kinetics of

hydrous species reaction in the rhyolitic melts at high pressure is used to infer viscosity

2

of hydrous rhyolitic melts at pressure up to 283 GPa and parallel-plate creep viscometer

in an internally-heated pressure vessel is employed to measure natural rhyolitic melts at

pressure up to 04 GPa and the pressure effect on the viscosity of rhyolitic melts is

examined

Chapter II presents a new and empirical viscosity equation of anhydrous and

hydrous natural silicate melts The compositional dependence of viscosity of silicate

melts is of fundamental importance to understand the evolution of magmatic systems

(eg Marsh 2006) However previous viscosity models can only provide viscosity

prediction of silicate melts either in a limited composition range over a large temperature

range (eg Hess and Dingwell 1996 Zhang et al 2003) or in a limited temperature

range in a large compositional range (eg Shaw 1972) This chapter provides a general

viscosity model of silicate melts which can be used to calculate viscosity of all natural

silicate melts in a large temperature range Natural and nearly natural melt compositions

covered in this model include anhydrous peridotite to rhyolite anhydrous peralkaline to

peraluminous melts hydrous basalt to rhyolite hydrous peralkaline to peraluminous

melts This model can also be used to estimate the glass transition temperatures and

cooling rate of natural silicate melts The results of this study have been published in

Geochimica et Cosmochimica Acta (Hui and Zhang 2007)

Chapter III is an experimental study of the speciation of dissolved water in

rhyolitic melts at pressure up to 283 GPa This study is prerequisite for inferring

viscosity of hydrous rhyolitic melts using the hydrous species reaction viscometer

(Dingwell and Webb 1990 Zhang et al 2003) at high pressure (Chapter IV)

Furthermore the quantification of hydrous speciation in the rhyolitic melts under high

3

pressure can be applied to model H2O diffusion and understand the structure of hydrous

melts at high pressure In addition information from this study is also useful in future

models of thermodynamic properties of hydrous silicate melts Chapter III addresses the

first systematic experimental study of H2O speciation in rhyolitic melts containing 08 ndash 4

wt water at high pressure 094 ndash 283 GPa A speciation model accommodating

temperature pressure and water content dependence of hydrous species in rhyolitic melts

is also presented in this chapter The results from this study have been submitted to

Geochimica et Cosmochimica Acta (Hui et al 2008)

Chapter IV contains the first experimental study of viscosity of any melts at

pressure up to 283 GPa in the high viscosity range It extends a newly developed method

(hydrous species reaction viscometer Zhang et al 2003) to high pressures This new

development represents the only method capable of extracting viscosity data of melts in

the high viscosity range at pressures above 1 GPa Previously high-pressure (ge 1 GPa)

viscosity data were obtained by the falling-sphere technique in high-pressure apparatus

which can be applied only in the low viscosity range Hence all previous viscosity data at

high pressure (ge 1GPa) fall in the high temperature range (ie low viscosity range) No

viscosity data in the low temperature range at high pressure ((ge 1GPa) have been

published This study is the first to infer viscosity of hydrous rhyolitic melts containing

08 ndash 4 wt water using the hydrous species reaction viscometer (Dingwell and Webb

1990 Zhang et al 2003) at high pressures The viscosity of natural rhyolitic melts

containing 013 and 08 wt water at pressures up to 04 GPa also has been measured

using a parallel plate creep viscometer A viscosity model of rhyolitic melts in the high

viscosity range accounting for the dependence on pressure temperature and water content

4

is also presented in this chapter The results from this chapter have been submitted to

Geochimica et Cosmochimica Acta (Hui et al 2008)

5

REFERENCES

Dingwell DB Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2 427-

449

Hess K-U Dingwell DB (1996) Viscosities of hydrous leucogranitic melts A non-

Arrhenian model Am Mineral 81 1297-1300

Hui H Zhang Y (2007) Toward a general viscosity equation of natural anhydrous and

hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Hui H Zhang Y Xu Z Behrens H (2008) Pressure dependence of the speciation of

dissolved water in rhyolitic melts Geochim Cosmochim Acta In revision

Hui H Zhang Y Xu Z Del Gaudio P Behrens H (2008) Pressure dependence of

viscosity of rhyolitic melts Geochim Cosmochim Acta Submitted

Liu Y Zhang Y (2000) Bubble growth in rhyolitic melt Earth Planet Sci Lett 181

251-264

Marsh BD (2006) Dynamics of magmatic systems Elements 2 287-292

Morgan Z Liang Y Hess P (2006) An experimental study of anorthosite dissolution

in lunar picritic magmas Implications for assimilation processes Geochim

Cosmochim Acta 70 3477-3491

Proussevitch AA Sahagian DL (1998) Dynamics and energetics of bubble growth in

magmas analytical formulation and numerical modeling J Geophys Res 103

18223-18251

Scaillet B Holtz F Pichavant M Schmidt M (1996) Viscosity of Himalayan

leucogranites Implications for mechanisms of granitic magma ascent J Geophys

Res 101 27691-27699

6

Shaw CSJ (2006) Effects of melt viscosity and silica activity on the rate and

mechanism of quartz dissolution in melts of the CMAS and CAS systems Contrib

Mineral Petrol 151 665-680

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

7

CHAPTER II

TOWARD A GENERAL VISCOSITY EQUATION OF NATURAL ANHYDROUS AND HYDROUS SILICATE

MELTS

ABSTRACT

A new and empirical viscosity equation for anhydrous and hydrous natural silicate

melts has been developed using the following formulation

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

where η is viscosity in Pamiddots T is temperature in K and A B C and D are linear functions

of mole fractions of oxide components except for H2O The formulation is applied

successfully to fit the temperature and compositional dependence of viscosity for some

binary systems Furthermore the new model with eight parameters fits the compositional

and temperature dependence of the viscosity data of anhydrous natural silicate melts

better than the ten-parameter model in the literature The main purpose of this work is to

fit the entire high- and low-temperature viscosity database (1451 data points) of all

ldquonaturalrdquo silicate melts using this empirical formulation The general viscosity equation

has 37 parameters and is as follows

8

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

where η is viscosity in Pamiddots T is temperature in K Xi means mole fraction of oxide

component i and Z=(XH2O)1[1+(185797T)] Al2O3ex or (Na K)2Oex mean excess oxides

after forming (Na K)AlO2 The 2σ deviation of the fit is 061 logη units This general

model is recommended for viscosity calculations in modeling magma chamber processes

and volcanic eruptions

1 INTRODUCTION

Knowledge of the viscosity of silicate melts is critical to the understanding of

igneous processes such as melt segregation and migration in source regions magma

recharge magma mixing differentiation by crystal fractionation convection in magma

chambers dynamics and style of eruptions and magma fragmentation Numerous

measurements have been made on the viscosity of various silicate melts from felsic (eg

rhyolitic melt Neuville et al 1993) to ultramafic composition (eg peridotite liquid

Dingwell et al 2004) from anhydrous (eg Neuville et al 1993) to hydrous ones (eg

Whittington et al 2000) and from high temperature to low temperature A number of

authors have made efforts to model the viscosity data for the purpose of interpolation and

extrapolation Bottinga and Weill (1972) and Shaw (1972) were pioneers in developing

9

viscosity models for natural silicate melts Because of the extreme difficulty in

calibrating a better viscosity model these models were the only ones available for over

twenty years (Lange 1994) More advanced models and relationships have been

developed for specific melt compositions such as rhyolitic melts (eg Hess and

Dingwell 1996 Zhang et al 2003) For melt compositions from rhyolite to peridotite

Persikov (1998) developed a viscosity model for anhydrous and hydrous silicate melts at

high temperatures (for viscosity below 105 Pamiddots) and Giordano and Dingwell (2003a)

developed new models for anhydrous silicate melts applicable to a larger temperature

range 700 ndash 1600ordmC

In spite of recent advances in viscosity models there is still a need for a general

model that would apply to all natural silicate melts all accessible temperature ranges and

especially including the effect of H2O content The model of Giordano and Dingwell

(2003a) is noteworthy in this connection In the modeled temperature range (700-

1600degC) for anhydrous melts it has a 2σ uncertainty of 078 in logη However the model

is limited to anhydrous melts and cannot be applied to estimate viscosity at lower

temperatures For example the model predicts logη of 169 for a phonolite at 6147degC

while the experimentally determined logη is 1163 (Giordano et al 2000) Viscosity at lt

700degC is critical for understanding magma fragmentation and welding in tuffs The

purpose of this work is to develop a practical viscosity model for natural silicate melts

that is applicable to both anhydrous and hydrous natural melts and to the entire

temperature range in which experimental data are available

10

2 TEMPERATURE DEPENDENCE OF VISCOSITY

The temperature dependence of viscosity of silicate melts has been extensively

studied from a theoretical point of view or through empirical fitting of viscosity data For

a narrow temperature range usually for viscosities between 01 to 104 Pamiddots the

dependence of viscosity on temperature is well described by the Arrhenius equation (eg

Bottinga and Weill 1972 Shaw 1972) When the temperature range is large enough

most silicate melts exhibit a non-Arrhenian relationship between viscosity and

temperature (eg Neuville et al 1993 Hess and Dingwell 1996 Whittington et al

2000) It is possible that the isostructural viscosity variation is Arrhenian (Scherer 1984)

but viscosity variation due to temperature-induced structure change is the origin of the

non-Arrhenian behavior Many equations have been proposed to explain or fit the

temperature dependence of viscosity (eg Brush 1962)

One thermodynamic description of the temperature dependence of viscosity of

silicate melts is the Adam-Gibbs equation (eg Adam and Gibbs 1965 Richet 1984)

η = Ae exp Be TSconf( )[ ] (1)

where η is viscosity Ae is the pre-exponential factor independent of temperature Be is an

energy term T is temperature in K and Sconf is the configurational entropy of the melt

For compositions corresponding to a pure stable crystalline phase (such as diopside) the

configurational entropy as a function of temperature can be determined from appropriate

heat capacity measurements of liquids and crystals and glasses down to zero K (Richet et

al 1986) However for a multicomponent melt system in which oxide concentrations are

variable the configurational entropy as a function of temperature and composition cannot

be evaluated independently The above equation becomes a fitting equation with many

11

parameters which loses its theoretical appeal Hence this model is not used often to fit

viscosity-temperature relationship of silicate melts

The most often used empirical description for the temperature dependence of

viscosity is the VFT (Vogel-Fulcher-Tammann) equation (eg Fulcher 1925 Tammann

and Hesse 1926)

logη = A +B

T minus T0 (2)

where A B and T0 are fitting parameters Another model related to the fragility of the

melt has also been used (eg Avramov 1998 Zhang et al 2003)

logη = A +BT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ α

(3)

where α is fragility parameter and depends on heat capacity For a restricted

compositional range α is found to depend linearly on chemical composition as illustrated

by data in sodium or lead silicates (Avramov 1998)

Both Eqns 2 and 3 are three-parameter equations with no explicit consideration

of melt composition which is the least number of parameters to fit the non-Arrhenian

behavior Eqns 2 and 3 were extended to multicomponent melts by allowing the three

parameters to vary with composition but no working scheme was found to fit the

viscosity data (2σ uncertainty in logη is too large gt 09 log unit) With many trials the

following empirical relation was found to be extendable to multicomponent melts

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ (4)

where A B C and D are fitting parameters and are allowed to vary linearly with mole

fraction of oxide components in melts This equation would imply that the activation

12

energy for viscous relaxation depends on temperature exponentially Ea = d(lnη)d(1T) =

2303[B + Dexp(C+DT)] consistent with the activation energy of viscous flow derived

from Eqn 1 in Richet et al (1986) It is not clear whether there is theoretical basis for

Eqn 4 but it works empirically to fit viscosity data of multicomponent silicate melts

Although the above four-parameter equation can also fit viscosity data of a single

composition not all four parameters are necessary and a three-parameter equation either

Eqn 2 or 3 would be more advisable Nonetheless letting C = 0 reduces Eqn 4 to a

three-parameter equation which may fit viscosity data of a single composition

logη = A +BT

+ exp DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ (4a)

Fig 21 compares fits of viscosity data using Eqns 2 3 and 4a on anhydrous trachyte

melt (AMS_D1 Romano et al 2003) and tephrite melt (Whittington et al 2000) As

shown in Fig 21 these three equations all fit viscosity data well for a given anhydrous

melt

The primary purpose of proposing Eqn 4 is to fit viscosity data of

multicomponent silicate melts by making the four parameters linearly dependent on

composition Below first the compositional dependence of viscosity in binary melts is

discussed then Eqn 4 is applied to fit viscosity of anhydrous natural silicate melts and

finally the entire viscosity database on ldquonaturalrdquo anhydrous and hydrous silicate melts

3 VISCOSITY OF BINARY MELTS

At low temperatures the viscosity of melts in simple binary systems often shows

minima at intermediate compositions This minimum diminishes with increasing

13

0

2

4

6

8

10

12

14

05 06 07 08 09 1 11

TephriteEqn 2Eqn 3Eqn 4a

058 06 062 064 066 068 0705

075

1

125

15

175

2

B

logη

(η in

Pasdot

s)

1000T (T in K)

2

4

6

8

10

12

AMS_D1Eqn 2Eqn 3Eqn 4a

Eqn 4a-53257A87284B19105D

099972R

Eqn 3-19571A42355B17285α

099962R

Eqn 2-3851A90912B35116T0

09997R

AA

logη

(η in

Pasdot

s)

Fig 21 Comparisons of fitting results using Eqns 2 3 and 4a for viscosity data of (a) AMS_D1 trachyte (Romano et al 2003) and (b) tephrite (Whittington et al 2000)

14

temperature and eventually disappears at high enough temperature (Neuville and Richet

1991) The minimum of viscosity data in a binary system can be explained by a

combination of the Adam-Gibbs model and mixing law of configurational entropy of two

end-members (Neuville and Richet 1991) However in this strategy many fitting

parameters are needed to account for the viscosity dependence on composition and

temperature For example Neuville and Richet (1991) used a fifteen-parameter equation

to fit the viscosity data of Ca3Al2Si3O12-Mg3Al2Si3O12 binary system Moreover

asymmetry of viscosity as a function of composition such as in the Na2Si3O7-K2Si3O7

binary system can make it even more difficult for the Adam-Gibbs model to fit the

viscosity data in the binary system (Richet 1984)

On the other hand assuming that each of the four parameters is a linear function

of composition Eqn 4 becomes an eight-parameter equation to fit the temperature and

compositional dependence of viscosity of a binary system

( ) ( ) ( ) ( )1 1 2 2 1 1 2 21 1 2 2 1 1 2 2log exp

b X b X d X d Xa X a X c X c X

T Tη

+ +⎛ ⎞= + + + + +⎜ ⎟

⎝ ⎠ (5)

where a b c and d with subscript 1 and 2 are fitting parameters X is mole fraction of two

end-members in the system Compared to the fifteen-parameter equation of Neuville and

Richet (1991) the number of fitting parameters is almost halved although the physical

meaning of each parameter is less clear in Eqn 5

Fits using Eqn 5 and all fits below are carried out using the commercially

available program MatLab or Stata which employs nonlinear least square regression to

minimize χ2 = sum(logηcalci-logηobsi)2 The fitting errors on all parameters are obtained by

the program Stata When the standard error of a parameter is larger than the absolute

15

value of the parameter the parameter is removed and a new fit with one less fitting

parameter is carried out

Figure 22 shows fits of viscosity data of four binary systems MgSiO3-CaSiO3

(Urbain et al 1982 Scarfe and Cronin 1986 Neuville and Richet 1991)

Mg3Al2Si3O12-Ca3Al2Si3O12 pyrope-grossular (Neuville and Richet 1991) NaAlSi3O8-

CaAl2Si2O8 albite-anorthite (Kozu and Kani 1944 Urbain et al 1982 Hummel and

Arndt 1985) and NS3-KS3 Na2Si3O7-K2Si3O7 (Taylor and Dear 1937 Lillie 1939

Taylor and Doran 1941 Poole 1948 Shartsis et al 1952 Bockris et al 1955

Mackenzie 1957 Taylor and Rindone 1970 Ammar et al 1977) The viscosities of

partially crystallized samples during measurement are not used in the fitting The fitting

parameters are shown in Table 21 The 2σ deviations in terms of logη for CaSiO3-

MgSiO3 garnet plagioclase and NS3-KS3 systems are 039 025 029 and 030

respectively There is a minimum viscosity at intermediate compositions in all four

binary systems at low temperatures such as CaSiO3-MgSiO3 and garnet at 1050 K (Fig

23A) plagioclase at 1123 K (Fig 23B) and NS3-KS3 at 715 K (Fig 23C)

The compositional location of viscosity minimum varies with temperature This

can be seen from the viscosity data of plagioclase (albite-anorthite) binary system

(Hummel and Arndt 1985) As shown in Fig 23B the viscosity minimum of albite-

anorthite system is located at around 40 mole of anorthite in the composition range at

1123 K but the minimum is at a greater anorthite content at higher temperatures This

variation has been explained by Richet (1984) to be due to the mixing of configurational

entropies of anorthite and albite melts which increase at considerably different rates with

increasing temperature The magnitude of the viscosity minimum diminishes with

16

Fig 22 Comparisons of experimental viscosity data with calculated values using Eqn 5 with fitting parameters in Table 21 The data sources are as follows CaSiO3-MgSiO3 (Urbain et al 1982 Scarfe and Cronin 1986 Neuville and Richet 1991) Ca3Al2Si3O12-Mg3Al2Si3O12 garnets (Neuville and Richet 1991) CaAl2Si2O8-NaAlSi3O8 plagioclases (Kozu and Kani 1944 Urbain et al 1982 Hummel and Arndt 1985) NS3-KS3 (Na2Si3O7-K2Si3O7) (Taylor and Dear 1937 Lillie 1939 Taylor and Doran 1941 Poole 1948 Shartsis et al 1952 Bockris et al 1955 Mackenzie 1957 Taylor and Rindone 1970 Ammar et al 1977)

Neuville and Richet 199111 line

garnet

-2

0

2

4

6

8

10

12

14

-2 0 2 4 6 8 10 12 14

Ktradezu and Kani 1944Hummel and Arndt 1985Urbain et al 198211 line

Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s)

plagioclase

-2 0 2 4 6 8 10 12 14

Ammar et al 1977

Bockris et al 1955

Lillie 1939

Mackenzie 1957

Poole 1948

Shartsis et al 1952

Taylor and Dear 1937

Taylor and Doran 1941

Taylor and Rindone 1970

Measured logη (η in Pasdots)

11 line

(Na K) Si O2 3 7

-2

0

2

4

6

8

10

12

14

Neuville and Richet 1991Urbain et al 1982Scarfe and Cronin 198611 line

Cal

cula

ted

logη

(η in

Pasdot

s)

(Ca Mg)SiO3

17

Table 21 Fitting parameters of Eqn 5 in the binary systems of CaSiO3-MgSiO3 garnet plagioclase and NS3-KS3

parameter CaSiO3-MgSiO3 garnet plagioclase NS3-KS3

a1 -31287 (04255)

23593 (11691)

-45179 (10170)

-32839 (05488)

a2 -94323 (04710)

-43178 (01053)

-63903 (06947)

-61410 (07446)

b1 -212604 (16359)

59402 (34463)

47706 (20814)

b2 179038 (9527)

165512 (19446)

118218 (13486)

c1 -12322 (03808)

08438 (01057)

-20844 (09118)

-11788 (09117)

c2 -59221 (09186)

-31234 (15216)

-51302 (32636)

d1 40716 (3713)

27049 (1157)

50614 (8312)

24647 (4784)

d2 74655 (8636)

28789 (88)

46909 (12991)

42955 (20116)

Note Numbers in parentheses are 2 times the standard errors (2σ) of the fitting respective parameters For CaSiO3-MgSiO3 1=CaSiO3 2=MgSiO3 for garnet 1=Ca3Al2Si3O12 (grossular) 2=Mg3Al2Si3O12 (pyrope) for plagioclase 1=CaAl2Si2O8 (anorthite) 2=NaAlSi3O8 (albite) for NS3-KS3 1=Na2Si3O7 2=K2Si3O7

18

85

95

105

115

125

135

0 02 04 06 08 1

MgSiO3-CaSiO3 (1050 K)Py-Gr (1050 K)

mole fraction (Ca-end member)

logη

(η in

Pasdot

s) A

8

9

10

11

12

0 02 04 06 08 1Ab An

logη

(η in

Pasdot

s)

T=1123K

T=1153K

T=1183K

B

0

2

4

6

8

10

12

14

0 02 04 06 08 1

logη

(η in

Pasdot

s)

KS NS3 3

T=715K

T=823K

T=1073K

T=1673K

C

Fig 23 Viscosity as a function of composition in four binary systems (A) CaSiO3-MgSiO3 and garnet (B) plagioclase and (C) NS3-KS3 (Na2Si3O7-K2Si3O7) The solid curves are calculated from Eqn 5 with fitting parameters in Table 21 The sources of viscosity data are as follows (A) interpolated from Neuville and Richet (1991) using Arrhenius relationship of viscosity and temperature (narrow temperature range) with the same compositions (B) open symbols Hummel and Arndt 1985 solid symbols interpolated data from Hummel and Arndt (1985) using Arrhenius relationship of viscosity and temperature (narrow temperature range) (C) data are from Taylor and Dear 1937 Lillie 1939 Taylor and Doran 1941 Poole 1948 Bockris et al 1955 Mackenzie 1957 Ammar et al 1977 interpolated data from Taylor and Doran (1941) Poole (1948) Shartsis et al (1952) Bockris et al (1955) and Ammar et al (1977) and Poole (1948) and Mackenzie (1957) using VFT equation for the same compositions

19

increasing temperature as inferred by Neuville and Richet (1991) As shown in Fig

23C the viscosity minimum in NS3-KS3 system is less pronounced at 1673K than the

one at 715K

4 VISCOSITY MODELS FOR NATURAL ANHYDROUS AND

HYDROUS SILICATE MELTS

The main purpose of this work is to present a working model for calculation of

the viscosity of all natural anhydrous and hydrous silicate melts covering the entire

experimental temperature range The equation used to fit the viscosity data is Eqn 4

with each of A B C and D as a linear function of the compositional parameters For

example for an N-component system the parameter A may be written as

A = ai Xii=1

Nsum (6a)

Or A = a0 + ai Xii=1

Nminus1sum (6b)

where a0 and ai are fitting parameters with i being the ith oxide in the anhydrous melts

This formulation requires many fitting parameters In order to avoid the impression that

the model works only because of many parameters first an effort to use formulation of

Eqn 4 to fit a smaller data set that has been modeled recently by Giordano and Dingwell

(2003a) is presented to show that the new model can fit the same data using a smaller

number of parameters than that of Giordano and Dingwell (2003a)

20

41 A SIMPLE MODEL FOR NATURAL ANHYDROUS MELTS

For multicomponent silicate melts the dependence of viscosity on melt

composition is complicated In the quest of seeking simpler equations with a smaller

number of fitting parameters various parameters such as NBOT (eg Giordano and

Dingwell 2003a) and SM (SM = sum (Na2O+K2O+CaO+MgO+MnO+FeOtot2))

(Giordano and Dingwell 2003a) have been used in modeling melt viscosity Various

parameters were explored to simplify the compositional dependence After a number of

trials using the sum of network formers SiO2 Al2O3 and P2O5 as one single parameter is

found to work well in the context of Eqn 6b Hence this parameter is defined as

SAP = XSiO2+ XAl2O3

+ XP2O5 (7)

where Xi is mole fraction of oxide i in the melt Based on the above considerations the

following equation to relate viscosity temperature and melt composition is used

logη = a0 + a1X( )+b0 + b1X( )

T+ exp c0 + c1X( )+

d0 + d1X( )T

⎝ ⎜

⎠ ⎟ (8)

where X = SAP a b c and d with subscript 0 or 1 are fitting parameters

Giordano and Dingwell (2003a) presented two models for the viscosity of

anhydrous silicate melts The data set contained 314 viscosity data points Their preferred

model using the parameter SM contained 10 fitting parameters Although their database

contained viscosity data below 700degC they only modeled the data in the temperature

range of 700-1600degC With 10 parameters the 2σ deviation of their preferred model is

078 logη units at 700-1600degC

The purpose of using Eqn 8 to fit viscosity data is to compare with previous fits

Hence fitting the same viscosity database of the anhydrous natural silicate melts as used

21

by Giordano and Dingwell (2003a) is the ideal solution All the viscosity data used by

them plus the data at temperatures below 700degC are used to carry out the nonlinear fit and

the new model is as follows

logη = minus213517 +127366X( )+293003minus 97574X

T

+ exp 299791minus 324047X( )+minus588688 + 650818X

T⎛ ⎝ ⎜

⎞ ⎠ ⎟ (9)

The standard errors for the fitting parameters are shown in Table 22 Applying the above

equation to viscosity data at 700-1600degC the 2σ deviation is 063 logη units (Fig 24A)

That is with a smaller number of fitting parameters (8 versus 10) the formulation of Eqn

4 is able to fit anhydrous melt viscosity data to a slightly better precision at this

temperature range than the model of Giordano and Dingwell (2003a)

Another measure of a successful model is applicability to a wide range of

conditions For example Hess and Dingwell (1996) compared their viscosity model for

hydrous rhyolite at both high and low temperatures to the model of Shaw (1972) although

his model was for all anhydrous and hydrous silicate melts but at high temperatures only

and showed that their model is superior to that of Shaw (1972) at low temperatures The

eight-parameter model is able to fit low-temperature viscosity data (ie data at le 700degC

Fig 24B) For the whole temperature range Eqn 9 reproduces the experimental data

with a 2σ standard uncertainty of 077 (Fig 24) The model of Giordano and Dingwell

(2003a) on the other hand did not include data at le 700degC in the fit and hence did not

predict the data well Although Giordano and Dingwellrsquos model is not designed for

application below 700degC the applicability of this eight-parameter model to the full

temperature range of viscosity data demonstrates its superiority Viscosity data at le700degC

are of importance in processes such as magma fragmentation and welding in tuffs

22

Table 22 Fitting parameters for Eqn 8

a b c d 0

-213517 (21976)

293003 (21590)

299791 (147288)

-588688 (271124)

1

127366 (38896)

-97574 (37088)

-324047 (168378)

650818 (302724)

Note Numbers in parentheses are 2σ errors of fitting coefficients respectively

23

-1

1

3

5

7

9

11

13

-1 1 3 5 7 9 11 13

Giordano and Dingwell (2003a)Eqn 911 line

AC

alcu

late

d lo

gη (η

in P

asdots)

9

10

11

12

13

14

15

16

17

9 10 11 12 13 14 15 16 17

Giordano and Dingwell (2003a)Eqn 911 line

Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s) B

Fig 24 Comparison of experimental viscosity data with calculated values (A) in the temperature range from 700 to 1600degC (which is the temperature range that Giordano and Dingwell (2003a) recommended for their model) and (B) below 700degC

24

In summary with a smaller number of fitting parameters the new model does a

better job than the most recent viscosity models (Giordano and Dingwell 2003a) This

verifies that Eqn 4 provides a practical way to describe the compositional and

temperature dependences of the viscosity of natural silicate melts and the success of the

model below is not purely because of the many parameters involved

42 VISCOSITY DATA

The primary motivation of this work is to develop a practical viscosity model for

natural anhydrous and hydrous silicate melts Viscosity data for the development of new

viscosity model come from literature The compositional range is limited to ldquonaturalrdquo

silicate melts (including Fe-free haplogranitic haploandesitic haplobasanitic

haplotephritic haplophonolitic and haplotrachytic melts) The compositions range from

peridotite to rhyolite from peralkaline to peraluminous silicate melts and from

anhydrous to hydrous melts Simple synthetic melts such as Li2O-SiO2 Na2O-SiO2

K2O-SiO2 CaSiO3-MgSiO3 feldspar systems are not included but synthetic melts

intended to approximate natural silicate melt are included Simple synthetic melts are

excluded from the new model because there is still more work needed in developing a

completely general compositional model for the viscosity of all silicate melts For

example including simple melts such as Na2O-SiO2 would expand the compositional

space to pure Na2O melt which may require parameters A B C and D in Eqn 4 to vary

as a nonlinear function of oxide mole fractions This limitation was also encountered in

literature when other silicate liquid properties are modeled (1) The density model of

liquids is developed only for natural silicate liquids excluding simple synthetic melts

25

(Lange and Carmichael 1987 Lange 1997) (2) The thermodynamic model of silicate

melts is also developed only for natural silicate liquids excluding simple synthetic melts

(Ghiorso et al 1983 2002)

The compositions of ldquonaturalrdquo silicate melts for which viscosity data are available

are listed in Table 23 on an anhydrous basis The references are also given in Table 23

There are 1451 viscosity measurements Natural melt compositions covered in the

database are presented in Fig 25 on an anhydrous basis The compositions covered by

the data include anhydrous peridotite to rhyolite anhydrous peralkaline to peraluminous

melts hydrous basalt to rhyolite hydrous peralkaline to peraluminous melts The FeO-

free melts include haplogranitic melts (H1-26) haploandesite (A2 and A4) haplobasanite

(Bn3) haplotephrite (Te2) haplophonolite (Ph4) and haplotrachyte (Tr6) as shown in

Table 23 Some samples with the same or similar sample names (such as two HPG8 and

one HPG08) but different chemical compositions are treated as different samples with

different chemical compositions (that is all compositions were treated to be different and

the chemical analyses were not averaged) The viscosity ranges from 01 to 1015 Pamiddots

The temperature ranges from 573 to 19779 K The H2O concentration is le123 wt for

rhyolitic melt and below 5 wt for other melts

Viscosity data from partially crystallized melt (such as andesite ME113e Richet

et al 1996) are not used Viscosity data of phonolite melt with 088 wt water in

Whittington et al (2001) are shown by these authors to be outliers and are hence not

included The viscosities of Sample A (LGB rhyolite) in Neuville et al (1993) are not

used because these authors suspected the quality of the viscosity data Data on rhyolite

shown to be outliers by Zhang et al (2003) are not included The data of

26

Table 23 Melt composition on anhydrous basis (on wt basis)

Composition SiO2 TiO2 Al2O3 FeO MnOMgOCaO Na2OK2O P2O5 total ID ref Basanite (EIF) 4115 274 1210 1011 000 1124 1566 276 304 102 9982 Bn1 19 Basanite (EIF) 4122 274 1212 1003 000 1126 1569 276 305 102 9989 Bn2 17 Basanite (NIQ) 4357 297 1018 000 000 917 2607 759 096 000 10051 Bn3 1 Peridotite 4583 018 487 863 000 3163 637 032 000 000 9783 Pr 27 Basalt (ETN) 4703 161 1628 1088 020 517 1047 375 194 059 9792 Bl1 25 Basalt (ETN) 4781 194 1791 1090 019 475 996 394 211 048 9999 Bl2 17 Basalt 4821 125 1550 1064 000 908 1192 240 008 014 9922 Bl3 21 Tephrite (Ves_G_tot) 4920 083 1640 720 013 510 1020 270 650 072 9898 Te1 19 Basalt (MTV9) 4961 427 1101 1473 000 446 1004 281 047 251 9991 Bl5 28 Basalt (Kilauea 1921) 5001 260 1256 1079 024 939 1088 233 048 000 9937 Bl7 29 Tephrite 5056 235 1403 000 000 879 1500 704 301 000 10078 Te2 1 Basalt (MTV4) 5066 395 1135 1390 000 394 960 298 051 240 9929 Bl6 28 Basalt (MTV6) 5084 426 1138 1505 000 442 1018 301 055 004 9973 Bl8 28 Basalt (MTV2) 5087 405 1136 1420 000 423 962 306 052 009 9800 Bl9 28 Phonolite (Ves_W_tot) 5120 067 1860 610 013 250 730 375 790 040 9855 Ph1 19 Phonolite (V_1631_G) 5314 059 1984 472 013 177 675 477 828 000 9999 Ph2 23 Phonolite (V_1631_W) 5352 060 1984 480 014 176 676 466 791 000 9999 Ph3 23 Basalt 5354 105 1729 782 000 546 832 359 164 020 9891 Bl4 21 Andesite 5856 064 1898 745 000 348 617 324 092 000 9944 A1 21 Andesite 5869 001 2157 002 002 538 949 330 157 000 10005 A2 26 Phonolite 5882 079 1942 000 000 187 235 931 744 000 10000 Ph4 2 Andesite (Crater Lake) 5946 073 1790 518 010 371 645 423 147 000 9926 A5 29 Phonolite (ATN) 5970 046 1852 360 017 065 280 389 845 015 9839 Ph5 19 Phonolite (Td_ph) 6046 056 1881 331 020 036 067 976 545 006 9964 Ph6 22 Trachyte (IGC) 6074 027 1922 337 018 028 211 528 632 006 9783 Tr1 20 Trachyte (AMS_D1) 6086 039 1827 388 012 090 296 412 850 000 10000 Tr2 23 Andesite 6117 084 1729 539 000 335 583 385 139 000 9911 A3 11 Trachyte (AMS_B1) 6126 038 1838 350 014 074 297 458 804 000 9999 Tr3 23 Andesite (Crater Lake) 6215 076 1680 496 025 326 508 502 172 000 10000 A6 32 Andesite 6240 055 2001 003 002 322 908 352 093 012 9988 A4 8 Trachyte (MNV) 6388 031 1710 290 013 024 182 567 682 005 9892 Tr4 20 Trachyte (PVC) 6399 045 1696 255 014 032 083 633 637 009 9803 Tr5 19 Trachyte 6445 050 1671 000 000 292 536 670 337 000 10001 Tr6 2 Dacite 6528 059 1705 402 008 182 470 434 129 013 9930 D1 30 Dacite (UNZ) 6600 036 1523 408 010 221 501 384 216 014 9913 D2 24 Granite (263-2) 6677 039 2015 431 001 072 364 137 217 000 9953 R1 16 Trachyte (570-2) 6695 087 2124 257 006 001 163 183 455 000 9971 Tr7 16 Plagioliparite (851-2) 6716 001 2165 281 001 073 265 285 182 000 9969 R2 16 Trachyte (570-3) 6871 090 1928 259 006 000 165 187 466 000 9972 Tr8 16 Trachyte (570-1) 7016 092 1718 274 006 000 170 207 488 000 9971 Tr9 16 Plagioliparite (851-1) 7122 024 1680 291 006 080 262 309 194 000 9968 R3 16 Granite (130) 7142 001 1610 458 001 157 094 194 292 000 9949 R4 16 Granite (Barlak) 7312 019 1356 319 000 018 168 386 420 000 9998 R33 31 Rhyolite 7323 019 1360 278 000 017 169 378 411 013 9968 R5 21

27

Trachyte (570-4) 7335 090 1483 238 007 000 164 187 470 000 9974 Tr1016 HPG05 7349 000 1326 000 000 000 000 240 898 000 9813 H21 38 HPG8An10 7360 000 1560 000 000 000 210 440 380 000 9950 H4 33 Rhyolite 7379 005 1511 042 005 007 097 471 402 001 9920 R6 9 Rhyolite (GB4) 7389 006 1577 075 000 014 058 462 419 000 10000 R34 34 HPG8Na5 7410 000 1170 000 000 000 000 900 440 000 9920 H5 435HPG8Ca5 (Ca5) 7410 000 1220 000 000 000 520 440 400 000 9990 H6 36 HPG8K5 7460 000 1180 000 000 000 000 440 920 000 10000 H7 4 Rhyolite (M981023) 7470 008 1328 165 000 000 077 430 522 000 10000 R7 18 HPG04 7490 000 1352 000 000 000 000 364 722 000 9928 H22 38 Rhyolite (P3RR) 7537 007 1284 157 007 004 072 419 513 000 10000 R8 17 HPG8Al5 (Al05) 7540 000 1610 000 000 000 000 470 430 000 10050 H8 37 HPG03 7552 000 1390 000 000 000 000 477 553 000 9972 H23 38 HPG8Mg5 (Mg5) 7560 000 1200 000 000 490 000 450 400 000 10100 H9 36 Rhyolite 7603 006 1148 105 006 036 321 242 460 000 9927 R9 13 HPG02 7608 000 1389 000 000 000 000 596 384 000 9977 H24 38 AOQ 7612 000 1353 000 000 000 000 465 568 000 9998 H1 6 Rhyolite 7638 006 1159 103 005 036 325 244 466 000 9982 R10 13 HPG01 7652 000 1405 000 000 000 000 714 219 000 9990 H25 38 Rhyolite 7657 006 1165 104 007 036 323 246 462 000 10006 R11 13 Rhyolite (MCR) 7659 008 1267 100 000 003 052 398 488 000 9975 R12 14 Rhyolite 7660 010 1270 117 000 002 031 410 460 000 9960 R13 15 HPG09 7688 000 1145 000 000 000 000 360 560 000 9753 H10 38 Rhyolite (LGB) 7692 010 1292 089 005 011 086 389 425 003 10002 R14 10 Rhyolite (RH) 7699 003 1302 071 010 004 048 431 431 000 9999 R15 10 Rhyolite 7700 006 1177 100 006 036 329 248 468 000 10070 R16 13 Rhyolite (RH-r) 7701 003 1314 071 010 004 051 428 418 000 10000 R17 10 Rhyolite 7707 006 1167 099 007 035 328 242 462 000 10053 R18 13 Rhyolite (SH-r) 7708 009 1244 130 002 002 036 449 420 000 10000 R19 10 Rhyolite (EDFmr) 7715 009 1282 056 007 007 052 411 461 001 10001 R20 12 Rhyolite (SH) 7717 008 1240 130 002 001 035 450 420 000 10003 R21 10 Rhyolite (EDF) 7718 009 1291 061 007 007 051 405 452 001 10002 R22 12 HPG8Al2 (Al02) 7720 000 1390 000 000 000 000 450 430 000 9990 H11 37 Rhyolite 7727 003 1175 105 005 036 331 243 473 000 10098 R23 13 Rhyolite 7738 005 1170 103 005 036 324 244 480 000 10105 R24 13 Rhyolite 7746 005 1164 104 007 035 323 245 470 000 10099 R25 13 Rhyolite (BL6) 7748 017 1220 130 005 017 114 390 360 000 10001 R26 10 Rhyolite (BL6-r) 7753 017 1217 130 005 017 113 389 360 000 10001 R27 10 Rhyolite (LGB-r) 7788 007 1273 076 004 006 050 393 403 001 10001 R28 10 Rhyolite (BL3) 7788 016 1203 119 005 005 106 364 388 001 9995 R29 12 HPG8 7790 000 1189 000 000 000 000 453 417 000 9849 H2 5 Rhyolite 7790 007 1205 076 000 005 052 401 406 000 9942 R30 11 Rhyolite (EDF-1) 7800 009 1215 054 007 006 050 408 448 002 9999 R31 10 Rhyolite (EDF-2) 7800 009 1215 054 007 007 050 408 448 000 9998 R32 10 HPG11 7814 000 1164 000 000 000 000 126 911 000 10015 H12 38 HPG10 7821 000 1169 000 000 000 000 241 743 000 9974 H13 38 HPG07 7828 000 1192 000 000 000 000 591 223 000 9834 H14 38

28

HPG8 7860 000 1250 000 000 000 000 460 420 000 9990 H3 347HPG08 7860 000 1199 000 000 000 000 457 420 000 9936 H15 38 HPG06 7898 000 1211 000 000 000 000 704 062 000 9875 H26 38 HPG16 8103 000 991 000 000 000 000 124 739 000 9957 H16 38 HPG15 8174 000 1003 000 000 000 000 247 566 000 9990 H17 38 HPG14 8222 000 1017 000 000 000 000 366 389 000 9994 H18 38 HPG12 8231 000 1016 000 000 000 000 589 070 000 9906 H19 38 HPG13 8294 000 1030 000 000 000 000 468 241 000 10033 H20 38

The melt compositions are listed according to SiO2 content References 1 Whittington et al (2000) 2 Whittington et al (2001) 3 Dorfman et al (1996) 4 Hess et al (1995) 5 Dingwell et al (1992) 6 Schulze et al (1996) 7 Dingwell et al (1996) 8 Richet et al (1996) 9 Burnham (1964) 10 Stevenson et al (1998) 11 Neuville et al (1993) 12 Stevenson et al (1996) 13 Goto et al (2005) 14 Zhang et al (2003) 15 Shaw (1963) 16 Goto et al (1997) 17 Gottsmann et al (2002) 18 Stein and Spera (1993) 19 Giordano and Dingwell (2003a) 20 Giordano et al (2004) 21 Persikov (1991) 22 Giordano et al (2000) 23 Romano et al (2003) 24 Giordano et al (2005) 25 Giordano and Dingwell (2003b) 26 Liebskie et al (2003) 27 Dingwell et al (2004) 28 Toplis et al (1994) 29 Kushiro et al (1976) 30 Alidibirov et al (1997) 31 Persikov et al (1986) 32 Dunn and Scarfe (1986) 33 Dingwell et al (2000) 34 Scaillet et al (1996) 35 Dingwell et al (1998a) 36 Hess et al (1996) 37 Dingwell et al (1998b) 38 Hess et al (2001)

29

0

3

6

9

12

15

18

40 50 60 70 80SiO (wt)2

Na

O+K

O (w

t)

22

R

O

T

OOBPc

U

U

U

Ph

SS

S

F

1

1

1

2

2

2

3

3

3

Fig 25 Total alkalis versus SiO2 diagram (Le Bas et al 1986) showing the compositions of samples modeled in this work Pc picrobasalt B basalt O1 basaltic andesite O2 andesite O3 dacite R rhyolite S1 trachybasalt S2 basaltic trachyandesite S3 trachyandesite T trachyte or trachydacite U1 basanite or tephrite U2 phonotephrite U3 tephriphonolite Ph phonolite F foidite

30

Friedman (1963) are not used due to their large uncertainty Some viscosity data of

identical composition experimental temperature and viscosity value were reported in two

or more publications and it is not clear to us whether or not they mean the same

measurements Such data are counted only once in the database and in the regression

such as viscosity data of EIF basanite (Gottsmann et al 2002 Giordano and Dingwell

2003a) All the viscosity data used in the following fit are listed in Appendix A

Most viscosity data in the database are at 1 bar and some are at pressures up to 5

kbars The pressure effect is ignored as it has been shown that the effect is negligible for

pressures up to 5 kbars (Persikov 1998 Zhang et al 2003)

43 THE PREFERRED MODEL

The eight-parameter model (Eqn 9) grouped the effects of SiO2 Al2O3 and P2O5

on viscosity The model although appealing because of its simplicity still does not

reproduce experimental viscosity data well Furthermore it does not apply to hydrous

melts In order to produce a model that can be used to calculate viscosity to better

precision more compositional parameters are necessary In the preferred model in this

section the goal is to fit the entire viscosity database on natural silicate melts as

accurately as possible Although using the least number of parameters to fit is also a goal

it is subordinate to the goal of fitting the viscosity data as accurately as possible

In the preferred model parameters A B C and D in Eqn 4 are assumed to be

linear functions of oxide mole fractions because the assumption is simple and because it

considers different effects of the different oxide components to the viscosity Fe in the

natural silicate melts has two oxidation states ferric and ferrous The two behave

31

differently in the structure of the silicate melts Although the oxidation state of Fe has

been found to affect melt viscosity significantly especially at low temperatures

(Dingwell and Virgo 1987 Liebske et al 2003) often there is not enough information to

calculate the ferric to ferrous ratio of the experimental melts at low temperatures Hence

all iron is considered as FeO

Previous studies (eg Riebling 1966 Bruckner 1983) show that aluminum-

saturated melts [NaAl (molar) = 1] have higher viscosities than either aluminum-

oversaturated (peraluminous) or aluminum-undersaturated (alkaline to peralkaline) melts

Hence NaAlO2 and KAlO2 would be reasonable end members in this multicomponent

system Al2O3 in the melt is considered to combine with alkalis to form (Na K)AlO2

After forming (Na K)AlO2 either excess alkalis or excess aluminum are left as a

component in the melts

For hydrous melts H2O content plays a major role and the effect is not linear

Viscosity decreases rapidly with the first small amount of total dissolved water and then

not so rapidly at higher H2O contents (Lange 1994 Dingwell et al 1996) Water is

present in the silicate melts as at least two species molecular H2O and hydroxyl group

(Stolper 1982) The exact role of OH and molecular H2O on affecting melt viscosity is

not known H2O content raised to some power as an additional parameter is used as

shown in Zhang et al (2003) After many trials the following parameter seems useful in

fitting viscosity data of hydrous melts

( )1

2

11+

H O( ) e TZ X= (10)

32

where e1 is constant T is temperature in K and XH2O is oxide mole fraction of total

dissolved H2O Combining Eqns 4 6a and 10 the following model is used to fit all the

viscosity data in the database

log expi i i i

i ii i i i

i i

b X d Xa X c X

T Tη

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎝ ⎠

sum sumsum sum (11)

where Xi is the mole fraction of SiO2 TiO2 Al2O3ex FeOT MnO MgO CaO (Na

K)2Oex P2O5 H2O (Na K)AlO2 plus another term related to H2O (XH2O)1[1+(e1T)]

because a simple linear term with H2O is not enough to account for the dependence of

viscosity on H2O content The values of ai bi ci di and e1 with standard errors obtained

from the fit are listed in Table 24 In the process of fitting some parameters turned out to

be unnecessary and some could be combined These simplifications were made to reduce

the number of parameters The final fit contains 37 fitting parameters As shown in Table

24 all the fitting parameters are statistically significant This model can reproduce all the

viscosity data (in the electronic annex) with a 2σ deviation of 061 logη units in the

available temperature and compositional range of natural silicate melts Fig 26 shows

comparison between measured viscosity values of all the melts in the database including

hydrous and anhydrous natural melts and those calculated from Eqn 11 Because this is

the preferred model the full equation is written down as follows

33

Table 24 Fitting parameters for Eqn 11

a b103 c d103 SiO2

-683 (047)

1814 (047)

216 (016)

TiO2

-17079 (2098)

24893 (3312)

-14305 (2657)

Al2O3ex

-1471 (432)

3261 (470)

2173 (1075)

-2210 (1127)

(Fe Mn)O

-6198 (2591)

3856 (2681)

MgO

-1801 (278)

2596 (416)

-10553 (1950)

11083 (1995)

CaO

-1976 (327)

2264 (365)

-6992 (1123)

6712 (1126)

(Na K)2Oex

3431 (960)

-6829 (796)

-8567 (5049)

5801 (4609)

P2O5

38477 (11821)

Z

-14038 (7846)

3884 (2710)

33201 (18953)

-40497 (23747)

H2O

15926 (7994)

-4855 (2976)

-43222 (20727)

51375 (26004)

(Na K)AlO2

-843 (170)

1612 (168)

-316 (083)

e1

185797 (91556)

Note Numbers in parentheses are 2σ errors of fitting coefficients respectively

34

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

(12)

where Z=(XH2O)1[1+(185797T)] and all mole fractions (including H2O) add up to 1

Examples of calculation are given in Table 25

Fig 26 compares calculated viscosity with experimental viscosity for all data in the

database and shows that there is no systematic misfit The behavior of Eqn (12) was

examined by varying temperature and various oxide concentrations The calculated

viscosity varies smoothly and monotonically with these parameters with no up and down

fluctuations Furthermore in order to investigate whether some melts are systematically

misfit or are not fit as well as other melts ∆plusmn2σ for each melt composition is listed in

Table 26 where ∆ is the average difference between the experimental logη and

calculated logη and σ is the standard deviation The value of ∆ characterizes systematic

misfit and 2σ is a measure of data scatter As shown in Table 26 all rock groups of melts

have small ∆ values but ∆ values for subgroups vary from 0 up to 030 and most

subgroups still have small ∆ values There is no correlation between the ∆ values and

compositions of the melts On 2σ values there are some variations but no group is

obviously misfit There is no correlation between the reproducibility and the degree of

polymerization

Two sets of viscosity data on hydrous leucogranite (Whittington et al 2004) and

35

Table 25 Examples of calculation using Eqn 12

composition wt composition

mole fraction T (K)

calculated logη (Pas)

SiO2 5352 SiO2 05336 75375 947 TiO2 060 TiO2 00045 74875 960 Al2O3 1984 Al2O3ex 00212 72775 1015 FeOt 480 (Fe Mn)O 00412 71765 1042 MnO 014 MgO 00262 70435 1080 MgO 176 CaO 00722 CaO 676 (Na K)2Oex 00000 Na2O 466 P2O5 00000 K2O 791 H2O 01104 P2O5 000 (Na K)AlO2 01907 H2O 332

Note The melt is hydrous phonolite from Romano et al (2003)

36

-2

2

6

10

14

18

-2 2 6 10 14 18Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s)

Fig 26 Comparison of experimental viscosity values with calculated values using Eqn 12

37

Table 26 The 2σ deviations and data points of sub-groups in the viscosity database

Composition ∆plusmn2σ

number of data points

∆plusmn2σ (rock group)

anhydrous -021plusmn056 33 basanite (Bn1-3) hydrous 001plusmn045 33

-010 plusmn055

anhydrous 023plusmn073 38 tephrite (Te1-2) hydrous 001plusmn072 33

013 plusmn075

anhydrous -004plusmn054 40 Ph1-3 hydrous 030plusmn038 25 anhydrous -015plusmn057 59

phonolite

Ph4-6 hydrous -013plusmn063 40

-005 plusmn063

anhydrous -004plusmn071 43 Tr1-3 hydrous -001plusmn039 56 anhydrous 011plusmn052 68 Tr4-6 hydroous 013plusmn043 55

Trachyte

Tr7-10 anhydrous -012plusmn041 31

004plusmn053

anhydrous -005plusmn040 27 A1-2 A5 hydrous -002plusmn037 42

anhydrous -003plusmn040 52

Andesite

A3-4 A6 hydrous 006plusmn052 45

-001 plusmn043

R1-4 anhydrous 005plusmn045 25 anhydrous 002plusmn013 7 R5-8

R33-34 hydrous 013plusmn051 40 anhydrous 004plusmn043 83

Rhyolite

R9-32 hydrous -006plusmn058 197

-000plusmn054

anhydrous 020plusmn037 32 dacite (D1-2) hydrous -009plusmn053 9

014 plusmn047

anhydrous -011plusmn105 20 Bl1-3 Bl5 hydrous 007plusmn051 21

anhydrous 006plusmn109 28

Basalt

Bl4 Bl6-9 hydrous 003plusmn074 6

001 plusmn092

periodite (Pr) anhydrous -007plusmn055 8 -007plusmn055 anhydrous -001plusmn078 161 haplogranitic melt

(H1-26) hydrous 009plusmn061 94 003 plusmn072

leucogranite hydrous -015plusmn051 14 HPG8An10 anhydrous -002plusmn022 8

the melt used to test the model

38

anhydrous HPG8An10 (Dingwell et al 2000) are not included in the fit but are chosen

to test whether this preferred model can predict data not included in the fit Because water

content in the ldquoanhydrousrdquo melt of Whittington et al (2004) is not determined the

viscosity data of anhydrous melt are not used due to large effect of a small amount of

water on viscosity (Lange 1994 Zhang et al 2003) As shown in Fig 27 this new

model has the capability to predict the viscosity at low temperature with a 2σ deviation of

061

There are many viscosity models for specific compositions and many of them

have better accuracy than the 37-parameter general model For example the viscosity

model for hydrous and anhydrous rhyolitic melt by Zhang et al (2003) has a 2σ

uncertainty of 036 logη units specific models for five individual anhydrous and hydrous

melt compositions by Giordano et al (2005) have very low 2σ uncertainties Therefore

although the use of this grand model is recommended some specific models have better

accuracy and should be used when appropriate

One unattractive feature of the preferred model is the large number of parameters

used This means the fitting parameters themselves are not well resolved However it

does not affect the accuracy of the calculation of viscosities as long as no extrapolation is

attempted That is the model should not be extrapolated to binary systems nor to

viscosities above 1015 Pamiddots nor to temperature below 573 K nor to H2O content above 5

wt for melts other than rhyolite (For rhyolite the highest H2O content in the viscosity

database is 123 wt) As mentioned earlier Eqn 12 predicts smooth and monotonic

variations of logη with mole fraction of oxides or temperature Although it is desirable to

develop a model with a smaller number of fitting parameters the drawback of many

39

2

4

6

8

10

12

14

2 4 6 8 10 12 14

Cal

cula

ted

logη

(η in

Pasdot

s)

Measured logη (η in Pasdots)

Fig 27 The predictions of Eqn 12 Data sources filled symbols Whittington et al (2004) open symbols Dingwell et al (2000)

40

fitting parameters should not prevent the use of Eqn 12 in calculating viscosity of natural

silicate melts in a wide range of applications such as volcanic eruption dynamics as well

as other magmatic processes For example the viscosity model of Bottinga and Weill

(1972) has 285 fitting parameters for anhydrous melts at high temperatures and it was

widely applied Eqn 12 is easy to include in a software program or in a spreadsheet

program Using it to calculate viscosities of all natural silicate melts is recommended

Other applications of the viscosity model include (1) estimation of glass transition

temperature of any natural silicate melt given cooling rate (Dingwell and Webb 1990

Dingwell et al 2004 Giordano et al 2005) and (2) estimation of cooling rate of any

natural hydrous silicate glass based on apparent equilibrium temperature from H2O

speciation (Dingwell and Webb 1990 Zhang 1994 Zhang et al 2000 2003)

Even though this viscosity model can reproduce the entire viscosity database to a

better accuracy and for a greater range of compositions than previous models the

uncertainty in reproducing the viscosity data is still larger than the experimental data

uncertainty which is usually 01 logη units or less Hence there is still much room for

improvement The most important improvement might come from the development of a

better functional equation to describe viscosity dependence on temperature pressure and

composition For example new models adopted a different functional form of viscosity

A second improvement might derive from consideration of the effect of ferric and ferrous

iron which requires knowledge of experimental conditions under which the glasses were

prepared for the low-temperature viscosity measurements A third improvement might

arise from improved quantification of the effect of H2O on viscosity both in terms of

accurate determination of H2O for reported viscosity data and in terms of the functional

41

form used to handle the dependence of viscosity on H2O content Specifically in the

future every viscosity data should be accompanied by H2O content and other

concentrations simply describing a melt as dry is not good enough A fourth

improvement might originate from the incorporation of the effect of CO2 and other

volatile components in the melt So far the effect of CO2 on the viscosity of silicate melts

has only been carried out in several synthetic melts (Lange 1994 Bourgue and Richet

2001) A fifth improvement might stem from the incorporation of the pressure effect

(Persikov 1998) New experimental viscosity data are needed especially at high

pressures at low temperatures for melts with well-characterized ferricferrous ratios and

for melts with various and well-characterized volatile (H2O and CO2) concentrations

42

REFERENCES

Adam G and Gibbs JH (1965) On the temperature dependence of cooperative relaxation

properties in glass-forming liquids J Chem Phys 43 139-146

Alidibirov M Dingwell DB Stevenson RJ Hess K-U Webb SL and Zinke J

(1997) Physical properties of the 1980 Mount St Helens cryptodome magma Bull

Volcanol 59 103-111

Ammar MM El-Badry Kh and Gharib S (1977) Viscous properties of some alkali

silicate glasses in the annealing range Egypt J Phys 8 1-8

Avramov I (1998) Viscosity of glassforming melts Glastech Ber 71C 198-203

Bockris J OrsquoM Mackenzie JD and Kitchener JA (1955) Viscous flow in silica and

binary liquid silicates Trans Faraday Soc 51 1734-1748

Bottinga Y and Weill DF (1972) The viscosity of magmatic silicate liquids a model for

calculation Am J Sci 272 438-475

Bourgue E and Richet P (2001) The effects of dissolved CO2 on the density and

viscosity of silicate melts a preliminary study Earth Planet Sci Lett 193 57-68

Bruckner R (1983) Structure and properties of silicate melts Bull Mineacuteral 106 9-22

Brush SG (1962) Theories of liquid viscosity Chem Rev 62 513-548

Burnham CW (1964) Viscosity of a H2O rich pegmatite melt at high pressure (abstract)

Geol Soc Am Special Paper 76 26

Dingwell DB and Virgo D (1987) The effect of oxidation state on the viscosity of melts

in the system Na2O-FeO-Fe2O3-SiO2 Geochim Cosmochim Acta 51 195-205

Dingwell D B and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

43

Dingwell DB Courtial P Giordano D and Nichols ARL (2004) Viscosity of

peridotite liquid Earth Planet Sci Lett 226 127-138

Dingwell DB Hess K-U and Romano C (1998a) Extremely fluid behavior of hydrous

peralkaline rhyolites Earth Planet Sci Lett 158 31-38

Dingwell DB Hess K-U and Romano C (1998b) Viscosity data for hydrous

peraluminous granitic melts Comparison with a metaluminous model Am

Mineral 83 236-239

Dinwell DB Hess K-U and Romano C (2000) Viscosities of granitic (sensu lato)

melts Influence of the anorthite component Am Mineral 85 1342-1348

Dingwell DB Knoche R and Webb SL (1992) The effect of B2O3 on the viscosity of

haplogranitic liquids Am Mineral 77 457-461

Dingwell DB Romano C and Hess K-U (1996) The effect of water on the viscosity of

a haplogranitic melt under P-T-X conditions relevant to volcanism Contrib

Mineral Petrol 124 19-28

Dorfman A Hess K-U and Dingwell D (1996) Centrifuge-assisted falling-sphere

viscometry Eur J Mineral 8 507-514

Dunn T and Scarfe CM (1986) Variation of the chemical diffusivity of oxygen and

viscosity of an andesite melt with pressure at constant temperature Chem Geol 54

203-215

Friedman I Long W and Smith RL (1963) Viscosity and water content of rhyolitic

glass J Geophys Res 68 6523-6535

Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses J Am

Ceram Soc 8 339-355

44

Ghiorso MS Carmichael ISE Rivers ML and Sack RO (1983) The Gibbs free

energy of mixing of natural silicate liquids an expanded regular solution

approximation for the calculation of magmatic intensive variables Contrib

Mineral Petrol 84 107-145

Ghiorso MS Hirschmann MM Reiners PW and Kress VC III (2002) The pMELTS

A revision of MELTS for improved calculation of phase relations and major

element partitioning related to partial melting of the mantle to 3 GPa Geochem

Geophys Geosys 3 1010292001GC000217

Giordano D and Dingwell DB (2003a) Non-Arrhenian multicomponent melt viscosity

a model Earth Planet Sci Lett 208 337-349

Giordano D and Dingwell DB (2003b) Viscosity of hydrous Etna basalt implications

for Plinian-style basaltic eruptions Bull Volcanol 65 8-14

Giordano D Dingwell DB and Romano C (2000) Viscosity of a Teide phonolite in the

welding interval J Volcanol Geotherm Res 103 239-245

Giordano D Nichols ARL and Dingwell DB (2005) Glass transition temperatures of

natural hydrous melts a relationship with shear viscosity and implications for the

welding process J Volcanol Geotherm Res 142 105-118

Giordano D Romano C Papale P and Dingwell DB (2004) The viscosity of trachytes

and comparison with basalts phonolites and rhyolites Chem Geol 213 49-61

Goto A Oshima H and Nishida Y (1997) Empirical method of calculating the viscosity

of peraluminous silicate melts at high temperatures J Volcanol Geotherm Res 76

319-327

45

Goto A Taniguchi H and Kitakaze A (2005) Viscosity measurements of hydrous

rhyolitic melts using the fiber elongation method Bull Volcanol 67 590-596

Gottsmann J Giordano D and Dingwell DB (2002) Predicting shear viscosity during

volcanic processes at the glass transition a calorimetric calibration Earth Planet

Sci Lett 198 417-427

Hess K-U and Dingwell DB (1996) Viscosities of hydrous leucogranitic melts A non-

Arrhenian model Am Mineral 81 1297-1300

Hess K-U Dingwell DB Gennaro C and Mincione V (2001) Viscosity-temperature

behavior of dry melts in the Qz-Ab-Or system Chem Geol 174 133-142

Hess K-U Dingwell DB and Webb SL (1995) The influence of excess alkalis on the

viscosity of a haplogranitic melt Am Mineral 80 297-304

Hess KU Dingwell DB and Webb SL (1996) The influence of alkaline-earth oxides

(BeO MgO CaO SrO BaO) on the viscosity of a haplogranitic melt systematics

of non-Arrhenian behaviour Eur J Mineral 8 371-381

Hummel W and Arndt J (1985) Variation of viscosity with temperature and composition

in the plagioclase system Contrib Mineral Petrol 90 83-92

Kozu S and Kani K (1944) Viscosity measurements of the ternary system diopside-

albite-anorthite at high temperatures Bull Am Ceram Soc 23 377-378

Kushiro I Yoder HSJr and Mysen BO (1976) Viscosities of basalt and andesite melts

at high pressures J Geophys Res 81 6351-6356

Lange RA (1994) The effect of H2O CO2 and F on the density and viscosity of silicate

melts Rev Mineral 30 331-360

46

Lange RA (1997) A revised model for the density and thermal expansivity of K2O-

Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K extension to crustal

magmatic temperatures Contrib Mineral Petrol 130 1-11

Lange RA and Carmichael ISE (1987) Densities of Na2O-K2O-CaO-MgO-FeO-

Fe2O3-Al2O3-TiO2-SiO2 liquids new measurements and derived partial molar

properties Geochim Cosmochim Acta 53 2195-2204

Le Bas MJ Le Maitre RW Streckeisen A and Zanettin B (1986) A chemical

classification of volcanic rocks based on the total alkali-silica diagram J Petrol

27 745-750

Liebske C Behrens H Holtz F and Lange RA (2003) The influence of pressure and

composition on the viscosity of andesitic melts Geochim Cosmochim Acta 67

473-485

Lillie HR (1939) High-temperature viscosities of soda-silica glasses J Am Ceram Soc

22 367-374

Mackenzie JD (1957) The discrete ion theory and viscous flow in liquid silicates Trans

Faraday Soc 53 1488-1493

Neuville DR and Richet P (1991) Viscosity and mixing in molten (Ca Mg) pyroxenes

and garnets Geochim Cosmochim Acta 55 1011-1019

Neuville DR Courtial P Dingwell DB and Richet P (1993) Thermodynamic and

rheological properties of rhyolite and andesite melts Contrib Mineral Petrol 113

572-581

Persikov ES Epelrsquobaum MB and Bukhtiyarov PG (1986) The viscosity of a granite

magma interacting with an aqueous chloride fluid Geochem Intern 23 21-30

47

Persikov ES (1991) The viscosity of magmatic liquids Experiment generalized

patterns a model for calculation and prediction application Adv Phys Geochem

9 1-40

Persikov ES (1998) Viscosities of model and magmatic melts at the pressures and

temperatures of the Earthrsquos crust and upper mantle Russian Geol Geophys 39

1780-1792

Poole JP (1948) Viscositeacute a basse tempeacuterature des verres alcalino-silicateacutes Verres

Reacutefract 2 222-228

Richet P (1984) Viscosity and configurational entropy of silicate melts Geochim

Cosmochim Acta 48 471-483

Richet P Lejeune A-M Holtz F and Roux J (1996) Water and the viscosity of

andesite melts Chem Geol 128 185-197

Richet P Robie RA and Hemingway BS (1986) Low-temperature heat capacity of

diopside glass (CaMgSi2O6) a calorimetric test of the configurational-entropy

theory applied to the viscosity of liquid silicates Geochim Cosmochim Acta 50

1521-1533

Riebling EF (1966) Structure of sodium aluminosilicate melts containing at least 50

mole SiO2 at 1500 ˚C J Chem Phys 44 2857-2865

Romano C Giordano D Papale P Mincione V Dingwell DB and Rosi M (2003)

The dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean

Fields Chem Geol 202 23-38

48

Scaillet B Holtz F Pichavant M and Schmidt M (1996) Viscosity of Himalayan

leucogranites Implication for mechanisms of granitic magma ascent J Geophys

Res 101 27691-27699

Scarfe CM and Cronin DJ (1986) Viscosity-temperature relationships at 1 atm in the

system diopside-albite Am Mineral 71 767-771

Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural

relaxation J Am Ceram Soc 67 504-511

Schulze F Behrens H Holtz F Roux J and Johannes W (1996) The influence of H2O

on the viscosity of a haplogranitic melt Am Mineral 81 1155-1165

Shartsis L Spinner S and Capps W (1952) Density expansivity and viscosity of

molten alkali silicates J Am Ceram Soc 35 155-160

Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature

range 700deg to 900degC J Geophys Res 68 1512-1520

Shaw HR (1972) Viscosities of magmatic silicate liquids an empirical method of

prediction Am J Sci 272 870-893

Stein DJ and Spera FJ (1993) Experimental rheometry of melts and supercolled liquids

in the system NaAlSiO4-SiO2 Implications for structure and dynamics Am

Mineral 78 710-723

Stein DJ and Spera FJ (2002) Shear viscosity of rhyolite-vaporemulsions at magmatic

temperatures by concentric cylinder rheometry J Volcanol Geotherm Res 113

243-258

Stevenson RJ Bagdassarov NS and Dingwell DB (1998) The influence of trace

amounts of water on the viscosity of rhyolites Bull Volcanol 60 89-97

49

Stevenson RJ Dingwell DB Webb SL and Sharp TG (1996) Viscosity of microlite-

bearing rhyolitic obsidians an experimental study Bull Volcanol 58 298-309

Stolper E (1982) The speciation of water in silicate melts Geochim Cosmochim Acta

46 2609-2620

Tammann G and Hesse W (1926) Die abhaumlngigkeit der viscositaumlt von der temperatur bei

unterkuumlhlten fluumlssigkeiten Z Anorg Allg Chem 156 245-257

Taylor NW and Dear PS (1937) Elastic and viscous properties of several soda-silica

glasses in the annealing range of temperature J Am Ceram Soc 20 296-304

Taylor NW and Doran RF (1941) Elastic and viscous properties of several potash-

silica glasses in the annealing range of temperature J Am Ceram Soc 24 103-

109

Taylor TD and Rindone GE (1970) Properties of soda aluminosilicate glasses V low-

temperature viscosities J Am Ceram Soc 53 692-695

Toplis MJ Dingwell DB and Libourel G (1994) The effect of phosphorus on the iron

redox ratio viscosity and density of an envolved ferro-basalt Contrib Mineral

Petrol 117 293-304

Urbain G Bottinga Y and Richet P (1982) Viscosity of liquid silica silicates and

alumino-silicates Geochim Cosmochim Acta 46 1061-1072

Whittington A Richet P and Holtz F (2000) Water and the viscosity of depolymerized

aluminosilicate melts Geochim Cosmochim Acta 64 3725-3736

Whittington A Richet P and Holtz F (2001) The viscosity of hydrous phonolites and

trachytes Chem Geol 174 209-223

50

Whittington A Richet P Behrens H Holtz F and Scaillet B (2004) Experimental

temperature-X(H2O)-viscosity relationship for leucogranites and comparison with

synthetic silicic liquids Tran Royal Soc Edinburgh Earth Sci 95 59-71

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth Planet

Sci Lett 122 373-391

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

51

CHAPTER III

PRESSURE DEPENDENCE OF THE SPECIATION OF DISSOLVED WATER IN RHYOLITIC MELTS

ABSTRACT

Water speciation in rhyolitic melts with dissolved water ranging from 08 to 4

wt under high pressure was investigated Samples were heated in a piston-cylinder

apparatus at 624-1027 K and 094-283 GPa for sufficient time to equilibrate hydrous

species (molecular H2O and hydroxyl group H2Om + O = 2OH) in the melts and then

quenched roughly isobarically Concentrations of two hydrous species in the quenched

glasses were measured with Fourier transform infrared (FTIR) spectroscopy For samples

with total water content less than 27 wt the equilibrium constant is independent of

total H2O concentration Incorporating samples with higher water contents the

equilibrium constant depends on total H2O content and a regular solution model is used

to describe the dependence The equilibrium constant changes nonlinearly with pressure

for samples with a given water content at a given temperature The equilibrium constant

does not change much from ambient pressure to 1 GPa but it increases significantly from

1 to 3 GPa In other words more molecular H2O reacts to form hydroxyl groups as

pressure increases from 1 GPa which is consistent with breakage of tetrahedral

aluminosilicate units due to compression of the melt induced by high pressure The effect

52

of 19 GPa (from 094 to 283 GPa) on the equilibrium constant at 873 K is equivalent to

a temperature effect of 51 K (from 873 K to 924 K) at 094 GPa The results can be used

to evaluate the role of speciation in water diffusion to estimate the apparent equilibrium

temperature and to infer the viscosity of hydrous rhyolitic melts under high pressure

1 INTRODUCTION

The nature of dissolved water in silicate melt has received considerable attention

(eg Goranson 1938 Wasserburg 1957 Shaw 1964 Burnham 1975 Stolper 1982ab

McMillan 1994 Zhang 1999 Zhang et al 2007) As the most abundant volatile

component dissolved in terrestrial silicate melts dissolved water in melts plays an

important role in igneous processes Water can alter the structure of silicate melts hence

significantly change their physical and chemical properties such as solidusliquidus

temperatures (eg Tuttle and Bowen 1958) viscosity (eg Shaw 1972 Hui and Zhang

2007) crystal nucleation rates (eg Davis et al 1997) chemical diffusion (eg Watson

1991 Behrens and Zhang 2001) and oxygen ldquoselfrdquo diffusion (eg Zhang et al 1991a

Behrens et al 2007) Some of these effects are related to the speciation reaction below

(Stolper 1982ab)

H2Om + O = 2OH (1)

where H2Om denotes dissolved H2O molecules O denotes anhydrous oxygen and OH

denotes hydroxyl groups in silicate melts Total H2O content will be denoted as H2Ot

The equilibrium and kinetics of the above speciation reaction in rhyolitic melt has been

extensively studied (Stolper 1982a b Zhang et al 1991a 1995 1997b 2003 Ihinger et

al 1999 Nowak and Behrens 2001) Two debates have occurred about speciation

53

studies (see reviews by Zhang 1999 Behrens and Nowak 2003 Zhang et al 2007) The

early debate on whether species concentrations can be quenched from high temperature

(such as 1100 K) has been settled and the conclusion is that species concentrations will

be altered during quench if the initial temperature is above the glass transition

temperature for the given quench rate (Dingwell and Webb 1990) The later debate on

quenched versus in situ speciation studies has also been resolved and the conclusion is

that species concentrations can be preserved by rapid quench from intermediate

experimental temperatures (such as 800 K depending on H2Ot and quench rate) below

the glass transition temperature for the given quench rate (Withers et al 1999 Nowak

and Behrens 2001) The speciation data not only provide an understanding of the

detailed dissolution mechanism of H2O in melts but also can be applied to understand

H2O solubility and diffusivity in silicate melts and to infer viscosity of hydrous melts

Previous experimental studies mostly investigated H2O speciation at pressures

below 1 GPa This paper extends the experimental range to higher pressures The new

data reported here span 094-283 GPa 624-1027 K and 08-40 wt H2Ot Combining

these data with previous results (Ihinger et al 1999) a regular solution model is

developed to fit H2O speciation data from low to high pressures

2 EXPERIMENTAL METHODS

In this study hydrous rhyolitic glasses were held under a constant temperature

(623-1023 K nominal temperature) and pressure (1-3 GPa nominal pressure) in a piston

cylinder apparatus for sufficient duration (96 s to 3 days) for the two hydrous species in

the melt to reach equilibrium but short enough to avoid significant crystallization The

54

samples were then quenched to room temperature roughly isobarically Species

concentrations were measured by Fourier transform infrared (FTIR) spectroscopy at

ambient environment on the quenched glasses Based on various assessments (see

Introduction and Discussion) the quenched species concentrations reflect those at high

temperature and pressure

Starting materials include both natural hydrous rhyolitic glass (KS) and synthetic

hydrous rhyolitic glass prepared by hydration of natural rhyolitic glasses Sample KS is

from Mono Crater California Samples GMR+2 and GMR+4 were synthesized by adding

water to obsidian from Glass Mountain California The chemical compositions of these

two natural rhyolitic obsidians are listed in Table 31 Hydration of rhyolitic glasses was

implemented at 05 GPa by re-melting glass powders with added H2O at University of

Hannover Germany The obsidian glass powder and water were sealed in Au-Pd

capsules The capsules were placed in an internally heated pressure vessel (IHPV) and

heated to 1473 K at 05 GPa for overnight Sample assemblages were under H2O-

undersaturated running conditions during heating so that the loaded water was completely

dissolved in the melts Samples were then quenched isobarically The hydrated glasses

were crystal-free and bubble-free

The equilibrium experiments were performed in a piston cylinder apparatus at the

University of Michigan Glass fragments were prepared into cylinders with diameters of

about 2 mm and heights of about 2 mm Then a glass cylinder was placed into a graphite

capsule which was enclosed in crushable MgO as the inner pressure medium with

graphite heater outside and then BaCO3 cell as outer pressure medium The lid of the

graphite capsule was thin (about 05 mm thickness) to minimize the distance between the

55

Table 31 Chemical compositions (oxide wt) of KS and GMR rhyolite on an anhydrous basis

KS GMR SiO2 7594 7322 TiO2 009 031 Al2O3 1298 1408 FeO 098 145 MnO 005 005 MgO 003 026 CaO 056 131 Na2O 401 406 K2O 471 432 P2O5 029 007 H2Ot

076-090

189-223 in GMR+2338-417 in GMR+4

Total 9963 9913 Glass analyses were carried out with a CAMECA 5X-100 electron microprobe using a defocused beam (10 microm) with 1 nA current at the University of Michigan The oxide wt on an anhydrous basis is calculated by dividing the electron microprobe measured oxide concentration by 1-C where C is weight percent of H2Ot obtained by infrared spectroscopy

56

thermocouple tip and the sample The glass cylinder was placed in the center of the

graphite heater The running temperature was measured with a type-S thermocouple

(Pt90Rh10-Pt) or type-D thermocouple (Re3W97-Re25W75) The distance between

thermocouple tip and the center of the sample was typically about 13 mm after

experiments

A ldquopiston-outrdquo procedure was used to bring the assemblage to the final pressure at

373 K or 473 K The sample assemblage was relaxed at this temperature and at the

desired experimental pressure for at least 2 hours to close the gaps in the sample

assemblage After relaxation of the sample assemblage under pressure temperature was

increased at a rate of 200 K per minute to the designated temperature The sample stayed

at the desired temperature for sufficient time to ensure equilibrium for the interconversion

reaction between the two hydrous species in the sample but not too long enough for

appreciable crystallization No temperature overshoot occurred and temperature

fluctuation was le 2 K The sample was quenched roughly isobarically by turning off the

power and manually pumping to keep up the pressure The cooling rate is estimated to be

~ 100 Ks (Zhang et al 2000)

The thermal gradient in the piston cylinder was calibrated using water speciation

in rhyolitic glass (Zhang et al 1997a Ihinger et al 1999) Five experiments at 05 GPa

were carried out to calibrate the temperature distribution along the central axis of the

graphite heater The temperature distribution along the distance from the center of the

charge is shown in Fig 31 The equation for the temperature correction is

∆T asymp 221(T600)x2 (2)

where x is the distance between the thermocouple tip and the center of the charge in mm

57

0

10

20

30

40

50

0 1 2 3 4 5 6

sup2T (K

)

Distance from center (mm)

Fit by sup2 T=ax2

a=154 226 228 241 258

Temperature gradient in piston cylinder

T - 600degCTemperature correction

sup2 T = (T600)middotax2

where a = 221

Fig 31 Experimental results for temperature distribution in piston cylinder 2 at the University of Michigan laboratory calibrated using hydrous species equilibrium in rhyolite based on the speciation model of Zhang et al (1997a) Curves are best fittings of the different set of experimental data with different a values shown in the figure using Eqn 2

58

T is the temperature reading of the thermocouple in ˚C ∆T is the temperature difference

between the center and the thermocouple tip in ˚C and the constant 221 is the average of

5 experiments Therefore T+∆T is the temperature at the center of sample Depending on

the IR measurement position on the glass chip a correction of up to 6˚C was added to the

nominal temperature recorded by the thermocouple The pressure effect on emf of

different thermocouples results only in a small effect on temperature at le 3 GPa (Li et al

2003) and is ignored Overall the temperature uncertainty (2σ) for the series of

experiments in this study is estimated to be about 6 K

Pressure calibration of the piston-cylinder apparatus (Piston-cylinder 2 in the

laboratory) was conducted using two types of experiments the melting point of gold

(Akella and Kennedy 1971) at le 10 GPa and the quartz-coesite transition (eg Boyd

and England 1960 Kitahara and Kennedy 1964 Akella 1979 Mirwald and Massonne

1980 Bohlen and Boettcher 1982 Bose and Ganguly 1995) at 1073 K In the

calibration using gold melting temperature a gold wire connected the two legs of a type-

D thermocouple in a piston-cylinder At a well-maintained nominal pressure the

assemblage was gradually heated until melting of the Au wire (at which the thermocouple

signal was lost) The experiments show that the actual pressure is similar to the nominal

pressure within several percent Quartz-coesite reversal experiments at 1073 K were also

carried out with a starting material of a mixture of quartz (50 wt) and coesite (50 wt)

powder moistened to accelerate the reaction and sealed in Au capsule Here the

experimental procedure of Bose and Ganguly (1995) was followed The run product of

each experiment consists of only one pure crystalline phase as verified by X-ray

diffraction The experimental results are listed in Table 32a The calculated quartz-

59

coesite phase transition pressures at 1073 K from the literature are given in Table 32b

The literature data vary by 024 GPa reflecting difficulties in the experimental

calibrations Because these results do not completely agree with each other the most

recent experimental calibration (Bose and Ganguly 1995) was adopted to correct the

pressure in the piston cylinder apparatus by -6 (ie dividing the nominal pressure by

106) Some experiments were carried out using another piston cylinder for which the

correction is 5 based on another series of experiments to be reported in Ni and Zhang

(2008)

In order to further extend the pressure range some speciation experiments at 4-6

GPa were carried out in a multi-anvil apparatus at the University of Michigan However

except for one these charges crystallized extensively Because of the extreme difficulty

in quenching liquid to glass equilibrium speciation experiments were not continued at 4-

6 GPa

3 ANALYTICAL PROCEDURES

After quench each charge was embedded in epoxy resin Then it was polished on

both sides into a thin section along the cylindrical axis The thickness of the layer

polished away on each side of the charge was at least twice of the water diffusion

distance estimated using the diffusivity of Zhang and Behrens (2000) All run products

were analyzed for concentrations of H2Om and OH expressed in terms of H2O using an

FTIR Perkin-Elmer GX spectrometer at the University of Michigan An aperture of 01

mm in diameter was used to delimit the infrared beam size This aperture size allows

acquisition of high-quality IR spectra and evaluation of sample heterogeneity The

60

Table 32a Experimental results for pressure calibration using quartz-coesite transition at 1073 K

Nominal P (GPa)

t (h) Result

2896 72 quartz

2965 70 quartz

3034 70 quartz

3103 66 quartz

3137 70 coesite

3172 67 coesite

3378 66 coesite

Table 32b Literature data on quartz-coesite transition pressure at 1073 K

P (GPa) Reference

2846 Boyd amp England (1960)

2908 Kitahara amp Kennedy (1964)

3030 Akella (1979)

2920 Akella (1979)

2862 Mirwald amp Massonne (1980)

2792 Bohlen amp Boettcher (1982)

2935 Bose amp Ganguly (1995)

61

intensities (peak heights) of the absorption bands at 5230 cm-1 (A523) and 4520 cm-1

(A452) were measured The baseline was fit by flexicurve as shown in Zhang et al

(1997a)

Species (OH and H2Om) concentrations in terms of H2O were obtained from IR

band intensities according to Beerrsquos law Extensive effort has been made to calibrate the

IR method on hydrous rhyolitic glasses (eg Newman et al 1986 Zhang et al 1997a

Withers and Behrens 1999) The calibrations of Newman et al (1986) and Withers and

Behrens (1999) assumed constant molar absorptivities whereas Zhang et al (1997a)

considered the variability of the molar absorptivities With the calibration of Zhang et al

(1997a) the H2Ot content is highly reproducible for the same sample but with different

cooling rates but less so with other calibrations Furthermore the calibration of Zhang et

al (1997a) results in concentration-independent equilibrium constants of reaction (1) at

H2Ot le 27 wt However the calibration of Zhang et al (1997a) becomes increasingly

less accurate as H2Ot increases with error of 017 wt at 38 wt 039 wt at 56 wt

and 11 wt at 77 wt (Zhang and Behrens 2000) Because H2Ot in this work is less

than 42 wt and for consistency with the low-pressure speciation data of Ihinger et al

(1999) the molar absorptivities of Zhang et al (1997a) were adopted If a different

calibration is used there would be significant and systematic differences in species

concentrations and K Nonetheless the trends of how K depends on temperature and

pressure stay the same Furthermore as long as self-consistency is maintained the

equilibrium temperature (or the apparent equilibrium temperature) can be retrieved from

species concentrations accurately

62

Whether or not equilibrium is reached for reaction (1) in a particular experiment

the parameter

Q equiv(XOH

glass)2

XH2Om

glass XOglass

is used to monitor the change of proportions of OH and H2Om in a sample where Xiglass is

the measured mole fraction of species i in the quenched glass on a single oxygen basis

(Stolper 1982a b) and O denotes an anhydrous oxygen When the reaction duration is

long enough for the interconversion of these two hydrous species in the melt to reach

equilibrium and furthermore if this equilibrium state is retained in the quench process Q

will be equal to the equilibrium constant K

4 RESULTS AND DISCUSSION

41 SPECIES CONCENTRATIONS AND EQUILIBRIUM CONSTANTS

The concentrations of H2Om and OH in all quenched glasses calculated using the

calibration of Zhang et al (1997a) are listed in Table 33 The actual IR absorbance data

are also reported because there may be further improvement in the IR calibration The

equilibrium constants are listed in Table 33 and plotted as a function of 1000T in Fig

32

The uncertainty in each IR band intensity is about 1 relative leading to an error

of 0022 in lnK not accounting for systematic uncertainty of the calibration The

uncertainty in thickness measurement is about 2 microm which results in a negligible

increase in the overall uncertainty of lnK For high-pressure data there are additional

63

Table 33 The equilibrium speciation of water in rhyolitic melts under various pressures

Measurement T$ P$ Time Abs Abs Thickness H2Ot H2Om OH X(H2Ot) X(H2Om) X(OH) 1000T lnK K GPa s 5200 4500 mm wt wt wt K-1 KS-1-21 927 094 600 00270 01034 0717 0844 0160 0684 00151 00029 00245 107873 -1538 KS-1-22 926 094 600 00278 01028 0713 0849 0166 0683 00152 00030 00245 108043 -1573 KS-1-23 926 094 600 00255 00998 0708 0819 0153 0666 00147 00027 00239 107938 -1545 KS-1-31 879 094 14400 00593 01999 1415 0845 0178 0666 00151 00032 00239 113736 -1695 KS-1-32 877 094 14400 00589 01989 1407 0845 0178 0667 00151 00032 00239 114041 -1693 KS-1-33 878 094 14400 00627 02065 1431 0869 0186 0683 00156 00033 00245 113925 -1691 KS-1-41 819 094 187200 00676 01833 1321 0868 0218 0650 00155 00039 00233 122117 -1945 KS-1-42 817 094 187200 00673 01805 1311 0863 0218 0644 00155 00039 00231 122410 -1966 KS-1-43 818 094 187200 00694 01857 1326 0880 0223 0657 00158 00040 00235 122228 -1946 GMR+2-1-11 828 094 600 01862 02472 1038 1964 0772 1192 00349 00137 00423 120769 -1977 GMR+2-1-12 827 094 600 01892 02480 1041 1974 0782 1192 00350 00139 00423 120907 -1991 GMR+2-1-13 826 094 600 01808 02449 1033 1940 0753 1187 00344 00134 00422 121022 -1960 GMR+2-1-21 777 094 600 02150 02467 1063 2014 0870 1144 00357 00154 00406 128775 -2180 GMR+2-1-22 778 094 600 02114 02467 1059 2010 0859 1151 00357 00152 00408 128497 -2155 GMR+2-1-23 778 094 600 02099 02451 1058 1997 0854 1143 00354 00152 00406 128515 -2163 GMR+2-1-31 725 094 183600 01824 01848 0885 1886 0886 1000 00335 00157 00355 137978 -2469 GMR+2-1-32 727 094 183600 01841 01873 0888 1904 0891 1012 00338 00158 00360 137634 -2452 GMR+2-1-33 726 094 183600 01868 01892 0888 1929 0905 1024 00343 00161 00364 137800 -2443 GMR+2-1-R11 776 094 720 01756 01913 0782 2180 0968 1212 00386 00172 00430 128916 -2166 GMR+2-1-R12 775 094 720 01742 01870 0773 2167 0972 1195 00384 00172 00424 129036 -2199 GMR+2-1-R13 776 094 720 01746 01903 0789 2146 0954 1193 00381 00169 00423 128916 -2186 GMR+4-1-21 726 094 10800 01375 00780 0243 4010 2485 1525 00701 00434 00533 137751 -2626 GMR+4-1-22 725 094 10800 01396 00807 0256 3893 2392 1501 00681 00418 00525 137846 -2621 GMR+4-1-23 725 094 10800 01315 00745 0236 3944 2447 1497 00689 00428 00523 137928 -2648 GMR+4-1-31 676 094 46800 02577 01364 0490 3575 2300 1276 00627 00403 00447 147921 -2914 GMR+4-1-32 675 094 46800 02586 01344 0482 3621 2348 1273 00635 00411 00446 148152 -2938 GMR+4-1-33 676 094 46800 02581 01368 0499 3515 2261 1255 00617 00397 00440 147982 -2931 GMR+4-1-41 626 094 261360 03017 01423 0573 3394 2298 1096 00596 00404 00385 159840 -3224 GMR+4-1-42 624 094 261360 03013 01414 0574 3375 2291 1084 00593 00402 00381 160157 -3242

64

GMR+4-1-43 625 094 261360 03012 01408 0568 3406 2315 1091 00598 00406 00383 159905 -3240 KS-2-11 926 189 600 00476 01838 1209 0894 0168 0727 00160 00030 00260 107938 -1459 KS-2-12 926 189 600 00475 01828 1208 0891 0167 0723 00159 00030 00259 108049 -1469 KS-2-13 926 189 600 00463 01806 1203 0880 0164 0716 00158 00029 00257 107968 -1466 KS-2-21 877 189 14400 00699 02340 1561 0904 0191 0713 00162 00034 00255 114018 -1625 KS-2-22 876 189 14400 00653 02264 1562 0864 0178 0687 00155 00032 00246 114156 -1633 KS-2-23 876 189 14400 00649 02264 1560 0865 0177 0688 00155 00032 00246 114176 -1625 KS-2-41 960 189 600 00419 01795 1189 0872 0150 0722 00156 00027 00259 104195 -1360 KS-2-42 959 189 600 00419 01795 1196 0866 0149 0717 00155 00027 00257 104320 -1368 KS-2-43 962 189 600 00415 01795 1198 0863 0147 0716 00155 00026 00256 103982 -1362 GMR+2-2-11 825 189 7200 01032 01397 0538 2153 0827 1325 00382 00147 00470 121199 -1829 GMR+2-2-12 826 189 7200 00992 01378 0536 2109 0797 1312 00374 00141 00465 121006 -1814 GMR+2-2-13 825 189 7200 00962 01329 0524 2080 0790 1289 00369 00140 00457 121179 -1841 GMR+2-2-21 777 189 86400 01633 02049 0850 2032 0827 1205 00361 00147 00428 128756 -2023 GMR+2-2-22 776 189 86400 01618 02020 0852 1998 0817 1181 00355 00145 00419 128904 -2053 GMR+2-2-23 776 189 86400 01607 02027 0852 1998 0812 1187 00355 00144 00421 128904 -2036 GMR+2-2-41 856 189 600 01450 02017 0757 2196 0826 1370 00389 00146 00486 116794 -1760 GMR+2-2-42 856 189 600 01461 02051 0759 2225 0830 1395 00394 00147 00494 116807 -1729 GMR+2-2-43 855 189 600 01468 02042 0759 2221 0834 1387 00394 00148 00491 116954 -1746 GMR+4-2-11 757 189 1260 02299 01444 0414 4165 2444 1721 00727 00426 00601 132182 -2361 GMR+4-2-12 756 189 1260 02228 01393 0403 4132 2432 1701 00721 00424 00594 132305 -2381 GMR+4-2-13 756 189 1260 02359 01500 0432 4117 2401 1716 00719 00419 00599 132297 -2351 GMR+4-2-21 726 189 14400 02950 01847 0575 3809 2249 1560 00667 00394 00546 137766 -2482 GMR+4-2-22 725 189 14400 02949 01838 0574 3804 2253 1552 00666 00394 00543 137956 -2494 GMR+4-2-23 726 189 14400 02918 01833 0578 3749 2212 1537 00656 00387 00538 137788 -2496 GMR+4-2-31 676 189 172800 04221 02261 0741 3920 2500 1420 00685 00437 00496 148015 -2778 GMR+4-2-32 675 189 172800 04178 02246 0737 3907 2488 1419 00683 00435 00496 148155 -2773 GMR+4-2-33 675 189 172800 04296 02279 0745 3953 2532 1421 00691 00443 00497 148070 -2788 KS-3-11 876 286 7200 00622 02310 1566 0870 0169 0701 00156 00030 00251 114211 -1539 KS-3-12 875 286 7200 00614 02297 1568 0863 0166 0696 00154 00030 00249 114288 -1540 KS-3-13 875 286 7200 00631 02318 1564 0877 0172 0705 00157 00031 00253 114248 -1543 KS-3-R11 877 283 14400 00349 01493 1117 0760 0133 0627 00136 00024 00225 114045 -1524 KS-3-R12 878 283 14400 00353 01499 1121 0762 0134 0628 00137 00024 00225 113841 -1532

65

KS-3-R13 877 283 14400 00357 01501 1118 0766 0136 0630 00137 00024 00226 114035 -1536 KS-3-21 977 286 600 00352 01785 1248 0799 0120 0680 00143 00021 00244 102327 -1259 KS-3-22 977 286 600 00355 01788 1248 0802 0121 0681 00144 00022 00244 102372 -1264 KS-3-23 977 286 600 00355 01785 1248 0800 0121 0679 00143 00022 00244 102347 -1269 KS-3-24 975 286 600 00348 01761 1251 0786 0118 0667 00141 00021 00239 102525 -1283 KS-3-31 926 286 600 00435 01998 1438 0785 0128 0657 00141 00023 00235 108042 -1399 KS-3-32 927 286 600 00431 01987 1439 0779 0127 0652 00140 00023 00234 107927 -1404 KS-3-33 926 286 600 00435 02005 1439 0787 0128 0659 00141 00023 00236 107982 -1391 KS-3-41 1027 286 96 00372 02101 1489 0776 0106 0670 00139 00019 00240 097390 -1168 KS-3-42 1026 286 96 00376 02105 1489 0779 0107 0671 00140 00019 00241 097456 -1174 KS-3-43 1026 286 96 00369 02093 1489 0772 0105 0667 00138 00019 00239 097456 -1168 KS-3-44 1026 286 96 00365 02082 1489 0767 0104 0663 00138 00019 00238 097490 -1170 GMR+2-3-11 876 283 600 01364 02250 0837 2102 0702 1400 00373 00124 00497 114103 -1554 GMR+2-3-12 875 283 600 01377 02250 0836 2111 0709 1402 00374 00126 00497 114243 -1563 GMR+2-3-13 876 283 600 01326 02220 0831 2078 0687 1391 00369 00122 00493 114191 -1547 GMR+2-3-21 825 283 7200 01509 02250 0845 2145 0769 1376 00380 00136 00488 121184 -1682 GMR+2-3-22 825 283 7200 02077 03063 1159 2134 0772 1362 00378 00137 00483 121149 -1706 GMR+2-3-23 825 283 7200 02067 03075 1162 2131 0766 1365 00378 00136 00484 121149 -1694 GMR+2-3-31 777 283 172800 02163 02836 1081 2202 0863 1339 00390 00153 00475 128707 -1851 GMR+2-3-32 777 283 172800 02174 02826 1082 2197 0866 1331 00389 00153 00472 128745 -1867 GMR+2-3-33 775 283 172800 02199 02841 1080 2220 0878 1342 00393 00156 00476 128972 -1864 GMR+4-3-11 776 283 960 02616 02005 0563 3871 2039 1833 00677 00357 00641 128814 -2055 GMR+4-3-12 775 283 960 02644 02014 0564 3894 2057 1837 00681 00360 00643 129041 -2059 GMR+4-3-13 776 283 960 02598 01991 0561 3857 2031 1825 00675 00355 00639 128818 -2060 GMR+4-3-31 726 283 21600 02769 01951 0580 3777 2092 1685 00661 00366 00590 137668 -2253 GMR+4-3-32 726 283 21600 02748 01930 0579 3745 2079 1666 00656 00364 00583 137835 -2271 GMR+4-3-33 726 283 21600 02763 01959 0589 3718 2054 1664 00651 00360 00583 137770 -2261 GMR+4-3-41 676 283 259200 03326 01961 0601 3999 2431 1568 00699 00425 00548 147929 -2547 GMR+4-3-42 675 283 259200 03337 01972 0602 4012 2435 1577 00701 00426 00551 148109 -2538 GMR+4-3-43 675 283 259200 03297 01955 0598 3995 2422 1574 00698 00423 00550 148041 -2536 KS-1b-11 973 00001 600 00191 00907 0611 0842 0133 0709 00151 00024 00254 102759 -1276 KS-1b-12 973 00001 600 00194 00907 0608 0849 0136 0713 00152 00024 00256 102759 -1287 KS-1b-13 973 00001 600 00190 00898 0606 0841 0134 0708 00151 00024 00253 102759 -1286

66

KS-1b-21 923 00001 600 00214 00959 0691 0787 0131 0655 00141 00024 00235 108325 -1425 KS-1b-22 923 00001 600 00206 00938 0685 0774 0128 0646 00139 00023 00231 108325 -1430 KS-1b-23 923 00001 600 00219 00966 0688 0800 0135 0664 00143 00024 00238 108325 -1427 KS-1b-R11 923 00001 7200 00402 01796 1292 0789 0132 0657 00141 00024 00235 108325 -1426 KS-1b-R12 923 00001 7200 00400 01794 1291 0788 0132 0657 00141 00024 00235 108325 -1423 KS-1b-R13 923 00001 7200 00402 01797 1292 0789 0132 0657 00141 00024 00236 108325 -1424 KS-1b-R21 923 00001 2400 00685 02875 1975 0839 0147 0692 00150 00026 00248 108325 -1430 KS-1b-R22 923 00001 2400 00685 02870 1976 0838 0147 0690 00150 00026 00247 108325 -1435 KS-1b-R23 923 00001 2400 00675 02846 1973 0830 0145 0685 00149 00026 00245 108325 -1438 KS-1b-31 873 00001 21600 00501 01763 1231 0851 0173 0678 00152 00031 00243 114528 -1632 KS-1b-32 873 00001 21600 00501 01766 1231 0852 0173 0679 00153 00031 00243 114528 -1628 KS-1b-33 873 00001 21600 00498 01757 1230 0848 0172 0676 00152 00031 00242 114528 -1633

Note $ T has been corrected using Eqn (2) P has been corrected based on pressure calibration Three or four points were measured by IR for each experimental sample they are listed as xxx1 2 3 or 4 These experiments are reversal runs (Fig 33)

67

-26

-24

-22

-2

-18

-16

-14

-12

-1

09 1 11 12 13 14 15

KSGMR+2GMR+4

00001 GPa

283 GPa

1000T

lnK

A

-28

-26

-24

-22

-2

-18

-16

-14

-12

1 11 12 13 14 15

KSGMR+2GMR+4

189 GPa

00001 GPa

1000T

lnK

B

-35

-3

-25

-2

-15

1 11 12 13 14 15 16 17

KSGMR+2GMR+4

lnK

1000T

00001 GPa

094 GPa

C

-28

-26

-24

-22

-2

-18

-16

-14

-12

1 11 12 13 14 15

KSIhinger et al 99

lnK

1000T

00001 GPaD

Fig 32 The temperature dependence of lnK at some pressures Water concentrations for samples KS (076-090 wt) and GMR+2 (189-223 wt) are less than 27 wt and speciation data on them overlap indicating that K is independent of H2Ot when water content is less than 27 wt The dashed reference line is the ideal mixing model for water content less than 27 wt at ambient pressure from Ihinger et al (1999) The solid lines are the best-fit linear regression results for the data showing that ideal solution model (Eqn 3) works well for lt 27 wt H2Ot (KS and GMR+2) The regression for GMR+4 was separated from that for other compositions and is different

68

errors in estimating the species concentrations such as density variation with pressure

Hence the uncertainty from the IR measurement in lnK is estimated to be003

42 ATTAINMENT AND RETENTION OF EQUILIBRIUM

In this section the attainment of equilibrium at the experimental temperature and

the retention during quench are examined In either of the following two scenarios the

measured species concentrations would not reflect those at equilibrium in other words Q

ne K (1) the duration for the reaction at the experimental temperature is not long enough

for it to reach equilibrium (attainment of equilibrium) or (2) species concentrations in the

melt are changed during isobarically quenching to room temperature (retention of

equilibrium)

To demonstrate the attainment of equilibrium reversal experiments have been

carried out under two sets of conditions (a GMR+2-1-R1 776 K 094 GPa and 216

wt H2Ot b KS-3-R1 877 K 283 GPa and 076 wt H2Ot Table 33) One

experiment in each reversal pair was first relaxed at a temperature above the reversal

experimental temperature and one below to obtain different Q values Hence each set of

the reversal experiments approached the same final value of Q from initially higher or

lower Q values (Fig 33) This final Q value is the equilibrium constant K These

experiments are informative for constraining the duration required for a sample to reach

equilibrium at this set of conditions Durations for all other experiments were estimated

from these experiments and from kinetic experiments under ambient pressure (Zhang et

al 1995 1997b 2000) the actual experimental duration was longer than that estimated

for reaching equilibrium at specific running condition

69

-2

-19

-18

-17

-16

-15

-14

0 5000 1 104 15 104

lnQ

time (s)

876 K 283 GPa

A

-24

-23

-22

-21

-2

-19

0 100 200 300 400 500 600 700 800time (s)

lnQ

777 K 094 GPa

B

Fig 33 Two sets of reversal experiments to examine the duration required to reach equilibrium Solid curves are schematic illustrations of Q evolution in different experiments (A) KS sample (B) GMR+2 sample The relaxation might be much faster than illustrated by the curves

70

The issue of whether or not the equilibrium state can be retained during quench

has received considerable attention during the last two decades (eg Dingwell and Webb

1990 Zhang et al 1991b 1995 Ihinger et al 1999 Withers et al 1999 Zhang 1999

Nowak and Behrens 2001 Xu and Zhang 2002 Behrens and Nowak 2003) As

reviewed in the Introduction the different sides have worked together and resolved the

debates the consensus is that species concentrations can be retained by quench if the

experimental temperature is not too high (such as le850 K depending on H2Ot see Table

33) so that it is below the glass transition temperature for the given quench rate and

pressure (Withers et al 1999 Behrens and Nowak 2003)

In summary for attainment of equilibrium the experimental temperature must be

high enough (such as 673 K depending on H2Ot and pressure see Table 33) For

retention of equilibrium species concentrations through quench the experimental

temperature must be low enough In other words the experimental temperature must

satisfy the conditions that for the time scale of the isothermal experiments the sample is

in the liquid state whereas for the time scale of quenching the sample is in the glass

state Hence there is a limited temperature window for a given H2Ot and pressure at

which equilibrium speciation can be obtained from quench experiments

43 EQUILIBRIUM CONSTANT AS A FUNCTION OF TEMPERATURE H2Ot

AND PRESSURE

Equilibrium speciation data are listed in Table 33 and results are plotted in Fig

32 as lnK versus 1000T As shown in Figs 32a 32b and 32c K is independent of

water content when H2Ot in the sample is less than 27 wt consistent with Zhang et al

71

(1997a) Some new experimental data at ambient pressure are also reported here to

extend the temperature coverage of Ihinger et al (1999) Other speciation data have been

obtained on rhyolitic or quasi-rhyolitic melts (eg Sowerby and Keppler 1999 Nowak

and Behrens 2001 Behrens and Nowak 2003) but they are based on different IR

calibrations (different molar absorptivities) and cannot be directly compared with the new

data The new 1-bar data are consistent with those of Ihinger et al (1999) as shown in

Fig 32d A simple ideal solution model (Eqn 3) can be used to describe speciation in the

rhyolitic melts with low water content (up to 27 wt H2O) at any given pressure

lnK = A +1000

TB (3)

where A and B are fitting parameters independent of chemical composition The fitting

results are shown in Figs 32 and 34a and fitting parameters at each pressure are listed in

Table 34 The high-pressure experiments show an increase of lnK with increasing

pressure systematically As shown in Fig 34a the effect of 189 GPa (from 094 to 283

GPa) on the equilibrium constant of the speciation reaction at 773 K is equivalent to that

of 67 K (from 773 K to 840 K) on the equilibrium constant at 094 GPa The enthalpy of

reaction (1) at a given pressure can be inferred from the slopes of the best-fitting lines in

Fig 34a ie from fitting parameter B As shown in Fig 34b enthalpy of reaction (1)

decreases nonlinearly with pressure from 2702 kJmol under ambient pressure to 1853

kJmol at 283 GPa (Fig 34b)

Although K for reaction (1) does not depend on H2Ot concentration for water

content less than 27 wt at higher water content (here ~ 4 wt H2Ot) it depends on

H2Ot content This result indicates either mixing between H2Om OH and O in reaction

72

18

20

22

24

26

28

0 05 1 15 2 25 3

∆H (K

Jm

ol)

P (GPa)

∆H=26975-07704P-07773P2

B

-25

-2

-15

-1

09 1 11 12 13 14 15

00001 GPa094 GPa189 GPa283 GPa

A

lnK

1000T (T in K)

7001100 1000 900 800

T (K)

change in ln K due to change in P

change in T

change in ln K due to change in T

Fig 34 (A) The dependence of K on temperature for samples with H2Ot lt27 wt at various pressures Data for 00001 GPa are from Ihinger et al (1999) and this work The curves are the best-fit linear regression results using Eqn 3 The arrow lines indicate changes in lnK and T respectively (B) The pressure dependence of enthalpy of reaction (1) for samples with H2Ot lt27 wt The solid line is the best-fit regression result with equation shown in the figure

73

(1) is non-ideal or the already complicated calibration of Zhang et al (1997a) to convert

IR band intensities to species concentrations is imperfect (Ihinger et al 1999)

In the absence of an unambiguous calibration of the molar absorptivities of two

hydrous species in high-water-content samples the simplest approximation beyond ideal

mixing of H2Om OH and O in hydrous silicate melt is a regular solution model Silver

and Stolper (1989) illustrated a way to extend the simple ideal mixing model to a regular

solution model adapted also by Silver et al (1990) Zhang et al (1991b) and Ihinger et

al (1999) The same formulation is adapted here

lnK = ln XOH2

XH2OmXO

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = A+1000

TB+C XH2Om

+ D XOH( ) (4)

where A B C and D are fitting parameters independent of H2Ot and their physical

meanings are shown in Silver and Stolper (1989) Values of these fitting parameters at

each pressure are listed in Table 34 The maximum differences for these equations to

reproduce experimental equilibrium temperature are also listed in Table 34 and they are

within 10 K at high pressures

Eqn 4 could be expanded to accommodate the dependence of K on temperature

pressure and water content if the fitting parameters A B C and D in Eqn 4 are assumed

to be functions of pressure As discussed above the dependence on pressure is not linear

After some trials the following formulation is found to fit all speciation data in rhyolitic

melt well

lnK = A0 +AP P( )+1000

T(B0 +BP P + B

P3

2P

32 ) +

⎝ ⎜

(C0 +CP P +CP

32P

32 )XH2Om

+ (D0 +DP P + DP

32P

32 )XOH

⎠ ⎟

(5)

74

Table 34 Fitting parameters for Eqns 3 4 and 6

lnK lnKrsquo

ideal mixing regular solution model regular solution model

A B A B C D ∆T (K) $ A B C D ∆T (K) $

00001 GPa 20616 -32495 18120 -30830 -74203 30437 183 27524 -28404 -12945 189

094 GPa 17636 -30599 13264 -26529 -53362 01706 79 22910 -24292 01720 -17996 77

189 GPa 14995 -27503 10359 -23199 -71853 09728 73 18976 -20068 -16630 86

283 GPa 10053 -22285 07611 -20211 -75335 18349 90 16609 -17348 -15492 102

Note Water content is less than 22 wt

$ Maximum temperature difference between experimental temperature and model predicted temperature New data reported here and literature data from Ihinger et al (1999) which include some speciation data at P le 100 MPa

75

where P is pressure in GPa T is temperature in K and X is mole fraction of species H2Om

or OH This formulation could reproduce all experimental data with a 2σ uncertainty of

0058 in lnK The best-fit parameters in Eqn 5 with 2σ errors are A0 = 18120 plusmn 01044

AP = -03832 plusmn 00418 B0 = -30830 plusmn 00796 BP = 02999 plusmn 00638 BP32 = 00507 plusmn

00386 C0 = -74203 plusmn 14953 CP = 50262 plusmn 14040 CP32 = -31271 plusmn 09076 D0 =

30437 plusmn 13731 DP = -54527 plusmn 19763 DP32 = 30464 plusmn 12441 The reproducibility of

experimental equilibrium temperature by Eqn 5 is shown in a histogram (Fig 35) which

is approximately a Gaussian distribution Fig 36 further shows how well K at some

water contents can be reproduced

44 RELATING ABSORBANCES DIRECTLY TO TEMPERATURE AND

PRESSURE

Estimating the apparent equilibrium temperature of hydrous rhyolite of a given

cooling rate for inferring viscosity is one of the most important applications of this work

(Zhang et al 2003 Zhang and Xu 2007) Owing to possible future improvement of

molar absorptivities of two hydrous species it is useful to recast speciation data directly

in terms of IR band intensities (Ihinger et al 1999 Liu et al 2004a) so that equilibrium

temperature or the apparent equilibrium temperature can be directly estimated from

infrared data Following Zhang et al (2000) K is defined below

K = A452( )2A523

where A is absorbance per mm sample thickness By analogy with the regular solution

model (Eqn 4) the following equation is used to relate K and A

76

0

10

20

30

40

50

60

-20 -10 0 10 20∆T (K)

Num

ber o

f mea

sure

men

ts

Fig 35 Histogram showing the distribution of differences between the experimental equilibrium temperature and predicted temperature by Eqn 5 Sources of data include Ihinger et al (1999) and this work

77

-24

-22

-2

-18

-16

-14

-12

773K873K973K923K823K

lnK

973 K

873 K

773 K

Š27 wt H2OtA

-32

-3

-28

-26

-24

-22

-2

-18

-16

0 05 1 15 2 25 3

lnK

P (GPa)

39 wt H2Ot

673 K

773 K

873 K

B

Fig 36 Pressure effect on lnK at some temperatures and water concentrations The curves are calculated from Eqn 5 Points are experimental data In (A) three curves are calculated at each temperature for H2Ot of 07 17 and 27 wt from top to bottom at each temperature In (B) the dashed curve means temperature is above the experimental temperature

78

lnK = lnA452( )2

A523= A +1000

TB +C A523 + D A452( ) (6)

The best-fit parameters for four different pressures are listed in Table 34 The differences

between experimental and predicted temperatures using Eqn 6 are also listed in Table

34 which are not much different from the regular solution model using species

concentrations (Eqn 4) A model was developed to directly relate K A T and P

analogous to Eqn 5 as follows

lnK = A0+APP( )+1000

T(B0+BPP + B

P3

2P

32 ) +

⎝ ⎜

(C0+CPP +CP

32P

32 )A523 + (D0+DPP + D

P3

2P

32 )A452

⎠ ⎟

(7)

where P is pressure in GPa T is temperature in K and A is absorbance per mm sample

thickness for species H2Om or OH This formulation reproduces all of the data with a 2σ

uncertainty of 0059 in lnK The best-fit parameters in Eqn 7 with 2σ errors are A0 =

27524 plusmn 00944 AP = -03890 plusmn 00395 B0 = -28404 plusmn 00809 BP = 03053 plusmn 00697

BP32 = 00531 plusmn 00433 CP = 03768 plusmn 01301 CP32 = -02261 plusmn 00836 D0 = -12945

plusmn 00893 DP = -09499 plusmn 04076 DP32 = 05121 plusmn 02573 Because Eqn 7 is

independent of molar absorptivity future improvement in molar absorptivities of these

bands will not affect the reproducibility of Eqn 7 It can reproduce experimental

temperature with a 2σ uncertainty of 13 K (similar to the reproducibility of Eqn 5 shown

in Fig 35) directly from measured absorbances

79

45 APPLICATIONS

Speciation plays an important role in H2O solubility (eg Silver et al 1990

Blank et al 1993 Zhang 1999) as well as diffusion (eg Zhang et al 1991ab Zhang

and Behrens 2000 Liu et al 2004b Zhang et al 2007) and crystal nucleation (eg

Davis et al 1997) Several models (Eqns 3-5) are provided to determine H2Om and OH

concentrations as functions of pressure temperature and H2Ot in rhyolitic melts Hence

the new results can be applied to model H2O diffusion quantify the dependence of

molecular H2O diffusivity on pressure and quantitatively understand the effect of

dissolved H2Ot on the nucleation and crystal growth in hydrous melts under high

pressure Furthermore information from this work may be useful in future models of

thermodynamic properties of hydrous silicate melts

Another application of the new results is to predict apparent equilibrium

temperature Tae (Zhang 1994) As discussed by Zhang (1994) Tae is one of the well-

defined parameters in measurements for any given cooling history and can be a good

indicator of cooling rate Because of negligible dependence of K on pressure when the

pressure is lt 1 GPa and because natural rhyolitic glasses general cool at nearly surface

pressures for naturally cooled hydrous rhyolitic glasses the equation at ambient pressure

(eg Eqn 7 in Ihinger et al 1999) is applicable to calculate apparent equilibrium

temperature For experimental glasses cooled at high pressures such as 2 GPa the

pressure effect must be considered Knowledge of Tae is critical to inferring viscosity

based on kinetic experiments of the hydrous species reaction (Zhang et al 2003 Zhang

and Xu 2007) since it is assumed that the viscosity at the apparent equilibrium

temperature is inversely proportional to the cooling rate (Dingwell and Webb 1990

80

Zhang et al 2003) Hence by conducting a controlled cooling rate experiment of a

hydrous rhyolitic melt under pressure after calculating Tae the viscosity at this

temperature (and pressure) can be estimated At present this is the only method to

estimate viscosity at P gt 1 GPa in the viscosity range of 109-1014 Pamiddots The application

for inferring viscosity is the main motivation for us to conduct this research Results from

this work are applied to infer viscosity at high pressure in Chapter IV

5 CONCLUSIONS

The equilibrium of the interconversion reaction between two dissolved water

species (H2Om and OH) was experimentally investigated as a function of pressure

(00001 094 189 and 283 GPa) temperature (624-1027 K) and H2O concentrations

(08 to 42 wt) The speciation data at total H2O content le 27 can be described by

an ideal mixing model consistent with previous results With inclusion of speciation data

at higher water contents one way to describe the speciation data is a regular solution

model The general speciation model (Eqn 5) constructed to accommodate the

dependence of H2O speciation in the rhyolitic melts on T-P-X can be used to predict

species concentrations at P le 283 GPa total H2O content le 42 wt and temperature of

624-1027 K Furthermore it can be used to calculate apparent equilibrium temperature

which can then be used to infer viscosity of hydrous rhyolitic melts under high pressure

81

REFERENCES

Akella J (1979) Quartz hArr coesite transition and the comparative friction measurements

in piston-cylinder apparatus using talc-alsimag-glass (TAG) and NaCl high-

pressure cells N Jb Miner Mh H5 217-224

Akella J and Kennedy GC (1971) Melting of gold silver and copper ndash proposal for a

new high-pressure calibration scale J Geophys Res 76 4969-4977

Behrens H and Nowak M (2003) Quantification of H2O speciation in silicate glasses

and melts by IR spectroscopy ndash in situ versus quench techniques Phase Trans 76

45-61

Behrens H and Zhang Y (2001) Ar diffusion in hydrous silicic melts implications for

volatile diffusion mechanisms and fractionation Earth Planet Sci Lett 192 363-

376

Behrens H Zhang Y Leschik M Wiedenbeck M Heide G and Frischat GH (2007)

Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts Earth

Planet Sci Lett 254 69-76

Blank JG Stolper EM and Carroll MR (1993) Solubilities of carbon dioxide and

water in rhyolitic melt at 850 ordmC and 750 bars Earth Planet Sci Lett 119 27-36

Bohlen SR and Boettcher AL (1982) The quartz hArr coesite transformation a precise

determination and the effects of other components J Geophys Res 87 7073-7078

Bose K and Ganguly J (1995) Quartz-coesite transition revisited reversed experimental

determination at 500-1200 ˚C and retrieved thermochemical properties Am

Mineral 80 231-238

82

Boyd FR and England JL (1960) The quartz-coesite transition J Geophys Res 65

749-756

Burnham CW (1975) Water and magmas a mixing model Geochim Cosmochim Acta

39 1077-1084

Davis MJ Ihinger PD and Lasaga AC (1997) The influence of water on nucleation

kinetics in silicate melt J Non-Cryst Solids 219 62-69

Dingwell DB and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

Goranson RW (1938) Silicate-water systems phase equilibria in the NaAlSi3O8-H2O

and KAlSi3O8-H2O systems at high temperatures and pressures Am J Sci 35-A

71-91

Hui H and Zhang Y (2007) Toward a general viscosity equation for natural anhydrous

and hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Ihinger PD Zhang Y and Stolper EM (1999) The speciation of dissolved water in

rhyolitic melt Geochim Cosmochim Acta 63 3567-3578

Kitahara S and Kennedy GC (1964) The quartz-coesite transition J Geophys Res 69

5395-5400

Li J Hadidiacos C Mao H Fei Y and Hemley RJ (2003) Behavior of thermocouples

under high pressure in a multi-anvil apparatus High Pressure Res 23 389-401

Liu Y Behrens H and Zhang Y (2004a) The speciation of dissolved H2O in dacitic

melt Am Mineral 89 277-284

Liu Y Zhang Y and Behrens H (2004b) H2O diffusion in dacitic melts Chem Geol

209 327-340

83

McMillan PF (1994) Water solubility and speciation models Rev Mineral 30 131-156

Mirwald PW and Massonne H-J (1980) The low-high quartz and quartz-coesite

transition to 40 kbar between 600˚ and 1600˚C and some reconnaissance data on the

effect of NaAlO2 compoenent on the low quartz-coesite transition J Geophys Res

85 6983-6990

Newman S Stolper EM and Epstein S (1986) Measurement of water in rhyolitic

glasses calibration of an infrared spectroscopic technique Am Mineral 71 1527-

1541

Ni H and Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high

pressure data Chem Geol Revised

Nowak M and Behrens H (2001) Water in rhyolitic magmas getting a grip on a slippery

problem Earth Planet Sci Lett 184 515-522

Shaw HR (1964) Theoretical solubility of H2O in silicate melts quasi-crystalline

models J Geol 72 601-617

Shaw HR (1972) Viscosities of magmatic silicate liquids an empirical method of

prediction Am J Sci 272 870-893

Silver LA and Stolper E (1989) Water in albitic glasses J Petrol 30 667-709

Silver LA Ihinger PD and Stolper E (1990) The influence of bulk composition on the

speciation of water in silicate glasses Contrib Mineral Petrol 104 142-162

Sowerby JR and Keppler H (1999) Water speciation in rhyolitic melt determined by in

situ infrared spectroscopy Am Mineral 84 1843-1849

Stolper EM (1982a) The speciation of water in silicate melts Geochim Cosmochim

Acta 46 2609-2620

Stolper EM (1982b) Water in silicate glasses an infrared spectroscopic study Contrib

Mineral Petrol 81 1-17

84

Tuttle OF and Bowen NL (1958) Origin of granite in the light of experimental studies

in the system NaAlSi3O8- KAlSi3O8- SiO2-H2O Geol Soc Am Memoir 74 1-153

Wasserburg GJ (1957) The effects of H2O in silicate systems J Geol 65 15-23

Watson EB (1991) Diffusion of dissolved CO2 and Cl in hydrous silicic to intermediate

magmas Geochim Cosmochim Acta 55 1897-1902

Withers AC and Behrens H (1999) Temperature-induced changes in the NIR spectra of

hydrous albitic and rhyolitic glasses between 300 and 100 K Phys Chem Minerals

27 119-132

Withers AC Zhang Y and Behrens H (1999) Reconciliation of experimental results on

H2O speciation in rhyolitic glass using in situ and quenching techniques Earth

Planet Sci Lett 173 343-349

Xu Z and Zhang Y (2002) Quench rates in air water and liquid nitrogen and inference

of temperature in volcanic eruption columns Earth Planet Sci Lett 200 315-330

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth Planet

Sci Lett 122 373-391

Zhang Y (1999) H2O in rhyolitic glasses and melts measurement speciation solubility

and diffusion Rev Geophys 37 493-516

Zhang Y and Behrens H (2000) H2O diffusion in rhyolitic melts and glasses Chem

Geol 169 243-262

Zhang Y Belcher R Ihinger PD Wang L Xu Z and Newman S (1997a) New

calibration of infrared measurement of dissolved water in rhyolitic glasses

Geochim Cosmochim Acta 61 3089-3100

85

Zhang Y Jenkins J and Xu Z (1997b) Kinetics of the reaction H2O + O = 2OH in

rhyolitic glasses upon cooling geospeedometry and comparison with glass

transition Geochim Cosmochim Acta 61 2167-2173

Zhang Y Solper EM and Ihinger PD (1995) Kinetics of reaction H2O + O = 2OH in

rhyolitic glasses preliminary results Am Mineral 80 593-612

Zhang Y Stolper EM and Wasserburg GJ (1991a) Diffusion of a multi-species

component and its role in oxygen and water transport in silicates Earth Planet Sci

Lett 103 228-240

Zhang Y Stolper EM and Wasserburg GJ (1991b) Diffusion of water in rhyolitic

glasses Geochim Cosmochim Acta 55 441-456

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

Improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

Zhang Y Xu Z Zhu M and Wang H (2007) Silicate melt properties and volcanic

eruptions Rev Geophys doi1010292006RG000216

86

CHAPTER IV

PRESSURE DEPENDENCE OF VISCOSITY OF RHYOLITIC MELTS

ABSTRACT

Viscosity of silicate melts is a critical property for understanding volcanic and

igneous processes in the Earth Two methods were used to study the pressure effect on

the viscosity of rhyolitic melts hydrous species reaction viscometer in a piston cylinder

and parallel plate creep viscometer in an internally-heated pressure vessel (IHPV) With

the hydrous species reaction viscometer viscosities of hydrous rhyolitic melts were

inferred based on the kinetics of hydrous species reaction in the melt upon cooling (ie

the equivalence of rheologically defined glass transition temperature and chemically

defined apparent equilibrium temperature) The cooling experiments were carried out in a

piston cylinder apparatus using hydrous rhyolitic samples with 08 to 4 wt water at

pressures up to 283 GPa Cooling rates of the experiments varied from 01 Ks to 100

Ks hence the range of viscosity inferred from this method is 3 orders of magnitude The

data from this method show that viscosity increases with increasing pressure from 1 GPa

to 3 GPa for hydrous rhyolitic melts with water content ge 08 wt Viscosity of rhyolitic

melt with 013 wt water was also measured using parallel plate viscometer at pressures

87

02 and 04 GPa in an IHPV The data show that viscosity of rhyolitic melt with 013

wt water decreaseswith increasing pressure Combining new data with literature data a

viscosity model of rhyolitic melts in the high viscosity range as a function of temperature

pressure and water content is developed

1 INTRODUCTION

Viscosity of silicate melts is a property of fundamental importance in Earth

sciences Viscosities of silicate melts under ambient pressure have been studied

extensively (eg Shaw 1972 Hui and Zhang 2007) Several experimental techniques

are available to measure viscosity directly (1) in the low viscosity range (01 to 105 Pamiddots)

concentric cylinder viscometer (eg Dingwell 1986) and falling sphere technique (eg

Shaw 1963) (2) in the high viscosity range (108 to 1014 Pamiddots) micropenetration method

(eg Hummel and Arndt 1985) parallel plate creep viscometer (eg Neuville and

Richet 1991) and fiber elongation method (eg Lillie 1931) Few viscosity data are in

the intermediate viscosity range of 105 to 108 Pamiddots (Dorfman et al 1996 1997) because

(1) the methods applicable to low viscosity cannot be used because rotation rate or falling

rate would be too slow (2) the methods applicable to high viscosities cannot be used

because the melt would flow too easily and (3) many silicate melts crystallize rapidly in

this viscosity range In most cases geologists interpolated viscosity from models

constructed using experimental data in the high and low viscosity ranges (eg Rust and

Cashman 2007)

Some of these viscometers have been adapted to high-pressure apparatus

(Dingwell 1998) In the low viscosity range viscosity data at high pressure (ge 1 GPa) are

88

obtainable with the falling sphere technique (eg Kushiro et al 1976 Liebske et al

2005) For example in situ falling sphere technique in the high-pressure apparatus such

as multi-anvil with assistance of synchrotron can reach pressures up to 13 GPa (eg

Reid et al 2003 Liebske et al 2005) On the other hand in the high viscosity range no

viscosity data exist at pressures ge 1 GPa The practical reason is the limit of the current

experimental methods For example the maximum pressure that traditional viscometers

could reach is 04 GPa (eg Behrens and Schulze 2003) Based on the equivalence of

enthalpy relaxation and viscous relaxation Rosenhauer et al (1979) used high-pressure

differential thermal analysis experiments in an internally-heated pressure vessel (IHPV)

to infer viscosities of diopside albite and trisilicate at glass transition temperatures at

elevated pressures up to 07 GPa

Many geologic processes related to silicate melts deal with elevated pressures

The pressure scales of these processes may vary from 0-200 MPa for volcanic eruptions

to a couple of GPa for crustal anatexis and mantle melting to hundreds of GPa for core-

mantle segregation This extreme range of magnitudes requires the experimental

approach of studying melt viscosities to explore a very broad spectrum of measurement

principles and technologies In this report the hydrous species viscometer is developed

for high-pressure viscosity determination

Rosenhauer et al (1979) assumed the equivalence of enthalpy relaxation and

viscous relaxation to infer viscosity Dingwell and Webb (1990) assumed the equivalence

between viscous relaxation and hydrous species equilibration (see below) Dingwell

(1998) discussed the inference of viscosity at high pressures from glass transition based

on volume relaxation enthalpy relaxation spectroscopic measurements (applied in this

89

study) and called them as ldquoone of the most important breakthroughs for the prospect of

obtaining high pressure viscosity datardquo Zhang et al (2003) and Zhang and Xu (2007)

applied the hydrous species viscometer (see section 21) to infer viscosity of hydrous

silicate melts at the glass transition temperature range This method has several

advantages and disadvantages The most important advantage here is that this method can

be adapted to high-pressure apparatus such as piston cylinder as far as glass can be

obtained by quench Because the method relies on the measurement of hydrous species

concentrations it is only applicable to hydrous silicate melts with ge 05 wt total H2O

but not to melts with less H2O With this method viscosity is inferred but not obtained

from direct measurement

In this study the hydrous species reaction viscometer was applied in a piston

cylinder to investigate viscosity of hydrous rhyolitic melts with water content from 08 to

4 wt at pressures up to 283 GPa This pressure range is aimed to cover rhyolitic

(granitic) melt generated at depth from field observations (eg Sylvester 1999) and

experimental studies (eg Rapp and Watson 1995) Furthermore as will be shown later

increasing pressure seems to have a significant effect on crystallization rate in rhyolitic

melts which seems to indicate that viscosity decreases significantly with increasing

pressure The large pressure coverage allows the evaluation of whether this is true

In addition to this new method the parallel-plate viscometer in an IHPV was also

used to directly measure viscosity of natural rhyolite from 02 GPa to 04 GPa

Combining the literature data at pressure le05 GPa a viscosity model is developed

accommodating the dependence of viscosity of rhyolitic melts on temperature pressure

and water content in the high viscosity range

90

2 EXPERIMENTAL AND ANALYTICAL METHODS

The pressure effect on melt viscosity was studied on rhyolitic melts with different

water content The concentrations of total water and hydrous species in the samples were

determined by FTIR (Fourier transform infrared spectroscopy) at the University of

Michigan following the procedure shown in Zhang et al (1997a) There are a few other

calibration methods in the literature (eg Newman et al 1986 Withers and Behrens

1999) The reason to use the calibration of Zhang et al (1997a) here is to be consistent

with the speciation study in Hui et al (2008) because their study is used to calculate the

apparent equilibrium temperature from concentrations of hydrous species retained in the

quenched glass

Starting materials include both natural rhyolitic glasses (EDF and KS) and

synthetic hydrous rhyolitic glasses prepared by hydration of natural rhyolitic glass

(GMR) Sample EDF is from Erevan Dry Fountain Armenia Sample KS is from Mono

Crater California Samples GMR+2 and GMR+4 were synthesized by adding water to a

natural obsidian (GMR) from Glass Mountain California The chemical compositions of

the samples are listed in Table 41 Hydration of rhyolitic glasses was implemented at

1473 K 05 GPa by re-melting glass powder with added H2O at University of Hannover

(Hui et al 2008) The hydrated glasses are crystal free and bubble free

21 HYDROUS SPECIES REACTION VISCOMETER

It is well known that water is present in the silicate melts as at least two species

molecular H2O (H2Om) and hydroxyl group (OH) (Stolper 1982ab) The species

reaction in the melts is

91

Table 41 Chemical compositions (oxide wt) of KS GMR and EDF rhyolite on anhydrous basis

KS GMR EDF SiO2 7594 7322 7678 TiO2 009 031 010 Al2O3 1298 1408 1277 FeO 098 145 052 MnO 005 005 009 MgO 003 026 007 CaO 056 131 056 Na2O 401 406 408 K2O 471 432 455 P2O5 029 007 - Total 9963 9913 9967

H2O 075-090

189-216 in GMR+2 354-420 in GMR+4 013

ref 1 2 1 Hui et al 2008 2 Behrens et al 2007

92

H2Om + O = 2OH (1)

where O is anhydrous bridging oxygen in the melt Total H2O content is denoted as H2Ot

The equilibrium constant K of Reaction (1) is defined as

K =XOH

2

XH2OmXO

(2)

where X means activity approximated by mole fraction The relationship between

equilibrium constant K and temperature (equilibrium line in Fig 41) can be expressed by

a regular solution model as (Silver et al 1990 Ihinger et al 1999)

lnK = A +1000

TB + CXH2Om

+ DXOH( ) (3)

where T is temperature in K and A B C and D are fitting parameters Hui et al (2008)

estimated these parameters for rhyolitic melts at high pressures During cooling at a

certain low temperature the concentrations of these two hydrous species in the melt start

to deviate from the equilibrium state In Fig 41 this is shown as curves off the straight

line (the equilibrium line) When temperature becomes too low to change species

concentrations water speciation is frozen in the melt as indicated by the horizontal

segments in Fig 41 The intersection of each horizontal line which is calculated from

the hydrous species concentrations retained in the quenched glass with the equilibrium

line defines the apparent equilibrium temperature (Zhang 1994) An equilibrated melt at

this temperature has the same water speciation as observed in the quenched glass at room

temperature This apparent equilibrium temperature depends on the cooling rate shown in

Fig 41 A higher apparent equilibrium temperature indicates a faster cooling rate

Glass transition temperature is defined rheologically as the temperature at which

viscosity is equal to 1012 Pasdots for a cooling rate of the order 10 Kmin As the cooling rate

93

ln

K

1T (K)TTT ae2ae1 e

equilibrium

rapid quench

slow quench

isothermal run rapid quench

Fig 41 Sketch of kinetics of Reaction (1) during cooling (Behrens and Nowak 2003) Tae is apparent equilibrium temperature which depends on the cooling rate Te is equilibrium temperature

94

varies the glass transition temperature also changes Based on theoretical considerations

and experimental results Moynihan et al (1976) showed the formula of dependence of

the glass transition temperature on the cooling rate

d logqd(1Tg)

= minus∆HR

(4)

where q is quench rate in Ks Tg is glass transition temperature in K R is the gas

constant and ∆H is the activation enthalpy for the relaxation times controlling the

structural enthalpy or volume relaxation which is also equal to the activation enthalpy of

the shear viscosity within experimental error Scherer (1984) generalized that viscosity is

reciprocal to the quench rate at the glass transition temperature Dingwell and Webb

(1990) advanced it further to infer viscosity from kinetics of hydrous species reaction

(ie Reaction 1) in the rhyolitic melt assuming the equivalence of the apparent

equilibrium temperature and glass transition temperature (ie time scale of Reaction 1 in

rhyolitic melt is the same as the structural relaxation time scale of rhyolitic melt because

both involve bridging oxygen in the melt structure of rhyolite) By comparing kinetic

data on Reaction (1) and viscosity data obtained by other methods (including from bubble

growth data of Liu et al 2000) Zhang et al (2003) formulated the equation below to

infer viscosity at the glass transition temperature (ie apparent equilibrium temperature)

for hydrous rhyolitic melts

logηTg= logηTae

=1145 minus logq (5)

where η is viscosity in Pasdots q is quench rate in Ks and 1145 is a constant Other

experimental studies have verified the equivalence of relaxation at the glass transition

temperature on viscosity volume and heat capacity (eg Sipp et al 1999 Toplis et al

95

2000) So the key in this method is to calculate the apparent equilibrium temperature for

a cooling experiment with known quench rate whereas viscosity at this temperature is

calculated from Eq (5)

All the cooling experiments were conducted in a piston cylinder A glass cylinder

with a diameter of about 2 mm and a height of about 2 mm was placed into a graphite

capsule which was enclosed in crushable MgO as the inner pressure medium with

graphite heater outside and then BaCO3 cell as outer pressure medium The charge was

heated to a high temperature for melt relaxation and for hydrous species in the melt to

reach equilibrium Then the sample was isobarically cooled at a desired cooling rate to

room temperature The temperature was measured with a type-S (Pt90Rh10-Pt) or type-D

(W97Re3-W75Re25) thermocouple The temperature history was recorded either by

computer or manually Pressure in the piston cylinder was calibrated using quartz-coesite

phase transition and melting of a gold wire (Hui et al 2008) The pressure of cooling

experiments ranges from 094 GPa (nominal pressure of 1 GPa) to 283 GPa (nominal

pressure of 3 GPa) Infrared spectra of the quenched glass were obtained using a Perkin-

Elmer FTIR spectrometer The baseline of IR spectra was fit by a flexicurve (Newman et

al 1986) The concentrations of hydrous species and total water content were obtained

using the calibration of Zhang et al (1997a) The apparent equilibrium temperature was

calculated from the hydrous species concentrations measured in the quenched glass using

Eqs (2) and (3) with parameters listed in Hui et al (2008) With the recorded cooling

rate viscosity was inferred from Eq (5) at the apparent equilibrium temperature The 2σ

error for viscosity inferred from this method is estimated to be 02 in terms of logη

(Zhang et al 2003)

96

In addition to the experiments in piston-cylinders at pressures below 3 GPa some

experiments at pressures above 3 GPa were also carried out in a multi-anvil device at the

University of Michigan But these experimental charges crystallized

22 PARALLEL-PLATE VISCOMETER

The parallel-plate creep viscometer in an IHPV was also used to measure

viscosity of rhyolitic melts near glass transition temperature Melt viscosity was derived

from the rate of deformation of a cylindrical sample with a diameter of 38 mm and a

height of 10 mm as a function of a constant vertically applied stress The design

operation and calibration of this viscometer are described in detail by Schulze et al

(1999) The detailed experimental procedure is explained in Behrens and Schulze (2003)

This technique can measure viscosity of the same cylinder in high viscosity range

covering three orders of magnitude from 1085 to 10115 Pasdots at pressures up to 04 GPa by

pumping in Ar (pressure media) or releasing it Effect of dehydration of the sample on the

viscosity measurements was monitored by repeated viscosity measurements at the same

P-T conditions during the whole experimental course and water content in the sample

was also checked after the experiment by infrared spectroscopy

To mitigate the effect of dehydration of the samples during measurement only the

samples with low water content was used in this method including sample EDF with

013 wt H2Ot and sample KS with 079 wt H2Ot For sample EDF viscosity was

measured at different pressures in the order of 02 04 and 02 GPa As shown in Table

42 and Fig 42 the viscosity values at the first and last 02 GPa are in good agreement

with difference within plusmn01 log units indicating that there was no significant water loss

97

or gain during viscosity measurement Temperature was corrected based on the melting

point of aluminum at 02 GPa (Lees and Williamson 1965) For sample KS dehydration

was discovered in a test run Hence only viscosity at 04 GPa was measured without

cycling back and forth to minimize the duration of the sample at high temperatures

Temperature in this measurement was corrected based on the melting point of zinc at 04

GPa (Akella et al 1973) Both samples were checked for water content by FTIR after

isobaric quench of the experimental charge Water loss or gain was negligible in both

viscosity measurement courses After experiments both samples were still in good

cylinder shapes indicating negligible temperature gradient and regular deformation

during creep experiments The reproducibility of viscosities is always within plusmn015 log

units (Behrens and Schulze 2003) However within one series of experiments the

precision is much better (within plusmn01 log units in this study)

3 EXPERIMENTAL RESULTS

Experimental results from the hydrous species reaction viscometer are

summarized in Table 43 Original IR absorbance peak heights are also reported because

there may be further improvement in the IR calibration Viscosity is plotted as a function

of 1000T at different pressures in Fig 42 Within the small temperature range of

viscosity measurements temperature dependence of viscosity of rhyolitic melts at each

pressure can be described by the Arrhenius relationship

η = η0 sdot exp Ea

RT⎛ ⎝ ⎜

⎞ ⎠ ⎟ (6)

where η0 is the pre-exponential factor and Ea is the activation energy for viscous flow

98

Table 42 Results of parallel plate creep viscometer with sample EDF at pressures of 02 and 04 GPa and sample KS at 04 GPa

EDF KS

02 GPa 04 GPa 04 GPa T logη T logη T logη K Pasdots

exp

K Pasdots exp

K Pasdots exp

103815 1142 12 102815 1119 11 84815 1151 1 104815 1128 1 103815 1103 6 85615 1135 6 104815 1121 13 103815 1101 10 86715 1114 5 106715 1083 2 105815 1078 7 88615 1060 2 106715 1074 5 108815 1025 8 90715 1030 3 108815 1052 14 111815 980 9 92515 1002 4 108715 1047 3 111815 997 4

Note means the chronological order of the measurements

99

9

95

10

105

11

115

12

125

13

EDFKS

logη

(Pasdot

s) 04 GPa

A KSGMR+2GMR+4

094 GPa

B

9

95

10

105

11

115

12

125

13

08 09 1 11 12 13 14 15

KSGMR+2GMR+4

logη

(Pasdot

s)

1000T (K)

189 GPa

C

08 09 1 11 12 13 14 15

KSGMR+2GMR+4

1000T (K)

283 GPa

D

Fig 42 Dependence of viscosities of rhyolitic melts (EDF KS GMR+2 and GMR+4) on temperature at pressures of 04 094 189 and 283 GPa All the data are from this study A is for parallel plate creep viscometer and B-D are from hydrous species reaction viscometer Straight lines are fit of the data by Arrhenius equation (ie Eq 6)

100

Table 43 Viscosity of hydrous rhyolitic melts at various pressures inferred from hydrous species reactions

Measurement P$ q Abs Abs Thickness H2Ot H2Om OH X(H2Ot) X(H2Om) X(OH) Tae logη GPa Ks 5200 4500 mm wt wt wt K Pasdots KS-1-21 094 956 00448 01608 1124 0846 0170 0677 00152 00030 00242 90603 1047 KS-1-22 094 956 00447 01604 1118 0849 0170 0679 00152 00030 00243 90711 1047 KS-1-23 094 956 00441 01610 1126 0843 0167 0677 00151 00030 00242 91123 1047 KS-1-31 094 099 00557 01717 1195 0877 0198 0678 00157 00036 00243 86261 1145 KS-1-32 094 099 00539 01689 1190 0862 0193 0669 00154 00034 00240 86308 1145 KS-1-33 094 099 00585 01748 1198 0898 0208 0690 00161 00037 00247 85979 1145 KS-1-41 094 010 00649 01883 1373 0843 0201 0642 00151 00036 00230 82961 1245 KS-1-42 094 010 00626 01857 1370 0829 0194 0634 00148 00035 00227 83131 1245 KS-1-43 094 010 00646 01883 1371 0844 0200 0643 00151 00036 00231 83140 1245 KS-1-51 094 9233 00432 01720 1163 0862 0158 0704 00154 00028 00252 95499 948 KS-1-52 094 9233 00432 01700 1150 0864 0160 0704 00155 00029 00252 95113 948 KS-1-53 094 9233 00435 01708 1164 0857 0159 0698 00153 00028 00250 94606 948 GMR+2-1-11 094 950 01720 02272 0990 1886 0747 1140 00335 00133 00405 80808 1047 GMR+2-1-12 094 950 01709 02268 0987 1886 0744 1142 00335 00132 00406 80982 1047 GMR+2-1-13 094 950 01729 02275 0991 1890 0750 1140 00336 00133 00405 80737 1047 GMR+2-1-21 094 100 01729 02048 0911 1920 0816 1104 00341 00145 00392 77482 1145 GMR+2-1-22 094 100 01750 02064 0910 1942 0827 1115 00345 00147 00396 77683 1145 GMR+2-1-23 094 100 01712 02030 0909 1905 0810 1096 00338 00144 00389 77310 1145 GMR+2-1-31 094 010 01105 01131 0502 2041 0947 1094 00362 00168 00388 74324 1245 GMR+2-1-32 094 010 01089 01118 0498 2031 0941 1090 00360 00167 00387 74289 1245 GMR+2-1-33 094 010 01097 01123 0504 2017 0937 1080 00358 00166 00383 74002 1245 GMR+4-1-21 094 968 02159 01114 0356 4116 2667 1449 00719 00466 00506 70115 1046 GMR+4-1-22 094 968 02137 01107 0351 4141 2678 1462 00723 00467 00511 70400 1046 GMR+4-1-23 094 968 02152 01107 0356 4094 2657 1437 00715 00464 00502 69869 1046 GMR+4-1-31 094 7687 01467 00859 0268 3937 2403 1534 00688 00420 00536 73394 956 GMR+4-1-32 094 7687 01540 00901 0282 3925 2397 1529 00686 00419 00534 73301 956 GMR+4-1-33 094 7687 01548 00885 0276 3989 2463 1526 00697 00430 00533 72897 956 GMR+4-1-41 094 100 01509 00789 0271 3779 2440 1339 00661 00427 00469 68409 1145

101

GMR+4-1-42 094 100 01509 00779 0267 3815 2477 1338 00668 00433 00468 68211 1145 GMR+4-1-43 094 100 01498 00792 0275 3711 2386 1325 00650 00418 00464 68296 1145 KS-2-11 189 100 00111 00396 0270 0871 0175 0696 00156 00031 00249 88340 1145 KS-2-12 189 100 00106 00397 0280 0832 0161 0671 00149 00029 00240 88552 1145 KS-2-21 189 13416 00431 01862 1201 0898 0153 0745 00161 00027 00267 98415 932 KS-2-22 189 13416 00381 01769 1192 0844 0136 0708 00151 00024 00254 98996 932 KS-2-23 189 13416 00428 01851 1202 0890 0152 0739 00159 00027 00265 97976 932 KS-2-31 189 965 00496 01892 1246 0895 0169 0726 00160 00030 00260 92376 1047 KS-2-32 189 965 00462 01842 1234 0871 0159 0712 00156 00029 00255 93137 1047 KS-2-33 189 965 00466 01848 1245 0867 0159 0707 00155 00028 00253 92731 1047 KS-2-41 189 010 00384 01244 0859 0875 0190 0685 00157 00034 00246 84743 1245 KS-2-42 189 010 00368 01219 0856 0855 0183 0672 00153 00033 00241 84746 1245 KS-2-43 189 010 00360 01203 0849 0849 0180 0668 00152 00032 00239 84782 1245 GMR+2-2-21 189 950 01595 02196 0870 2071 0789 1282 00367 00140 00455 82315 1047 GMR+2-2-22 189 950 01579 02181 0870 2052 0781 1271 00364 00139 00451 82082 1047 GMR+2-2-23 189 950 01611 02184 0860 2097 0807 1290 00372 00143 00458 82142 1047 GMR+2-2-31 189 100 02053 02498 0997 2147 0887 1259 00381 00157 00447 78631 1145 GMR+2-2-32 189 100 02008 02459 0989 2123 0875 1248 00376 00155 00443 78466 1145 GMR+2-2-33 189 100 02032 02484 0997 2129 0878 1251 00378 00156 00444 78517 1145 GMR+2-2-51 189 9072 01539 02177 0831 2142 0798 1343 00380 00142 00476 84745 949 GMR+2-2-52 189 9072 01526 02165 0825 2144 0797 1347 00380 00141 00478 84947 949 GMR+2-2-53 189 9072 01530 02180 0825 2158 0799 1359 00383 00142 00482 85415 949 GMR+4-2-31 189 100 04415 02595 0797 3997 2433 1564 00698 00425 00546 71658 1145 GMR+4-2-32 189 100 04356 02573 0796 3954 2402 1552 00691 00420 00543 71502 1145 GMR+4-2-33 189 100 04453 02581 0797 4002 2454 1548 00699 00429 00541 71181 1145 GMR+4-2-41 189 10700 02441 01593 0465 4004 2306 1698 00700 00403 00593 75759 942 GMR+4-2-42 189 10700 02370 01551 0457 3957 2277 1680 00692 00398 00587 75455 942 GMR+4-2-43 189 10700 02484 01621 0473 4005 2307 1698 00700 00403 00593 75754 942 GMR+4-2-51 189 967 03797 02294 0677 4115 2467 1648 00718 00431 00576 73632 1046 GMR+4-2-52 189 967 03914 02307 0677 4195 2545 1650 00732 00444 00576 73318 1046 GMR+4-2-53 189 967 03914 02320 0680 4188 2534 1655 00731 00442 00577 73481 1046 KS-3-11 286 100 00491 02066 1408 0847 0148 0699 00152 00027 00250 91618 1145 KS-3-12 286 100 00493 02064 1408 0847 0149 0698 00152 00027 00250 91316 1145

102

KS-3-13 286 100 00489 02064 1407 0846 0148 0698 00152 00027 00250 91667 1145 KS-3-21 283 099 00534 02252 1535 0846 0148 0698 00152 00027 00250 91666 1145 KS-3-22 283 099 00538 02256 1533 0850 0149 0701 00152 00027 00251 91589 1145 KS-3-23 283 099 00563 02289 1530 0871 0157 0714 00156 00028 00256 91206 1145 KS-3-91 283 010 00479 01785 1221 0861 0167 0694 00154 00030 00249 86565 1245 KS-3-92 283 010 00490 01803 1225 0870 0170 0700 00156 00030 00251 86401 1245 KS-3-93 283 010 00472 01765 1218 0852 0165 0687 00153 00030 00246 86242 1245 KS-3-81 283 956 00546 02581 1760 0831 0132 0699 00149 00024 00251 96821 1047 KS-3-82 283 956 00638 02732 1756 0903 0155 0748 00162 00028 00268 95734 1047 KS-3-83 283 956 00628 02723 1757 0897 0152 0744 00161 00027 00267 96032 1047 KS-3-111 283 11166 00332 01907 1389 0751 0102 0649 00135 00018 00233 102191 940 KS-3-112 283 11166 00335 01925 1395 0755 0102 0653 00135 00018 00234 102681 940 KS-3-113 283 11166 00335 01929 1395 0757 0102 0655 00136 00018 00235 102921 940 KS-3-114 283 11166 00336 01925 1392 0757 0103 0655 00136 00018 00235 102615 940 GMR+2-3-21 283 907 01210 02070 0823 1925 0632 1293 00342 00112 00459 85132 1049 GMR+2-3-22 283 907 01260 02089 0818 1977 0662 1315 00351 00118 00467 84823 1049 GMR+2-3-23 283 907 01263 02093 0823 1968 0660 1308 00349 00117 00464 84558 1049 GMR+2-3-31 283 100 01726 02538 1004 2030 0740 1290 00360 00131 00458 80291 1145 GMR+2-3-32 283 100 01740 02539 1004 2035 0746 1289 00361 00132 00458 80063 1145 GMR+2-3-33 283 100 01664 02503 1004 1983 0713 1270 00352 00127 00451 80350 1145 GMR+2-3-41 283 10430 00852 01523 0594 1944 0617 1327 00345 00110 00471 87819 943 GMR+2-3-42 283 10430 00849 01485 0572 1984 0638 1346 00352 00113 00478 87698 943 GMR+2-3-43 283 10430 00823 01449 0558 1981 0634 1347 00352 00113 00478 87944 943 GMR+4-3-41 283 100 02215 01709 0518 3540 1869 1671 00621 00328 00586 73953 1145 GMR+4-3-42 283 100 02256 01729 0516 3614 1913 1702 00633 00335 00597 74470 1145 GMR+4-3-43 283 100 02210 01673 0503 3605 1922 1683 00632 00337 00590 73843 1145 GMR+4-3-51 283 10700 01838 01477 0417 3766 1931 1835 00659 00338 00642 78153 942 GMR+4-3-52 283 10700 01812 01464 0410 3793 1938 1855 00664 00339 00649 78693 942 GMR+4-3-53 283 10700 01873 01509 0422 3803 1946 1857 00666 00341 00650 78673 942

Note A few points (two to four) were measured by IR for each experimental sample they are listed here as xxx1 2 3 or 4 $ P has been corrected based on pressure calibration q was calculated from the thermal history recorded by computer or manually

103

which depends on water content of the sample and experimental pressure Viscosity of

rhyolitic melts decreases with increasing water content systematically at a given pressure

and temperature as shown in Fig 42

Viscosities of samples EDF and KS obtained from the parallel plate creep

viscometer are listed in Table 42 including chronological order of measurements and

shown in Figs 43a and 43b Temperature dependence of viscosity of each sample at

each pressure can also be described by the Arrhenius relationship (ie Eq 6) within the

small temperature range of measurements

The pressure dependence of viscosity is more complicated For the ldquodryrdquo sample

(EDF) viscosity does not change significantly from 01 MPa to 02 GPa From 02 to 04

GPa the viscosity of sample EDF decreases by about 02 log units For hydrous samples

with 08 and 2 wt H2Ot (KS and GMR+2) viscosity increases monotonically by about

1 log unit as pressure increases from 01 MPa to 28 GPa For hydrous sample with about

4 wt H2Ot (GMR+4) viscosity first decreases as pressure increases from 01 MPa to

09 GPa and then increases from 09 to 28 GPa

At the experimental petrology laboratory of the University of Michigan a large

database has been accumulated on successful versus failed experiments in the diffusion

reaction kinetics and viscosity studies of silicate melts (Zhang et al 1997b 2000 Liu

and Zhang 2000 Zhang and Behrens 2000 Behrens and Zhang 2001 Xu and Zhang

2002 Behrens et al 2004 Liu et al 2004ab 2005 Hui et al 2008 Ni and Zhang

2008) Most of the failed experiments crystallized significantly Because these results

may be relevant to the discussion of viscosity (see Discussion) they are summarized in

Appendix D The data show

104

9

95

10

105

11

115

12

125

13

088 09 092 094 096 098

04 GPa02 GPa01 MPa (013 H2O)

logη

(Pasdot

s) A

EDF

095 1 105 11 115 12 125

283 GPa189 GPa094 GPa04 GPa01 MPa (08 H2O)

KS

B

9

95

10

105

11

115

12

125

13

11 115 12 125 13 135 14

283 GPa189 GPa094 GPa01 MPa (2 H2O)

GMR+2

logη

(Pasdot

s)

1000T (K)

C

125 13 135 14 145 15

283 GPa189 GPa094 GPa01 MPa (4 H2O)

D

GMR+4

1000T (K)

Fig 43 Comparisons of viscosities of given rhyolitic melts (EDF KS GMR+2 and GMR+4) at various pressures Data are from this study Straight lines are fit of the data by Arrhenius equation (ie Eq 6) Viscosities of various rhyolitic melts at 00001 GPa were calculated from Zhang et al (2003) as references

105

(1) It is more difficult to quench an overheated liquid into glass at high pressures than at

low pressures because of crystallization during quench at high pressures For example a

hydrous rhyolite melt containing 52 wt H2Ot quenched from 1873 K at 2 GPa (sample

239 in Appendix D) did not crystallize but a hydrous rhyolite sample containing only

09 wt H2Ot quenched from 1873 K at 4 GPa (sample 240 in Appendix D)

crystallized significantly

(2) Melts in the isothermal experiments at a temperature below the liquidus often

crystallize more easily at high pressures than at low pressures (Hui et al 2008) For

example a hydrous rhyolitic glass (09 wt H2Ot) held at 823 K and 3 GPa for 10 days

(sample 56 in Appendix D) did not crystallize significantly but a similar glass held at

the same temperature but 4 GPa for only 31 hours (sample 57 in Appendix D)

crystallized For another example a hydrous rhyolitic glass with 077 wt H2Ot held at

1123 K and 61 MPa for 72 hours (sample 172 in Appendix D) did not crystallize but

another sample with same amount of H2Ot held at 1123 K and 3 GPa for only one minute

(sample 174 in Appendix D) crystallized significantly

Fig 44 shows some more trends The findings indicate that crystallization rate

increases significantly with increasing pressure meaning crystal nucleation andor

growth rates in melts increase with increasing pressure in hydrous rhyolitic melts The

relationship with viscosity will be discussed in the next section

106

25

3

35

4

45

5

55

6

0 1 2 3 4 5

crystallizedglass

logt

(t in

s)

P (GPa)

873 plusmn 10 Κ

075-116 wt H2Ot

A

-5

-4

-3

-2

-1

0

1

2

3

0 1 2 3 4 5

crystallizedglasscritical quench 06wtcritical quench 09wtcritical quench 12wt

logq

(q in

Ks

)

P (GPa)

078-115 wt H2Ot

B

Fig 44 The effect of pressure on crystallization kinetics in the rhyolitic melt for (A) isothermal experiments and (B) controlled cooling rate experiments In (B) critical quench rates for rhyolitic melt with water contents of 06 09 and 12 wt are calculated from Eqs (8) and (9) (see text Senkov 2007) and the dashed lines are extrapolations to show the trends for 06 and 12 wt water respectively

107

4 DISCUSSION

41 PRESSURE DEPENDENCE OF VISCOSITY

Viscosities of a variety of silicate liquids in the low viscosity range have been

investigated using the falling sphere technique in high-pressure apparatus demonstrating

a complex pressure dependence of viscosities (Scarfe et al 1987 Lange 1994)

Pressure-induced viscosity change has been related to the degree of polymerization of the

melt in general (Scarfe et al 1987) Viscosities of anhydrous rhyolite melt (eg Scarfe et

al 1987) jadeite melt (eg Kushiro 1976) dacite melt (eg Tinker et al 2004)

andesite melt (eg Kushiro et al 1976) and some basalt melts (eg Scarfe et al 1987)

decrease with increasing pressure in the first several GPa whereas those of diopside melt

(eg Scarfe et al 1979) and peridotite melt (Liebske et al 2005) both highly

depolymerized increase with increasing pressure

Water dissolved in the silicate melt can depolymerize the melt by forming

hydroxyl group (Reaction 1) The negative pressure dependence of viscosity of

anhydrous melt may change to positive pressure dependence of viscosity after adding a

certain amount of water For example viscosity of anhydrous andesite melt decreases

with pressure (Kushiro et al 1976) but viscosity of andesite with 3 wt water increases

with pressure (Kushiro 1978) Also the pressure dependence of viscosity of a given melt

may change from positive to negative with further increase of pressure such as periodite

(Liebske et al 2005) or from negative to positive such as albite (Funakoshi et al

2002) In other words there may be a viscosity maximum or minimum with increasing

pressure

108

In the high viscosity range only a few studies have been conducted on the

pressure dependence of viscosity of silicate melts in a pressure range up to 04 GPa

previously Viscosity of the albite-diopside binary system shows a change in the sign of

the pressure dependence from negative for albite to positive for diopside (Schulze et al

1999 Behrens and Schulze 2003) The pressure dependence of viscosity of

haploandesite in the high viscosity range changes from negative for anhydrous melt to

positive for hydrous melt with 106 wt water or up (Liebske et al 2003) This is

consistent with pressure dependence of viscosity of andesite in the low viscosity range in

general (Kushiro et al 1976 Kushiro 1978) Moreover pressure effect on viscosity

becomes more pronounced with decreasing temperature

Due to experimental limitations viscosity of sample EDF which contained minor

amount of water was measured at pressures le 04 GPa The viscosity decreases with

increasing pressure as shown in Fig 43a in this pressure range That is it behaves as a

polymerized melt as expected But for the hydrous samples KS and GMR+2 as shown in

Figs 43b and 43c the viscosity increases with increasing pressure based on the new

data As dissolved H2O depolymerizes the melt this trend is consistent with literature

data (Kushiro et al 1976 Kushiro 1978 Liebske et al 2003) The viscosities of the

sample GMR+4 which contains about 4 wt water increase systematically from 1 GPa

to 3 GPa as shown in Fig 43d The pressure dependence of viscosity from ambient

pressure to 1 GPa is small and whether the dependence is positive or negative depends on

the temperature

109

42 MODELING THE P-T-X DEPENDENCE OF VISCOSITY

There are various models used to describe temperature dependence of viscosity of

anhydrous and hydrous natural silicate melts (eg Shaw 1972 Hui and Zhang 2007)

The pressure dependence of viscosity has been modeled for some anhydrous melts such

as peridotite liquid (Liebske et al 2005) but has not been quantified for hydrous natural

silicate melts because only limited data were available For example for hydrous

rhyolitic melt there are only two data points at pressure gt 05 GPa (one data point of

AOQ at 1173 K 1 GPa and another one at 1173 K 075 GPa Schulze et al 1996) in the

low viscosity range These new data are the first viscosity data at pressures ge 1 GPa in the

low-temperature (high viscosity) range Because data on the pressure dependence of

viscosity of rhyolitic melts in the high temperature range are limited (Schulze et al

1996) only the data in the low temperature region are considered in constructing a model

on the dependence of viscosity on temperature pressure and water content In this narrow

temperature range the Arrhenius relationship can describe the temperature dependence of

viscosity Hence parameters η0 and Ea in Eq (6) are treated as functions of water content

and pressure to construct a viscosity model The data used for the model include viscosity

data from this study and literature data in the high viscosity range (Neuville et al 1993

Stevenson et al 1995 Zhang et al 2003 Zhang and Xu 2007) Because the precision

of the parallel plate viscometer is much higher this data set was weighed 10 times more

than other data in the regression After some trials the equation below is found to fit the

data well

110

logη = a0 + aPP12

⎝ ⎜

⎠ ⎟ + b0 + bPP

12

⎝ ⎜

⎠ ⎟ 1minus exp c0 + cPP

12

⎝ ⎜

⎠ ⎟ X

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

+ d0 + dPP12

⎝ ⎜

⎠ ⎟ + e0 + ePP

12

⎝ ⎜

⎠ ⎟ 1minus exp f0 + fPP

12

⎝ ⎜

⎠ ⎟ X

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟ 1000

T

(7)

where P is pressure in GPa and X is mole fraction of total water content in the melt on a

single oxygen basis (Stolper 1982b Zhang 1999) The best-fit parameters in Eq (7)

with 2σ errors are a0 = -78470 plusmn 04972 aP = 11472 plusmn 05802 b0 = -124257 plusmn 09940

bP = 08080 plusmn 06278 c0 = -36440 plusmn 16134 cP = -101893 plusmn 17128 d0 = 213531 plusmn

05706 dP = -21722 plusmn 07371 e0 = -58335 plusmn 07198 eP = 40480 plusmn 06801 f0 = -893887

plusmn 103647 and fP = -305499 plusmn 152766 This equation can reproduce the whole database

(206 data points) with 2σ of 038 in terms of logη The dependence of viscosity as a

function of OH and molecular H2O concentrations was also examined at different

pressures but no simple relation emerged for a large range of water content Hence no

species information is included in fitting how viscosity depends on water concentration

Fig 45 shows a comparison between experimental viscosities and calculated values

using Eq (7) Although the fit is good extrapolation of the model beyond experimental

conditions is not recommended That is calculated viscosity at high pressures should be

inside the range of 109 to 1012 Pamiddots and T-P-XH2Ot conditions should be within conditions

shown in Fig 46 The calculated pressure dependence of viscosity of rhyolitic melts

with different water contents is shown in Fig 47 and it is in agreement with Figs 43b

43c and 43d

Glass transition temperature is an important rheological parameter of glass and

Eq (7) can be used to estimate glass transition temperature of rhyolitic melt under high

111

8

10

12

14

16

18

8 10 12 14 16 18

our dataliterature data11 line

measured logη

calc

ulat

ed lo

Fig 45 Comparison of measured viscosity data of rhyolitic melts with those calculated from Eq (7)

112

500

600

700

800

900

1000

1100

1200

1300

0 05 1 15 2 25 3

T (K

)

P (GPa)

0

1

2

3

4

5

6

7

8

0 05 1 15 2 25 3

H2O

t (w

t)

P (GPa)

A

B

Fig 46 P-T-XH2Ot range of all experimental data of the model ie Eq (7)

113

765

785

765755

845

815

775

794

815

845

A

9

95

10

105

11

115

12

0 005 01 015 02 025 03 035 04

logη

(Pasdot

s)

P (GPa)

750C

800C

850C

900C

750

800

850

900

469

605

575

529

577

549

512

535

502

C

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3

450C

500C

550C

600C

logη

(Pasdot

s)

P (GPa)

450

500

550

468

512483

462

441

459

428

410

477

369

D

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3

400C

450C

500C

logη

(Pasdot

s)

P (GPa)

400400

450

500

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3P (GPa)

logη

(Pasdot

s)

550C

600C

650C

700C750C

550

600

650

700

558

678

635

589

574

689

642

591

711

654

611

753

A558

678

635

589

574

689

642

591

711

654

611

753

AB575583

594

613

634

652

Fig 47 Pressure effect on viscosity at some temperatures and water concentrations The curves (with temperature indicated by large numbers) are calculated from Eq (7) with different water concentrations (A) 013 wt (B) 08 wt (C) 2 wt and (D) 4 wt Points are experimental data at indicated temperatures (small numbers) and points at 01 MPa are calculated from the viscosity model of Zhang et al (2003)

114

pressure Fig 48 shows pressure dependence of glass transition temperatures of hydrous

rhyolitic melts containing different water contents calculated from Eq (7) with a cooling

rate of 028 Ks = 168 Kmin (at η = 1012 Pamiddots) The trend of pressure dependence of the

glass transition temperature (Fig 48) is the same as that of viscosity (Fig 47)

43 AN APPARENT PARADOX OF THE PRESSURE EFFECT ON VISCOSITY

AND ON GLASS FORMATION

Appendix 4 lists the melt compositions the experimental conditions and whether

the sample charges crystallized significantly during experiments Pressure facilitates

crystallization in both isothermal experiments and cooling experiments based on the

results in Appendix 4 as summarized in the Experimental results That is as pressure

increases crystallization is more rapid in isothermal experiments and it is also more

difficult to quench the same hydrous melt into glass from liquid One might expect that

the increased easiness of crystallization at high pressures were related to increasing

diffusivity and hence decreasing viscosity with increasing pressure However new

viscosity data show that viscosity of hydrous rhyolitic melt increases rather than

decreases with increasing pressure Hence there is an apparent paradox of increasing

viscosity as well as increased easiness of crystallization with increasing pressure

Raising the pressure increases the density of the melt and changes the structure of

the melt which might facilitate crystallization More importantly increasing the pressure

raises the liquidus of the melt Hence for a supercooled metastable liquid at a given

temperature the degree of undercooling is larger at higher pressure That is the Gibbs

free energy difference between the melt and the crystals ∆Gm-c increases with pressure

115

650

700

750

800

850

900

0 05 1 15 2 25 3

08 wt2 wt4 wt

T g (K

)

P (GPa)

Fig 48 Pressure dependence of glass transition temperatures of hydrous rhyolitic melts with different water contents (08 2 and 4 wt H2O) calculated from Eq (7) when η = 1012 Pamiddots (ie cooling rate is 028 Ks)

116

The increased easiness of crystallization at isothermal conditions may be partly attributed

to greater ∆Gm-c although quantification is not available at the moment

For cooling of a liquid from a temperature above the liquidus as the pressure

increases the liquidus is crossed at a higher temperature That is crystallization starts at a

higher temperature where kinetics is more rapid Furthermore there is a larger

temperature interval (and hence a larger time interval) for crystallization Hence more

crystallization is expected For this case the glass-forming ability (that is the degree of

difficulty of crystallization) has been proposed recently using the concept of fragility

(eg Martinez and Angell 2001 Senkov 2007) If the temperature dependence of

viscosity is Arrhenian from low to high viscosity (001 to 1015 Pamiddots) the liquid is said to

be strong If the temperature dependence of viscosity deviates from Arrhenian behavior

more the liquid is said to be more fragile It is easier for strong liquids to quench to

glass Senkov (2007) defined a dimensionless glass forming ability (GFA) parameter F1

which can be expressed as follows

F1 =2(Tg minus T0 )

2(Tg minus T0 ) + (TL minus Tg ) (8)

where TL is the liquidus Tg is the temperature at which the viscosity is 1012 Pamiddots and T0

(related to fragility) is the temperature in the VFT equation of logη = A + B(T-T0)

Senkov (2007) further related the critical cooling rate required for glass formation to the

GFA parameter as follows

qc = 10(054-F1)0047 (9)

If the cooling rate is above qc the liquid would be cooled into a glass Otherwise there

would be significant crystallization In order to apply the above approach TL as a

117

function of H2Ot and P was estimated from the MELTS program (Ghiorso and Sack

1995 Asimow and Ghiorso 1998) and Tg from the viscosity model developed in this

work (ie Eq 7) For T0 at low pressures the viscosity model of Zhang et al (2003) is

used which resulted in T0 of 300plusmn30 K for H2Ot gt 06 wt For viscosities of hydrous

rhyolitic melt at high pressures there are not enough data in the low-viscosity range to

estimate T0 Hence a constant T0 of 300 K was assumed to roughly estimate F1 and qc

The critical cooling rate as a function of pressure for a few H2Ot contents is plotted in

Fig 44b It can be seen that the limited experimental data are in agreement with this

approach Hence it appears that the paradox of increased easiness of crystallization at

high pressures and increasing viscosity with pressure can be reconciled by the GFA

parameter of Senkov (2007)

5 CONCLUDING REMARKS

Viscosity of hydrous rhyolitic melts containing 08 to 4 wt water was inferred

using the hydrous species reaction viscometer at pressures up to 283 GPa This

represents the first viscosity data at low temperature (high viscosity) and pressures above

1 GPa Viscosity of rhyolitic melts with 013 wt and 08 wt water was also measured

using the parallel plate creep viscometer at pressures up to 04 GPa No experimental

method is available to determine viscosity of ldquodryrdquo melt at higher pressures Combining

the data of this study with literature data a viscosity model is constructed as a function of

temperature pressure and water content in the high viscosity range The model (ie Eq

7) can be utilized for interpolation within the range of available data (Fig 46) but is not

recommended for extrapolation

118

REFERENCES

Akella J Ganguly J Grover R and Kennedy G (1973) Melting of lead and zinc to

60 kbar J Phys Chem Solids 34 631-636

Asimow PD and Ghiorso MS (1998) Algorithmic modifications extending MELTS to

calculate subsolidus phase relations Am Mineral 83 1127-1131

Behrens H and Nowak M (2003) Quantification of H2O speciation in silicate glasses

and melts by IR spectroscopy ndash in situ versus quench techniques Phase Trans 76

45-61

Behrens H and Schulze F (2003) Pressure dependence of melt viscosity in the system

NaAlSi3O8-CaMgSi2O6 Am Mineral 88 1351-1363

Behrens H and Zhang Y (2001) Ar diffusion in hydrous rhyolitic and albitic

glassesmelts Earth Planet Sci Lett 192 363-376

Behrens H Zhang Y and Xu Z (2004) H2O diffusion in dacitic and andesitic melts

Geochim Cosmochim Acta 68 5139-5150

Behrens H Zhang Y Leschik M Wiedenbeck M Heide G and Frischat GH

(2007) Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts

Earth Planet Sci Lett 254 69-76

Dingwell D (1986) Viscosity-temperature relationships in the system Na2Si2O5-

Na4Al2O5 Geochim Cosmochim Acta 50 1261-1265

Dingwell DB (1998) Melt viscosity and diffusion under elevated pressures Rev

Mineral 37 397-422

Dingwell DB and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

119

Dorfman A Dingwell DB and Bagdassarov NS (1997) A rotating autoclave for

centrifuge studies Falling sphere viscometry Eur J Mineral 9 345-350

Dorfman A Hess K-U and Dingwell DB (1996) Centrifuge-assisted falling sphere

viscometry Eur J Mineral 8 507-514

Funakoshi K-i Suzuki A and Terasaki H (2002) In situ viscosity measurements of

albite melt under high pressure J Phys Condensed Matt 14 11343-11347

Ghiorso MS and Sack RO (1995) Chemical mass transfer in magmatic processes IV

A revised and internally consistent thermodynamic model for the interpolation and

extrapolation of liquid-solid equilibria in magmatic systems at elevated

temperatures and pressures Contrib Mineral Petrol 119 197-212

Hui H and Zhang Y (2007) Toward a general viscosity equation for natural anhydrous

and hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Hui H Zhang Y Xu Z and Behrens H (2008) Pressure dependence of the speciation

of dissolved water in rhyolitic melts Geochim Cosmochim Acta In revision

Hummel W and Arndt J (1985) Variation of viscosity with temperature and

composition in the plagioclase system Contrib Mineral Petrol 90 83-92

Ihinger PD Zhang Y and Stolper EM (1999) The speciation of dissolved water in

rhyolitic melt Geochim Cosmochim Acta 63 3567-3578

Kushiro I (1976) Changes in viscosity and structure of melt of NaAlSi2O6 composition

at high pressures J Geophys Res 81 6347-6350

Kushiro I (1978) Density and viscosity of hydrous calc-alkalic andesite magma at high

pressures Carnegie Inst Washington Year Book 77 675-677

120

Kushiro I Yoder HS Jr and Myson BO (1976) Viscosities of basalt and andesite

melts at high pressures J Geophys Res 81 6351-6356

Lange RA (1994) The effect of H2O CO2 and F on the density and viscosity of silicate

melts Rev Mineral 30 331-365

Lees J and Williamson BHJ (1965) Combined very high pressurehigh temperature

calibration of the tetrahedral anvil apparatus fusion curves of zinc aluminium

germanium and silicon to 60 kilobars Nature 208 278-279

Liebske C Behrens H Holtz F and Lange RA (2003) The influence of pressure and

composition on the viscosity of andesitic melts Geochim Cosmochim Acta 67

473-485

Liebske C Schmickler B Terasaki H Poe BT Suzuki A Funakoshi K-i Ando

R and Rubie DC (2005) Viscosity of peridotite liquid up to 13 GPa Implications

for magma ocean viscosities Earth Planet Sci Lett 240 589-604

Lillie HR (1931) Viscosity of glass between the strain point and melting temperature J

Am Ceram Soc 14 502-512

Liu Y and Zhang Y (2000) Bubble growth in rhyolitic melt Earth Planet Sci Lett

181 251-264

Liu Y Behrens H and Zhang Y (2004a) The speciation of dissolved H2O in dacitic

melt Am Mineral 89 277-284

Liu Y Zhang Y and Behrens H (2004b) H2O diffusion in dacitic melt Chem Geol

209 327-340

Liu Y Zhang Y and Behrens H (2005) Solubility of H2O in rhyolitic melts at low

pressures J Volcanol Geotherm Res 143 219-235

121

Martinez L-M and Angell CA (2001) A thermodynamic connection to the fragility of

glass-forming liquids Nature 410 663-667

Moynihan CT Easteal AJ Wilder J and Tucker J (1976) Dependence of the glass

transition temperature on heating and cooling rate J Phys Chem 78 2673-2677

Neuville DR and Richet P (1991) Viscosity and mixing in molten (Ca Mg) pyroxenes

and garnets Geochim Cosmochim Acta 55 1011-1019

Neuville DR Courtial P Dingwell DB and Richet P (1993) Thermodynamic and

rheological properties of rhyolite and andesite melts Contrib Mineral Petrol 113

572-581

Newman S Stolper EM and Epstein S (1986) Measurement of water in rhyolitic

glasses calibration of an infrared spectroscopic technique Am Mineral 71 1527-

1541

Ni H and Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high

pressure data Chem Geol Revised

Rapp RP and Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar

Implications for continental growth and crust-mantle recycling J Petrol 36 891-

931

Reid J E Suzuki A Funakoshi K Terasaki H Poe BT Rubie DC and Ohtani

E (2003) The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa Phys

Earth Planet Inter 139 45-54

Richet P Lejeune A-M Holtz F and Roux J (1996) Water and the viscosity of

andesite melts Chem Geol 128 185-197

122

Rosenhauer M Scarfe CM and Virgo D (1979) Pressure dependence of the glass

transition temperature in glasses of diopside albite and sodium trisilicate

composition Carnegie Inst Washington Year Book 78 556-559

Rust AC and Cashman KV (2007) Multiple origins of obsidian pyroclasts and

implications for changes in the dynamics of the 1300 BP eruption of Newberry

Volcano USA Bull Volcanol 69 825-845

Scarfe CM Mysen BO and Virgo D (1979) Changes in viscosity and density of

melts of sodium disilicate sodium metasilicate and diopside composition with

pressure Carnegie Inst Washington Year Book 78 547-551

ScarfeCM Mysen BO and Virgo D (1987) Pressure dependence of the viscosity of

silicate melts In Mysen BO (ed) Magmatic Processes Physicochemical

Principles Geochem Soc Spec Pub 1 59-67

Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural

relaxation J Am Ceram Soc 67 504-511

Schulze F Behrens H and Hurkuck W (1999) Determination of the influence of

pressure and dissolved water on the viscosity of highly viscous melts Application

of a new parallel-plate viscometer Am Mineral 84 1512-1520

Schulze F Behrens H Holtz F Roux J and Johannes W (1996) The influence of

H2O on the viscosity of a haplogranitic melt Am Mineral 81 1155-1165

Senkov ON (2007) Correlation between fragility and glass-forming ability of metallic

alloys Phys Rev B 76 104202 DOI 101103PhysRevB76104202

Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature

range 700deg to 900degC J Geophys Res 68 6337-6343

123

Shaw HR (1972) Viscosities of magmatic silicate liquids An empirical method of

prediction Am J Sci 272 870-893

Silver LA Ihinger PD and Stolper E (1990) The influence of bulk composition on

the speciation of water in silicate glasses Contrib Mineral Petrol 104 142-162

Stevenson RJ Dingwell DB Webb SL and Bagdassarov NS (1995) The

equivalence of enthalpy and shear stress relaxation in rhyolitic obsidians and

quantification of the liquid-glass transition in volcanic processes J Volcanol

Geotherm Res 68 297-306

Stolper EM (1982a) The speciation of water in silicate melts Geochim Cosmochim

Acta 46 2609-2620

Stolper EM (1982b) Water in silicate glasses an infrared spectroscopic study Contrib

Mineral Petrol 81 1-17

Sylvester PJ (1998) Post-collisional strongly peraluminous granites Lithos 45 29-44

Tinker D Lesher CE Baxter GM Uchida T and Wang Y (2004) High-pressure

viscometry of polymerized silicate melts and limitations of the Eyring equation

Am Mineral 89 1701-1708

Withers AC and Behrens H (1999) Temperature-induced changes in the NIR spectra

of hydrous albitic and rhyolitic glasses between 300 and 100 K Phys Chem

Minerals 27 119-132

Xu Z and Zhang Y (2002) Quench rates in air water and liquid nitrogen and

inference of temperature in volcanic eruption columns Earth Planet Sci Lett 200

315-330

124

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth

Planet Sci Lett 122 373-391

Zhang Y (1999) H2O in rhyolitic glasses and melts Measurement speciation solubility

and diffusion Rev Geophys 37 493-516

Zhang Y and Behrens H (2000) H2O diffusion in rhyolitic melts and glasses Chem

Geol 169 243-262

Zhang Y Belcher R Ihinger PD Wang L Xu Z and Newman S (1997a) New

calibration of infrared measurement of dissolved water in rhyolitic glasses

Geochim Cosmochim Acta 61 3089-3100

Zhang Y Jenkins J and Xu Z (1997b) Kinetics of the reaction H2O + O hArr 2OH in

rhyolitic glasses upon cooling Geospeedometry and comparison with glass

transition Geochim Cosmochim Acta 61 2167-2173

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

Improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

ZhangY and Xu Z (2007) A long-duration experiment on hydrous species

geospeedometer and hydrous melt viscosity Geochim Cosmochim Acta 71 5226-

5232

125

CHAPTER V

CONCLUSIONS

The goal of this dissertation is to understand viscosity of natural silicate melts A

two-pronged approach is used One is to construct a general viscosity model using

available viscosity data (mostly at pressures below 05 GPa) to predict viscosity of all

natural silicate melts in all experimental temperature range at low pressures The second

is to experimentally investigate viscosity at high pressures and in the low temperature

range (high viscosity range) because such data are lacking Concerted effort on viscosity

measurements at high pressures will allow an even more general viscosity model

accounting for the effect of composition temperature and pressure

A new empirical viscosity equation for all natural and nearly natural silicate melts

at all experimentally covered temperature conditions is presented in Chapter II using the

following formulation

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

where η is viscosity in Pamiddots T is temperature in K and A B C and D are linear functions

of mole fractions of oxide components except for H2O The formulation is first applied

successfully to fit the temperature and compositional dependence of viscosity for four

binary systems Then a simpler version of the model with eight parameters is found to fit

126

the compositional and temperature dependence of the viscosity data of anhydrous natural

silicate melts better than the best model in literature A general viscosity equation with 37

parameters using this empirical formulation can fit the entire high- and low-temperature

viscosity database (1451 data points) of all ldquonaturalrdquo anhydrous and hydrous silicate

melts

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

where η is viscosity in Pamiddots T is temperature in K Xi means mole fraction of oxide

component i and Z=(XH2O)1[1+(185797T)] Al2O3ex or (Na K)2Oex mean excess oxide after

forming (Na K)AlO2 The 2σ deviation of the fit is 061 logη units This general model

can be used to calculate viscosity for modeling magma chamber processes and volcanic

eruptions It also can be used to calculate glass transition temperature for different silicate

melts

Temperature and melt composition affect melt viscosity but pressure can also

affect the viscosity of silicate melt The pressure dependence of hydrous melt viscosity in

the high viscosity range is not known Hence the pressure dependence of rhyolitic melts

in the high viscosity range has been investigated in this dissertation (Chapters III and IV)

Hydrous species reaction viscometer in piston cylinder and parallel-plate creep

viscometer in internally heated pressure vessel were used to investigate viscosity under

127

high pressure In order to use hydrous species reaction viscometer under high pressure it

is necessary to study the speciation of dissolved water in rhyolitic melt under high

pressure first

The equilibrium of reaction between two dissolved water species (H2Om and OH)

as a function of pressure (00001 094 189 and 283 GPa) temperature (624-1027 K)

and H2O concentrations (08 to 42 wt) was investigated in this study The speciation

data with total H2O content le 22 can be described by an ideal mixing model consistent

with previous results With inclusion of speciation data at higher water contents one way

to describe the speciation data is a regular solution model A speciation model was

constructed to accommodate the dependence of H2O speciation in the rhyolitic melts on

T-P-X

( )

2 m

32

3 32 2

H O OH

1000ln 18120 03832 ( 30830+02999 +00507 )+

( 74203+50262 31271 ) (30437 54527 +30464 )

K P P PT

P P X P P X

⎛= minus + minus⎜

⎝⎞

minus minus + minus ⎟⎠

where P is pressure in GPa T is temperature in K and X is mole fraction of species H2Om

or OH This formulation can be used to predict species concentrations at P le 283 GPa

total H2O content le 42 wt and temperature of 624-1027 K Furthermore it can be used

to calculate apparent equilibrium temperature which can then be used to infer viscosity

of hydrous rhyolitic melts under high pressure The results of Chapter III provide basis

for the study of Chapter IV

With the study of the speciation of dissolved water in rhyolitic melt under high

pressure viscosity of hydrous rhyolitic melts containing 08 to 4 wt water was inferred

using the hydrous species reaction viscometer at pressures up to 283 GPa Viscosity of

128

rhyolitic melts with 013 wt and 08 wt water was also measured using the parallel

plate creep viscometer at pressures up to 04 GPa but no experiment method is available

to determine viscosity of ldquodryrdquo melt at pressures gt 05 GPa Combining the data of this

study with previous data an Arrhenian viscosity model in high viscosity range is

constructed

logη = minus78470 +11472P12

⎝ ⎜

⎠ ⎟ +

minus124257 + 08080P12

⎝ ⎜

⎠ ⎟ 1minus exp minus36440 minus101893P

12

⎝ ⎜

⎠ ⎟ x

⎝ ⎜ ⎜

⎠ ⎟ ⎟ +

213531minus 21722P12

⎝ ⎜

⎠ ⎟ +

⎝ ⎜ ⎜

minus58335 + 40480P12

⎝ ⎜

⎠ ⎟ 1minus exp minus893887 minus 305499P

12

⎝ ⎜

⎠ ⎟ x

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ⎞

⎠ ⎟ ⎟ 1000

T

where P is pressure in GPa and X is mole fraction of total water content in the melt This

model can be utilized for interpolation but is not recommended for extrapolation beyond

the range of available data (Figure 46 in Chapter IV)

129

APPENDICES

130

APPENDIX A

VISCOSITY DATA OF NATURAL SILICATE MELTS

The viscosity data on the following pages are used to fit Eqn 11 in Chapter II The reference numbers of all the viscosity data

points is the same as the ones in Table 23

Table A1 Viscosity database used to fit Eqn 11

measured calculated SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O K2O P2O5 H2O T logη logη ∆

Comp wt wt wt wt wt wt wt wt wt wt wt K Pas Pas ref

1 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 1573 041 002 -039 12 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9774 916 917 001 13 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9829 894 903 009 14 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9927 866 877 011 15 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8865 137 1368 -002 16 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8923 134 1307 -033 17 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8992 1299 1247 -052 18 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9121 1222 116 -062 19 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9136 1216 1151 -065 1

10 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9187 1183 1124 -059 111 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9242 1156 1097 -059 1

131

12 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9292 1126 1075 -051 113 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9341 1104 1055 -049 114 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9409 1075 103 -045 115 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9447 1051 1016 -035 116 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9528 1017 989 -028 117 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9582 993 972 -021 118 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9595 988 968 -02 119 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9664 957 948 -009 120 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 972 935 932 -003 121 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8458 122 119 -03 122 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8511 1195 1158 -037 123 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 856 1164 1131 -033 124 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8671 1113 1076 -037 125 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8721 1091 1053 -038 126 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8773 1066 1032 -034 127 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8878 1025 991 -034 128 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8193 1215 123 015 129 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8269 1176 1182 006 130 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8342 1135 1141 006 131 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8409 1108 1106 -002 132 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8456 1084 1084 0 133 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8516 1055 1057 002 134 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8563 1035 1037 002 135 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8615 1013 1016 003 136 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 800 1238 1259 021 137 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8032 1207 1237 03 138 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8095 1188 1198 01 139 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8141 1159 1171 012 140 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8206 1136 1136 0 141 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8253 1111 1112 001 142 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8305 1086 1088 002 143 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8359 106 1063 003 1

132

44 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 841 1039 1042 003 145 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8457 1018 1023 005 146 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 7945 1233 1262 029 147 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8051 1192 1195 003 148 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8204 1102 1114 012 149 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8284 1076 1076 0 150 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8362 1034 1043 009 151 Bn3 4357 297 1018 0 0 917 2607 759 096 0 188 7617 123 1297 067 152 Bn3 4357 297 1018 0 0 917 2607 759 096 0 188 8023 1072 1083 011 153 Bn3 4357 297 1018 0 0 917 2607 759 096 0 196 7794 1157 1175 018 154 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14139 196 294 098 155 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14635 165 239 074 156 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14975 145 203 058 157 Te2 5056 235 1403 0 0 879 15 704 301 0 002 15132 138 187 049 158 Te2 5056 235 1403 0 0 879 15 704 301 0 002 1565 113 136 023 159 Te2 5056 235 1403 0 0 879 15 704 301 0 002 16144 091 091 0 160 Te2 5056 235 1403 0 0 879 15 704 301 0 002 16662 07 047 -023 161 Te2 5056 235 1403 0 0 879 15 704 301 0 002 17186 05 004 -046 162 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9763 993 1052 059 163 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9831 971 1032 061 164 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9867 957 1021 064 165 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9921 93 1006 076 166 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9972 918 993 075 167 Te2 5056 235 1403 0 0 879 15 704 301 0 002 10081 873 964 091 168 Te2 5056 235 1403 0 0 879 15 704 301 0 002 918 1285 1294 009 169 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9307 1205 1225 02 170 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9341 1186 1209 023 171 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9464 1132 1156 024 172 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9567 1075 1117 042 173 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9606 1061 1103 042 174 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9673 1038 108 042 175 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9712 1021 1068 047 1

133

76 Te2 5056 235 1403 0 0 879 15 704 301 0 012 905 127 1272 002 177 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9156 1201 1218 017 178 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9265 1177 1169 -008 179 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9374 112 1126 006 180 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9478 1067 109 023 181 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9589 1023 1054 031 182 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9684 987 1025 038 183 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8684 1249 1238 -011 184 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8785 1197 1193 -004 185 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8898 1157 1148 -009 186 Te2 5056 235 1403 0 0 879 15 704 301 0 052 899 1099 1114 015 187 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8342 1238 1258 02 188 Te2 5056 235 1403 0 0 879 15 704 301 0 088 844 1178 1216 038 189 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8555 1158 1171 013 190 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8665 1121 113 009 191 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8761 1077 1097 02 192 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8304 1239 1262 023 193 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8416 1215 1214 -001 194 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8518 1163 1174 011 195 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8621 1143 1136 -007 196 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8695 1049 111 061 197 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8828 1041 1065 024 198 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8935 995 1032 037 199 Te2 5056 235 1403 0 0 879 15 704 301 0 092 918 892 961 069 1

100 Te2 5056 235 1403 0 0 879 15 704 301 0 136 822 1251 1179 -072 1101 Te2 5056 235 1403 0 0 879 15 704 301 0 136 832 1189 1144 -045 1102 Te2 5056 235 1403 0 0 879 15 704 301 0 136 8366 1141 1128 -013 1103 Te2 5056 235 1403 0 0 879 15 704 301 0 136 8475 1112 1091 -021 1104 Te2 5056 235 1403 0 0 879 15 704 301 0 16 8255 1131 1121 -01 1105 Te2 5056 235 1403 0 0 879 15 704 301 0 16 816 1213 1153 -06 1106 Te2 5056 235 1403 0 0 879 15 704 301 0 16 847 1091 1052 -039 1107 Te2 5056 235 1403 0 0 879 15 704 301 0 227 818 1079 1046 -033 1

134

108 Te2 5056 235 1403 0 0 879 15 704 301 0 227 7827 126 1158 -102 1109 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 18155 192 15 -042 2110 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 1766 212 176 -036 2111 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 17219 233 201 -032 2112 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 16694 257 233 -024 2113 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 16174 286 266 -02 2114 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9733 1039 1004 -035 2115 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 990 997 97 -027 2116 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10051 962 94 -022 2117 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10152 938 921 -017 2118 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10268 915 9 -015 2119 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10348 897 886 -011 2120 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10464 866 866 0 2121 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 8892 1312 1206 -106 2122 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 8982 1271 1181 -09 2123 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 911 1225 1148 -077 2124 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 920 1196 1125 -071 2125 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9322 1155 1095 -06 2126 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9415 1129 1074 -055 2127 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9523 1094 1049 -045 2128 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9625 1067 1027 -04 2129 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7308 1202 1147 -055 2130 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7406 1154 1121 -033 2131 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7501 1121 1096 -025 2132 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7617 1091 1067 -024 2133 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7823 1031 1017 -014 2134 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7303 1203 1139 -064 2135 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 741 1179 111 -069 2136 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7617 1092 1057 -035 2137 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7809 104 1011 -029 2138 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6764 1234 1201 -033 2139 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6835 1197 1179 -018 2

135

140 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6914 1167 1155 -012 2141 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7026 1139 1123 -016 2142 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7176 1089 1081 -008 2143 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7279 1053 1053 0 2144 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7381 1022 1027 005 2145 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7479 1005 1003 -002 2146 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6541 1214 1183 -031 2147 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 664 1176 1152 -024 2148 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6751 1137 1118 -019 2149 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6859 109 1086 -004 2150 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 7043 1035 1035 0 2151 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 7164 996 1003 007 2152 Ph4 5882 079 1942 0 0 187 235 931 744 0 472 587 1237 1221 -016 2153 Ph4 5882 079 1942 0 0 187 235 931 744 0 472 6013 1177 1168 -009 2154 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 18277 186 142 -044 2155 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 17765 209 173 -036 2156 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 17258 232 205 -027 2157 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 16778 256 238 -018 2158 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 16285 283 273 -01 2159 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1578 312 312 0 2160 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 15317 341 35 009 2161 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9733 1196 1243 047 2162 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9818 1167 1212 045 2163 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9942 1123 117 047 2164 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9984 1114 1156 042 2165 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9992 1109 1153 044 2166 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10146 1059 1106 047 2167 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10361 1004 1046 042 2168 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1045 982 1023 041 2169 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10572 953 993 04 2170 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10658 934 973 039 2171 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10826 899 935 036 2

136

172 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1092 881 915 034 2173 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 11031 858 892 034 2174 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 11137 837 871 034 2175 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 19287 146 086 -06 2176 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 18796 164 113 -051 2177 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9511 1277 1331 054 2178 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 8792 1216 1175 -041 2179 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 8895 1178 115 -028 2180 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9099 1114 1102 -012 2181 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9309 105 1054 004 2182 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9422 1024 1029 005 2183 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9579 985 995 01 2184 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9659 96 978 018 2185 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9793 931 951 02 2186 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9893 908 93 022 2187 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8324 122 1202 -018 2188 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8362 1208 1193 -015 2189 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8371 1199 1191 -008 2190 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8426 1183 1178 -005 2191 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8472 1173 1167 -006 2192 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8582 1142 1141 -001 2193 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8698 1104 1115 011 2194 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8793 108 1093 013 2195 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8899 1049 107 021 2196 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 7944 1221 1209 -012 2197 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 7998 1201 1195 -006 2198 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8048 1186 1183 -003 2199 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8121 1166 1165 -001 2200 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8207 1137 1144 007 2201 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8286 1115 1126 011 2202 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8393 109 1101 011 2203 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8466 1066 1084 018 2

137

204 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8548 1042 1066 024 2205 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7254 1231 1238 007 2206 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 736 1193 1207 014 2207 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7436 1157 1185 028 2208 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7491 1145 117 025 2209 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7578 1119 1146 027 2210 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 769 1086 1116 03 2211 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7806 1057 1086 029 2212 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7912 1025 106 035 2213 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 8022 1001 1033 032 2214 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 6922 1223 1254 031 2215 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 7033 1189 1218 029 2216 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 713 1148 1189 041 2217 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 7229 1121 1159 038 2218 Tr6 6445 05 1671 0 0 292 536 67 337 0 492 6211 123 13 07 2219 Tr6 6445 05 1671 0 0 292 536 67 337 0 492 6308 1189 1264 075 2220 H3 786 0 125 0 0 0 0 46 42 0 002 14532 679 736 057 3221 H3 786 0 125 0 0 0 0 46 42 0 002 11549 1102 1117 015 4222 H3 786 0 125 0 0 0 0 46 42 0 002 11782 1063 108 017 4223 H3 786 0 125 0 0 0 0 46 42 0 002 11989 1028 1048 02 4224 H3 786 0 125 0 0 0 0 46 42 0 002 1212 1016 1029 013 4225 H3 786 0 125 0 0 0 0 46 42 0 002 16702 49 548 058 4226 H3 786 0 125 0 0 0 0 46 42 0 002 17192 453 512 059 4227 H3 786 0 125 0 0 0 0 46 42 0 002 17682 415 478 063 4228 H3 786 0 125 0 0 0 0 46 42 0 002 18172 381 446 065 4229 H3 786 0 125 0 0 0 0 46 42 0 002 18672 358 416 058 4230 H3 786 0 125 0 0 0 0 46 42 0 002 19162 324 387 063 4231 H5 741 0 117 0 0 0 0 9 44 0 002 94765 974 1007 033 4232 H5 741 0 117 0 0 0 0 9 44 0 002 91965 1045 1063 018 4233 H5 741 0 117 0 0 0 0 9 44 0 002 90365 107 1097 027 4234 H5 741 0 117 0 0 0 0 9 44 0 002 88345 1135 1142 007 4235 H5 741 0 117 0 0 0 0 9 44 0 002 12132 601 639 038 4

138

236 H5 741 0 117 0 0 0 0 9 44 0 002 11432 684 716 032 4237 H5 741 0 117 0 0 0 0 9 44 0 002 10732 784 804 02 4238 H5 741 0 117 0 0 0 0 9 44 0 002 12932 533 564 031 4239 H5 741 0 117 0 0 0 0 9 44 0 002 17682 253 268 015 4240 H5 741 0 117 0 0 0 0 9 44 0 002 17192 272 29 018 4241 H5 741 0 117 0 0 0 0 9 44 0 002 16702 291 314 023 4242 H5 741 0 117 0 0 0 0 9 44 0 002 16212 314 34 026 4243 H5 741 0 117 0 0 0 0 9 44 0 002 15712 338 367 029 4244 H5 741 0 117 0 0 0 0 9 44 0 002 15222 361 396 035 4245 H5 741 0 117 0 0 0 0 9 44 0 002 14732 387 427 04 4246 H7 746 0 118 0 0 0 0 44 92 0 002 96935 1016 1086 07 4247 H7 746 0 118 0 0 0 0 44 92 0 002 94575 1065 1135 07 4248 H7 746 0 118 0 0 0 0 44 92 0 002 92725 1115 1175 06 4249 H7 746 0 118 0 0 0 0 44 92 0 002 18672 254 248 -006 4250 H7 746 0 118 0 0 0 0 44 92 0 002 18172 272 271 -001 4251 H7 746 0 118 0 0 0 0 44 92 0 002 17682 292 295 003 4252 H7 746 0 118 0 0 0 0 44 92 0 002 17192 314 32 006 4253 H7 746 0 118 0 0 0 0 44 92 0 002 16702 336 347 011 4254 H7 746 0 118 0 0 0 0 44 92 0 002 16212 357 376 019 4255 H7 746 0 118 0 0 0 0 44 92 0 002 15712 382 407 025 4256 H2 779 0 1189 0 0 0 0 453 417 0 002 12424 977 978 001 5257 H2 779 0 1189 0 0 0 0 453 417 0 002 11765 109 1076 -014 5258 H2 779 0 1189 0 0 0 0 453 417 0 002 11174 115 1173 023 5259 H2 779 0 1189 0 0 0 0 453 417 0 002 19652 298 353 055 5260 H1 7612 0 1353 0 0 0 0 465 568 0 003 16732 491 502 011 6261 H1 7612 0 1353 0 0 0 0 465 568 0 003 16732 492 502 01 6262 H1 7612 0 1353 0 0 0 0 465 568 0 105 14732 421 505 084 6263 H1 7612 0 1353 0 0 0 0 465 568 0 105 15732 377 435 058 6264 H1 7612 0 1353 0 0 0 0 465 568 0 155 14732 385 437 052 6265 H1 7612 0 1353 0 0 0 0 465 568 0 155 15732 345 371 026 6266 H1 7612 0 1353 0 0 0 0 465 568 0 155 16732 298 308 01 6267 H1 7612 0 1353 0 0 0 0 465 568 0 209 14732 361 377 016 6

139

268 H1 7612 0 1353 0 0 0 0 465 568 0 209 15732 32 313 -007 6269 H1 7612 0 1353 0 0 0 0 465 568 0 258 15732 307 272 -035 6270 H1 7612 0 1353 0 0 0 0 465 568 0 322 14732 327 288 -039 6271 H1 7612 0 1353 0 0 0 0 465 568 0 322 15732 288 232 -056 6272 H1 7612 0 1353 0 0 0 0 465 568 0 375 15732 254 208 -046 6273 H1 7612 0 1353 0 0 0 0 465 568 0 5 12732 337 332 -005 6274 H1 7612 0 1353 0 0 0 0 465 568 0 5 14232 275 246 -029 6275 H1 7612 0 1353 0 0 0 0 465 568 0 5 11732 395 398 003 6276 H1 7612 0 1353 0 0 0 0 465 568 0 59 12732 318 307 -011 6277 H1 7612 0 1353 0 0 0 0 465 568 0 59 11732 371 37 -001 6278 H1 7612 0 1353 0 0 0 0 465 568 0 59 11732 363 37 007 6279 H1 7612 0 1353 0 0 0 0 465 568 0 59 10732 425 441 016 6280 H1 7612 0 1353 0 0 0 0 465 568 0 703 10732 403 414 011 6281 H1 7612 0 1353 0 0 0 0 465 568 0 703 11732 346 346 0 6282 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 368 394 026 6283 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 367 394 027 6284 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 372 394 022 6285 H1 7612 0 1353 0 0 0 0 465 568 0 821 11732 313 33 017 6286 H1 7612 0 1353 0 0 0 0 465 568 0 821 11732 312 33 018 6287 H3 786 0 125 0 0 0 0 46 42 0 041 97675 1076 112 044 7288 H3 786 0 125 0 0 0 0 46 42 0 042 92185 118 1184 004 7289 H3 786 0 125 0 0 0 0 46 42 0 042 96045 114 1134 -006 7290 H3 786 0 125 0 0 0 0 46 42 0 095 93975 942 992 05 7291 H3 786 0 125 0 0 0 0 46 42 0 096 86685 1098 1098 0 7292 H3 786 0 125 0 0 0 0 46 42 0 096 88455 1045 1068 023 7293 H3 786 0 125 0 0 0 0 46 42 0 099 88425 1048 1062 014 7294 H3 786 0 125 0 0 0 0 46 42 0 099 92275 968 1005 037 7295 H3 786 0 125 0 0 0 0 46 42 0 128 88565 983 1004 021 7296 H3 786 0 125 0 0 0 0 46 42 0 13 89455 96 986 026 7297 H3 786 0 125 0 0 0 0 46 42 0 131 87595 988 1015 027 7298 H3 786 0 125 0 0 0 0 46 42 0 132 85605 1038 1048 01 7299 H3 786 0 125 0 0 0 0 46 42 0 133 82255 1096 1112 016 7

140

300 H3 786 0 125 0 0 0 0 46 42 0 135 80155 1139 1154 015 7301 H3 786 0 125 0 0 0 0 46 42 0 137 84055 1058 1069 011 7302 H3 786 0 125 0 0 0 0 46 42 0 18 84975 969 987 018 7303 H3 786 0 125 0 0 0 0 46 42 0 185 78015 113 1127 -003 7304 H3 786 0 125 0 0 0 0 46 42 0 188 81975 1009 1035 026 7305 H3 786 0 125 0 0 0 0 46 42 0 225 81845 962 992 03 7306 H3 786 0 125 0 0 0 0 46 42 0 229 77505 1049 1082 033 7307 H3 786 0 125 0 0 0 0 46 42 0 261 82185 912 946 034 7308 H3 786 0 125 0 0 0 0 46 42 0 335 78825 993 943 -05 7309 A4 624 055 2001 003 002 322 908 352 093 012 0 9962 1276 1295 019 8310 A4 624 055 2001 003 002 322 908 352 093 012 0 10079 1232 1243 011 8311 A4 624 055 2001 003 002 322 908 352 093 012 0 10114 1218 1229 011 8312 A4 624 055 2001 003 002 322 908 352 093 012 0 10185 1195 12 005 8313 A4 624 055 2001 003 002 322 908 352 093 012 0 10249 1174 1176 002 8314 A4 624 055 2001 003 002 322 908 352 093 012 0 10335 1141 1145 004 8315 A4 624 055 2001 003 002 322 908 352 093 012 0 10437 1109 1111 002 8316 A4 624 055 2001 003 002 322 908 352 093 012 0 10538 1076 1079 003 8317 A4 624 055 2001 003 002 322 908 352 093 012 0 10589 1057 1064 007 8318 A4 624 055 2001 003 002 322 908 352 093 012 0 10689 1033 1035 002 8319 A4 624 055 2001 003 002 322 908 352 093 012 0 1073 1019 1024 005 8320 A4 624 055 2001 003 002 322 908 352 093 012 0 10846 987 993 006 8321 A4 624 055 2001 003 002 322 908 352 093 012 0 10941 96 969 009 8322 A4 624 055 2001 003 002 322 908 352 093 012 0 11077 93 936 006 8323 A4 624 055 2001 003 002 322 908 352 093 012 0 11138 912 922 01 8324 A4 624 055 2001 003 002 322 908 352 093 012 0 11238 892 9 008 8325 A4 624 055 2001 003 002 322 908 352 093 012 0 15137 335 367 032 8326 A4 624 055 2001 003 002 322 908 352 093 012 0 15366 317 346 029 8327 A4 624 055 2001 003 002 322 908 352 093 012 0 15755 29 312 022 8328 A4 624 055 2001 003 002 322 908 352 093 012 0 16011 273 29 017 8329 A4 624 055 2001 003 002 322 908 352 093 012 0 16224 259 273 014 8330 A4 624 055 2001 003 002 322 908 352 093 012 0 16504 242 25 008 8331 A4 624 055 2001 003 002 322 908 352 093 012 0 16731 228 233 005 8

141

332 A4 624 055 2001 003 002 322 908 352 093 012 0 16986 215 214 -001 8333 A4 624 055 2001 003 002 322 908 352 093 012 0 17286 197 192 -005 8334 A4 624 055 2001 003 002 322 908 352 093 012 0 17531 185 175 -01 8335 A4 624 055 2001 003 002 322 908 352 093 012 0 17762 174 159 -015 8336 A4 624 055 2001 003 002 322 908 352 093 012 0 18017 162 142 -02 8337 A4 624 055 2001 003 002 322 908 352 093 012 0 18039 16 141 -019 8338 A4 624 055 2001 003 002 322 908 352 093 012 0 18295 148 125 -023 8339 A4 624 055 2001 003 002 322 908 352 093 012 0 18522 139 11 -029 8340 A4 624 055 2001 003 002 322 908 352 093 012 0 18746 128 097 -031 8341 A4 624 055 2001 003 002 322 908 352 093 012 0 19041 116 079 -037 8342 A4 624 055 2001 003 002 322 908 352 093 012 0 19294 105 065 -04 8343 A4 624 055 2001 003 002 322 908 352 093 012 0 1952 096 052 -044 8344 A4 624 055 2001 003 002 322 908 352 093 012 0 19779 086 038 -048 8345 A4 624 055 2001 003 002 322 908 352 093 012 027 9357 127 1279 009 8346 A4 624 055 2001 003 002 322 908 352 093 012 027 9461 1232 1242 01 8347 A4 624 055 2001 003 002 322 908 352 093 012 027 9654 1164 1178 014 8348 A4 624 055 2001 003 002 322 908 352 093 012 027 9824 1109 1125 016 8349 A4 624 055 2001 003 002 322 908 352 093 012 027 9989 1054 1077 023 8350 A4 624 055 2001 003 002 322 908 352 093 012 027 10108 1023 1045 022 8351 A4 624 055 2001 003 002 322 908 352 093 012 027 10218 993 1016 023 8352 A4 624 055 2001 003 002 322 908 352 093 012 027 10416 946 967 021 8353 A4 624 055 2001 003 002 322 908 352 093 012 027 10614 903 921 018 8354 A4 624 055 2001 003 002 322 908 352 093 012 027 10813 856 878 022 8355 A4 624 055 2001 003 002 322 908 352 093 012 1 8645 1219 118 -039 8356 A4 624 055 2001 003 002 322 908 352 093 012 1 8776 1173 1147 -026 8357 A4 624 055 2001 003 002 322 908 352 093 012 1 8984 1103 1097 -006 8358 A4 624 055 2001 003 002 322 908 352 093 012 1 9114 1062 1066 004 8359 A4 624 055 2001 003 002 322 908 352 093 012 1 9223 1033 1041 008 8360 A4 624 055 2001 003 002 322 908 352 093 012 1 9423 978 996 018 8361 A4 624 055 2001 003 002 322 908 352 093 012 1 9632 928 951 023 8362 A4 624 055 2001 003 002 322 908 352 093 012 1 9861 874 903 029 8363 A4 624 055 2001 003 002 322 908 352 093 012 2 7937 1187 1166 -021 8

142

364 A4 624 055 2001 003 002 322 908 352 093 012 2 804 1148 1139 -009 8365 A4 624 055 2001 003 002 322 908 352 093 012 2 8245 1072 1088 016 8366 A4 624 055 2001 003 002 322 908 352 093 012 2 8251 1075 1087 012 8367 A4 624 055 2001 003 002 322 908 352 093 012 2 8252 1073 1087 014 8368 A4 624 055 2001 003 002 322 908 352 093 012 2 8255 1074 1086 012 8369 A4 624 055 2001 003 002 322 908 352 093 012 2 8257 107 1085 015 8370 A4 624 055 2001 003 002 322 908 352 093 012 2 8461 1008 1038 03 8371 A4 624 055 2001 003 002 322 908 352 093 012 2 8664 949 992 043 8372 A4 624 055 2001 003 002 322 908 352 093 012 266 7215 1342 1288 -054 8373 A4 624 055 2001 003 002 322 908 352 093 012 266 7426 1266 1223 -043 8374 A4 624 055 2001 003 002 322 908 352 093 012 266 7537 122 119 -03 8375 A4 624 055 2001 003 002 322 908 352 093 012 266 7651 117 1158 -012 8376 A4 624 055 2001 003 002 322 908 352 093 012 266 7867 109 11 01 8377 A4 624 055 2001 003 002 322 908 352 093 012 266 7992 1049 1068 019 8378 A4 624 055 2001 003 002 322 908 352 093 012 266 823 975 1011 036 8379 A4 624 055 2001 003 002 322 908 352 093 012 266 8438 923 964 041 8380 A4 624 055 2001 003 002 322 908 352 093 012 266 864 875 921 046 8381 A4 624 055 2001 003 002 322 908 352 093 012 346 723 1249 1195 -054 8382 A4 624 055 2001 003 002 322 908 352 093 012 346 7331 121 1165 -045 8383 A4 624 055 2001 003 002 322 908 352 093 012 346 7445 116 1132 -028 8384 A4 624 055 2001 003 002 322 908 352 093 012 346 7552 1121 1102 -019 8385 A4 624 055 2001 003 002 322 908 352 093 012 346 7644 1078 1077 -001 8386 A4 624 055 2001 003 002 322 908 352 093 012 346 7911 995 1009 014 8387 A4 624 055 2001 003 002 322 908 352 093 012 346 7978 976 993 017 8388 A4 624 055 2001 003 002 322 908 352 093 012 346 8123 942 959 017 8389 A4 624 055 2001 003 002 322 908 352 093 012 346 8348 875 909 034 8390 R6 7379 005 1511 042 005 007 097 471 402 001 88 97315 511 469 -042 9391 R6 7379 005 1511 042 005 007 097 471 402 001 88 10732 414 392 -022 9392 R6 7379 005 1511 042 005 007 097 471 402 001 88 11732 345 327 -018 9393 R14 7692 01 1292 089 005 011 086 389 425 003 008 12212 864 885 021 10394 R14 7692 01 1292 089 005 011 086 389 425 003 008 12062 881 906 025 10395 R14 7692 01 1292 089 005 011 086 389 425 003 008 11792 92 945 025 10

143

396 R14 7692 01 1292 089 005 011 086 389 425 003 008 11512 965 987 022 10397 R14 7692 01 1292 089 005 011 086 389 425 003 008 11382 982 1007 025 10398 R15 7699 003 1302 071 01 004 048 431 431 0 149 72315 1318 1326 008 10399 R15 7699 003 1302 071 01 004 048 431 431 0 149 73715 1285 1286 001 10400 R15 7699 003 1302 071 01 004 048 431 431 0 149 74815 1245 1256 011 10401 R15 7699 003 1302 071 01 004 048 431 431 0 149 75815 1214 123 016 10402 R15 7699 003 1302 071 01 004 048 431 431 0 149 77415 1191 1189 -002 10403 R15 7699 003 1302 071 01 004 048 431 431 0 149 78415 1145 1165 02 10404 R15 7699 003 1302 071 01 004 048 431 431 0 149 79415 1155 1141 -014 10405 R15 7699 003 1302 071 01 004 048 431 431 0 149 80415 1092 1119 027 10406 R15 7699 003 1302 071 01 004 048 431 431 0 149 81415 1105 1097 -008 10407 R15 7699 003 1302 071 01 004 048 431 431 0 149 82215 106 108 02 10408 R15 7699 003 1302 071 01 004 048 431 431 0 149 83215 1058 1059 001 10409 R15 7699 003 1302 071 01 004 048 431 431 0 149 84215 1039 1039 0 10410 R15 7699 003 1302 071 01 004 048 431 431 0 149 85115 1026 1022 -004 10411 R15 7699 003 1302 071 01 004 048 431 431 0 149 86215 101 1001 -009 10412 R17 7701 003 1314 071 01 004 051 428 418 0 001 12332 964 922 -042 10413 R17 7701 003 1314 071 01 004 051 428 418 0 001 12052 993 963 -03 10414 R17 7701 003 1314 071 01 004 051 428 418 0 001 11582 1069 1038 -031 10415 R17 7701 003 1314 071 01 004 051 428 418 0 001 11352 112 1077 -043 10416 R17 7701 003 1314 071 01 004 051 428 418 0 001 11112 1127 1119 -008 10417 R17 7701 003 1314 071 01 004 051 428 418 0 001 10882 1195 1162 -033 10418 R17 7701 003 1314 071 01 004 051 428 418 0 001 10642 1238 1209 -029 10419 R19 7708 009 1244 13 002 002 036 449 42 0 004 12312 884 869 -015 10420 R19 7708 009 1244 13 002 002 036 449 42 0 004 12067 916 902 -014 10421 R19 7708 009 1244 13 002 002 036 449 42 0 004 11792 951 942 -009 10422 R19 7708 009 1244 13 002 002 036 449 42 0 004 11612 971 968 -003 10423 R19 7708 009 1244 13 002 002 036 449 42 0 004 11422 998 997 -001 10424 R21 7717 008 124 13 002 001 035 45 42 0 012 10702 1016 1064 048 10425 R21 7717 008 124 13 002 001 035 45 42 0 012 10922 1008 103 022 10426 R21 7717 008 124 13 002 001 035 45 42 0 012 11002 993 1018 025 10427 R21 7717 008 124 13 002 001 035 45 42 0 012 11292 953 976 023 10

144

428 R21 7717 008 124 13 002 001 035 45 42 0 012 11582 896 935 039 10429 R21 7717 008 124 13 002 001 035 45 42 0 012 11872 857 896 039 10430 R26 7748 017 122 13 005 017 114 39 36 0 013 11882 85 872 022 10431 R26 7748 017 122 13 005 017 114 39 36 0 013 11522 91 923 013 10432 R26 7748 017 122 13 005 017 114 39 36 0 013 11272 951 96 009 10433 R26 7748 017 122 13 005 017 114 39 36 0 013 10932 1005 1013 008 10434 R26 7748 017 122 13 005 017 114 39 36 0 013 10932 1025 1013 -012 10435 R26 7748 017 122 13 005 017 114 39 36 0 013 10612 1062 1065 003 10436 R27 7753 017 1217 13 005 017 113 389 36 0 004 11342 1007 996 -011 10437 R27 7753 017 1217 13 005 017 113 389 36 0 004 11522 981 967 -014 10438 R27 7753 017 1217 13 005 017 113 389 36 0 004 11592 962 956 -006 10439 R27 7753 017 1217 13 005 017 113 389 36 0 004 11782 934 926 -008 10440 R27 7753 017 1217 13 005 017 113 389 36 0 004 11872 909 912 003 10441 R27 7753 017 1217 13 005 017 113 389 36 0 004 11962 904 899 -005 10442 R27 7753 017 1217 13 005 017 113 389 36 0 004 12247 862 858 -004 10443 R28 7788 007 1273 076 004 006 05 393 403 001 002 11852 1012 998 -014 10444 R28 7788 007 1273 076 004 006 05 393 403 001 002 12082 979 963 -016 10445 R31 78 009 1215 054 007 006 05 408 448 002 006 12382 866 895 029 10446 R31 78 009 1215 054 007 006 05 408 448 002 006 12232 889 915 026 10447 R31 78 009 1215 054 007 006 05 408 448 002 006 12042 906 942 036 10448 R31 78 009 1215 054 007 006 05 408 448 002 006 11852 948 969 021 10449 R31 78 009 1215 054 007 006 05 408 448 002 006 11712 951 99 039 10450 R31 78 009 1215 054 007 006 05 408 448 002 006 11657 969 998 029 10451 R31 78 009 1215 054 007 006 05 408 448 002 006 11369 1004 1042 038 10452 R31 78 009 1215 054 007 006 05 408 448 002 006 11199 1029 1069 04 10453 R31 78 009 1215 054 007 006 05 408 448 002 006 10778 1089 114 051 10454 R31 78 009 1215 054 007 006 05 408 448 002 006 10403 1165 1207 042 10455 R32 78 009 1215 054 007 007 05 408 448 0 013 11712 92 95 03 10456 R32 78 009 1215 054 007 007 05 408 448 0 013 11202 999 1022 023 10457 R32 78 009 1215 054 007 007 05 408 448 0 013 10782 1049 1084 035 10458 R32 78 009 1215 054 007 007 05 408 448 0 013 10242 1154 117 016 10459 R32 78 009 1215 054 007 007 05 408 448 0 013 99215 12 1224 024 10

145

460 A3 6117 084 1729 539 0 335 583 385 139 0 002 9811 1133 1117 -016 11461 A3 6117 084 1729 539 0 335 583 385 139 0 002 9922 1083 1089 006 11462 A3 6117 084 1729 539 0 335 583 385 139 0 002 10118 1025 1042 017 11463 A3 6117 084 1729 539 0 335 583 385 139 0 002 10255 99 1012 022 11464 A3 6117 084 1729 539 0 335 583 385 139 0 002 10368 967 987 02 11465 A3 6117 084 1729 539 0 335 583 385 139 0 002 1670 219 23 011 11466 A3 6117 084 1729 539 0 335 583 385 139 0 002 1719 197 196 -001 11467 A3 6117 084 1729 539 0 335 583 385 139 0 002 1768 174 164 -01 11468 A3 6117 084 1729 539 0 335 583 385 139 0 002 1818 152 133 -019 11469 A3 6117 084 1729 539 0 335 583 385 139 0 002 1867 133 104 -029 11470 A3 6117 084 1729 539 0 335 583 385 139 0 002 9393 1266 1235 -031 11471 A3 6117 084 1729 539 0 335 583 385 139 0 002 9506 123 1201 -029 11472 A3 6117 084 1729 539 0 335 583 385 139 0 002 9617 1185 1169 -016 11473 A3 6117 084 1729 539 0 335 583 385 139 0 002 9718 1164 1141 -023 11474 R30 779 007 1205 076 0 005 052 401 406 0 0 1670 479 473 -006 11475 R30 779 007 1205 076 0 005 052 401 406 0 0 1719 441 438 -003 11476 R30 779 007 1205 076 0 005 052 401 406 0 0 1768 409 404 -005 11477 R30 779 007 1205 076 0 005 052 401 406 0 0 1817 381 373 -008 11478 R30 779 007 1205 076 0 005 052 401 406 0 0 1867 35 343 -007 11479 R30 779 007 1205 076 0 005 052 401 406 0 0 1051 121 1259 049 11480 R30 779 007 1205 076 0 005 052 401 406 0 0 10706 1192 1217 025 11481 R30 779 007 1205 076 0 005 052 401 406 0 0 10813 1181 1194 013 11482 R30 779 007 1205 076 0 005 052 401 406 0 0 11006 1134 1156 022 11483 R30 779 007 1205 076 0 005 052 401 406 0 0 10984 1127 116 033 11484 R30 779 007 1205 076 0 005 052 401 406 0 0 11111 1105 1136 031 11485 R30 779 007 1205 076 0 005 052 401 406 0 0 11269 1089 1106 017 11486 R30 779 007 1205 076 0 005 052 401 406 0 0 11272 1073 1106 033 11487 R30 779 007 1205 076 0 005 052 401 406 0 0 11674 1019 1035 016 11488 R30 779 007 1205 076 0 005 052 401 406 0 0 11935 978 992 014 11489 R30 779 007 1205 076 0 005 052 401 406 0 0 10969 1137 1163 026 11490 R30 779 007 1205 076 0 005 052 401 406 0 0 10976 1134 1162 028 11491 R30 779 007 1205 076 0 005 052 401 406 0 0 11068 1118 1144 026 11

146

492 R30 779 007 1205 076 0 005 052 401 406 0 0 11203 1092 1118 026 11493 R30 779 007 1205 076 0 005 052 401 406 0 0 11261 1081 1108 027 11494 R30 779 007 1205 076 0 005 052 401 406 0 0 11305 1077 1099 022 11495 R30 779 007 1205 076 0 005 052 401 406 0 0 11345 1066 1092 026 11496 R30 779 007 1205 076 0 005 052 401 406 0 0 11347 1063 1092 029 11497 R30 779 007 1205 076 0 005 052 401 406 0 0 11469 1042 107 028 11498 R30 779 007 1205 076 0 005 052 401 406 0 0 11551 1031 1056 025 11499 R30 779 007 1205 076 0 005 052 401 406 0 0 11563 103 1054 024 11500 R30 779 007 1205 076 0 005 052 401 406 0 0 11671 1015 1035 02 11501 R30 779 007 1205 076 0 005 052 401 406 0 0 11771 999 1018 019 11502 R30 779 007 1205 076 0 005 052 401 406 0 0 11941 973 991 018 11503 R30 779 007 1205 076 0 005 052 401 406 0 0 12133 936 961 025 11504 R30 779 007 1205 076 0 005 052 401 406 0 0 10983 1156 116 004 11505 R30 779 007 1205 076 0 005 052 401 406 0 0 11106 1137 1137 0 11506 R30 779 007 1205 076 0 005 052 401 406 0 0 11203 1121 1118 -003 11507 R30 779 007 1205 076 0 005 052 401 406 0 0 11344 1093 1092 -001 11508 R30 779 007 1205 076 0 005 052 401 406 0 0 11513 1065 1062 -003 11509 R30 779 007 1205 076 0 005 052 401 406 0 0 11661 1036 1037 001 11510 R30 779 007 1205 076 0 005 052 401 406 0 0 11757 1018 1021 003 11511 R30 779 007 1205 076 0 005 052 401 406 0 0 11902 995 997 002 11512 R30 779 007 1205 076 0 005 052 401 406 0 0 12045 974 974 0 11513 R30 779 007 1205 076 0 005 052 401 406 0 0 12191 954 952 -002 11514 R30 779 007 1205 076 0 005 052 401 406 0 0 12308 936 934 -002 11515 R30 779 007 1205 076 0 005 052 401 406 0 0 988 1377 1408 031 11516 R30 779 007 1205 076 0 005 052 401 406 0 0 1063 1249 1233 -016 11517 R30 779 007 1205 076 0 005 052 401 406 0 0 1068 1226 1222 -004 11518 R30 779 007 1205 076 0 005 052 401 406 0 0 1091 1187 1175 -012 11519 R30 779 007 1205 076 0 005 052 401 406 0 0 1094 1151 1169 018 11520 R30 779 007 1205 076 0 005 052 401 406 0 0 1128 1102 1104 002 11521 R30 779 007 1205 076 0 005 052 401 406 0 0 1129 1102 1102 0 11522 R30 779 007 1205 076 0 005 052 401 406 0 0 1131 1092 1099 007 11523 R30 779 007 1205 076 0 005 052 401 406 0 0 1135 1087 1091 004 11

147

524 R30 779 007 1205 076 0 005 052 401 406 0 0 1136 109 1089 -001 11525 R30 779 007 1205 076 0 005 052 401 406 0 0 1138 1084 1086 002 11526 R30 779 007 1205 076 0 005 052 401 406 0 0 1157 1062 1052 -01 11527 R30 779 007 1205 076 0 005 052 401 406 0 0 1186 1007 1004 -003 11528 R30 779 007 1205 076 0 005 052 401 406 0 0 1219 955 952 -003 11529 R30 779 007 1205 076 0 005 052 401 406 0 0 1221 957 949 -008 11530 R30 779 007 1205 076 0 005 052 401 406 0 0 1253 919 902 -017 11531 R30 779 007 1205 076 0 005 052 401 406 0 0 920 1508 1601 093 11532 R30 779 007 1205 076 0 005 052 401 406 0 0 1916 322 315 -007 11533 R20 7715 009 1282 056 007 007 052 411 461 001 012 12313 868 874 006 12534 R20 7715 009 1282 056 007 007 052 411 461 001 012 1219 889 89 001 12535 R20 7715 009 1282 056 007 007 052 411 461 001 012 1201 912 913 001 12536 R20 7715 009 1282 056 007 007 052 411 461 001 012 11765 947 946 -001 12537 R20 7715 009 1282 056 007 007 052 411 461 001 012 11493 991 983 -008 12538 R22 7718 009 1291 061 007 007 051 405 452 001 01 12382 866 874 008 12539 R22 7718 009 1291 061 007 007 051 405 452 001 01 12232 889 893 004 12540 R22 7718 009 1291 061 007 007 051 405 452 001 01 12042 906 919 013 12541 R22 7718 009 1291 061 007 007 051 405 452 001 01 11852 948 944 -004 12542 R22 7718 009 1291 061 007 007 051 405 452 001 01 11662 969 971 002 12543 R22 7718 009 1291 061 007 007 051 405 452 001 01 11372 1004 1012 008 12544 R29 7788 016 1203 119 005 005 106 364 388 001 011 11882 888 897 009 12545 R29 7788 016 1203 119 005 005 106 364 388 001 011 11782 913 911 -002 12546 R29 7788 016 1203 119 005 005 106 364 388 001 011 11642 931 931 0 12547 R29 7788 016 1203 119 005 005 106 364 388 001 011 11532 954 947 -007 12548 R29 7788 016 1203 119 005 005 106 364 388 001 011 11488 948 953 005 12549 R29 7788 016 1203 119 005 005 106 364 388 001 011 11412 975 965 -01 12550 R29 7788 016 1203 119 005 005 106 364 388 001 011 11212 1003 995 -008 12551 R29 7788 016 1203 119 005 005 106 364 388 001 011 11162 1021 1003 -018 12552 R29 7788 016 1203 119 005 005 106 364 388 001 011 10922 105 104 -01 12553 R29 7788 016 1203 119 005 005 106 364 388 001 011 10742 1073 107 -003 12554 R10 7638 006 1159 103 005 036 325 244 466 0 002 10482 1161 1168 007 13555 R10 7638 006 1159 103 005 036 325 244 466 0 002 10732 1101 1109 008 13

148

556 R10 7638 006 1159 103 005 036 325 244 466 0 002 10982 1048 1054 006 13557 R10 7638 006 1159 103 005 036 325 244 466 0 002 11232 1002 1003 001 13558 R10 7638 006 1159 103 005 036 325 244 466 0 002 11482 957 955 -002 13559 R10 7638 006 1159 103 005 036 325 244 466 0 002 10732 11 1109 009 13560 R10 7638 006 1159 103 005 036 325 244 466 0 002 11232 997 1003 006 13561 R10 7638 006 1159 103 005 036 325 244 466 0 002 11732 912 91 -002 13562 R10 7638 006 1159 103 005 036 325 244 466 0 002 11982 875 868 -007 13563 R11 7657 006 1165 104 007 036 323 246 462 0 017 99815 1165 1158 -007 13564 R11 7657 006 1165 104 007 036 323 246 462 0 017 10232 1091 1107 016 13565 R11 7657 006 1165 104 007 036 323 246 462 0 017 10232 1094 1107 013 13566 R11 7657 006 1165 104 007 036 323 246 462 0 017 10482 1036 1059 023 13567 R11 7657 006 1165 104 007 036 323 246 462 0 017 10732 987 1012 025 13568 R11 7657 006 1165 104 007 036 323 246 462 0 017 10982 942 968 026 13569 R11 7657 006 1165 104 007 036 323 246 462 0 017 11232 906 926 02 13570 R16 77 006 1177 1 006 036 329 248 468 0 055 94815 1146 1069 -077 13571 R16 77 006 1177 1 006 036 329 248 468 0 055 97315 1085 1029 -056 13572 R16 77 006 1177 1 006 036 329 248 468 0 055 97315 1088 1029 -059 13573 R16 77 006 1177 1 006 036 329 248 468 0 055 99815 105 99 -06 13574 R16 77 006 1177 1 006 036 329 248 468 0 055 10232 996 952 -044 13575 R16 77 006 1177 1 006 036 329 248 468 0 055 10232 994 952 -042 13576 R16 77 006 1177 1 006 036 329 248 468 0 055 10732 905 88 -025 13577 R18 7707 006 1167 099 007 035 328 242 462 0 027 97315 1154 115 -004 13578 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1128 1103 -025 13579 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1123 1103 -02 13580 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1057 1058 001 13581 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1083 1058 -025 13582 R18 7707 006 1167 099 007 035 328 242 462 0 027 10482 1002 1014 012 13583 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 957 972 015 13584 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 981 972 -009 13585 R18 7707 006 1167 099 007 035 328 242 462 0 027 10982 937 931 -006 13586 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1151 1103 -048 13587 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1083 1058 -025 13

149

588 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1089 1058 -031 13589 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 984 972 -012 13590 R23 7727 003 1175 105 005 036 331 243 473 0 058 97315 1071 102 -051 13591 R23 7727 003 1175 105 005 036 331 243 473 0 058 99815 1029 982 -047 13592 R23 7727 003 1175 105 005 036 331 243 473 0 058 10232 986 944 -042 13593 R23 7727 003 1175 105 005 036 331 243 473 0 058 10482 943 908 -035 13594 R23 7727 003 1175 105 005 036 331 243 473 0 058 10732 902 873 -029 13595 R23 7727 003 1175 105 005 036 331 243 473 0 058 10982 866 838 -028 13596 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1016 1014 -002 13597 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1042 1014 -028 13598 R24 7738 005 117 103 005 036 324 244 48 0 037 10482 969 974 005 13599 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 932 934 002 13600 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 947 934 -013 13601 R24 7738 005 117 103 005 036 324 244 48 0 037 10982 896 896 0 13602 R24 7738 005 117 103 005 036 324 244 48 0 037 11232 875 859 -016 13603 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1014 1014 0 13604 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1034 1014 -02 13605 R24 7738 005 117 103 005 036 324 244 48 0 037 10482 974 974 0 13606 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 935 934 -001 13607 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 951 934 -017 13608 R24 7738 005 117 103 005 036 324 244 48 0 037 10982 903 896 -007 13609 R24 7738 005 117 103 005 036 324 244 48 0 037 11232 879 859 -02 13610 R25 7746 005 1164 104 007 035 323 245 47 0 031 99815 1095 1082 -013 13611 R25 7746 005 1164 104 007 035 323 245 47 0 031 10232 1044 1039 -005 13612 R25 7746 005 1164 104 007 035 323 245 47 0 031 10482 997 997 0 13613 R25 7746 005 1164 104 007 035 323 245 47 0 031 10732 953 956 003 13614 R25 7746 005 1164 104 007 035 323 245 47 0 031 10982 912 916 004 13615 R25 7746 005 1164 104 007 035 323 245 47 0 031 11232 882 878 -004 13616 R25 7746 005 1164 104 007 035 323 245 47 0 031 94815 1244 1173 -071 13617 R25 7746 005 1164 104 007 035 323 245 47 0 031 97315 117 1127 -043 13618 R25 7746 005 1164 104 007 035 323 245 47 0 031 99815 1131 1082 -049 13619 R9 7603 006 1148 105 006 036 321 242 46 0 0 10732 1148 1135 -013 13

150

620 R9 7603 006 1148 105 006 036 321 242 46 0 0 10982 1086 1076 -01 13621 R9 7603 006 1148 105 006 036 321 242 46 0 0 11232 104 1022 -018 13622 R9 7603 006 1148 105 006 036 321 242 46 0 0 11482 991 972 -019 13623 R9 7603 006 1148 105 006 036 321 242 46 0 0 11732 946 926 -02 13624 R9 7603 006 1148 105 006 036 321 242 46 0 0 11982 913 882 -031 13625 R12 7659 008 1267 1 0 003 052 398 488 0 168 738 1235 1252 017 14626 R12 7659 008 1267 1 0 003 052 398 488 0 173 710 1322 1324 002 14627 R12 7659 008 1267 1 0 003 052 398 488 0 157 671 152 1476 -044 14628 R12 7659 008 1267 1 0 003 052 398 488 0 182 709 1323 1313 -01 14629 R12 7659 008 1267 1 0 003 052 398 488 0 186 731 1234 1244 01 14630 R12 7659 008 1267 1 0 003 052 398 488 0 188 755 1153 1177 024 14631 R12 7659 008 1267 1 0 003 052 398 488 0 237 729 1162 118 018 14632 R12 7659 008 1267 1 0 003 052 398 488 0 255 804 968 98 012 14633 R12 7659 008 1267 1 0 003 052 398 488 0 184 845 963 982 019 14634 R12 7659 008 1267 1 0 003 052 398 488 0 263 678 1322 1296 -026 14635 R12 7659 008 1267 1 0 003 052 398 488 0 306 682 1242 1233 -009 14636 R12 7659 008 1267 1 0 003 052 398 488 0 3 710 1171 1158 -013 14637 R12 7659 008 1267 1 0 003 052 398 488 0 142 730 1322 1317 -005 14638 R12 7659 008 1267 1 0 003 052 398 488 0 143 757 123 1241 011 14639 R12 7659 008 1267 1 0 003 052 398 488 0 142 787 1157 1168 011 14640 R12 7659 008 1267 1 0 003 052 398 488 0 093 769 1323 1305 -018 14641 R12 7659 008 1267 1 0 003 052 398 488 0 112 780 1227 1238 011 14642 R12 7659 008 1267 1 0 003 052 398 488 0 116 810 1149 116 011 14643 R12 7659 008 1267 1 0 003 052 398 488 0 239 643 152 1446 -074 14644 R12 7659 008 1267 1 0 003 052 398 488 0 051 841 1323 1253 -07 14645 R12 7659 008 1267 1 0 003 052 398 488 0 203 873 872 907 035 14646 R12 7659 008 1267 1 0 003 052 398 488 0 197 798 103 1062 032 14647 R12 7659 008 1267 1 0 003 052 398 488 0 197 773 1082 112 038 14648 R12 7659 008 1267 1 0 003 052 398 488 0 204 848 926 951 025 14649 R12 7659 008 1267 1 0 003 052 398 488 0 203 824 968 999 031 14650 R12 7659 008 1267 1 0 003 052 398 488 0 136 873 97 999 029 14651 R12 7659 008 1267 1 0 003 052 398 488 0 141 848 103 1038 008 14

151

652 R12 7659 008 1267 1 0 003 052 398 488 0 146 873 962 984 022 14653 R12 7659 008 1267 1 0 003 052 398 488 0 38 750 962 981 019 14654 R12 7659 008 1267 1 0 003 052 398 488 0 38 642 13 1281 -019 14655 R12 7659 008 1267 1 0 003 052 398 488 0 38 625 1423 1339 -084 14656 R12 7659 008 1267 1 0 003 052 398 488 0 56 707 96 95 -01 14657 R12 7659 008 1267 1 0 003 052 398 488 0 56 604 1324 1249 -075 14658 R12 7659 008 1267 1 0 003 052 398 488 0 56 648 1144 1107 -037 14659 R12 7659 008 1267 1 0 003 052 398 488 0 77 670 96 921 -039 14660 R12 7659 008 1267 1 0 003 052 398 488 0 77 573 1324 1211 -113 14661 R12 7659 008 1267 1 0 003 052 398 488 0 77 603 1145 1108 -037 14662 R12 7659 008 1267 1 0 003 052 398 488 0 078 825 1224 1207 -017 14663 R12 7659 008 1267 1 0 003 052 398 488 0 08 823 1224 1207 -017 14664 R12 7659 008 1267 1 0 003 052 398 488 0 082 820 1224 1209 -015 14665 R12 7659 008 1267 1 0 003 052 398 488 0 079 971 961 962 001 14666 R12 7659 008 1267 1 0 003 052 398 488 0 084 846 1153 115 -003 14667 R12 7659 008 1267 1 0 003 052 398 488 0 083 892 1064 1069 005 14668 R12 7659 008 1267 1 0 003 052 398 488 0 089 772 1323 1305 -018 14669 R12 7659 008 1267 1 0 003 052 398 488 0 081 804 1276 1246 -03 14670 R12 7659 008 1267 1 0 003 052 398 488 0 084 765 1371 1335 -036 14671 R12 7659 008 1267 1 0 003 052 398 488 0 084 752 142 137 -05 14672 R12 7659 008 1267 1 0 003 052 398 488 0 083 784 132 1289 -031 14673 R12 7659 008 1267 1 0 003 052 398 488 0 084 779 132 1299 -021 14674 R12 7659 008 1267 1 0 003 052 398 488 0 081 728 152 1446 -074 14675 R12 7659 008 1267 1 0 003 052 398 488 0 114 748 1322 1318 -004 14676 R12 7659 008 1267 1 0 003 052 398 488 0 117 897 948 991 043 14677 R13 766 01 127 117 0 002 031 41 46 0 43 1073 551 5 -051 15678 R13 766 01 127 117 0 002 031 41 46 0 43 1073 545 5 -045 15679 R13 766 01 127 117 0 002 031 41 46 0 43 1123 526 46 -066 15680 R13 766 01 127 117 0 002 031 41 46 0 43 1123 517 46 -057 15681 R13 766 01 127 117 0 002 031 41 46 0 43 1173 488 422 -066 15682 R13 766 01 127 117 0 002 031 41 46 0 62 973 552 52 -032 15683 R13 766 01 127 117 0 002 031 41 46 0 62 1023 505 475 -03 15

152

684 R13 766 01 127 117 0 002 031 41 46 0 62 1073 457 435 -022 15685 R13 766 01 127 117 0 002 031 41 46 0 62 1073 463 435 -028 15686 R13 766 01 127 117 0 002 031 41 46 0 62 1123 425 398 -027 15687 R1 6677 039 2015 431 001 072 364 137 217 0 002 15732 377 399 022 16688 R1 6677 039 2015 431 001 072 364 137 217 0 002 16232 329 359 03 16689 R1 6677 039 2015 431 001 072 364 137 217 0 002 16732 29 322 032 16690 R1 6677 039 2015 431 001 072 364 137 217 0 002 17232 267 287 02 16691 R1 6677 039 2015 431 001 072 364 137 217 0 002 17232 264 287 023 16692 R1 6677 039 2015 431 001 072 364 137 217 0 002 17732 235 254 019 16693 R1 6677 039 2015 431 001 072 364 137 217 0 002 18232 209 223 014 16694 R1 6677 039 2015 431 001 072 364 137 217 0 002 18732 186 193 007 16695 R2 6716 001 2165 281 001 073 265 285 182 0 002 17232 288 331 043 16696 R2 6716 001 2165 281 001 073 265 285 182 0 002 17732 26 298 038 16697 R2 6716 001 2165 281 001 073 265 285 182 0 002 18232 233 266 033 16698 R2 6716 001 2165 281 001 073 265 285 182 0 002 18732 209 237 028 16699 R3 7122 024 168 291 006 08 262 309 194 0 002 16232 392 379 -013 16700 R3 7122 024 168 291 006 08 262 309 194 0 002 16732 361 342 -019 16701 R3 7122 024 168 291 006 08 262 309 194 0 002 17232 328 307 -021 16702 R3 7122 024 168 291 006 08 262 309 194 0 002 17732 3 275 -025 16703 R3 7122 024 168 291 006 08 262 309 194 0 002 18232 273 244 -029 16704 R3 7122 024 168 291 006 08 262 309 194 0 002 18732 248 215 -033 16705 R4 7142 001 161 458 001 157 094 194 292 0 002 15732 419 423 004 16706 R4 7142 001 161 458 001 157 094 194 292 0 002 16232 387 385 -002 16707 R4 7142 001 161 458 001 157 094 194 292 0 002 16732 352 349 -003 16708 R4 7142 001 161 458 001 157 094 194 292 0 002 17232 322 316 -006 16709 R4 7142 001 161 458 001 157 094 194 292 0 002 17732 292 285 -007 16710 R4 7142 001 161 458 001 157 094 194 292 0 002 18232 265 255 -01 16711 R4 7142 001 161 458 001 157 094 194 292 0 002 18732 24 228 -012 16712 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 16732 385 357 -028 16713 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17132 359 328 -031 16714 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17532 337 301 -036 16715 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17932 31 275 -035 16

153

716 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 18332 292 25 -042 16717 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 18732 276 226 -05 16718 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 17532 319 311 -008 16719 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 17932 3 285 -015 16720 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18132 257 272 015 16721 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18332 242 259 017 16722 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18532 231 247 016 16723 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18732 222 235 013 16724 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16532 368 375 007 16725 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16732 355 36 005 16726 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16932 342 346 004 16727 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17132 326 331 005 16728 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17332 311 317 006 16729 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17532 3 304 004 16730 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17732 285 291 006 16731 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17932 275 278 003 16732 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18132 264 265 001 16733 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18332 255 252 -003 16734 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18532 242 24 -002 16735 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18732 234 228 -006 16736 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 16332 41 377 -033 16737 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 16732 371 347 -024 16738 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17132 344 319 -025 16739 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17532 318 292 -026 16740 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17932 295 266 -029 16741 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 18332 273 241 -032 16742 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 18732 259 217 -042 16743 Bl2 4781 194 1791 109 019 475 996 394 211 048 0 10202 994 956 -038 17744 Bl2 4781 194 1791 109 019 475 996 394 211 048 0 94615 1165 1134 -031 17745 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 98315 994 1008 014 17746 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 10132 869 925 056 17747 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 95315 1141 1117 -024 17

154

748 R8 7537 007 1284 157 007 004 072 419 513 0 014 99315 111 1146 036 17749 R8 7537 007 1284 157 007 004 072 419 513 0 014 10112 1078 1115 037 17750 R8 7537 007 1284 157 007 004 072 419 513 0 014 10432 1018 1062 044 17751 R8 7537 007 1284 157 007 004 072 419 513 0 014 10842 956 997 041 17752 R8 7537 007 1284 157 007 004 072 419 513 0 014 11142 915 952 037 17753 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 785 792 007 18754 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 782 792 01 18755 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 787 792 005 18756 R7 747 008 1328 165 0 0 077 43 522 0 0 13232 726 73 004 18757 R7 747 008 1328 165 0 0 077 43 522 0 0 13732 679 673 -006 18758 R7 747 008 1328 165 0 0 077 43 522 0 0 13732 677 673 -004 18759 R7 747 008 1328 165 0 0 077 43 522 0 0 14232 625 62 -005 18760 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 1744 -022 -068 -046 19761 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 17194 -016 -049 -033 19762 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16948 -009 -029 -02 19763 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16702 -002 -009 -007 19764 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16456 007 012 005 19765 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 1621 016 034 018 19766 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 97515 1026 1014 -012 19767 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 98275 981 991 01 19768 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 98315 1005 99 -015 19769 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 965 1077 1048 -029 19770 Ph1 512 067 186 61 013 25 73 375 79 04 002 18179 097 092 -005 19771 Ph1 512 067 186 61 013 25 73 375 79 04 002 17933 107 107 0 19772 Ph1 512 067 186 61 013 25 73 375 79 04 002 17687 117 121 004 19773 Ph1 512 067 186 61 013 25 73 375 79 04 002 1744 128 136 008 19774 Ph1 512 067 186 61 013 25 73 375 79 04 002 17194 138 152 014 19775 Ph1 512 067 186 61 013 25 73 375 79 04 002 16948 15 168 018 19776 Ph1 512 067 186 61 013 25 73 375 79 04 002 16702 163 184 021 19777 Ph1 512 067 186 61 013 25 73 375 79 04 002 16456 175 201 026 19778 Ph1 512 067 186 61 013 25 73 375 79 04 002 1621 188 219 031 19779 Ph1 512 067 186 61 013 25 73 375 79 04 002 97815 1066 1034 -032 19

155

780 Ph1 512 067 186 61 013 25 73 375 79 04 002 9975 1015 985 -03 19781 Ph1 512 067 186 61 013 25 73 375 79 04 002 10164 975 942 -033 19782 Ph5 597 046 1852 36 017 065 28 389 845 015 002 1744 245 23 -015 19783 Ph5 597 046 1852 36 017 065 28 389 845 015 002 17194 258 245 -013 19784 Ph5 597 046 1852 36 017 065 28 389 845 015 002 16948 272 261 -011 19785 Ph5 597 046 1852 36 017 065 28 389 845 015 002 1621 316 311 -005 19786 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15964 332 329 -003 19787 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15718 348 348 0 19788 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15472 366 367 001 19789 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15226 383 386 003 19790 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14979 402 407 005 19791 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14733 42 428 008 19792 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14487 44 45 01 19793 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14241 46 472 012 19794 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10346 103 996 -034 19795 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10477 1011 971 -04 19796 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10675 973 934 -039 19797 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10838 955 905 -05 19798 Ph5 597 046 1852 36 017 065 28 389 845 015 002 11041 911 871 -04 19799 Te1 492 083 164 72 013 51 102 27 65 072 002 18179 053 038 -015 19800 Te1 492 083 164 72 013 51 102 27 65 072 002 17933 062 052 -01 19801 Te1 492 083 164 72 013 51 102 27 65 072 002 17687 071 068 -003 19802 Te1 492 083 164 72 013 51 102 27 65 072 002 1744 081 083 002 19803 Te1 492 083 164 72 013 51 102 27 65 072 002 17194 09 099 009 19804 Te1 492 083 164 72 013 51 102 27 65 072 002 16948 101 116 015 19805 Te1 492 083 164 72 013 51 102 27 65 072 002 16702 112 133 021 19806 Te1 492 083 164 72 013 51 102 27 65 072 002 16456 124 15 026 19807 Te1 492 083 164 72 013 51 102 27 65 072 002 1621 136 169 033 19808 Te1 492 083 164 72 013 51 102 27 65 072 002 9806 1055 1041 -014 19809 Te1 492 083 164 72 013 51 102 27 65 072 002 99335 1017 997 -02 19810 Te1 492 083 164 72 013 51 102 27 65 072 002 10023 978 969 -009 19811 Te1 492 083 164 72 013 51 102 27 65 072 002 10179 951 925 -026 19

156

812 Te1 492 083 164 72 013 51 102 27 65 072 002 10294 913 895 -018 19813 Te1 492 083 164 72 013 51 102 27 65 072 002 10401 879 87 -009 19814 Te1 492 083 164 72 013 51 102 27 65 072 002 96995 1098 1084 -014 19815 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18671 214 198 -016 19816 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18425 225 211 -014 19817 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18179 237 225 -012 19818 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17933 25 239 -011 19819 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17687 263 253 -01 19820 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1744 276 268 -008 19821 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17194 291 283 -008 19822 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16948 305 299 -006 19823 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16702 32 315 -005 19824 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16456 336 331 -005 19825 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1621 352 348 -004 19826 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15964 368 366 -002 19827 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15718 385 384 -001 19828 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15472 4 403 003 19829 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15226 421 423 002 19830 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 14979 44 443 003 19831 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 14733 459 464 005 19832 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 99603 1077 1091 014 19833 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10103 1053 1062 009 19834 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10117 1041 106 019 19835 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10163 1049 1051 002 19836 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10229 1019 1038 019 19837 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10338 995 1018 023 19838 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1055 963 979 016 19839 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10797 911 937 026 19840 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17692 237 248 011 20841 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17442 249 263 014 20842 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17192 263 279 016 20843 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16952 277 294 017 20

157

844 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16702 292 31 018 20845 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16462 308 327 019 20846 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16212 324 344 02 20847 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15962 34 363 023 20848 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15722 358 381 023 20849 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15472 376 4 024 20850 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15222 394 42 026 20851 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14982 414 44 026 20852 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14732 434 462 028 20853 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14492 454 483 029 20854 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 11342 932 857 -075 20855 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 11092 984 898 -086 20856 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 10762 1044 954 -09 20857 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 10562 1083 991 -092 20858 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 83515 1112 1122 01 20859 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 84215 1094 1107 013 20860 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 85215 1075 1086 011 20861 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 86815 1044 1052 008 20862 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 86915 103 105 02 20863 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 87715 1009 1034 025 20864 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 80215 1086 1065 -021 20865 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 81915 1036 1027 -009 20866 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 82615 1014 1011 -003 20867 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 78115 1052 1048 -004 20868 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 77915 1044 1053 009 20869 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 81115 994 98 -014 20870 Tr1 6074 027 1922 337 018 028 211 528 632 006 296 73215 1076 1058 -018 20871 Tr1 6074 027 1922 337 018 028 211 528 632 006 296 74015 1027 1038 011 20872 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 69115 1128 1123 -005 20873 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 71515 1045 1057 012 20874 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 73015 988 1018 03 20875 Tr4 6388 031 171 29 013 024 182 567 682 005 002 17687 25 245 -005 20

158

876 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1744 262 259 -003 20877 Tr4 6388 031 171 29 013 024 182 567 682 005 002 17194 275 274 -001 20878 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16948 289 29 001 20879 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16702 303 306 003 20880 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16456 318 322 004 20881 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1621 333 339 006 20882 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15964 349 357 008 20883 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15718 365 375 01 20884 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15472 382 394 012 20885 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15226 397 413 016 20886 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14979 417 434 017 20887 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14733 436 454 018 20888 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14487 455 476 021 20889 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1017 1003 1046 043 20890 Tr4 6388 031 171 29 013 024 182 567 682 005 002 97925 1071 1124 053 20891 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1090 876 913 037 20892 Tr4 6388 031 171 29 013 024 182 567 682 005 002 10425 956 997 041 20893 Tr4 6388 031 171 29 013 024 182 567 682 005 002 9586 1108 1169 061 20894 Tr4 6388 031 171 29 013 024 182 567 682 005 1 83915 1064 1066 002 20895 Tr4 6388 031 171 29 013 024 182 567 682 005 1 84815 1047 1047 0 20896 Tr4 6388 031 171 29 013 024 182 567 682 005 1 86215 1022 1019 -003 20897 Tr4 6388 031 171 29 013 024 182 567 682 005 1 87015 1008 1003 -005 20898 Tr4 6388 031 171 29 013 024 182 567 682 005 139 78815 1097 1113 016 20899 Tr4 6388 031 171 29 013 024 182 567 682 005 139 81815 1031 1044 013 20900 Tr4 6388 031 171 29 013 024 182 567 682 005 139 84315 99 99 0 20901 Tr4 6388 031 171 29 013 024 182 567 682 005 241 74515 1059 1077 018 20902 Tr4 6388 031 171 29 013 024 182 567 682 005 241 78815 967 974 007 20903 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67415 1085 1118 033 20904 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67315 108 112 04 20905 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67115 1079 1126 047 20906 Tr4 6388 031 171 29 013 024 182 567 682 005 386 65815 116 1166 006 20907 A1 5856 064 1898 745 0 348 617 324 092 0 083 14732 275 259 -016 21

159

908 A1 5856 064 1898 745 0 348 617 324 092 0 083 15732 222 185 -037 21909 A1 5856 064 1898 745 0 348 617 324 092 0 083 15732 215 185 -03 21910 A1 5856 064 1898 745 0 348 617 324 092 0 083 16232 176 152 -024 21911 A1 5856 064 1898 745 0 348 617 324 092 0 072 14732 237 27 033 21912 A1 5856 064 1898 745 0 348 617 324 092 0 1 14232 25 283 033 21913 A1 5856 064 1898 745 0 348 617 324 092 0 1 14732 225 244 019 21914 A1 5856 064 1898 745 0 348 617 324 092 0 1 13732 364 326 -038 21915 A1 5856 064 1898 745 0 348 617 324 092 0 1 14732 201 244 043 21916 A1 5856 064 1898 745 0 348 617 324 092 0 46 13732 18 174 -006 21917 A1 5856 064 1898 745 0 348 617 324 092 0 46 14732 145 118 -027 21918 Bl3 4821 125 155 1064 0 908 1192 24 008 014 022 13732 286 319 033 21919 Bl3 4821 125 155 1064 0 908 1192 24 008 014 022 15232 23 174 -056 21920 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 13732 174 183 009 21921 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 15732 091 048 -043 21922 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 13732 142 183 041 21923 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 15732 08 048 -032 21924 Bl4 5354 105 1729 782 0 546 832 359 164 02 636 12732 13 177 047 21925 Bl4 5354 105 1729 782 0 546 832 359 164 02 636 15732 027 021 -006 21926 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 14732 36 339 -021 21927 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 15732 216 25 034 21928 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 14732 34 339 -001 21929 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 15732 294 25 -044 21930 R5 7323 019 136 278 0 017 169 378 411 013 21 10732 61 619 009 21931 R5 7323 019 136 278 0 017 169 378 411 013 21 13732 325 356 031 21932 R5 7323 019 136 278 0 017 169 378 411 013 3 10732 48 548 068 21933 R5 7323 019 136 278 0 017 169 378 411 013 33 14732 225 229 004 21934 R5 7323 019 136 278 0 017 169 378 411 013 52 10732 397 444 047 21935 R5 7323 019 136 278 0 017 169 378 411 013 52 14732 167 188 021 21936 R5 7323 019 136 278 0 017 169 378 411 013 123 11232 32 325 005 21937 R5 7323 019 136 278 0 017 169 378 411 013 123 12232 24 281 041 21938 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17732 22 213 -007 22939 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17482 232 226 -006 22

160

940 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17232 244 24 -004 22941 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16982 257 254 -003 22942 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16732 27 268 -002 22943 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16482 283 283 0 22944 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16232 297 298 001 22945 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15982 311 314 003 22946 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15732 326 331 005 22947 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15482 342 348 006 22948 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15232 357 365 008 22949 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14982 374 383 009 22950 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14732 391 402 011 22951 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14482 407 421 014 22952 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14232 427 441 014 22953 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 13982 446 462 016 22954 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 13732 465 484 019 22955 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 10104 899 925 026 22956 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 88785 1163 1164 001 22957 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 92395 1085 1086 001 22958 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 94585 1031 1042 011 22959 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 96475 10 1006 006 22960 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 86705 879 925 046 22961 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 80455 1033 1052 019 22962 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 79395 1059 1075 016 22963 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 78045 1105 1107 002 22964 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 82175 99 1015 025 22965 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 76375 1084 1126 042 22966 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 77495 1082 1099 017 22967 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 77845 1045 1091 046 22968 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 78565 1025 1074 049 22969 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 74215 1016 994 -022 22970 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 72835 1055 1027 -028 22971 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 75905 959 955 -004 22

161

972 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 70335 957 912 -045 22973 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 66285 11 1017 -083 22974 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 67535 105 983 -067 22975 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 16702 228 201 -027 23976 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 1621 254 235 -019 23977 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 15718 283 271 -012 23978 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 15226 315 31 -005 23979 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 14733 348 351 003 23980 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 14241 387 395 008 23981 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 13749 429 443 014 23982 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 13257 475 494 019 23983 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 9804 1066 1019 -047 23984 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 99985 102 977 -043 23985 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10295 978 917 -061 23986 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10443 958 888 -07 23987 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10783 881 828 -053 23988 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 9621 1105 1062 -043 23989 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 84825 94 967 027 23990 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 83675 971 993 022 23991 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 81535 1035 1043 008 23992 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 78315 1129 1124 -005 23993 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 79515 916 977 061 23994 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 77905 962 1017 055 23995 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 75945 1016 1067 051 23996 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 73445 11 1136 036 23997 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 73605 984 101 026 23998 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 71765 1033 106 027 23999 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 70885 1061 1085 024 23

1000 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 16702 196 203 007 231001 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 1621 225 237 012 231002 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 15718 256 274 018 231003 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 15226 291 312 021 23

162

1004 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 14733 329 354 025 231005 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 14241 372 398 026 231006 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 13749 422 446 024 231007 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 13257 477 497 02 231008 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 98165 1026 1022 -004 231009 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 9961 997 99 -007 231010 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10254 944 93 -014 231011 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10283 901 924 023 231012 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10432 898 895 -003 231013 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 96235 1068 1067 -001 231014 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 86735 917 947 03 231015 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 86005 92 963 043 231016 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 84065 984 1006 022 231017 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 81885 1032 1057 025 231018 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 80555 1064 109 026 231019 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 78955 1105 113 025 231020 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 75375 932 947 015 231021 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 74875 946 96 014 231022 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 72775 982 1015 033 231023 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 71765 1025 1042 017 231024 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 70435 1082 108 -002 231025 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 79995 89 952 062 231026 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 77855 94 1003 063 231027 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 74675 1029 1086 057 231028 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 17692 249 21 -039 231029 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 17192 274 24 -034 231030 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 16702 301 272 -029 231031 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 16212 33 305 -025 231032 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 15722 362 341 -021 231033 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 15222 396 379 -017 231034 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 14732 433 42 -013 231035 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 14242 473 463 -01 23

163

1036 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10873 845 881 036 231037 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10385 932 968 036 231038 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10097 977 1024 047 231039 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 98515 1056 1076 02 231040 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 97335 1075 1102 027 231041 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 95695 1129 114 011 231042 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 72365 99 995 005 231043 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 70935 1031 1032 001 231044 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 68885 1105 1089 -016 231045 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 79455 97 962 -008 231046 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 77665 1005 1003 -002 231047 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 76125 1065 104 -025 231048 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 74385 1097 1085 -012 231049 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 82165 955 943 -012 231050 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 79545 102 1001 -019 231051 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 77575 108 1047 -033 231052 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 76385 1104 1077 -027 231053 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 91745 904 881 -023 231054 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 88545 972 94 -032 231055 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 86505 1008 98 -028 231056 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 84985 1042 1012 -03 231057 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 81965 1124 1078 -046 231058 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 17194 279 244 -035 231059 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 16702 306 275 -031 231060 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 1621 335 309 -026 231061 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 15718 367 345 -022 231062 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 15226 402 383 -019 231063 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 14733 439 424 -015 231064 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 14241 48 468 -012 231065 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10056 1039 1039 0 231066 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10414 941 968 027 231067 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10579 906 938 032 23

164

1068 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 96708 1118 1122 004 231069 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 87285 933 949 016 231070 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 85375 974 988 014 231071 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 83085 1009 1036 027 231072 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 81415 1056 1074 018 231073 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 81125 1062 1081 019 231074 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 79915 1085 1109 024 231075 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 79465 1119 112 001 231076 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 72425 985 993 008 231077 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 71805 1005 1009 004 231078 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 69875 1052 1061 009 231079 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 69335 1095 1076 -019 231080 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 67945 1133 1116 -017 231081 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 67735 1143 1122 -021 231082 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 86275 954 981 027 231083 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 84505 1001 1018 017 231084 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 82755 1024 1056 032 231085 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 80285 1074 1113 039 231086 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 79825 1102 1124 022 231087 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 78645 1156 1153 -003 231088 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 95945 883 875 -008 231089 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 90155 988 979 -009 231090 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 85905 107 1065 -005 231091 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 84075 1135 1105 -03 231092 D2 66 036 1523 408 01 221 501 384 216 014 002 1744 209 216 007 241093 D2 66 036 1523 408 01 221 501 384 216 014 002 17194 221 231 01 241094 D2 66 036 1523 408 01 221 501 384 216 014 002 16948 234 248 014 241095 D2 66 036 1523 408 01 221 501 384 216 014 002 16702 248 264 016 241096 D2 66 036 1523 408 01 221 501 384 216 014 002 16456 262 281 019 241097 D2 66 036 1523 408 01 221 501 384 216 014 002 1621 276 299 023 241098 D2 66 036 1523 408 01 221 501 384 216 014 002 15964 292 317 025 241099 D2 66 036 1523 408 01 221 501 384 216 014 002 15718 308 336 028 24

165

1100 D2 66 036 1523 408 01 221 501 384 216 014 002 15472 325 355 03 241101 D2 66 036 1523 408 01 221 501 384 216 014 002 15226 343 376 033 241102 D2 66 036 1523 408 01 221 501 384 216 014 002 14979 361 396 035 241103 D2 66 036 1523 408 01 221 501 384 216 014 002 14733 38 418 038 241104 D2 66 036 1523 408 01 221 501 384 216 014 002 14487 4 44 04 241105 D2 66 036 1523 408 01 221 501 384 216 014 002 14241 421 463 042 241106 D2 66 036 1523 408 01 221 501 384 216 014 002 13995 444 488 044 241107 D2 66 036 1523 408 01 221 501 384 216 014 002 13749 466 513 047 241108 D2 66 036 1523 408 01 221 501 384 216 014 002 10342 105 1034 -016 241109 D2 66 036 1523 408 01 221 501 384 216 014 002 10578 985 979 -006 241110 D2 66 036 1523 408 01 221 501 384 216 014 002 10742 928 944 016 241111 D2 66 036 1523 408 01 221 501 384 216 014 002 10912 891 91 019 241112 D2 66 036 1523 408 01 221 501 384 216 014 131 86205 1056 1017 -039 241113 D2 66 036 1523 408 01 221 501 384 216 014 131 83505 1118 1076 -042 241114 D2 66 036 1523 408 01 221 501 384 216 014 164 77205 1195 1173 -022 241115 D2 66 036 1523 408 01 221 501 384 216 014 164 80795 1112 1084 -028 241116 D2 66 036 1523 408 01 221 501 384 216 014 164 80845 1093 1083 -01 241117 D2 66 036 1523 408 01 221 501 384 216 014 164 83855 986 1015 029 241118 D2 66 036 1523 408 01 221 501 384 216 014 198 80395 1048 1045 -003 241119 D2 66 036 1523 408 01 221 501 384 216 014 198 81505 999 102 021 241120 D2 66 036 1523 408 01 221 501 384 216 014 198 83355 963 979 016 241121 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 84835 116 1193 033 251122 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 87035 108 1123 043 251123 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 87505 1074 1109 035 251124 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 88475 105 1081 031 251125 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 89165 1042 1061 019 251126 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 89255 1033 1059 026 251127 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 82635 1099 112 021 251128 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 83105 1089 1106 017 251129 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 83765 1073 1087 014 251130 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 84845 1037 1057 02 251131 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 80545 112 1093 -027 25

166

1132 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 81775 1088 1059 -029 251133 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82235 1057 1046 -011 251134 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82485 1054 1039 -015 251135 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82995 1025 1026 001 251136 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 84995 975 974 -001 251137 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 79775 1016 1005 -011 251138 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 80795 977 978 001 251139 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 81805 957 952 -005 251140 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 18179 018 01 -008 251141 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17933 026 026 0 251142 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17687 034 042 008 251143 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17441 043 059 016 251144 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17395 052 062 01 251145 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 16949 062 094 032 251146 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 16703 072 112 04 251147 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 98505 1082 993 -089 251148 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 98905 107 983 -087 251149 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 10042 1023 949 -074 251150 A2 5869 001 2157 002 002 538 949 33 157 0 0 1036 1158 1151 -007 261151 A2 5869 001 2157 002 002 538 949 33 157 0 0 1054 1077 1074 -003 261152 A2 5869 001 2157 002 002 538 949 33 157 0 0 1065 1045 1034 -011 261153 A2 5869 001 2157 002 002 538 949 33 157 0 0 1075 1016 10 -016 261154 A2 5869 001 2157 002 002 538 949 33 157 0 0 1084 987 972 -015 261155 A2 5869 001 2157 002 002 538 949 33 157 0 0 1096 955 938 -017 261156 A2 5869 001 2157 002 002 538 949 33 157 0 0 1106 93 911 -019 261157 A2 5869 001 2157 002 002 538 949 33 157 0 0 1116 906 886 -02 261158 A2 5869 001 2157 002 002 538 949 33 157 0 0 1036 1132 1151 019 261159 A2 5869 001 2157 002 002 538 949 33 157 0 0 1054 1083 1074 -009 261160 A2 5869 001 2157 002 002 538 949 33 157 0 0 1062 103 1044 014 261161 A2 5869 001 2157 002 002 538 949 33 157 0 0 1065 1044 1034 -01 261162 A2 5869 001 2157 002 002 538 949 33 157 0 0 1074 1015 1003 -012 261163 A2 5869 001 2157 002 002 538 949 33 157 0 0 1083 974 975 001 26

167

1164 A2 5869 001 2157 002 002 538 949 33 157 0 0 1088 963 96 -003 261165 A2 5869 001 2157 002 002 538 949 33 157 0 0 1094 948 943 -005 261166 A2 5869 001 2157 002 002 538 949 33 157 0 0 1103 925 919 -006 261167 A2 5869 001 2157 002 002 538 949 33 157 0 0 1113 899 893 -006 261168 A2 5869 001 2157 002 002 538 949 33 157 0 0 1123 875 87 -005 261169 A2 5869 001 2157 002 002 538 949 33 157 0 0 1081 1002 981 -021 261170 A2 5869 001 2157 002 002 538 949 33 157 0 0 1091 972 952 -02 261171 A2 5869 001 2157 002 002 538 949 33 157 0 0 1100 944 927 -017 261172 A2 5869 001 2157 002 002 538 949 33 157 0 0 1110 917 901 -016 261173 A2 5869 001 2157 002 002 538 949 33 157 0 0 1120 891 877 -014 261174 A2 5869 001 2157 002 002 538 949 33 157 0 0 1130 867 854 -013 261175 A2 5869 001 2157 002 002 538 949 33 157 0 106 917 1055 1067 012 261176 A2 5869 001 2157 002 002 538 949 33 157 0 106 928 1044 1035 -009 261177 A2 5869 001 2157 002 002 538 949 33 157 0 106 937 1007 101 003 261178 A2 5869 001 2157 002 002 538 949 33 157 0 106 935 997 1016 019 261179 A2 5869 001 2157 002 002 538 949 33 157 0 106 954 954 964 01 261180 A2 5869 001 2157 002 002 538 949 33 157 0 106 976 9 908 008 261181 A2 5869 001 2157 002 002 538 949 33 157 0 106 985 874 887 013 261182 A2 5869 001 2157 002 002 538 949 33 157 0 106 996 854 861 007 261183 A2 5869 001 2157 002 002 538 949 33 157 0 106 1013 813 823 01 261184 A2 5869 001 2157 002 002 538 949 33 157 0 106 908 1103 1093 -01 261185 A2 5869 001 2157 002 002 538 949 33 157 0 106 918 1065 1064 -001 261186 A2 5869 001 2157 002 002 538 949 33 157 0 106 938 1007 1007 0 261187 A2 5869 001 2157 002 002 538 949 33 157 0 106 948 981 98 -001 261188 A2 5869 001 2157 002 002 538 949 33 157 0 106 948 978 98 002 261189 A2 5869 001 2157 002 002 538 949 33 157 0 106 957 957 956 -001 261190 A2 5869 001 2157 002 002 538 949 33 157 0 106 977 904 906 002 261191 A2 5869 001 2157 002 002 538 949 33 157 0 106 987 877 882 005 261192 A2 5869 001 2157 002 002 538 949 33 157 0 196 840 108 1057 -023 261193 A2 5869 001 2157 002 002 538 949 33 157 0 196 849 1052 1036 -016 261194 A2 5869 001 2157 002 002 538 949 33 157 0 196 851 1043 1032 -011 261195 A2 5869 001 2157 002 002 538 949 33 157 0 196 859 102 1013 -007 26

168

1196 A2 5869 001 2157 002 002 538 949 33 157 0 196 870 985 988 003 261197 A2 5869 001 2157 002 002 538 949 33 157 0 196 879 957 968 011 261198 A2 5869 001 2157 002 002 538 949 33 157 0 196 889 932 945 013 261199 A2 5869 001 2157 002 002 538 949 33 157 0 196 844 108 1048 -032 261200 A2 5869 001 2157 002 002 538 949 33 157 0 196 853 1051 1027 -024 261201 A2 5869 001 2157 002 002 538 949 33 157 0 196 863 1017 1004 -013 261202 A2 5869 001 2157 002 002 538 949 33 157 0 196 864 1015 1002 -013 261203 A2 5869 001 2157 002 002 538 949 33 157 0 196 873 986 981 -005 261204 A2 5869 001 2157 002 002 538 949 33 157 0 196 883 956 959 003 261205 A2 5869 001 2157 002 002 538 949 33 157 0 196 893 927 936 009 261206 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1006 1073 1124 051 271207 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1013 1052 103 -022 271208 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1013 1043 103 -013 271209 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1017 1025 989 -036 271210 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1018 1013 98 -033 271211 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18669 -097 -101 -004 271212 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18571 -094 -095 -001 271213 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18473 -09 -089 001 271214 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 18732 -006 -093 -086 281215 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 18232 008 -056 -064 281216 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 17732 023 -018 -04 281217 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 17232 039 023 -016 281218 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 16732 055 066 011 281219 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 16232 073 111 038 281220 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 15732 094 16 066 281221 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 15232 117 212 094 281222 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 18672 -005 -069 -063 281223 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 18182 009 -033 -042 281224 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 17692 024 004 -02 281225 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 17192 04 044 004 281226 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 16702 057 085 028 281227 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 18732 -005 -089 -084 28

169

1228 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 18232 008 -052 -06 281229 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 17732 022 -014 -035 281230 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 17232 037 027 -01 281231 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 16732 053 07 017 281232 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 16232 072 116 044 281233 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 15732 092 164 073 281234 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 15232 116 216 101 281235 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 18672 -002 -073 -071 281236 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 18182 011 -037 -049 281237 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 17692 026 0 -026 281238 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 17192 042 041 -002 281239 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 16702 059 083 024 281240 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 16212 077 127 051 281241 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 15722 098 175 077 281242 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 15222 122 226 105 281243 A5 5946 073 179 518 013 371 645 423 147 0 0 16232 222 262 04 291244 A5 5946 073 179 518 013 371 645 423 147 0 0 15232 274 344 07 291245 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 17732 009 -004 -013 291246 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 16732 035 074 039 291247 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 15232 103 211 108 291248 D1 6528 059 1705 402 008 182 47 434 129 013 002 15712 322 343 021 301249 D1 6528 059 1705 402 008 182 47 434 129 013 002 16202 291 305 014 301250 D1 6528 059 1705 402 008 182 47 434 129 013 002 16702 261 269 008 301251 D1 6528 059 1705 402 008 182 47 434 129 013 002 17192 235 235 0 301252 D1 6528 059 1705 402 008 182 47 434 129 013 002 17682 211 204 -007 301253 D1 6528 059 1705 402 008 182 47 434 129 013 002 18172 187 174 -013 301254 D1 6528 059 1705 402 008 182 47 434 129 013 002 18672 166 145 -021 301255 D1 6528 059 1705 402 008 182 47 434 129 013 002 10091 106 1099 039 301256 D1 6528 059 1705 402 008 182 47 434 129 013 002 10235 1025 1065 04 301257 D1 6528 059 1705 402 008 182 47 434 129 013 002 10377 10 1033 033 301258 D1 6528 059 1705 402 008 182 47 434 129 013 002 10571 953 991 038 301259 D1 6528 059 1705 402 008 182 47 434 129 013 002 10759 925 953 028 30

170

1260 R33 7312 019 1356 319 0 018 168 386 42 0 21 12732 385 419 034 311261 R33 7312 019 1356 319 0 018 168 386 42 0 21 13732 332 343 011 311262 R33 7312 019 1356 319 0 018 168 386 42 0 21 14732 273 275 002 311263 R33 7312 019 1356 319 0 018 168 386 42 0 52 11732 369 357 -012 311264 R33 7312 019 1356 319 0 018 168 386 42 0 52 12732 305 289 -016 311265 R33 7312 019 1356 319 0 018 168 386 42 0 52 13732 251 232 -019 311266 R33 7312 019 1356 319 0 018 168 386 42 0 52 14732 203 184 -019 311267 R33 7312 019 1356 319 0 018 168 386 42 0 56 11732 36 347 -013 311268 R33 7312 019 1356 319 0 018 168 386 42 0 56 12732 297 281 -016 311269 R33 7312 019 1356 319 0 018 168 386 42 0 56 13732 242 227 -015 311270 R33 7312 019 1356 319 0 018 168 386 42 0 56 14732 185 181 -004 311271 R33 7312 019 1356 319 0 018 168 386 42 0 88 11732 3 304 004 311272 R33 7312 019 1356 319 0 018 168 386 42 0 88 14732 147 181 034 311273 A6 6215 076 168 496 025 326 508 502 172 0 0 16232 26 277 017 321274 A6 6215 076 168 496 025 326 508 502 172 0 0 16232 252 277 025 321275 H4 736 0 156 0 0 0 21 44 38 0 21 88045 897 899 002 331276 H4 736 0 156 0 0 0 21 44 38 0 21 83595 979 98 001 331277 H4 736 0 156 0 0 0 21 44 38 0 21 79595 1085 1065 -02 331278 H4 736 0 156 0 0 0 21 44 38 0 21 79495 1099 1067 -032 331279 H4 736 0 156 0 0 0 21 44 38 0 089 95135 962 984 022 331280 H4 736 0 156 0 0 0 21 44 38 0 089 97615 915 952 037 331281 H4 736 0 156 0 0 0 21 44 38 0 089 93835 103 1002 -028 331282 H4 736 0 156 0 0 0 21 44 38 0 089 91675 1081 1034 -047 331283 R34 7389 006 1577 075 0 014 058 462 419 0 666 12282 3 321 022 341284 R34 7389 006 1577 075 0 014 058 462 419 0 666 10862 386 419 033 341285 R34 7389 006 1577 075 0 014 058 462 419 0 398 13732 31 302 -008 341286 R34 7389 006 1577 075 0 014 058 462 419 0 398 12742 378 367 -011 341287 R34 7389 006 1577 075 0 014 058 462 419 0 398 11802 445 435 -01 341288 R34 7389 006 1577 075 0 014 058 462 419 0 666 11332 358 384 027 341289 R34 7389 006 1577 075 0 014 058 462 419 0 666 11832 324 35 026 341290 R34 7389 006 1577 075 0 014 058 462 419 0 666 11282 354 388 034 341291 R34 7389 006 1577 075 0 014 058 462 419 0 666 10732 394 429 035 34

171

1292 R34 7389 006 1577 075 0 014 058 462 419 0 666 11382 354 381 027 341293 R34 7389 006 1577 075 0 014 058 462 419 0 666 11332 352 384 033 341294 H5 741 0 117 0 0 0 0 9 44 0 29 62235 1005 1014 009 351295 H5 741 0 117 0 0 0 0 9 44 0 29 66145 869 915 046 351296 H5 741 0 117 0 0 0 0 9 44 0 29 59965 1094 108 -014 351297 H5 741 0 117 0 0 0 0 9 44 0 29 64375 908 958 05 351298 H5 741 0 117 0 0 0 0 9 44 0 181 65365 1082 1073 -009 351299 H5 741 0 117 0 0 0 0 9 44 0 181 69845 944 964 02 351300 H5 741 0 117 0 0 0 0 9 44 0 181 68515 968 994 026 351301 H5 741 0 117 0 0 0 0 9 44 0 697 49345 1068 1093 025 351302 H5 741 0 117 0 0 0 0 9 44 0 697 51745 91 999 089 351303 H5 741 0 117 0 0 0 0 9 44 0 697 52495 87 972 102 351304 H5 741 0 117 0 0 0 0 9 44 0 092 74475 1003 1014 011 351305 H5 741 0 117 0 0 0 0 9 44 0 092 71685 1094 1074 -02 351306 H5 741 0 117 0 0 0 0 9 44 0 129 74535 928 944 016 351307 H5 741 0 117 0 0 0 0 9 44 0 129 70725 1038 1026 -012 351308 H5 741 0 117 0 0 0 0 9 44 0 129 68655 1062 1074 012 351309 H5 741 0 117 0 0 0 0 9 44 0 063 77645 1017 1017 0 351310 H5 741 0 117 0 0 0 0 9 44 0 063 75635 1096 1057 -039 351311 H5 741 0 117 0 0 0 0 9 44 0 063 80445 931 966 035 351312 H5 741 0 117 0 0 0 0 9 44 0 077 77405 948 988 04 351313 H5 741 0 117 0 0 0 0 9 44 0 077 74415 108 1048 -032 351314 H6 741 0 122 0 0 0 52 44 4 0 002 10323 1091 1187 096 361315 H6 741 0 122 0 0 0 52 44 4 0 002 10535 1034 113 096 361316 H6 741 0 122 0 0 0 52 44 4 0 002 1076 964 1075 111 361317 H6 741 0 122 0 0 0 52 44 4 0 002 14732 449 488 039 361318 H6 741 0 122 0 0 0 52 44 4 0 002 15222 415 443 028 361319 H6 741 0 122 0 0 0 52 44 4 0 002 15712 383 401 018 361320 H6 741 0 122 0 0 0 52 44 4 0 002 16212 352 362 01 361321 H6 741 0 122 0 0 0 52 44 4 0 002 16702 326 326 0 361322 H6 741 0 122 0 0 0 52 44 4 0 002 17192 3 292 -008 361323 H6 741 0 122 0 0 0 52 44 4 0 002 17682 277 261 -016 36

172

1324 H6 741 0 122 0 0 0 52 44 4 0 002 18172 255 231 -024 361325 H6 741 0 122 0 0 0 52 44 4 0 002 18672 233 203 -03 361326 H9 756 0 12 0 0 49 0 45 4 0 002 10788 11 1145 045 361327 H9 756 0 12 0 0 49 0 45 4 0 002 10969 1066 1085 019 361328 H9 756 0 12 0 0 49 0 45 4 0 002 11136 1014 1035 021 361329 H9 756 0 12 0 0 49 0 45 4 0 002 11301 971 99 019 361330 H9 756 0 12 0 0 49 0 45 4 0 002 15224 441 431 -01 361331 H9 756 0 12 0 0 49 0 45 4 0 002 15716 406 391 -015 361332 H9 756 0 12 0 0 49 0 45 4 0 002 16208 372 353 -019 361333 H9 756 0 12 0 0 49 0 45 4 0 002 1670 34 318 -022 361334 H9 756 0 12 0 0 49 0 45 4 0 002 17192 312 285 -027 361335 H9 756 0 12 0 0 49 0 45 4 0 002 17684 286 254 -032 361336 H9 756 0 12 0 0 49 0 45 4 0 002 18176 261 225 -036 361337 H9 756 0 12 0 0 49 0 45 4 0 002 18668 235 197 -038 361338 H11 772 0 139 0 0 0 0 45 43 0 0 11761 113 1109 -021 371339 H11 772 0 139 0 0 0 0 45 43 0 0 11981 1108 1074 -034 371340 H11 772 0 139 0 0 0 0 45 43 0 0 12172 1048 1044 -004 371341 H11 772 0 139 0 0 0 0 45 43 0 0 12344 1014 1019 005 371342 H11 772 0 139 0 0 0 0 45 43 0 0 12574 1007 986 -021 371343 H11 772 0 139 0 0 0 0 45 43 0 107 86935 11 1075 -025 371344 H11 772 0 139 0 0 0 0 45 43 0 107 90875 1055 1012 -043 371345 H11 772 0 139 0 0 0 0 45 43 0 218 81505 1064 1014 -05 371346 H11 772 0 139 0 0 0 0 45 43 0 254 76725 1058 1078 02 371347 H11 772 0 139 0 0 0 0 45 43 0 254 79455 1019 1016 -003 371348 H11 772 0 139 0 0 0 0 45 43 0 254 74705 112 1127 007 371349 H8 754 0 161 0 0 0 0 47 43 0 0 12529 1012 996 -016 371350 H8 754 0 161 0 0 0 0 47 43 0 0 12339 1035 1023 -012 371351 H8 754 0 161 0 0 0 0 47 43 0 0 12161 107 1049 -021 371352 H8 754 0 161 0 0 0 0 47 43 0 0 12679 985 976 -009 371353 H8 754 0 161 0 0 0 0 47 43 0 0 1213 1058 1053 -005 371354 H8 754 0 161 0 0 0 0 47 43 0 117 89155 1052 1022 -03 371355 H8 754 0 161 0 0 0 0 47 43 0 117 86975 1085 106 -025 37

173

1356 H8 754 0 161 0 0 0 0 47 43 0 117 85655 1112 1084 -028 371357 H8 754 0 161 0 0 0 0 47 43 0 203 81945 1042 1029 -013 371358 H8 754 0 161 0 0 0 0 47 43 0 203 83285 984 1002 018 371359 H8 754 0 161 0 0 0 0 47 43 0 203 80135 107 1068 -002 371360 H8 754 0 161 0 0 0 0 47 43 0 203 79265 108 1088 008 371361 H8 754 0 161 0 0 0 0 47 43 0 277 76475 1014 1066 052 371362 H8 754 0 161 0 0 0 0 47 43 0 277 75555 106 1088 028 371363 H8 754 0 161 0 0 0 0 47 43 0 277 79285 991 1002 011 371364 H8 754 0 161 0 0 0 0 47 43 0 277 74785 1075 1107 032 371365 H10 7688 0 1145 0 0 0 0 36 56 0 002 12772 915 898 -017 381366 H10 7688 0 1145 0 0 0 0 36 56 0 002 12435 957 943 -014 381367 H10 7688 0 1145 0 0 0 0 36 56 0 002 12107 999 989 -01 381368 H10 7688 0 1145 0 0 0 0 36 56 0 002 11559 1085 1073 -012 381369 H10 7688 0 1145 0 0 0 0 36 56 0 002 11232 1135 1127 -008 381370 H12 7814 0 1164 0 0 0 0 126 911 0 002 12612 96 941 -019 381371 H12 7814 0 1164 0 0 0 0 126 911 0 002 1244 986 965 -021 381372 H12 7814 0 1164 0 0 0 0 126 911 0 002 12161 1031 1005 -026 381373 H12 7814 0 1164 0 0 0 0 126 911 0 002 11953 1075 1036 -039 381374 H12 7814 0 1164 0 0 0 0 126 911 0 002 11232 1212 1153 -059 381375 H13 7821 0 1169 0 0 0 0 241 743 0 002 12635 972 934 -038 381376 H13 7821 0 1169 0 0 0 0 241 743 0 002 1245 992 959 -033 381377 H13 7821 0 1169 0 0 0 0 241 743 0 002 11994 1052 1025 -027 381378 H13 7821 0 1169 0 0 0 0 241 743 0 002 11965 1072 103 -042 381379 H13 7821 0 1169 0 0 0 0 241 743 0 002 11232 118 1148 -032 381380 H14 7828 0 1192 0 0 0 0 591 223 0 002 12478 902 96 058 381381 H14 7828 0 1192 0 0 0 0 591 223 0 002 12253 934 992 058 381382 H14 7828 0 1192 0 0 0 0 591 223 0 002 12048 96 1021 061 381383 H14 7828 0 1192 0 0 0 0 591 223 0 002 11838 994 1053 059 381384 H14 7828 0 1192 0 0 0 0 591 223 0 002 11732 1013 107 057 381385 H14 7828 0 1192 0 0 0 0 591 223 0 002 11232 1092 1152 06 381386 H15 786 0 1199 0 0 0 0 457 42 0 002 11549 1102 1112 01 381387 H15 786 0 1199 0 0 0 0 457 42 0 002 11782 1063 1074 011 38

174

1388 H15 786 0 1199 0 0 0 0 457 42 0 002 11989 1028 1043 015 381389 H15 786 0 1199 0 0 0 0 457 42 0 002 1212 1016 1023 007 381390 H15 786 0 1199 0 0 0 0 457 42 0 002 11232 1153 1165 012 381391 H16 8103 0 991 0 0 0 0 124 739 0 002 12668 1025 985 -04 381392 H16 8103 0 991 0 0 0 0 124 739 0 002 12567 1036 999 -037 381393 H16 8103 0 991 0 0 0 0 124 739 0 002 1236 1056 1029 -027 381394 H16 8103 0 991 0 0 0 0 124 739 0 002 12375 1063 1027 -036 381395 H16 8103 0 991 0 0 0 0 124 739 0 002 12225 1097 1049 -048 381396 H16 8103 0 991 0 0 0 0 124 739 0 002 12243 11 1046 -054 381397 H16 8103 0 991 0 0 0 0 124 739 0 002 12137 1127 1062 -065 381398 H16 8103 0 991 0 0 0 0 124 739 0 002 11232 1308 1212 -096 381399 H17 8174 0 1003 0 0 0 0 247 566 0 002 12637 997 986 -011 381400 H17 8174 0 1003 0 0 0 0 247 566 0 002 12416 1023 1017 -006 381401 H17 8174 0 1003 0 0 0 0 247 566 0 002 12173 1059 1053 -006 381402 H17 8174 0 1003 0 0 0 0 247 566 0 002 11941 11 1089 -011 381403 H17 8174 0 1003 0 0 0 0 247 566 0 002 11232 1216 1208 -008 381404 H18 8222 0 1017 0 0 0 0 366 389 0 002 12708 986 984 -002 381405 H18 8222 0 1017 0 0 0 0 366 389 0 002 12538 1015 1008 -007 381406 H18 8222 0 1017 0 0 0 0 366 389 0 002 12262 1044 1048 004 381407 H18 8222 0 1017 0 0 0 0 366 389 0 002 1197 1095 1093 -002 381408 H18 8222 0 1017 0 0 0 0 366 389 0 002 11232 1212 1217 005 381409 H19 8231 0 1016 0 0 0 0 589 07 0 002 12425 986 1004 018 381410 H19 8231 0 1016 0 0 0 0 589 07 0 002 12268 1018 1027 009 381411 H19 8231 0 1016 0 0 0 0 589 07 0 002 12033 1054 1062 008 381412 H19 8231 0 1016 0 0 0 0 589 07 0 002 11768 1091 1104 013 381413 H19 8231 0 1016 0 0 0 0 589 07 0 002 11232 1187 1196 009 381414 H20 8294 0 103 0 0 0 0 468 241 0 001 12605 973 1005 032 381415 H20 8294 0 103 0 0 0 0 468 241 0 001 12367 101 104 03 381416 H20 8294 0 103 0 0 0 0 468 241 0 001 12155 1059 1072 013 381417 H20 8294 0 103 0 0 0 0 468 241 0 001 12173 106 1069 009 381418 H20 8294 0 103 0 0 0 0 468 241 0 001 11915 1114 111 -004 381419 H20 8294 0 103 0 0 0 0 468 241 0 001 11232 1272 1227 -045 38

175

1420 H21 7349 0 1326 0 0 0 0 24 898 0 003 12463 986 908 -078 381421 H21 7349 0 1326 0 0 0 0 24 898 0 003 12213 1022 941 -081 381422 H21 7349 0 1326 0 0 0 0 24 898 0 003 12025 1049 967 -082 381423 H21 7349 0 1326 0 0 0 0 24 898 0 003 1177 1089 1004 -085 381424 H21 7349 0 1326 0 0 0 0 24 898 0 003 11232 1177 1088 -089 381425 H22 749 0 1352 0 0 0 0 364 722 0 002 12679 946 891 -055 381426 H22 749 0 1352 0 0 0 0 364 722 0 002 12403 99 927 -063 381427 H22 749 0 1352 0 0 0 0 364 722 0 002 12266 101 946 -064 381428 H22 749 0 1352 0 0 0 0 364 722 0 002 11914 106 996 -064 381429 H22 749 0 1352 0 0 0 0 364 722 0 002 11232 1176 1101 -075 381430 H23 7552 0 139 0 0 0 0 477 553 0 002 12652 936 915 -021 381431 H23 7552 0 139 0 0 0 0 477 553 0 002 12364 996 954 -042 381432 H23 7552 0 139 0 0 0 0 477 553 0 002 1223 1012 972 -04 381433 H23 7552 0 139 0 0 0 0 477 553 0 002 11884 1066 1022 -044 381434 H23 7552 0 139 0 0 0 0 477 553 0 002 11232 1192 1125 -067 381435 H24 7608 0 1389 0 0 0 0 596 384 0 002 12174 954 976 022 381436 H24 7608 0 1389 0 0 0 0 596 384 0 002 11923 1013 1013 0 381437 H24 7608 0 1389 0 0 0 0 596 384 0 002 11769 105 1036 -014 381438 H24 7608 0 1389 0 0 0 0 596 384 0 002 11513 109 1075 -015 381439 H24 7608 0 1389 0 0 0 0 596 384 0 002 11232 1159 1121 -038 381440 H25 7652 0 1405 0 0 0 0 714 219 0 002 12188 964 972 008 381441 H25 7652 0 1405 0 0 0 0 714 219 0 002 11976 999 1002 003 381442 H25 7652 0 1405 0 0 0 0 714 219 0 002 1175 1034 1036 002 381443 H25 7652 0 1405 0 0 0 0 714 219 0 002 1150 108 1074 -006 381444 H25 7652 0 1405 0 0 0 0 714 219 0 002 11232 1127 1118 -009 381445 H26 7898 0 1211 0 0 0 0 704 062 0 001 12711 915 935 02 381446 H26 7898 0 1211 0 0 0 0 704 062 0 001 12586 945 952 007 381447 H26 7898 0 1211 0 0 0 0 704 062 0 001 12394 965 979 014 381448 H26 7898 0 1211 0 0 0 0 704 062 0 001 12099 1035 1022 -013 381449 H26 7898 0 1211 0 0 0 0 704 062 0 001 11893 1074 1053 -021 381450 H26 7898 0 1211 0 0 0 0 704 062 0 001 11686 1124 1086 -038 381451 H26 7898 0 1211 0 0 0 0 704 062 0 001 11232 1224 1162 -062 38

176

APPENDIX B

FTIR SPECTRA FOR EQUILIBRIUM SPECIATION EXPERIMENTS

The FTIR spectra on the following pages are for the measurements listed in Table

33 in Chapter III All spectra were normalized to the sample thickness (mm)

Fig B1 FTIR spectra for equilibrium speciation experiments

053

058

063

068

073

40004500500055006000

KS-1-21

wavenumber (cm-1)

A (1

mm

)

049

054

059

064

069

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-22

055

06

065

07

075

40004500500055006000

KS-1-23

wavenumber (cm-1)

A (1

mm

)

025

027

029

031

033

035

037

039

041

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-31

177

022

024

026

028

03

032

034

036

038

40004500500055006000

KS-1-32

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-33

035

037

039

041

043

045

047

049

051

40004500500055006000

KS-1-41

A (1

mm

)

wavenumber (cm-1)

034

036

038

04

042

044

046

048

05

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-42

027

029

031

033

035

037

039

041

043

40004500500055006000

KS-1-43

A (1

mm

)

wavenumber (cm-1)

038

042

046

05

054

058

062

066

40004500500055006000

GMR+2-1-11

A (1

mm

)

wavenumber (cm-1)

178

034

038

042

046

05

054

058

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-12

035

039

043

047

051

055

059

063

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-13

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-21

045

05

055

06

065

07

075

08

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-22

045

05

055

06

065

07

075

08

40004500500055006000

GMR+2-1-23

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-31

179

033

038

043

048

053

058

063

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-32

033

038

043

048

053

058

063

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-33

045

05

055

06

065

07

075

08

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-R11

04

045

05

055

06

065

07

075

40004500500055006000

GMR+2-1-R12

A (1

mm

)

wavenumber (cm-1)

045

05

055

06

065

07

075

08

40004500500055006000

GMR+2-1-R13

wavenumber (cm-1)

A (1

mm

)

12

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-21

180

11

13

15

17

19

21

23

25

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-22

11

13

15

17

19

21

23

25

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-23

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-31

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-32

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-33

04

05

06

07

08

09

1

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-41

181

04

05

06

07

08

09

1

40004500500055006000

GMR+4-1-42A

(1m

m)

wavenumber (cm-1)

04

05

06

07

08

09

1

40004500500055006000

GMR+4-1-43

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

40004500500055006000

KS-2-11

wavenumber (cm-1)

A (1

mm

)

033

038

043

048

053

40004500500055006000

KS-2-12

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

40004500500055006000

KS-2-13

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

40004500500055006000

KS-2-21

wavenumber (cm-1)

A (1

mm

)

182

023

028

033

038

043

40004500500055006000

KS-2-22

A (1

mm

)

wavenumber (cm-1)

022

027

032

037

042

40004500500055006000

KS-2-23

wavenumber (cm-1)

A (1

mm

)

033

038

043

048

053

40004500500055006000

KS-2-41

wavenumber (cm-1)

A (1

mm

)

029

034

039

044

049

40004500500055006000

wavenumber (cm-1)

KS-2-42

A (1

mm

)

028

033

038

043

048

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-43

045

05

055

06

065

07

075

08

085

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-11

183

055

06

065

07

075

08

085

09

095

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-12

055

06

065

07

075

08

085

09

095

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-13

032

037

042

047

052

057

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-21

032

037

042

047

052

057

062

40004500500055006000

GMR+2-2-22

A (1

mm

)

wavenumber (cm-1)

032

037

042

047

052

057

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-23

055

06

065

07

075

08

085

09

40004500500055006000

GMR+2-2-41

A (1

mm

)

wavenumber (cm-1)

184

05

055

06

065

07

075

08

085

40004500500055006000

GMR+2-2-42

wavenumber (cm-1)

A (1

mm

)

045

05

055

06

065

07

075

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-43

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-11

08

1

12

14

16

18

40004500500055006000

GMR+4-2-12

A (1

mm

)

wavenumber (cm-1)

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-13

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-21

A (1

mm

)

wavenumber (cm-1)

185

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-22A

(1m

m)

wavenumber (cm-1)

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-23

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-31

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-32

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-33

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

40004500500055006000

KS-3-11

A (1

mm

)

wavenumber (cm-1)

186

04

045

05

055

06

40004500500055006000

KS-3-12

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

40004500500055006000

KS-3-13

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

KS-3-21

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-22

025

03

035

04

045

40004500500055006000

KS-3-23

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

KS-3-24

wavenumber (cm-1)

A (1

mm

)

187

023

025

027

029

031

033

035

037

039

40004500500055006000

KS-3-31

wavenumber (cm-1)

A (1

mm

)

023

025

027

029

031

033

035

037

039

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-32

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-3-33

A (1

mm

)

wavenumber (cm-1)

025

027

029

031

033

035

037

039

041

40004500500055006000

KS-3-41

wavenumber (cm-1)

A (1

mm

)

026

028

03

032

034

036

038

04

042

40004500500055006000

KS-3-42

A (1

mm

)

wavenumber (cm-1)

026

028

03

032

034

036

038

04

042

40004500500055006000

KS-3-43

wavenumber (cm-1)

A (1

mm

)

188

027

029

031

033

035

037

039

041

043

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-44

045

047

049

051

053

055

057

059

061

40004500500055006000

KS-3-R11

wavenumber (cm-1)

A (1

mm

)

036

038

04

042

044

046

048

05

052

40004500500055006000

KS-3-R12

wavenumber (cm-1)

A (1

mm

)

033

035

037

039

041

043

045

047

049

40004500500055006000

KS-3-R13

wavenumber (cm-1)

A (1

mm

)

032

037

042

047

052

057

062

067

40004500500055006000

GMR+2-3-11

A (1

mm

)

wavenumber (cm-1)

032

037

042

047

052

057

062

067

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-12

189

032

037

042

047

052

057

062

067

40004500500055006000

GMR+2-3-13A

(1m

m)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-3-21

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-22

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-23

wavenumber (cm-1)

A (1

mm

)

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-31

wavenumber (cm-1)

A (1

mm

)

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-32

A (1

mm

)

wavenumber (cm-1)

190

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-33

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-11

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-12

A (1

mm

)

wavenumber (cm-1)05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-13

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-31

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-32

wavenumber (cm-1)

A (1

mm

)

191

04

05

06

07

08

09

1

40004500500055006000

GMR+4-3-33A

(1m

m)

wavenumber (cm-1)

04

05

06

07

08

09

1

11

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+4-3-41

04

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-42

A (1

mm

)

wavenumber (cm-1)

04

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-43

A (1

mm

)

wavenumber (cm-1)

023

028

033

038

043

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-11

045

05

055

06

065

40004500500055006000

KS-1b-12

A (1

mm

)

wavenumber (cm-1)

192

027

032

037

042

047

40004500500055006000

KS-1b-13

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-1b-21

wavenumber (cm-1)

A (1

mm

)

021

023

025

027

029

031

033

035

037

40004500500055006000

KS-1b-22

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-1b-23

A (1

mm

)

wavenumber (cm-1)

028

031

034

037

04

043

046

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1b-31

031

034

037

04

043

046

049

40004500500055006000

KS-1b-32

A (1

mm

)

wavenumber (cm-1)

193

033

036

039

042

045

048

051

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-33

024

026

028

03

032

034

036

038

04

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-R11

027

029

031

033

035

037

039

041

043

40004500500055006000

KS-1b-R12

A (1

mm

)

wavenumber (cm-1)

031

033

035

037

039

041

043

045

047

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-R13

063

065

067

069

071

073

075

077

079

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1b-R21

054

056

058

06

062

064

066

068

07

40004500500055006000

KS-1b-R22

A (1

mm

)

wavenumber (cm-1)

194

058

06

062

064

066

068

07

072

074

40004500500055006000

KS-1b-R23

A (1

mm

)

wavenumber (cm-1)

195

APPENDIX C

FTIR SPECTRA FOR COOLING EXPERIMENTS

The FTIR spectra on the following pages are for the measurements listed in Table

43 in Chapter IV All spectra were normalized to the sample thickness (mm)

Fig C1 FTIR spectra for cooling experiments

042

044

046

048

05

052

054

056

058

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-21

036

038

04

042

044

046

048

05

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-22

05

052

054

056

058

06

062

064

40004500500055006000

KS-1-23

A (1

mm

)

wavenumber (cm-1)

048

05

052

054

056

058

06

062

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-31

196

044

046

048

05

052

054

056

058

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-32

036

038

04

042

044

046

048

05

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-33

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-41

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-42

022

024

026

028

03

032

034

036

038

40004500500055006000

KS-1-43

wavenumber (cm-1)

A (1

mm

)

028

032

036

04

044

048

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1-51

197

028

032

036

04

044

048

40004500500055006000

KS-1-52

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

40004500500055006000

KS-1-53

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-11

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-12

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-13

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-21

wavenumber (cm-1)

A (1

mm

)

198

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-22

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-23

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-31

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-32

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-33

wavenumber (cm-1)

A (1

mm

)

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-21

199

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

GMR+4-1-22

wavenumber (cm-1)

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-23

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-31

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-32

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-33

wavenumber (cm-1)

A (1

mm

)

14

16

18

2

22

24

26

28

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-41

200

14

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-42

A (1

mm

)

wavenumber (cm-1)

14

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-43

wavenumber (cm-1)

A (1

mm

)

-065

-06

-055

-05

-045

-04

40004500500055006000

KS-2-11

A (1

mm

)

wavenumber (cm-1)

-025

-02

-015

-01

-005

0

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-2-12

032

036

04

044

048

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-21

028

032

036

04

044

048

40004500500055006000

KS-2-22

A (1

mm

)

wavenumber (cm-1)

201

025

029

033

037

041

045

40004500500055006000

KS-2-23

wavenumber (cm-1)

A (1

mm

)

026

031

036

041

046

40004500500055006000

KS-2-31

wavenumber (cm-1)

A (1

mm

)

024

029

034

039

044

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-32

03

035

04

045

05

40004500500055006000

KS-2-33

wavenumber (cm-1)

A (1

mm

)

-008

-0044

-0008

0028

0064

01

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-41

-02

-0164

-0128

-0092

-0056

-002

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-2-42

202

-006

-0024

0012

0048

0084

012

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-43

03

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-21

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-22

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-23

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-31

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-32

A (1

mm

)

wavenumber (cm-1)

203

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-33

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-51

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-52

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-53

wavenumber (cm-1)

A (1

mm

)

01

02

03

04

05

06

07

08

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-31

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-32

wavenumber (cm-1)

A (1

mm

)

204

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-33

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-41

A (1

mm

)

wavenumber (cm-1)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-42

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-43

wavenumber (cm-1)

A (1

mm

)

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-51

A (1

mm

)

wavenumber (cm-1)

01

02

03

04

05

06

07

08

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-52

205

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-53A

(1m

m)

wavenumber (cm-1)

025

03

035

04

045

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-11

025

03

035

04

045

40004500500055006000

KS-3-12

A (1

mm

)

wavenumber (cm-1)

023

028

033

038

043

40004500500055006000

KS-3-13

A (1

mm

)

wavenumber (cm-1)

028

031

034

037

04

043

046

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-3-21

029

032

035

038

041

044

047

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-22

206

031

034

037

04

043

046

049

40004500500055006000wavenumber (cm-1)

A (1

mm

)KS-3-23

025

03

035

04

045

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-81

03

035

04

045

05

40004500500055006000

KS-3-82

A (1

mm

)

wavenumber (cm-1)

026

031

036

041

046

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-83

04

045

05

055

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-91

036

04

044

048

052

056

40004500500055006000

KS-3-92

A (1

mm

)

wavenumber (cm-1)

207

038

043

048

053

058

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-93

039

041

043

045

047

049

051

053

055

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-111

04

042

044

046

048

05

052

054

056

40004500500055006000

KS-3-112

A (1

mm

)

wavenumber (cm-1)

041

043

045

047

049

051

053

055

057

40004500500055006000

KS-3-113

A (1

mm

)

wavenumber (cm-1)

033

035

037

039

041

043

045

047

049

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-114

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-21

wavenumber (cm-1)

A (1

mm

)

208

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-22A

(1m

m)

wavenumber (cm-1)03

035

04

045

05

055

06

065

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-3-23

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-31

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-32

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-33

A (1

mm

)

wavenumber (cm-1)

04

045

05

055

06

065

07

075

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-41

209

04

045

05

055

06

065

07

075

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-3-42

04

045

05

055

06

065

07

075

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-43

08

1

12

14

16

18

40004500500055006000

GMR+4-3-41

A (1

mm

)

wavenumber (cm-1)

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-3-42

08

1

12

14

16

18

40004500500055006000

GMR+4-3-43

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-3-51

210

03

04

05

06

07

08

09

40004500500055006000wavenumber (cm-1)

A (1

mm

)GMR+4-3-52

03

04

05

06

07

08

09

40004500500055006000

GMR+4-3-53

wavenumber (cm-1)

A (1

mm

)

211

APPENDIX D

DATABASE FOR EASINESS OF CRYSTALLIZATION FOR DIFFERENT MELTS AT DIFFERENT P-T CONDITION

Experimental database for easiness of crystallization for different melts at

different P-T condition has been accumulated at the experimental petrology laboratory

the University of Michigan The references are listed at the end of the table

Table D1 Pressure dependence of easiness of crystallization for different melts at

different temperatures

Composition H2Ot P T t q Crystallization Refloz wt GPa K s Ks

1 rhyolite 653 05 613 7200 50 N 42 rhyolite 653 05 613 1260 50 N 43 rhyolite 46 03 623 18000 50 N 134 rhyolite 389 1 623 261360 50 N 115 rhyolite 653 05 643 300 0017 N 46 rhyolite 533 05 673 300 0017 N 47 rhyolite 389 1 673 46800 50 N 118 rhyolite 389 2 673 172800 50 N 119 rhyolite 518 2 673 720000 50 N 12

10 rhyolite 371 3 673 259200 50 N 1111 rhyolite 365 05 678 300 00017 N 412 rhyolite 365 05 678 600 59 N 413 rhyolite 364 05 703 300 0017 N 414 rhyolite 263 00001 723 600 0017 N 115 rhyolite 365 05 723 300 1 N 416 rhyolite 18 1 723 183600 50 N 1117 rhyolite 389 1 723 10800 50 N 1118 rhyolite 389 2 723 14400 50 N 1119 rhyolite 389 3 723 21600 50 N 1120 rhyolite 389 3 723 21600 50 N 1121 rhyolite 527 05 733 300 1 N 422 rhyolite 239 00001 735 600 0000177 N 1

212

23 rhyolite 653 05 743 300 50 N 424 rhyolite 1571 00001 752 600 0000177 N 125 rhyolite 306 00001 753 600 0108 N 126 rhyolite 365 05 753 600 1 N 427 rhyolite 527 05 753 240 50 N 428 rhyolite 087 05 753 1067900 30 N 329 rhyolite 389 2 753 1260 50 N 1130 rhyolite 51 2 753 172800 50 Y 1231 rhyolite 085 3 763 36000 50 Y 1132 rhyolite 149 00001 773 176220 427 N 233 rhyolite 46 03 773 300 50 N 1334 rhyolite 18 1 773 600 50 N 1135 rhyolite 389 1 773 600 50 N 1136 rhyolite 18 2 773 86400 50 N 1137 rhyolite 591 2 773 54000 50 Y 1238 rhyolite 18 3 773 172800 50 N 1139 rhyolite 389 3 773 960 50 N 1140 rhyolite 09 4 773 10800 50 Y 1141 rhyolite 09 62 773 10800 50 Y 1142 rhyolite 3 00001 783 600 055 N 143 rhyolite 365 05 793 300 52 N 444 rhyolite 177 00001 798 26820 1259 N 245 rhyolite 371 05 803 68520 30 N 346 rhyolite 0809 00001 813 600 00002 N 147 rhyolite 08 1 813 187200 54 N 1148 rhyolite 1729 00001 823 600 0017 N 149 rhyolite 1824 00001 823 600 0017 N 150 rhyolite 1681 00001 823 600 0125 N 151 rhyolite 1855 00001 823 600 013 N 152 rhyolite 1879 00001 823 600 082 N 153 rhyolite 18 1 823 600 55 N 1154 rhyolite 18 2 823 7200 55 N 1155 rhyolite 09 3 823 176400 55 N 1156 rhyolite 09 3 823 864000 55 N 1157 rhyolite 09 4 823 11100 55 Y 1158 rhyolite 18 3 823 7200 55 N 1159 rhyolite 181 00001 824 10800 59 N 260 rhyolite 0186 00001 825 3628800 20 N 1061 rhyolite 76 05 828 9065 70 N 362 rhyolite 073 05 836 236800 30 N 363 rhyolite 0839 00001 843 600 0002 N 164 rhyolite 1421 00001 843 600 0017 N 165 rhyolite 1433 00001 843 600 0141 N 166 rhyolite 0928 00001 847 600 0017 N 167 rhyolite 192 00001 848 2700 84 N 268 rhyolite 131 00001 848 16800 141 N 269 rhyolite 18 2 853 600 58 N 1170 rhyolite 142 00001 863 600 0762 N 1

213

71 rhyolite 082 081 865 252900 30 N 372 rhyolite 081 005 868 167700 30 N 373 rhyolite 0811 00001 872 600 0049 N 174 rhyolite 0839 00001 873 600 00055 N 175 rhyolite 085 00001 873 21600 65 N 1176 rhyolite 085 3 873 7200 60 Y 1177 rhyolite 087 1 873 14400 60 N 1178 rhyolite 088 3 873 2400 60 N 1179 rhyolite 09 2 873 14400 60 N 1180 rhyolite 09 4 873 10800 60 Y 1181 rhyolite 09 4 873 10800 60 Y 1182 rhyolite 1118 00001 873 600 015 N 183 rhyolite 1155 00001 873 600 0915 N 184 rhyolite 116 00001 873 5760 20 N 285 rhyolite 139 00001 873 3900 20 N 286 rhyolite 187 00001 873 1215 20 N 287 rhyolite 2 2 873 600 60 N 1188 rhyolite 2 3 873 600 60 N 1189 rhyolite 226 2 873 43200 60 N 1290 rhyolite 228 2 873 86400 60 N 1291 rhyolite 361 3 873 60 1 N 1392 rhyolite 396 2 873 14400 60 Y 1293 rhyolite 51 1 873 36000 60 N 1294 rhyolite 079 02 874 227760 30 N 395 rhyolite 0892 00001 875 600 0017 N 196 rhyolite 079 05 875 263650 30 N 397 rhyolite 077 00001 876 93160 30 N 398 rhyolite 186 05 878 144300 30 N 399 rhyolite 0802 00001 880 600 0161 N 1

100 rhyolite 085 3 883 3600 001 Y 13101 rhyolite 0831 00001 893 600 0018 N 1102 rhyolite 084 00001 893 600 0018 N 1103 rhyolite 085 3 903 3600 001 Y 13104 rhyolite 08 00001 923 600 75 N 11105 rhyolite 08 00001 923 7200 75 N 11106 rhyolite 084 00001 923 2400 75 N 11107 rhyolite 085 1 923 600 65 N 11108 rhyolite 089 2 923 600 65 N 11109 rhyolite 085 3 923 600 33 Y 13110 rhyolite 085 3 923 600 033 Y 13111 rhyolite 201 1 923 600 01 N 13112 rhyolite 382 1 923 120 1 N 13113 rhyolite 0513 00001 941 600 0017 N 1114 rhyolite 087 2 953 600 68 N 11115 rhyolite 76 05 969 720 30 N 3116 rhyolite 0124 00001 971 1450800 20 N 10117 rhyolite 137 0011 973 259200 05 N 10118 rhyolite 218 00249 973 172800 05 N 10

214

119 rhyolite 389 2 973 60 1 N 13120 rhyolite 389 3 973 60 10 N 13121 rhyolite 08 00001 973 600 50 N 11122 rhyolite 082 1 973 480 70 N 11123 rhyolite 08 1 973 300 01 N 13124 rhyolite 08 2 973 300 01 N 13125 rhyolite 085 3 973 600 70 Y 11126 rhyolite 082 3 973 300 01 Y 13127 rhyolite 09 4 973 3600 70 Y 11128 rhyolite 0836 00001 993 300 127 N 6129 rhyolite 09 4 993 600 05 Y 13130 rhyolite 0805 00001 1000 300 20 N 6131 rhyolite 0784 00001 1003 600 79 N 6132 rhyolite 088 00001 1013 60 127 N 6133 rhyolite 08 00001 1021 300 65 N 6134 rhyolite 0116 00001 1023 1292400 20 N 10135 rhyolite 068 00001 1023 300 178 N 6136 rhyolite 0766 00001 1023 300 84 N 6137 rhyolite 08 3 1023 600 0333 Y 13138 rhyolite 082 1 1023 120 1 N 13139 rhyolite 082 2 1023 120 1 N 13140 rhyolite 082 3 1023 120 10 N 13141 rhyolite 083 3 1023 120 1 N 13142 rhyolite 084 00001 1023 450 130 N 6143 rhyolite 085 3 1023 120 75 N 11144 rhyolite 085 3 1023 120 1 N 13145 rhyolite 0855 00001 1023 600 174 N 6146 rhyolite 18 2 1023 120 10 N 13147 rhyolite 18 2 1023 120 1 N 13148 rhyolite 18 3 1023 120 10 N 13149 rhyolite 18 3 1023 120 1 N 13150 rhyolite 183 1 1023 120 1 N 13151 rhyolite 389 2 1023 60 10 N 13152 rhyolite 389 3 1023 60 75 Y 13153 rhyolite 08 00001 1024 600 14 N 6154 rhyolite 07 1 1073 60 10 N 13155 rhyolite 08 1 1073 120 80 N 13156 rhyolite 08 2 1073 120 10 N 13157 rhyolite 082 02 1073 300 0167 N 4158 rhyolite 083 01 1073 600 0167 N 4159 rhyolite 085 2 1073 300 0167 N 13160 rhyolite 178 02 1073 600 80 N 4161 rhyolite 181 1 1073 60 10 N 13162 rhyolite 182 2 1073 60 80 N 13163 rhyolite 241 01 1073 600 80 N 4164 rhyolite 25 02 1073 600 80 N 4165 rhyolite 389 1 1073 60 10 N 13166 rhyolite 389 1 1073 60 80 N 13

215

167 rhyolite 389 2 1073 60 80 N 13168 rhyolite 389 3 1073 60 80 Y 13169 rhyolite 09 4 1103 300 4 Y 13170 rhyolite 0103 00001 1123 219600 20 N 10171 rhyolite 0105 00001 1123 867600 20 N 10172 rhyolite 077 00061 1123 259200 05 N 10173 rhyolite 077 2 1123 120 85 N 13174 rhyolite 077 3 1123 60 85 Y 13175 rhyolite 085 2 1123 300 85 N 13176 rhyolite 11 00112 1123 338400 05 N 10177 rhyolite 111 00114 1123 172800 05 N 10178 rhyolite 176 00253 1123 176400 05 N 10179 rhyolite 18 3 1123 120 85 Y 13180 rhyolite 241 02 1123 3600 067 N 4181 rhyolite 389 3 1123 60 85 Y 13182 rhyolite 0106 00001 1124 1134000 20 N 10183 rhyolite 76 05 1126 240 30 N 3184 rhyolite 6 025 1135 1800 2 N 3185 rhyolite 76 05 1173 0 2 N 3186 rhyolite 76 05 1173 1800 2 N 3187 rhyolite 23 05 1173 7200 167 N 5188 rhyolite 0225 05 1180 36000 30 N 3189 rhyolite 07 00061 1268 173160 05 N 10190 rhyolite 0102 00001 1272 1083600 20 N 10191 rhyolite 0099 00001 1273 691200 20 N 10192 rhyolite 012 01 1273 1800 167 N 5193 rhyolite 012 01 1273 14400 167 N 5194 rhyolite 012 03 1273 14400 167 N 5195 rhyolite 078 02 1273 300 100 N 4196 rhyolite 081 02 1273 300 67 N 4197 rhyolite 083 02 1273 300 083 N 4198 rhyolite 09 4 1273 120 100 Y 13199 rhyolite 099 00114 1275 88200 05 N 10200 rhyolite 115 05 1273 600 0017 N 4201 rhyolite 115 05 1273 600 100 N 4202 rhyolite 155 00252 1273 86400 05 N 10203 rhyolite 157 0025 1273 86400 05 N 10204 rhyolite 5 05 1273 600 100 N 5205 rhyolite 5 1 1273 600 100 N 5206 rhyolite 5 15 1273 600 100 N 5207 rhyolite 0219 05 1298 14400 30 N 3208 rhyolite 09 05 1298 14400 167 N 5209 rhyolite 024 05 1307 5400 167 N 5210 rhyolite 22 05 1307 5400 167 N 5211 rhyolite 22 05 1307 5400 167 N 5212 rhyolite 2 05 1307 5400 167 N 5213 rhyolite 078 01 1373 300 100 N 4214 rhyolite 371 2 1373 60 100 N 13

216

215 rhyolite 51 2 1373 624 100 N 12216 rhyolite 51 2 1373 613 100 N 12217 rhyolite 024 05 1375 1800 167 N 5218 rhyolite 09 05 1375 1800 167 N 5219 rhyolite 22 05 1375 1800 167 N 5220 rhyolite 38 05 1375 1800 167 N 5221 rhyolite 2 05 1375 1800 167 N 5222 rhyolite 09 05 1471 1200 167 N 5223 rhyolite 24 05 1471 1200 167 N 5224 rhyolite 41 05 1471 1200 167 N 5225 rhyolite 064 00061 1473 144000 05 N 10226 rhyolite 089 0011 1473 86400 05 N 10227 rhyolite 144 0025 1473 79200 05 N 10228 rhyolite 147 0025 1473 82800 05 N 10229 rhyolite 148 0025 1473 86400 05 N 10230 rhyolite 361 3 1473 60 100 N 13231 rhyolite 64 05 1478 900 2 N 3232 rhyolite 6 025 1488 1200 2 N 3233 rhyolite 51 1 1573 248 100 N 12234 rhyolite 397 2 1573 252 100 N 12235 rhyolite 227 2 1573 587 100 N 12236 rhyolite 09 41 1673 120 100 Y 13237 rhyolite 591 2 1773 120 100 N 12238 rhyolite 002 05 1873 7200 100 N 13239 rhyolite 517 2 1873 128 100 N 12240 rhyolite 09 4 1873 60 100 Y 13241 andesite 157 1 1523 0 100 N 7242 andesite 32 1 1573 300 100 N 7243 andesite 157 1 1573 300 100 N 7244 andesite 56 1 1573 120 100 N 7245 andesite 35 05 1673 90 100 N 7246 andesite 35 15 1673 90 100 N 7247 andesite 21 1 1773 60 100 N 7248 andesite 151 1 1773 60 100 N 7249 andesite 159 1 1813 126 100 N 7250 dacite 2517 00001 753 3000 20 N 8251 dacite 1453 00001 773 4202 20 N 8252 dacite 2513 00001 773 1800 20 N 8253 dacite 245 01 776 172200 30 N 9254 dacite 2354 00001 791 270 20 N 8255 dacite 1463 00001 792 1200 20 N 8256 dacite 1453 00001 792 2100 20 N 8257 dacite 2314 00001 810 484 20 N 8258 dacite 074 00001 824 1744680 20 N 9259 dacite 1425 00001 833 600 20 N 8260 dacite 245 01 834 689315 30 N 9261 dacite 1518 00001 845 180 20 N 8262 dacite 1525 00001 845 180 20 N 8

217

263 dacite 1411 00001 863 180 20 N 8264 dacite 245 01 878 103975 30 N 9265 dacite 145 0097 881 180900 100 N 9266 dacite 075 00975 881 413880 100 N 9267 dacite 245 014 881 40878 100 N 9268 dacite 245 013 910 19660 100 N 9269 dacite 073 0099 911 484260 100 N 9270 dacite 47 1 1423 300 100 N 7271 dacite 46 1 1473 300 100 N 7272 dacite 35 05 1573 73 100 N 7273 dacite 29 1 1573 480 100 N 7274 dacite 62 05 1673 120 100 N 7275 dacite 63 15 1673 120 100 N 7276 dacite 31 1 1773 90 100 N 7

ldquoNrdquo means no crystallization in the quenched glass and ldquoYrdquo means significant crystallization The crystallized samples were classified as failed experiments and were not discussed in the respective papers even though the samples were part of the respective study loz references 1 Zhang et al 1997b 2 Liu and Zhang 2000 3 Zhang and Behrens 2000 4 Zhang et al 2000 5 Behrens and Zhang 2001 6 Xu and Zhang 2002 7 Behrens et al 2004 8 Liu et al 2004a 9 Liu et al 2004b 10 Liu et al 2005 11 Hui et al in revision 12 Ni and Zhang revised 13 this study

Page 2: VISCOSITY OF SILICATE MELTS

copy Hejiu Hui

2008

ii

To

Xiaoqing and our families

iii

ACKNOWLEDGEMENTS

I would first of all like to thank my dissertation advisor Dr Youxue Zhang who

offered me this great opportunity to be a scientist and guided my academic development

with patience I have great respect and admiration of his enthusiasm in science critical

thinking and hard work I would like to thank other members in my dissertation

committee Drs Eric Essene Becky Lange Lars Stixrude and John Kieffer Special

thanks go to Dr Eric Essene for his advice and encouragements along my study I

benefited a lot from his wealth of knowledge and directness during my study here My

sincere thanks go to Dr Becky Lange I learned a lot on the melt not only in her igneous

petrology class but also in her group meeting I would like to thank Dr Lars Stixrude I

benefited a lot from his scientific thoughts and insightful comments on this dissertation

Finally I would like to thank my cognate Dr John Kieffer He provided helpful

comments and fresh perspectives from the outside of geology

I would also like to thank all other people who have contributed to my dissertation

in various ways My sincere thanks go to Zhengjiu Xu who taught me a lot of things in

the lab Dr Harald Behrens at University of Hannover who provided advice on various

aspects of the research in this disseration and his hospitality during my stay in Hannover

Perio Del Gaudio Francesco Vetere Jan Schuuml ler Otto Diedrich and other people in

Hannover who gave me a lot of help during this visit Tony Withers provided a lot of

instructions from temperature recording system of piston cylinder to salt cell

iv

Yang Liu taught me a lot to do experiments Yang Chen provided help in glass

composition analysis with EMPA Wenjun Yong and Lixing Jin helped me with XRD

Huaiwei Ni helped in pressure calibration

I would like to express my gratitude to my fellow students for their friendship and

support including Yang Liu Daming Wang Maodu Yan Kate Kenedi Zeb Page Qiong

Liu Matt Mannon Yang Chen Huaiwei Ni Wenjun Yong Xiqiao Xu Ni Sun Steven

Ownby Lixing Jin Lin Ma and Tie Sun I also would like to express my special thanks

to my friend and former landlord Bob Trees for his support and help during my hard

time at Ann Arbor

My deepest gratitude goes to my wife Xiaoqing and our families Their love and

support are critically important for me to accomplish this work

v

TABLE OF CONTENTS

DEDICATIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipii

ACKNOWLEDGMENTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipiii

LIST OF FIGUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipvii

LIST OF TABLEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipix

LIST OF APPENDICEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipx

CHAPTER

I INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip1

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip5

II TOWARD A GENERAL VISCOSITY EQUATION OF NATURAL

ANHYDROUS AND HYDROUS SILICATE MELTShelliphelliphelliphelliphelliphellip7

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip7

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip8

TEMPERATURE DEPENDENCE OF VISCOSITYhelliphelliphelliphellip10

VISCOSITY OF BINARY MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip12

VISCOSITY MODELS FOR NATURAL ANHYDROUS AND

HYDROUS SILICATE EMLTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip19

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip42

III PRESSURE DEPENDENCE OF THE SPECIATION OF DISSOLVED

WATER IN RHYOLITC MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip52

EXPERIMENTAL METHODShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip53

ANALYTICAL PROCEDUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip59

RESULTS AND DISCUSSIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip62

CONCLUSIONShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip80

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip81

vi

IV PRESSURE DEPENDENCE OF VISCOSITY OF RHYOLITIC

MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip86

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip86

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip87

EXPERIMENTAL AND ANALYTICAL METHODShelliphelliphellip90

DISCUSSIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip107

CONCLUDING REMARKShelliphelliphelliphelliphelliphelliphelliphellip117

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip118

V CONCLUSIONShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip125

APPENDICEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip129

vii

LIST OF FIGURES

Figure

21 Comparisons of fitting results using Equations 2 3 and 4a for viscosityhelliphelliphelliphellip13

22 Comparisons of experiments viscosity data with calculated valueshelliphelliphelliphelliphelliphelliphellip16

23 Viscosity as a function of composition in four binary systemshelliphelliphelliphelliphelliphelliphelliphellip18

24 Comparison of experimental viscosity data with calculated valueshelliphelliphelliphelliphelliphellip23

25 Total alkalis versus SiO2 diagramhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip29

26 Comparison of experimental viscosity values with calculated valueshelliphelliphelliphelliphelliphellip36

27 The prediction of Equation 12helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip39

31 Experimental results for temperature distribution in piston cylinderhelliphelliphelliphelliphelliphellip57

32 The temperature dependence of lnK at some pressureshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip67

33 Two sets of reversal experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip69

34 Temperature dependence of K and pressure dependence of enthalpyhelliphelliphelliphelliphelliphellip72

35 The distribution of differences between experimental and predicted temperatureshellip76

36 Pressure effect on lnK at some temperatures and water concentrationshelliphelliphelliphelliphellip77

41 Sketch of kinetics of reaction 1 during coolinghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip93

42 Temperature dependence of viscosity of rhyolitic melts at various pressureshelliphelliphellip99

43 Comparison of viscosities of given rhyolitic melts at various pressureshelliphelliphelliphellip104

44 Pressure effect on crystallization in the rhyolitic meltshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip106

viii

45 Comparison of measured viscosity data of rhyolites with calculated valueshelliphelliphellip111

46 P-T-XH2Ot range of all experimental data of the modelhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip112

47 Pressure effect on viscosity at some temperatures and water concentrationshelliphelliphellip113

48 Pressure dependence of glass transition temperature of hydrous rhyoliteshelliphelliphellip115

B1 FTIR spectra for Chapter IIIhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip176

C1 FTIR spectra for Chapter IVhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip195

ix

LIST OF TABLES

Table

21 Fitting parameters of Equation 5 in four binary systemshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip17

22 Fitting parameters for Equation 8helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip22

23 Melt composition on anhydrous basishelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip26

24 Fitting parameters for Equation 11helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip33

25 Examples of calculation using Equation 12helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip35

26 The 2 deviations and data points of sub-groups in the viscosity databasehelliphelliphelliphellip37

31 Chemical compositions of KS and GMR rhyolite on anhydrous basishelliphelliphelliphelliphellip55

32a Experimental results for pressure calibration at 1073 Khelliphelliphelliphelliphelliphelliphelliphelliphelliphellip60

32b Literature data on quartz-coesite transition pressure at 1073 Khelliphelliphelliphelliphelliphelliphelliphellip60

33 The equilibrium speciation of water in rhyolitic melts under various pressureshelliphellip63

34 Fitting parameters for Equations 3 4 and 6helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip74

41 Chemical composition of KS GMR and EDF rhyolite on anhydrous basishelliphelliphellip91

42 Viscosity of EDF under pressures 02 and 04 GPa and KS at 04 GPahelliphelliphelliphelliphellip98

43 Viscosity of hydrous rhyolitic melts under various pressureshelliphelliphelliphelliphelliphelliphelliphellip100

A1 Viscosity database used to fit Equation 11helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip130

D1 Pressure dependence of easiness of crystallization for different meltshelliphelliphelliphelliphellip211

x

LIST OF APPENDICES

Appendix

A Viscosity data of natural silicate meltshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip130

B FTIR spectra for equilibrium speciation experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip176

C FTIR spectra for cooling experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip195

D Database for easiness of crystallization for different melts at different P-T

conditionhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip211

1

CHAPTER 1

INTRODUCTION

Knowledge of viscosity of silicate melts is necessary in order to quantitatively

model volcanic and magmatic processes and in turn to provide insights into the structure

and dynamics of silicate melts A mechanistic study of xenolith dissolution may aid in

understanding the diagenesis of magmatic system (eg Morgan et al 2006 Shaw

2006) A numerical model of bubble growth may advance in predicting the mode of

volcanic eruption (eg Proussevitch and Sahagian 1998 Liu and Zhang 2000) The

success of these models in accurately predicting kinetic and dynamic processes in

igneous systems is critically dependent on the quality of viscosity data of silicate melts

Laboratory viscosity measurements are performed to better understand detailed

physicochemical behaviors and the results of these studies are then used to understand the

behavior of the melts in nature (eg Scaillet et al 1996) Because the conditions that

pertained in laboratory experiments cannot always be identical to those occurring in

nature it is also important to have means of interpolating or extrapolating laboratory

results to different (T P X) conditions In this study one of the primary aims is to

establish a general viscosity model to estimate viscosity of silicate melts at ambient

pressure Furthermore hydrous species reaction viscometer based on the kinetics of

hydrous species reaction in the rhyolitic melts at high pressure is used to infer viscosity

2

of hydrous rhyolitic melts at pressure up to 283 GPa and parallel-plate creep viscometer

in an internally-heated pressure vessel is employed to measure natural rhyolitic melts at

pressure up to 04 GPa and the pressure effect on the viscosity of rhyolitic melts is

examined

Chapter II presents a new and empirical viscosity equation of anhydrous and

hydrous natural silicate melts The compositional dependence of viscosity of silicate

melts is of fundamental importance to understand the evolution of magmatic systems

(eg Marsh 2006) However previous viscosity models can only provide viscosity

prediction of silicate melts either in a limited composition range over a large temperature

range (eg Hess and Dingwell 1996 Zhang et al 2003) or in a limited temperature

range in a large compositional range (eg Shaw 1972) This chapter provides a general

viscosity model of silicate melts which can be used to calculate viscosity of all natural

silicate melts in a large temperature range Natural and nearly natural melt compositions

covered in this model include anhydrous peridotite to rhyolite anhydrous peralkaline to

peraluminous melts hydrous basalt to rhyolite hydrous peralkaline to peraluminous

melts This model can also be used to estimate the glass transition temperatures and

cooling rate of natural silicate melts The results of this study have been published in

Geochimica et Cosmochimica Acta (Hui and Zhang 2007)

Chapter III is an experimental study of the speciation of dissolved water in

rhyolitic melts at pressure up to 283 GPa This study is prerequisite for inferring

viscosity of hydrous rhyolitic melts using the hydrous species reaction viscometer

(Dingwell and Webb 1990 Zhang et al 2003) at high pressure (Chapter IV)

Furthermore the quantification of hydrous speciation in the rhyolitic melts under high

3

pressure can be applied to model H2O diffusion and understand the structure of hydrous

melts at high pressure In addition information from this study is also useful in future

models of thermodynamic properties of hydrous silicate melts Chapter III addresses the

first systematic experimental study of H2O speciation in rhyolitic melts containing 08 ndash 4

wt water at high pressure 094 ndash 283 GPa A speciation model accommodating

temperature pressure and water content dependence of hydrous species in rhyolitic melts

is also presented in this chapter The results from this study have been submitted to

Geochimica et Cosmochimica Acta (Hui et al 2008)

Chapter IV contains the first experimental study of viscosity of any melts at

pressure up to 283 GPa in the high viscosity range It extends a newly developed method

(hydrous species reaction viscometer Zhang et al 2003) to high pressures This new

development represents the only method capable of extracting viscosity data of melts in

the high viscosity range at pressures above 1 GPa Previously high-pressure (ge 1 GPa)

viscosity data were obtained by the falling-sphere technique in high-pressure apparatus

which can be applied only in the low viscosity range Hence all previous viscosity data at

high pressure (ge 1GPa) fall in the high temperature range (ie low viscosity range) No

viscosity data in the low temperature range at high pressure ((ge 1GPa) have been

published This study is the first to infer viscosity of hydrous rhyolitic melts containing

08 ndash 4 wt water using the hydrous species reaction viscometer (Dingwell and Webb

1990 Zhang et al 2003) at high pressures The viscosity of natural rhyolitic melts

containing 013 and 08 wt water at pressures up to 04 GPa also has been measured

using a parallel plate creep viscometer A viscosity model of rhyolitic melts in the high

viscosity range accounting for the dependence on pressure temperature and water content

4

is also presented in this chapter The results from this chapter have been submitted to

Geochimica et Cosmochimica Acta (Hui et al 2008)

5

REFERENCES

Dingwell DB Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2 427-

449

Hess K-U Dingwell DB (1996) Viscosities of hydrous leucogranitic melts A non-

Arrhenian model Am Mineral 81 1297-1300

Hui H Zhang Y (2007) Toward a general viscosity equation of natural anhydrous and

hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Hui H Zhang Y Xu Z Behrens H (2008) Pressure dependence of the speciation of

dissolved water in rhyolitic melts Geochim Cosmochim Acta In revision

Hui H Zhang Y Xu Z Del Gaudio P Behrens H (2008) Pressure dependence of

viscosity of rhyolitic melts Geochim Cosmochim Acta Submitted

Liu Y Zhang Y (2000) Bubble growth in rhyolitic melt Earth Planet Sci Lett 181

251-264

Marsh BD (2006) Dynamics of magmatic systems Elements 2 287-292

Morgan Z Liang Y Hess P (2006) An experimental study of anorthosite dissolution

in lunar picritic magmas Implications for assimilation processes Geochim

Cosmochim Acta 70 3477-3491

Proussevitch AA Sahagian DL (1998) Dynamics and energetics of bubble growth in

magmas analytical formulation and numerical modeling J Geophys Res 103

18223-18251

Scaillet B Holtz F Pichavant M Schmidt M (1996) Viscosity of Himalayan

leucogranites Implications for mechanisms of granitic magma ascent J Geophys

Res 101 27691-27699

6

Shaw CSJ (2006) Effects of melt viscosity and silica activity on the rate and

mechanism of quartz dissolution in melts of the CMAS and CAS systems Contrib

Mineral Petrol 151 665-680

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

7

CHAPTER II

TOWARD A GENERAL VISCOSITY EQUATION OF NATURAL ANHYDROUS AND HYDROUS SILICATE

MELTS

ABSTRACT

A new and empirical viscosity equation for anhydrous and hydrous natural silicate

melts has been developed using the following formulation

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

where η is viscosity in Pamiddots T is temperature in K and A B C and D are linear functions

of mole fractions of oxide components except for H2O The formulation is applied

successfully to fit the temperature and compositional dependence of viscosity for some

binary systems Furthermore the new model with eight parameters fits the compositional

and temperature dependence of the viscosity data of anhydrous natural silicate melts

better than the ten-parameter model in the literature The main purpose of this work is to

fit the entire high- and low-temperature viscosity database (1451 data points) of all

ldquonaturalrdquo silicate melts using this empirical formulation The general viscosity equation

has 37 parameters and is as follows

8

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

where η is viscosity in Pamiddots T is temperature in K Xi means mole fraction of oxide

component i and Z=(XH2O)1[1+(185797T)] Al2O3ex or (Na K)2Oex mean excess oxides

after forming (Na K)AlO2 The 2σ deviation of the fit is 061 logη units This general

model is recommended for viscosity calculations in modeling magma chamber processes

and volcanic eruptions

1 INTRODUCTION

Knowledge of the viscosity of silicate melts is critical to the understanding of

igneous processes such as melt segregation and migration in source regions magma

recharge magma mixing differentiation by crystal fractionation convection in magma

chambers dynamics and style of eruptions and magma fragmentation Numerous

measurements have been made on the viscosity of various silicate melts from felsic (eg

rhyolitic melt Neuville et al 1993) to ultramafic composition (eg peridotite liquid

Dingwell et al 2004) from anhydrous (eg Neuville et al 1993) to hydrous ones (eg

Whittington et al 2000) and from high temperature to low temperature A number of

authors have made efforts to model the viscosity data for the purpose of interpolation and

extrapolation Bottinga and Weill (1972) and Shaw (1972) were pioneers in developing

9

viscosity models for natural silicate melts Because of the extreme difficulty in

calibrating a better viscosity model these models were the only ones available for over

twenty years (Lange 1994) More advanced models and relationships have been

developed for specific melt compositions such as rhyolitic melts (eg Hess and

Dingwell 1996 Zhang et al 2003) For melt compositions from rhyolite to peridotite

Persikov (1998) developed a viscosity model for anhydrous and hydrous silicate melts at

high temperatures (for viscosity below 105 Pamiddots) and Giordano and Dingwell (2003a)

developed new models for anhydrous silicate melts applicable to a larger temperature

range 700 ndash 1600ordmC

In spite of recent advances in viscosity models there is still a need for a general

model that would apply to all natural silicate melts all accessible temperature ranges and

especially including the effect of H2O content The model of Giordano and Dingwell

(2003a) is noteworthy in this connection In the modeled temperature range (700-

1600degC) for anhydrous melts it has a 2σ uncertainty of 078 in logη However the model

is limited to anhydrous melts and cannot be applied to estimate viscosity at lower

temperatures For example the model predicts logη of 169 for a phonolite at 6147degC

while the experimentally determined logη is 1163 (Giordano et al 2000) Viscosity at lt

700degC is critical for understanding magma fragmentation and welding in tuffs The

purpose of this work is to develop a practical viscosity model for natural silicate melts

that is applicable to both anhydrous and hydrous natural melts and to the entire

temperature range in which experimental data are available

10

2 TEMPERATURE DEPENDENCE OF VISCOSITY

The temperature dependence of viscosity of silicate melts has been extensively

studied from a theoretical point of view or through empirical fitting of viscosity data For

a narrow temperature range usually for viscosities between 01 to 104 Pamiddots the

dependence of viscosity on temperature is well described by the Arrhenius equation (eg

Bottinga and Weill 1972 Shaw 1972) When the temperature range is large enough

most silicate melts exhibit a non-Arrhenian relationship between viscosity and

temperature (eg Neuville et al 1993 Hess and Dingwell 1996 Whittington et al

2000) It is possible that the isostructural viscosity variation is Arrhenian (Scherer 1984)

but viscosity variation due to temperature-induced structure change is the origin of the

non-Arrhenian behavior Many equations have been proposed to explain or fit the

temperature dependence of viscosity (eg Brush 1962)

One thermodynamic description of the temperature dependence of viscosity of

silicate melts is the Adam-Gibbs equation (eg Adam and Gibbs 1965 Richet 1984)

η = Ae exp Be TSconf( )[ ] (1)

where η is viscosity Ae is the pre-exponential factor independent of temperature Be is an

energy term T is temperature in K and Sconf is the configurational entropy of the melt

For compositions corresponding to a pure stable crystalline phase (such as diopside) the

configurational entropy as a function of temperature can be determined from appropriate

heat capacity measurements of liquids and crystals and glasses down to zero K (Richet et

al 1986) However for a multicomponent melt system in which oxide concentrations are

variable the configurational entropy as a function of temperature and composition cannot

be evaluated independently The above equation becomes a fitting equation with many

11

parameters which loses its theoretical appeal Hence this model is not used often to fit

viscosity-temperature relationship of silicate melts

The most often used empirical description for the temperature dependence of

viscosity is the VFT (Vogel-Fulcher-Tammann) equation (eg Fulcher 1925 Tammann

and Hesse 1926)

logη = A +B

T minus T0 (2)

where A B and T0 are fitting parameters Another model related to the fragility of the

melt has also been used (eg Avramov 1998 Zhang et al 2003)

logη = A +BT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ α

(3)

where α is fragility parameter and depends on heat capacity For a restricted

compositional range α is found to depend linearly on chemical composition as illustrated

by data in sodium or lead silicates (Avramov 1998)

Both Eqns 2 and 3 are three-parameter equations with no explicit consideration

of melt composition which is the least number of parameters to fit the non-Arrhenian

behavior Eqns 2 and 3 were extended to multicomponent melts by allowing the three

parameters to vary with composition but no working scheme was found to fit the

viscosity data (2σ uncertainty in logη is too large gt 09 log unit) With many trials the

following empirical relation was found to be extendable to multicomponent melts

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ (4)

where A B C and D are fitting parameters and are allowed to vary linearly with mole

fraction of oxide components in melts This equation would imply that the activation

12

energy for viscous relaxation depends on temperature exponentially Ea = d(lnη)d(1T) =

2303[B + Dexp(C+DT)] consistent with the activation energy of viscous flow derived

from Eqn 1 in Richet et al (1986) It is not clear whether there is theoretical basis for

Eqn 4 but it works empirically to fit viscosity data of multicomponent silicate melts

Although the above four-parameter equation can also fit viscosity data of a single

composition not all four parameters are necessary and a three-parameter equation either

Eqn 2 or 3 would be more advisable Nonetheless letting C = 0 reduces Eqn 4 to a

three-parameter equation which may fit viscosity data of a single composition

logη = A +BT

+ exp DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ (4a)

Fig 21 compares fits of viscosity data using Eqns 2 3 and 4a on anhydrous trachyte

melt (AMS_D1 Romano et al 2003) and tephrite melt (Whittington et al 2000) As

shown in Fig 21 these three equations all fit viscosity data well for a given anhydrous

melt

The primary purpose of proposing Eqn 4 is to fit viscosity data of

multicomponent silicate melts by making the four parameters linearly dependent on

composition Below first the compositional dependence of viscosity in binary melts is

discussed then Eqn 4 is applied to fit viscosity of anhydrous natural silicate melts and

finally the entire viscosity database on ldquonaturalrdquo anhydrous and hydrous silicate melts

3 VISCOSITY OF BINARY MELTS

At low temperatures the viscosity of melts in simple binary systems often shows

minima at intermediate compositions This minimum diminishes with increasing

13

0

2

4

6

8

10

12

14

05 06 07 08 09 1 11

TephriteEqn 2Eqn 3Eqn 4a

058 06 062 064 066 068 0705

075

1

125

15

175

2

B

logη

(η in

Pasdot

s)

1000T (T in K)

2

4

6

8

10

12

AMS_D1Eqn 2Eqn 3Eqn 4a

Eqn 4a-53257A87284B19105D

099972R

Eqn 3-19571A42355B17285α

099962R

Eqn 2-3851A90912B35116T0

09997R

AA

logη

(η in

Pasdot

s)

Fig 21 Comparisons of fitting results using Eqns 2 3 and 4a for viscosity data of (a) AMS_D1 trachyte (Romano et al 2003) and (b) tephrite (Whittington et al 2000)

14

temperature and eventually disappears at high enough temperature (Neuville and Richet

1991) The minimum of viscosity data in a binary system can be explained by a

combination of the Adam-Gibbs model and mixing law of configurational entropy of two

end-members (Neuville and Richet 1991) However in this strategy many fitting

parameters are needed to account for the viscosity dependence on composition and

temperature For example Neuville and Richet (1991) used a fifteen-parameter equation

to fit the viscosity data of Ca3Al2Si3O12-Mg3Al2Si3O12 binary system Moreover

asymmetry of viscosity as a function of composition such as in the Na2Si3O7-K2Si3O7

binary system can make it even more difficult for the Adam-Gibbs model to fit the

viscosity data in the binary system (Richet 1984)

On the other hand assuming that each of the four parameters is a linear function

of composition Eqn 4 becomes an eight-parameter equation to fit the temperature and

compositional dependence of viscosity of a binary system

( ) ( ) ( ) ( )1 1 2 2 1 1 2 21 1 2 2 1 1 2 2log exp

b X b X d X d Xa X a X c X c X

T Tη

+ +⎛ ⎞= + + + + +⎜ ⎟

⎝ ⎠ (5)

where a b c and d with subscript 1 and 2 are fitting parameters X is mole fraction of two

end-members in the system Compared to the fifteen-parameter equation of Neuville and

Richet (1991) the number of fitting parameters is almost halved although the physical

meaning of each parameter is less clear in Eqn 5

Fits using Eqn 5 and all fits below are carried out using the commercially

available program MatLab or Stata which employs nonlinear least square regression to

minimize χ2 = sum(logηcalci-logηobsi)2 The fitting errors on all parameters are obtained by

the program Stata When the standard error of a parameter is larger than the absolute

15

value of the parameter the parameter is removed and a new fit with one less fitting

parameter is carried out

Figure 22 shows fits of viscosity data of four binary systems MgSiO3-CaSiO3

(Urbain et al 1982 Scarfe and Cronin 1986 Neuville and Richet 1991)

Mg3Al2Si3O12-Ca3Al2Si3O12 pyrope-grossular (Neuville and Richet 1991) NaAlSi3O8-

CaAl2Si2O8 albite-anorthite (Kozu and Kani 1944 Urbain et al 1982 Hummel and

Arndt 1985) and NS3-KS3 Na2Si3O7-K2Si3O7 (Taylor and Dear 1937 Lillie 1939

Taylor and Doran 1941 Poole 1948 Shartsis et al 1952 Bockris et al 1955

Mackenzie 1957 Taylor and Rindone 1970 Ammar et al 1977) The viscosities of

partially crystallized samples during measurement are not used in the fitting The fitting

parameters are shown in Table 21 The 2σ deviations in terms of logη for CaSiO3-

MgSiO3 garnet plagioclase and NS3-KS3 systems are 039 025 029 and 030

respectively There is a minimum viscosity at intermediate compositions in all four

binary systems at low temperatures such as CaSiO3-MgSiO3 and garnet at 1050 K (Fig

23A) plagioclase at 1123 K (Fig 23B) and NS3-KS3 at 715 K (Fig 23C)

The compositional location of viscosity minimum varies with temperature This

can be seen from the viscosity data of plagioclase (albite-anorthite) binary system

(Hummel and Arndt 1985) As shown in Fig 23B the viscosity minimum of albite-

anorthite system is located at around 40 mole of anorthite in the composition range at

1123 K but the minimum is at a greater anorthite content at higher temperatures This

variation has been explained by Richet (1984) to be due to the mixing of configurational

entropies of anorthite and albite melts which increase at considerably different rates with

increasing temperature The magnitude of the viscosity minimum diminishes with

16

Fig 22 Comparisons of experimental viscosity data with calculated values using Eqn 5 with fitting parameters in Table 21 The data sources are as follows CaSiO3-MgSiO3 (Urbain et al 1982 Scarfe and Cronin 1986 Neuville and Richet 1991) Ca3Al2Si3O12-Mg3Al2Si3O12 garnets (Neuville and Richet 1991) CaAl2Si2O8-NaAlSi3O8 plagioclases (Kozu and Kani 1944 Urbain et al 1982 Hummel and Arndt 1985) NS3-KS3 (Na2Si3O7-K2Si3O7) (Taylor and Dear 1937 Lillie 1939 Taylor and Doran 1941 Poole 1948 Shartsis et al 1952 Bockris et al 1955 Mackenzie 1957 Taylor and Rindone 1970 Ammar et al 1977)

Neuville and Richet 199111 line

garnet

-2

0

2

4

6

8

10

12

14

-2 0 2 4 6 8 10 12 14

Ktradezu and Kani 1944Hummel and Arndt 1985Urbain et al 198211 line

Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s)

plagioclase

-2 0 2 4 6 8 10 12 14

Ammar et al 1977

Bockris et al 1955

Lillie 1939

Mackenzie 1957

Poole 1948

Shartsis et al 1952

Taylor and Dear 1937

Taylor and Doran 1941

Taylor and Rindone 1970

Measured logη (η in Pasdots)

11 line

(Na K) Si O2 3 7

-2

0

2

4

6

8

10

12

14

Neuville and Richet 1991Urbain et al 1982Scarfe and Cronin 198611 line

Cal

cula

ted

logη

(η in

Pasdot

s)

(Ca Mg)SiO3

17

Table 21 Fitting parameters of Eqn 5 in the binary systems of CaSiO3-MgSiO3 garnet plagioclase and NS3-KS3

parameter CaSiO3-MgSiO3 garnet plagioclase NS3-KS3

a1 -31287 (04255)

23593 (11691)

-45179 (10170)

-32839 (05488)

a2 -94323 (04710)

-43178 (01053)

-63903 (06947)

-61410 (07446)

b1 -212604 (16359)

59402 (34463)

47706 (20814)

b2 179038 (9527)

165512 (19446)

118218 (13486)

c1 -12322 (03808)

08438 (01057)

-20844 (09118)

-11788 (09117)

c2 -59221 (09186)

-31234 (15216)

-51302 (32636)

d1 40716 (3713)

27049 (1157)

50614 (8312)

24647 (4784)

d2 74655 (8636)

28789 (88)

46909 (12991)

42955 (20116)

Note Numbers in parentheses are 2 times the standard errors (2σ) of the fitting respective parameters For CaSiO3-MgSiO3 1=CaSiO3 2=MgSiO3 for garnet 1=Ca3Al2Si3O12 (grossular) 2=Mg3Al2Si3O12 (pyrope) for plagioclase 1=CaAl2Si2O8 (anorthite) 2=NaAlSi3O8 (albite) for NS3-KS3 1=Na2Si3O7 2=K2Si3O7

18

85

95

105

115

125

135

0 02 04 06 08 1

MgSiO3-CaSiO3 (1050 K)Py-Gr (1050 K)

mole fraction (Ca-end member)

logη

(η in

Pasdot

s) A

8

9

10

11

12

0 02 04 06 08 1Ab An

logη

(η in

Pasdot

s)

T=1123K

T=1153K

T=1183K

B

0

2

4

6

8

10

12

14

0 02 04 06 08 1

logη

(η in

Pasdot

s)

KS NS3 3

T=715K

T=823K

T=1073K

T=1673K

C

Fig 23 Viscosity as a function of composition in four binary systems (A) CaSiO3-MgSiO3 and garnet (B) plagioclase and (C) NS3-KS3 (Na2Si3O7-K2Si3O7) The solid curves are calculated from Eqn 5 with fitting parameters in Table 21 The sources of viscosity data are as follows (A) interpolated from Neuville and Richet (1991) using Arrhenius relationship of viscosity and temperature (narrow temperature range) with the same compositions (B) open symbols Hummel and Arndt 1985 solid symbols interpolated data from Hummel and Arndt (1985) using Arrhenius relationship of viscosity and temperature (narrow temperature range) (C) data are from Taylor and Dear 1937 Lillie 1939 Taylor and Doran 1941 Poole 1948 Bockris et al 1955 Mackenzie 1957 Ammar et al 1977 interpolated data from Taylor and Doran (1941) Poole (1948) Shartsis et al (1952) Bockris et al (1955) and Ammar et al (1977) and Poole (1948) and Mackenzie (1957) using VFT equation for the same compositions

19

increasing temperature as inferred by Neuville and Richet (1991) As shown in Fig

23C the viscosity minimum in NS3-KS3 system is less pronounced at 1673K than the

one at 715K

4 VISCOSITY MODELS FOR NATURAL ANHYDROUS AND

HYDROUS SILICATE MELTS

The main purpose of this work is to present a working model for calculation of

the viscosity of all natural anhydrous and hydrous silicate melts covering the entire

experimental temperature range The equation used to fit the viscosity data is Eqn 4

with each of A B C and D as a linear function of the compositional parameters For

example for an N-component system the parameter A may be written as

A = ai Xii=1

Nsum (6a)

Or A = a0 + ai Xii=1

Nminus1sum (6b)

where a0 and ai are fitting parameters with i being the ith oxide in the anhydrous melts

This formulation requires many fitting parameters In order to avoid the impression that

the model works only because of many parameters first an effort to use formulation of

Eqn 4 to fit a smaller data set that has been modeled recently by Giordano and Dingwell

(2003a) is presented to show that the new model can fit the same data using a smaller

number of parameters than that of Giordano and Dingwell (2003a)

20

41 A SIMPLE MODEL FOR NATURAL ANHYDROUS MELTS

For multicomponent silicate melts the dependence of viscosity on melt

composition is complicated In the quest of seeking simpler equations with a smaller

number of fitting parameters various parameters such as NBOT (eg Giordano and

Dingwell 2003a) and SM (SM = sum (Na2O+K2O+CaO+MgO+MnO+FeOtot2))

(Giordano and Dingwell 2003a) have been used in modeling melt viscosity Various

parameters were explored to simplify the compositional dependence After a number of

trials using the sum of network formers SiO2 Al2O3 and P2O5 as one single parameter is

found to work well in the context of Eqn 6b Hence this parameter is defined as

SAP = XSiO2+ XAl2O3

+ XP2O5 (7)

where Xi is mole fraction of oxide i in the melt Based on the above considerations the

following equation to relate viscosity temperature and melt composition is used

logη = a0 + a1X( )+b0 + b1X( )

T+ exp c0 + c1X( )+

d0 + d1X( )T

⎝ ⎜

⎠ ⎟ (8)

where X = SAP a b c and d with subscript 0 or 1 are fitting parameters

Giordano and Dingwell (2003a) presented two models for the viscosity of

anhydrous silicate melts The data set contained 314 viscosity data points Their preferred

model using the parameter SM contained 10 fitting parameters Although their database

contained viscosity data below 700degC they only modeled the data in the temperature

range of 700-1600degC With 10 parameters the 2σ deviation of their preferred model is

078 logη units at 700-1600degC

The purpose of using Eqn 8 to fit viscosity data is to compare with previous fits

Hence fitting the same viscosity database of the anhydrous natural silicate melts as used

21

by Giordano and Dingwell (2003a) is the ideal solution All the viscosity data used by

them plus the data at temperatures below 700degC are used to carry out the nonlinear fit and

the new model is as follows

logη = minus213517 +127366X( )+293003minus 97574X

T

+ exp 299791minus 324047X( )+minus588688 + 650818X

T⎛ ⎝ ⎜

⎞ ⎠ ⎟ (9)

The standard errors for the fitting parameters are shown in Table 22 Applying the above

equation to viscosity data at 700-1600degC the 2σ deviation is 063 logη units (Fig 24A)

That is with a smaller number of fitting parameters (8 versus 10) the formulation of Eqn

4 is able to fit anhydrous melt viscosity data to a slightly better precision at this

temperature range than the model of Giordano and Dingwell (2003a)

Another measure of a successful model is applicability to a wide range of

conditions For example Hess and Dingwell (1996) compared their viscosity model for

hydrous rhyolite at both high and low temperatures to the model of Shaw (1972) although

his model was for all anhydrous and hydrous silicate melts but at high temperatures only

and showed that their model is superior to that of Shaw (1972) at low temperatures The

eight-parameter model is able to fit low-temperature viscosity data (ie data at le 700degC

Fig 24B) For the whole temperature range Eqn 9 reproduces the experimental data

with a 2σ standard uncertainty of 077 (Fig 24) The model of Giordano and Dingwell

(2003a) on the other hand did not include data at le 700degC in the fit and hence did not

predict the data well Although Giordano and Dingwellrsquos model is not designed for

application below 700degC the applicability of this eight-parameter model to the full

temperature range of viscosity data demonstrates its superiority Viscosity data at le700degC

are of importance in processes such as magma fragmentation and welding in tuffs

22

Table 22 Fitting parameters for Eqn 8

a b c d 0

-213517 (21976)

293003 (21590)

299791 (147288)

-588688 (271124)

1

127366 (38896)

-97574 (37088)

-324047 (168378)

650818 (302724)

Note Numbers in parentheses are 2σ errors of fitting coefficients respectively

23

-1

1

3

5

7

9

11

13

-1 1 3 5 7 9 11 13

Giordano and Dingwell (2003a)Eqn 911 line

AC

alcu

late

d lo

gη (η

in P

asdots)

9

10

11

12

13

14

15

16

17

9 10 11 12 13 14 15 16 17

Giordano and Dingwell (2003a)Eqn 911 line

Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s) B

Fig 24 Comparison of experimental viscosity data with calculated values (A) in the temperature range from 700 to 1600degC (which is the temperature range that Giordano and Dingwell (2003a) recommended for their model) and (B) below 700degC

24

In summary with a smaller number of fitting parameters the new model does a

better job than the most recent viscosity models (Giordano and Dingwell 2003a) This

verifies that Eqn 4 provides a practical way to describe the compositional and

temperature dependences of the viscosity of natural silicate melts and the success of the

model below is not purely because of the many parameters involved

42 VISCOSITY DATA

The primary motivation of this work is to develop a practical viscosity model for

natural anhydrous and hydrous silicate melts Viscosity data for the development of new

viscosity model come from literature The compositional range is limited to ldquonaturalrdquo

silicate melts (including Fe-free haplogranitic haploandesitic haplobasanitic

haplotephritic haplophonolitic and haplotrachytic melts) The compositions range from

peridotite to rhyolite from peralkaline to peraluminous silicate melts and from

anhydrous to hydrous melts Simple synthetic melts such as Li2O-SiO2 Na2O-SiO2

K2O-SiO2 CaSiO3-MgSiO3 feldspar systems are not included but synthetic melts

intended to approximate natural silicate melt are included Simple synthetic melts are

excluded from the new model because there is still more work needed in developing a

completely general compositional model for the viscosity of all silicate melts For

example including simple melts such as Na2O-SiO2 would expand the compositional

space to pure Na2O melt which may require parameters A B C and D in Eqn 4 to vary

as a nonlinear function of oxide mole fractions This limitation was also encountered in

literature when other silicate liquid properties are modeled (1) The density model of

liquids is developed only for natural silicate liquids excluding simple synthetic melts

25

(Lange and Carmichael 1987 Lange 1997) (2) The thermodynamic model of silicate

melts is also developed only for natural silicate liquids excluding simple synthetic melts

(Ghiorso et al 1983 2002)

The compositions of ldquonaturalrdquo silicate melts for which viscosity data are available

are listed in Table 23 on an anhydrous basis The references are also given in Table 23

There are 1451 viscosity measurements Natural melt compositions covered in the

database are presented in Fig 25 on an anhydrous basis The compositions covered by

the data include anhydrous peridotite to rhyolite anhydrous peralkaline to peraluminous

melts hydrous basalt to rhyolite hydrous peralkaline to peraluminous melts The FeO-

free melts include haplogranitic melts (H1-26) haploandesite (A2 and A4) haplobasanite

(Bn3) haplotephrite (Te2) haplophonolite (Ph4) and haplotrachyte (Tr6) as shown in

Table 23 Some samples with the same or similar sample names (such as two HPG8 and

one HPG08) but different chemical compositions are treated as different samples with

different chemical compositions (that is all compositions were treated to be different and

the chemical analyses were not averaged) The viscosity ranges from 01 to 1015 Pamiddots

The temperature ranges from 573 to 19779 K The H2O concentration is le123 wt for

rhyolitic melt and below 5 wt for other melts

Viscosity data from partially crystallized melt (such as andesite ME113e Richet

et al 1996) are not used Viscosity data of phonolite melt with 088 wt water in

Whittington et al (2001) are shown by these authors to be outliers and are hence not

included The viscosities of Sample A (LGB rhyolite) in Neuville et al (1993) are not

used because these authors suspected the quality of the viscosity data Data on rhyolite

shown to be outliers by Zhang et al (2003) are not included The data of

26

Table 23 Melt composition on anhydrous basis (on wt basis)

Composition SiO2 TiO2 Al2O3 FeO MnOMgOCaO Na2OK2O P2O5 total ID ref Basanite (EIF) 4115 274 1210 1011 000 1124 1566 276 304 102 9982 Bn1 19 Basanite (EIF) 4122 274 1212 1003 000 1126 1569 276 305 102 9989 Bn2 17 Basanite (NIQ) 4357 297 1018 000 000 917 2607 759 096 000 10051 Bn3 1 Peridotite 4583 018 487 863 000 3163 637 032 000 000 9783 Pr 27 Basalt (ETN) 4703 161 1628 1088 020 517 1047 375 194 059 9792 Bl1 25 Basalt (ETN) 4781 194 1791 1090 019 475 996 394 211 048 9999 Bl2 17 Basalt 4821 125 1550 1064 000 908 1192 240 008 014 9922 Bl3 21 Tephrite (Ves_G_tot) 4920 083 1640 720 013 510 1020 270 650 072 9898 Te1 19 Basalt (MTV9) 4961 427 1101 1473 000 446 1004 281 047 251 9991 Bl5 28 Basalt (Kilauea 1921) 5001 260 1256 1079 024 939 1088 233 048 000 9937 Bl7 29 Tephrite 5056 235 1403 000 000 879 1500 704 301 000 10078 Te2 1 Basalt (MTV4) 5066 395 1135 1390 000 394 960 298 051 240 9929 Bl6 28 Basalt (MTV6) 5084 426 1138 1505 000 442 1018 301 055 004 9973 Bl8 28 Basalt (MTV2) 5087 405 1136 1420 000 423 962 306 052 009 9800 Bl9 28 Phonolite (Ves_W_tot) 5120 067 1860 610 013 250 730 375 790 040 9855 Ph1 19 Phonolite (V_1631_G) 5314 059 1984 472 013 177 675 477 828 000 9999 Ph2 23 Phonolite (V_1631_W) 5352 060 1984 480 014 176 676 466 791 000 9999 Ph3 23 Basalt 5354 105 1729 782 000 546 832 359 164 020 9891 Bl4 21 Andesite 5856 064 1898 745 000 348 617 324 092 000 9944 A1 21 Andesite 5869 001 2157 002 002 538 949 330 157 000 10005 A2 26 Phonolite 5882 079 1942 000 000 187 235 931 744 000 10000 Ph4 2 Andesite (Crater Lake) 5946 073 1790 518 010 371 645 423 147 000 9926 A5 29 Phonolite (ATN) 5970 046 1852 360 017 065 280 389 845 015 9839 Ph5 19 Phonolite (Td_ph) 6046 056 1881 331 020 036 067 976 545 006 9964 Ph6 22 Trachyte (IGC) 6074 027 1922 337 018 028 211 528 632 006 9783 Tr1 20 Trachyte (AMS_D1) 6086 039 1827 388 012 090 296 412 850 000 10000 Tr2 23 Andesite 6117 084 1729 539 000 335 583 385 139 000 9911 A3 11 Trachyte (AMS_B1) 6126 038 1838 350 014 074 297 458 804 000 9999 Tr3 23 Andesite (Crater Lake) 6215 076 1680 496 025 326 508 502 172 000 10000 A6 32 Andesite 6240 055 2001 003 002 322 908 352 093 012 9988 A4 8 Trachyte (MNV) 6388 031 1710 290 013 024 182 567 682 005 9892 Tr4 20 Trachyte (PVC) 6399 045 1696 255 014 032 083 633 637 009 9803 Tr5 19 Trachyte 6445 050 1671 000 000 292 536 670 337 000 10001 Tr6 2 Dacite 6528 059 1705 402 008 182 470 434 129 013 9930 D1 30 Dacite (UNZ) 6600 036 1523 408 010 221 501 384 216 014 9913 D2 24 Granite (263-2) 6677 039 2015 431 001 072 364 137 217 000 9953 R1 16 Trachyte (570-2) 6695 087 2124 257 006 001 163 183 455 000 9971 Tr7 16 Plagioliparite (851-2) 6716 001 2165 281 001 073 265 285 182 000 9969 R2 16 Trachyte (570-3) 6871 090 1928 259 006 000 165 187 466 000 9972 Tr8 16 Trachyte (570-1) 7016 092 1718 274 006 000 170 207 488 000 9971 Tr9 16 Plagioliparite (851-1) 7122 024 1680 291 006 080 262 309 194 000 9968 R3 16 Granite (130) 7142 001 1610 458 001 157 094 194 292 000 9949 R4 16 Granite (Barlak) 7312 019 1356 319 000 018 168 386 420 000 9998 R33 31 Rhyolite 7323 019 1360 278 000 017 169 378 411 013 9968 R5 21

27

Trachyte (570-4) 7335 090 1483 238 007 000 164 187 470 000 9974 Tr1016 HPG05 7349 000 1326 000 000 000 000 240 898 000 9813 H21 38 HPG8An10 7360 000 1560 000 000 000 210 440 380 000 9950 H4 33 Rhyolite 7379 005 1511 042 005 007 097 471 402 001 9920 R6 9 Rhyolite (GB4) 7389 006 1577 075 000 014 058 462 419 000 10000 R34 34 HPG8Na5 7410 000 1170 000 000 000 000 900 440 000 9920 H5 435HPG8Ca5 (Ca5) 7410 000 1220 000 000 000 520 440 400 000 9990 H6 36 HPG8K5 7460 000 1180 000 000 000 000 440 920 000 10000 H7 4 Rhyolite (M981023) 7470 008 1328 165 000 000 077 430 522 000 10000 R7 18 HPG04 7490 000 1352 000 000 000 000 364 722 000 9928 H22 38 Rhyolite (P3RR) 7537 007 1284 157 007 004 072 419 513 000 10000 R8 17 HPG8Al5 (Al05) 7540 000 1610 000 000 000 000 470 430 000 10050 H8 37 HPG03 7552 000 1390 000 000 000 000 477 553 000 9972 H23 38 HPG8Mg5 (Mg5) 7560 000 1200 000 000 490 000 450 400 000 10100 H9 36 Rhyolite 7603 006 1148 105 006 036 321 242 460 000 9927 R9 13 HPG02 7608 000 1389 000 000 000 000 596 384 000 9977 H24 38 AOQ 7612 000 1353 000 000 000 000 465 568 000 9998 H1 6 Rhyolite 7638 006 1159 103 005 036 325 244 466 000 9982 R10 13 HPG01 7652 000 1405 000 000 000 000 714 219 000 9990 H25 38 Rhyolite 7657 006 1165 104 007 036 323 246 462 000 10006 R11 13 Rhyolite (MCR) 7659 008 1267 100 000 003 052 398 488 000 9975 R12 14 Rhyolite 7660 010 1270 117 000 002 031 410 460 000 9960 R13 15 HPG09 7688 000 1145 000 000 000 000 360 560 000 9753 H10 38 Rhyolite (LGB) 7692 010 1292 089 005 011 086 389 425 003 10002 R14 10 Rhyolite (RH) 7699 003 1302 071 010 004 048 431 431 000 9999 R15 10 Rhyolite 7700 006 1177 100 006 036 329 248 468 000 10070 R16 13 Rhyolite (RH-r) 7701 003 1314 071 010 004 051 428 418 000 10000 R17 10 Rhyolite 7707 006 1167 099 007 035 328 242 462 000 10053 R18 13 Rhyolite (SH-r) 7708 009 1244 130 002 002 036 449 420 000 10000 R19 10 Rhyolite (EDFmr) 7715 009 1282 056 007 007 052 411 461 001 10001 R20 12 Rhyolite (SH) 7717 008 1240 130 002 001 035 450 420 000 10003 R21 10 Rhyolite (EDF) 7718 009 1291 061 007 007 051 405 452 001 10002 R22 12 HPG8Al2 (Al02) 7720 000 1390 000 000 000 000 450 430 000 9990 H11 37 Rhyolite 7727 003 1175 105 005 036 331 243 473 000 10098 R23 13 Rhyolite 7738 005 1170 103 005 036 324 244 480 000 10105 R24 13 Rhyolite 7746 005 1164 104 007 035 323 245 470 000 10099 R25 13 Rhyolite (BL6) 7748 017 1220 130 005 017 114 390 360 000 10001 R26 10 Rhyolite (BL6-r) 7753 017 1217 130 005 017 113 389 360 000 10001 R27 10 Rhyolite (LGB-r) 7788 007 1273 076 004 006 050 393 403 001 10001 R28 10 Rhyolite (BL3) 7788 016 1203 119 005 005 106 364 388 001 9995 R29 12 HPG8 7790 000 1189 000 000 000 000 453 417 000 9849 H2 5 Rhyolite 7790 007 1205 076 000 005 052 401 406 000 9942 R30 11 Rhyolite (EDF-1) 7800 009 1215 054 007 006 050 408 448 002 9999 R31 10 Rhyolite (EDF-2) 7800 009 1215 054 007 007 050 408 448 000 9998 R32 10 HPG11 7814 000 1164 000 000 000 000 126 911 000 10015 H12 38 HPG10 7821 000 1169 000 000 000 000 241 743 000 9974 H13 38 HPG07 7828 000 1192 000 000 000 000 591 223 000 9834 H14 38

28

HPG8 7860 000 1250 000 000 000 000 460 420 000 9990 H3 347HPG08 7860 000 1199 000 000 000 000 457 420 000 9936 H15 38 HPG06 7898 000 1211 000 000 000 000 704 062 000 9875 H26 38 HPG16 8103 000 991 000 000 000 000 124 739 000 9957 H16 38 HPG15 8174 000 1003 000 000 000 000 247 566 000 9990 H17 38 HPG14 8222 000 1017 000 000 000 000 366 389 000 9994 H18 38 HPG12 8231 000 1016 000 000 000 000 589 070 000 9906 H19 38 HPG13 8294 000 1030 000 000 000 000 468 241 000 10033 H20 38

The melt compositions are listed according to SiO2 content References 1 Whittington et al (2000) 2 Whittington et al (2001) 3 Dorfman et al (1996) 4 Hess et al (1995) 5 Dingwell et al (1992) 6 Schulze et al (1996) 7 Dingwell et al (1996) 8 Richet et al (1996) 9 Burnham (1964) 10 Stevenson et al (1998) 11 Neuville et al (1993) 12 Stevenson et al (1996) 13 Goto et al (2005) 14 Zhang et al (2003) 15 Shaw (1963) 16 Goto et al (1997) 17 Gottsmann et al (2002) 18 Stein and Spera (1993) 19 Giordano and Dingwell (2003a) 20 Giordano et al (2004) 21 Persikov (1991) 22 Giordano et al (2000) 23 Romano et al (2003) 24 Giordano et al (2005) 25 Giordano and Dingwell (2003b) 26 Liebskie et al (2003) 27 Dingwell et al (2004) 28 Toplis et al (1994) 29 Kushiro et al (1976) 30 Alidibirov et al (1997) 31 Persikov et al (1986) 32 Dunn and Scarfe (1986) 33 Dingwell et al (2000) 34 Scaillet et al (1996) 35 Dingwell et al (1998a) 36 Hess et al (1996) 37 Dingwell et al (1998b) 38 Hess et al (2001)

29

0

3

6

9

12

15

18

40 50 60 70 80SiO (wt)2

Na

O+K

O (w

t)

22

R

O

T

OOBPc

U

U

U

Ph

SS

S

F

1

1

1

2

2

2

3

3

3

Fig 25 Total alkalis versus SiO2 diagram (Le Bas et al 1986) showing the compositions of samples modeled in this work Pc picrobasalt B basalt O1 basaltic andesite O2 andesite O3 dacite R rhyolite S1 trachybasalt S2 basaltic trachyandesite S3 trachyandesite T trachyte or trachydacite U1 basanite or tephrite U2 phonotephrite U3 tephriphonolite Ph phonolite F foidite

30

Friedman (1963) are not used due to their large uncertainty Some viscosity data of

identical composition experimental temperature and viscosity value were reported in two

or more publications and it is not clear to us whether or not they mean the same

measurements Such data are counted only once in the database and in the regression

such as viscosity data of EIF basanite (Gottsmann et al 2002 Giordano and Dingwell

2003a) All the viscosity data used in the following fit are listed in Appendix A

Most viscosity data in the database are at 1 bar and some are at pressures up to 5

kbars The pressure effect is ignored as it has been shown that the effect is negligible for

pressures up to 5 kbars (Persikov 1998 Zhang et al 2003)

43 THE PREFERRED MODEL

The eight-parameter model (Eqn 9) grouped the effects of SiO2 Al2O3 and P2O5

on viscosity The model although appealing because of its simplicity still does not

reproduce experimental viscosity data well Furthermore it does not apply to hydrous

melts In order to produce a model that can be used to calculate viscosity to better

precision more compositional parameters are necessary In the preferred model in this

section the goal is to fit the entire viscosity database on natural silicate melts as

accurately as possible Although using the least number of parameters to fit is also a goal

it is subordinate to the goal of fitting the viscosity data as accurately as possible

In the preferred model parameters A B C and D in Eqn 4 are assumed to be

linear functions of oxide mole fractions because the assumption is simple and because it

considers different effects of the different oxide components to the viscosity Fe in the

natural silicate melts has two oxidation states ferric and ferrous The two behave

31

differently in the structure of the silicate melts Although the oxidation state of Fe has

been found to affect melt viscosity significantly especially at low temperatures

(Dingwell and Virgo 1987 Liebske et al 2003) often there is not enough information to

calculate the ferric to ferrous ratio of the experimental melts at low temperatures Hence

all iron is considered as FeO

Previous studies (eg Riebling 1966 Bruckner 1983) show that aluminum-

saturated melts [NaAl (molar) = 1] have higher viscosities than either aluminum-

oversaturated (peraluminous) or aluminum-undersaturated (alkaline to peralkaline) melts

Hence NaAlO2 and KAlO2 would be reasonable end members in this multicomponent

system Al2O3 in the melt is considered to combine with alkalis to form (Na K)AlO2

After forming (Na K)AlO2 either excess alkalis or excess aluminum are left as a

component in the melts

For hydrous melts H2O content plays a major role and the effect is not linear

Viscosity decreases rapidly with the first small amount of total dissolved water and then

not so rapidly at higher H2O contents (Lange 1994 Dingwell et al 1996) Water is

present in the silicate melts as at least two species molecular H2O and hydroxyl group

(Stolper 1982) The exact role of OH and molecular H2O on affecting melt viscosity is

not known H2O content raised to some power as an additional parameter is used as

shown in Zhang et al (2003) After many trials the following parameter seems useful in

fitting viscosity data of hydrous melts

( )1

2

11+

H O( ) e TZ X= (10)

32

where e1 is constant T is temperature in K and XH2O is oxide mole fraction of total

dissolved H2O Combining Eqns 4 6a and 10 the following model is used to fit all the

viscosity data in the database

log expi i i i

i ii i i i

i i

b X d Xa X c X

T Tη

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎝ ⎠

sum sumsum sum (11)

where Xi is the mole fraction of SiO2 TiO2 Al2O3ex FeOT MnO MgO CaO (Na

K)2Oex P2O5 H2O (Na K)AlO2 plus another term related to H2O (XH2O)1[1+(e1T)]

because a simple linear term with H2O is not enough to account for the dependence of

viscosity on H2O content The values of ai bi ci di and e1 with standard errors obtained

from the fit are listed in Table 24 In the process of fitting some parameters turned out to

be unnecessary and some could be combined These simplifications were made to reduce

the number of parameters The final fit contains 37 fitting parameters As shown in Table

24 all the fitting parameters are statistically significant This model can reproduce all the

viscosity data (in the electronic annex) with a 2σ deviation of 061 logη units in the

available temperature and compositional range of natural silicate melts Fig 26 shows

comparison between measured viscosity values of all the melts in the database including

hydrous and anhydrous natural melts and those calculated from Eqn 11 Because this is

the preferred model the full equation is written down as follows

33

Table 24 Fitting parameters for Eqn 11

a b103 c d103 SiO2

-683 (047)

1814 (047)

216 (016)

TiO2

-17079 (2098)

24893 (3312)

-14305 (2657)

Al2O3ex

-1471 (432)

3261 (470)

2173 (1075)

-2210 (1127)

(Fe Mn)O

-6198 (2591)

3856 (2681)

MgO

-1801 (278)

2596 (416)

-10553 (1950)

11083 (1995)

CaO

-1976 (327)

2264 (365)

-6992 (1123)

6712 (1126)

(Na K)2Oex

3431 (960)

-6829 (796)

-8567 (5049)

5801 (4609)

P2O5

38477 (11821)

Z

-14038 (7846)

3884 (2710)

33201 (18953)

-40497 (23747)

H2O

15926 (7994)

-4855 (2976)

-43222 (20727)

51375 (26004)

(Na K)AlO2

-843 (170)

1612 (168)

-316 (083)

e1

185797 (91556)

Note Numbers in parentheses are 2σ errors of fitting coefficients respectively

34

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

(12)

where Z=(XH2O)1[1+(185797T)] and all mole fractions (including H2O) add up to 1

Examples of calculation are given in Table 25

Fig 26 compares calculated viscosity with experimental viscosity for all data in the

database and shows that there is no systematic misfit The behavior of Eqn (12) was

examined by varying temperature and various oxide concentrations The calculated

viscosity varies smoothly and monotonically with these parameters with no up and down

fluctuations Furthermore in order to investigate whether some melts are systematically

misfit or are not fit as well as other melts ∆plusmn2σ for each melt composition is listed in

Table 26 where ∆ is the average difference between the experimental logη and

calculated logη and σ is the standard deviation The value of ∆ characterizes systematic

misfit and 2σ is a measure of data scatter As shown in Table 26 all rock groups of melts

have small ∆ values but ∆ values for subgroups vary from 0 up to 030 and most

subgroups still have small ∆ values There is no correlation between the ∆ values and

compositions of the melts On 2σ values there are some variations but no group is

obviously misfit There is no correlation between the reproducibility and the degree of

polymerization

Two sets of viscosity data on hydrous leucogranite (Whittington et al 2004) and

35

Table 25 Examples of calculation using Eqn 12

composition wt composition

mole fraction T (K)

calculated logη (Pas)

SiO2 5352 SiO2 05336 75375 947 TiO2 060 TiO2 00045 74875 960 Al2O3 1984 Al2O3ex 00212 72775 1015 FeOt 480 (Fe Mn)O 00412 71765 1042 MnO 014 MgO 00262 70435 1080 MgO 176 CaO 00722 CaO 676 (Na K)2Oex 00000 Na2O 466 P2O5 00000 K2O 791 H2O 01104 P2O5 000 (Na K)AlO2 01907 H2O 332

Note The melt is hydrous phonolite from Romano et al (2003)

36

-2

2

6

10

14

18

-2 2 6 10 14 18Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s)

Fig 26 Comparison of experimental viscosity values with calculated values using Eqn 12

37

Table 26 The 2σ deviations and data points of sub-groups in the viscosity database

Composition ∆plusmn2σ

number of data points

∆plusmn2σ (rock group)

anhydrous -021plusmn056 33 basanite (Bn1-3) hydrous 001plusmn045 33

-010 plusmn055

anhydrous 023plusmn073 38 tephrite (Te1-2) hydrous 001plusmn072 33

013 plusmn075

anhydrous -004plusmn054 40 Ph1-3 hydrous 030plusmn038 25 anhydrous -015plusmn057 59

phonolite

Ph4-6 hydrous -013plusmn063 40

-005 plusmn063

anhydrous -004plusmn071 43 Tr1-3 hydrous -001plusmn039 56 anhydrous 011plusmn052 68 Tr4-6 hydroous 013plusmn043 55

Trachyte

Tr7-10 anhydrous -012plusmn041 31

004plusmn053

anhydrous -005plusmn040 27 A1-2 A5 hydrous -002plusmn037 42

anhydrous -003plusmn040 52

Andesite

A3-4 A6 hydrous 006plusmn052 45

-001 plusmn043

R1-4 anhydrous 005plusmn045 25 anhydrous 002plusmn013 7 R5-8

R33-34 hydrous 013plusmn051 40 anhydrous 004plusmn043 83

Rhyolite

R9-32 hydrous -006plusmn058 197

-000plusmn054

anhydrous 020plusmn037 32 dacite (D1-2) hydrous -009plusmn053 9

014 plusmn047

anhydrous -011plusmn105 20 Bl1-3 Bl5 hydrous 007plusmn051 21

anhydrous 006plusmn109 28

Basalt

Bl4 Bl6-9 hydrous 003plusmn074 6

001 plusmn092

periodite (Pr) anhydrous -007plusmn055 8 -007plusmn055 anhydrous -001plusmn078 161 haplogranitic melt

(H1-26) hydrous 009plusmn061 94 003 plusmn072

leucogranite hydrous -015plusmn051 14 HPG8An10 anhydrous -002plusmn022 8

the melt used to test the model

38

anhydrous HPG8An10 (Dingwell et al 2000) are not included in the fit but are chosen

to test whether this preferred model can predict data not included in the fit Because water

content in the ldquoanhydrousrdquo melt of Whittington et al (2004) is not determined the

viscosity data of anhydrous melt are not used due to large effect of a small amount of

water on viscosity (Lange 1994 Zhang et al 2003) As shown in Fig 27 this new

model has the capability to predict the viscosity at low temperature with a 2σ deviation of

061

There are many viscosity models for specific compositions and many of them

have better accuracy than the 37-parameter general model For example the viscosity

model for hydrous and anhydrous rhyolitic melt by Zhang et al (2003) has a 2σ

uncertainty of 036 logη units specific models for five individual anhydrous and hydrous

melt compositions by Giordano et al (2005) have very low 2σ uncertainties Therefore

although the use of this grand model is recommended some specific models have better

accuracy and should be used when appropriate

One unattractive feature of the preferred model is the large number of parameters

used This means the fitting parameters themselves are not well resolved However it

does not affect the accuracy of the calculation of viscosities as long as no extrapolation is

attempted That is the model should not be extrapolated to binary systems nor to

viscosities above 1015 Pamiddots nor to temperature below 573 K nor to H2O content above 5

wt for melts other than rhyolite (For rhyolite the highest H2O content in the viscosity

database is 123 wt) As mentioned earlier Eqn 12 predicts smooth and monotonic

variations of logη with mole fraction of oxides or temperature Although it is desirable to

develop a model with a smaller number of fitting parameters the drawback of many

39

2

4

6

8

10

12

14

2 4 6 8 10 12 14

Cal

cula

ted

logη

(η in

Pasdot

s)

Measured logη (η in Pasdots)

Fig 27 The predictions of Eqn 12 Data sources filled symbols Whittington et al (2004) open symbols Dingwell et al (2000)

40

fitting parameters should not prevent the use of Eqn 12 in calculating viscosity of natural

silicate melts in a wide range of applications such as volcanic eruption dynamics as well

as other magmatic processes For example the viscosity model of Bottinga and Weill

(1972) has 285 fitting parameters for anhydrous melts at high temperatures and it was

widely applied Eqn 12 is easy to include in a software program or in a spreadsheet

program Using it to calculate viscosities of all natural silicate melts is recommended

Other applications of the viscosity model include (1) estimation of glass transition

temperature of any natural silicate melt given cooling rate (Dingwell and Webb 1990

Dingwell et al 2004 Giordano et al 2005) and (2) estimation of cooling rate of any

natural hydrous silicate glass based on apparent equilibrium temperature from H2O

speciation (Dingwell and Webb 1990 Zhang 1994 Zhang et al 2000 2003)

Even though this viscosity model can reproduce the entire viscosity database to a

better accuracy and for a greater range of compositions than previous models the

uncertainty in reproducing the viscosity data is still larger than the experimental data

uncertainty which is usually 01 logη units or less Hence there is still much room for

improvement The most important improvement might come from the development of a

better functional equation to describe viscosity dependence on temperature pressure and

composition For example new models adopted a different functional form of viscosity

A second improvement might derive from consideration of the effect of ferric and ferrous

iron which requires knowledge of experimental conditions under which the glasses were

prepared for the low-temperature viscosity measurements A third improvement might

arise from improved quantification of the effect of H2O on viscosity both in terms of

accurate determination of H2O for reported viscosity data and in terms of the functional

41

form used to handle the dependence of viscosity on H2O content Specifically in the

future every viscosity data should be accompanied by H2O content and other

concentrations simply describing a melt as dry is not good enough A fourth

improvement might originate from the incorporation of the effect of CO2 and other

volatile components in the melt So far the effect of CO2 on the viscosity of silicate melts

has only been carried out in several synthetic melts (Lange 1994 Bourgue and Richet

2001) A fifth improvement might stem from the incorporation of the pressure effect

(Persikov 1998) New experimental viscosity data are needed especially at high

pressures at low temperatures for melts with well-characterized ferricferrous ratios and

for melts with various and well-characterized volatile (H2O and CO2) concentrations

42

REFERENCES

Adam G and Gibbs JH (1965) On the temperature dependence of cooperative relaxation

properties in glass-forming liquids J Chem Phys 43 139-146

Alidibirov M Dingwell DB Stevenson RJ Hess K-U Webb SL and Zinke J

(1997) Physical properties of the 1980 Mount St Helens cryptodome magma Bull

Volcanol 59 103-111

Ammar MM El-Badry Kh and Gharib S (1977) Viscous properties of some alkali

silicate glasses in the annealing range Egypt J Phys 8 1-8

Avramov I (1998) Viscosity of glassforming melts Glastech Ber 71C 198-203

Bockris J OrsquoM Mackenzie JD and Kitchener JA (1955) Viscous flow in silica and

binary liquid silicates Trans Faraday Soc 51 1734-1748

Bottinga Y and Weill DF (1972) The viscosity of magmatic silicate liquids a model for

calculation Am J Sci 272 438-475

Bourgue E and Richet P (2001) The effects of dissolved CO2 on the density and

viscosity of silicate melts a preliminary study Earth Planet Sci Lett 193 57-68

Bruckner R (1983) Structure and properties of silicate melts Bull Mineacuteral 106 9-22

Brush SG (1962) Theories of liquid viscosity Chem Rev 62 513-548

Burnham CW (1964) Viscosity of a H2O rich pegmatite melt at high pressure (abstract)

Geol Soc Am Special Paper 76 26

Dingwell DB and Virgo D (1987) The effect of oxidation state on the viscosity of melts

in the system Na2O-FeO-Fe2O3-SiO2 Geochim Cosmochim Acta 51 195-205

Dingwell D B and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

43

Dingwell DB Courtial P Giordano D and Nichols ARL (2004) Viscosity of

peridotite liquid Earth Planet Sci Lett 226 127-138

Dingwell DB Hess K-U and Romano C (1998a) Extremely fluid behavior of hydrous

peralkaline rhyolites Earth Planet Sci Lett 158 31-38

Dingwell DB Hess K-U and Romano C (1998b) Viscosity data for hydrous

peraluminous granitic melts Comparison with a metaluminous model Am

Mineral 83 236-239

Dinwell DB Hess K-U and Romano C (2000) Viscosities of granitic (sensu lato)

melts Influence of the anorthite component Am Mineral 85 1342-1348

Dingwell DB Knoche R and Webb SL (1992) The effect of B2O3 on the viscosity of

haplogranitic liquids Am Mineral 77 457-461

Dingwell DB Romano C and Hess K-U (1996) The effect of water on the viscosity of

a haplogranitic melt under P-T-X conditions relevant to volcanism Contrib

Mineral Petrol 124 19-28

Dorfman A Hess K-U and Dingwell D (1996) Centrifuge-assisted falling-sphere

viscometry Eur J Mineral 8 507-514

Dunn T and Scarfe CM (1986) Variation of the chemical diffusivity of oxygen and

viscosity of an andesite melt with pressure at constant temperature Chem Geol 54

203-215

Friedman I Long W and Smith RL (1963) Viscosity and water content of rhyolitic

glass J Geophys Res 68 6523-6535

Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses J Am

Ceram Soc 8 339-355

44

Ghiorso MS Carmichael ISE Rivers ML and Sack RO (1983) The Gibbs free

energy of mixing of natural silicate liquids an expanded regular solution

approximation for the calculation of magmatic intensive variables Contrib

Mineral Petrol 84 107-145

Ghiorso MS Hirschmann MM Reiners PW and Kress VC III (2002) The pMELTS

A revision of MELTS for improved calculation of phase relations and major

element partitioning related to partial melting of the mantle to 3 GPa Geochem

Geophys Geosys 3 1010292001GC000217

Giordano D and Dingwell DB (2003a) Non-Arrhenian multicomponent melt viscosity

a model Earth Planet Sci Lett 208 337-349

Giordano D and Dingwell DB (2003b) Viscosity of hydrous Etna basalt implications

for Plinian-style basaltic eruptions Bull Volcanol 65 8-14

Giordano D Dingwell DB and Romano C (2000) Viscosity of a Teide phonolite in the

welding interval J Volcanol Geotherm Res 103 239-245

Giordano D Nichols ARL and Dingwell DB (2005) Glass transition temperatures of

natural hydrous melts a relationship with shear viscosity and implications for the

welding process J Volcanol Geotherm Res 142 105-118

Giordano D Romano C Papale P and Dingwell DB (2004) The viscosity of trachytes

and comparison with basalts phonolites and rhyolites Chem Geol 213 49-61

Goto A Oshima H and Nishida Y (1997) Empirical method of calculating the viscosity

of peraluminous silicate melts at high temperatures J Volcanol Geotherm Res 76

319-327

45

Goto A Taniguchi H and Kitakaze A (2005) Viscosity measurements of hydrous

rhyolitic melts using the fiber elongation method Bull Volcanol 67 590-596

Gottsmann J Giordano D and Dingwell DB (2002) Predicting shear viscosity during

volcanic processes at the glass transition a calorimetric calibration Earth Planet

Sci Lett 198 417-427

Hess K-U and Dingwell DB (1996) Viscosities of hydrous leucogranitic melts A non-

Arrhenian model Am Mineral 81 1297-1300

Hess K-U Dingwell DB Gennaro C and Mincione V (2001) Viscosity-temperature

behavior of dry melts in the Qz-Ab-Or system Chem Geol 174 133-142

Hess K-U Dingwell DB and Webb SL (1995) The influence of excess alkalis on the

viscosity of a haplogranitic melt Am Mineral 80 297-304

Hess KU Dingwell DB and Webb SL (1996) The influence of alkaline-earth oxides

(BeO MgO CaO SrO BaO) on the viscosity of a haplogranitic melt systematics

of non-Arrhenian behaviour Eur J Mineral 8 371-381

Hummel W and Arndt J (1985) Variation of viscosity with temperature and composition

in the plagioclase system Contrib Mineral Petrol 90 83-92

Kozu S and Kani K (1944) Viscosity measurements of the ternary system diopside-

albite-anorthite at high temperatures Bull Am Ceram Soc 23 377-378

Kushiro I Yoder HSJr and Mysen BO (1976) Viscosities of basalt and andesite melts

at high pressures J Geophys Res 81 6351-6356

Lange RA (1994) The effect of H2O CO2 and F on the density and viscosity of silicate

melts Rev Mineral 30 331-360

46

Lange RA (1997) A revised model for the density and thermal expansivity of K2O-

Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K extension to crustal

magmatic temperatures Contrib Mineral Petrol 130 1-11

Lange RA and Carmichael ISE (1987) Densities of Na2O-K2O-CaO-MgO-FeO-

Fe2O3-Al2O3-TiO2-SiO2 liquids new measurements and derived partial molar

properties Geochim Cosmochim Acta 53 2195-2204

Le Bas MJ Le Maitre RW Streckeisen A and Zanettin B (1986) A chemical

classification of volcanic rocks based on the total alkali-silica diagram J Petrol

27 745-750

Liebske C Behrens H Holtz F and Lange RA (2003) The influence of pressure and

composition on the viscosity of andesitic melts Geochim Cosmochim Acta 67

473-485

Lillie HR (1939) High-temperature viscosities of soda-silica glasses J Am Ceram Soc

22 367-374

Mackenzie JD (1957) The discrete ion theory and viscous flow in liquid silicates Trans

Faraday Soc 53 1488-1493

Neuville DR and Richet P (1991) Viscosity and mixing in molten (Ca Mg) pyroxenes

and garnets Geochim Cosmochim Acta 55 1011-1019

Neuville DR Courtial P Dingwell DB and Richet P (1993) Thermodynamic and

rheological properties of rhyolite and andesite melts Contrib Mineral Petrol 113

572-581

Persikov ES Epelrsquobaum MB and Bukhtiyarov PG (1986) The viscosity of a granite

magma interacting with an aqueous chloride fluid Geochem Intern 23 21-30

47

Persikov ES (1991) The viscosity of magmatic liquids Experiment generalized

patterns a model for calculation and prediction application Adv Phys Geochem

9 1-40

Persikov ES (1998) Viscosities of model and magmatic melts at the pressures and

temperatures of the Earthrsquos crust and upper mantle Russian Geol Geophys 39

1780-1792

Poole JP (1948) Viscositeacute a basse tempeacuterature des verres alcalino-silicateacutes Verres

Reacutefract 2 222-228

Richet P (1984) Viscosity and configurational entropy of silicate melts Geochim

Cosmochim Acta 48 471-483

Richet P Lejeune A-M Holtz F and Roux J (1996) Water and the viscosity of

andesite melts Chem Geol 128 185-197

Richet P Robie RA and Hemingway BS (1986) Low-temperature heat capacity of

diopside glass (CaMgSi2O6) a calorimetric test of the configurational-entropy

theory applied to the viscosity of liquid silicates Geochim Cosmochim Acta 50

1521-1533

Riebling EF (1966) Structure of sodium aluminosilicate melts containing at least 50

mole SiO2 at 1500 ˚C J Chem Phys 44 2857-2865

Romano C Giordano D Papale P Mincione V Dingwell DB and Rosi M (2003)

The dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean

Fields Chem Geol 202 23-38

48

Scaillet B Holtz F Pichavant M and Schmidt M (1996) Viscosity of Himalayan

leucogranites Implication for mechanisms of granitic magma ascent J Geophys

Res 101 27691-27699

Scarfe CM and Cronin DJ (1986) Viscosity-temperature relationships at 1 atm in the

system diopside-albite Am Mineral 71 767-771

Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural

relaxation J Am Ceram Soc 67 504-511

Schulze F Behrens H Holtz F Roux J and Johannes W (1996) The influence of H2O

on the viscosity of a haplogranitic melt Am Mineral 81 1155-1165

Shartsis L Spinner S and Capps W (1952) Density expansivity and viscosity of

molten alkali silicates J Am Ceram Soc 35 155-160

Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature

range 700deg to 900degC J Geophys Res 68 1512-1520

Shaw HR (1972) Viscosities of magmatic silicate liquids an empirical method of

prediction Am J Sci 272 870-893

Stein DJ and Spera FJ (1993) Experimental rheometry of melts and supercolled liquids

in the system NaAlSiO4-SiO2 Implications for structure and dynamics Am

Mineral 78 710-723

Stein DJ and Spera FJ (2002) Shear viscosity of rhyolite-vaporemulsions at magmatic

temperatures by concentric cylinder rheometry J Volcanol Geotherm Res 113

243-258

Stevenson RJ Bagdassarov NS and Dingwell DB (1998) The influence of trace

amounts of water on the viscosity of rhyolites Bull Volcanol 60 89-97

49

Stevenson RJ Dingwell DB Webb SL and Sharp TG (1996) Viscosity of microlite-

bearing rhyolitic obsidians an experimental study Bull Volcanol 58 298-309

Stolper E (1982) The speciation of water in silicate melts Geochim Cosmochim Acta

46 2609-2620

Tammann G and Hesse W (1926) Die abhaumlngigkeit der viscositaumlt von der temperatur bei

unterkuumlhlten fluumlssigkeiten Z Anorg Allg Chem 156 245-257

Taylor NW and Dear PS (1937) Elastic and viscous properties of several soda-silica

glasses in the annealing range of temperature J Am Ceram Soc 20 296-304

Taylor NW and Doran RF (1941) Elastic and viscous properties of several potash-

silica glasses in the annealing range of temperature J Am Ceram Soc 24 103-

109

Taylor TD and Rindone GE (1970) Properties of soda aluminosilicate glasses V low-

temperature viscosities J Am Ceram Soc 53 692-695

Toplis MJ Dingwell DB and Libourel G (1994) The effect of phosphorus on the iron

redox ratio viscosity and density of an envolved ferro-basalt Contrib Mineral

Petrol 117 293-304

Urbain G Bottinga Y and Richet P (1982) Viscosity of liquid silica silicates and

alumino-silicates Geochim Cosmochim Acta 46 1061-1072

Whittington A Richet P and Holtz F (2000) Water and the viscosity of depolymerized

aluminosilicate melts Geochim Cosmochim Acta 64 3725-3736

Whittington A Richet P and Holtz F (2001) The viscosity of hydrous phonolites and

trachytes Chem Geol 174 209-223

50

Whittington A Richet P Behrens H Holtz F and Scaillet B (2004) Experimental

temperature-X(H2O)-viscosity relationship for leucogranites and comparison with

synthetic silicic liquids Tran Royal Soc Edinburgh Earth Sci 95 59-71

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth Planet

Sci Lett 122 373-391

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

51

CHAPTER III

PRESSURE DEPENDENCE OF THE SPECIATION OF DISSOLVED WATER IN RHYOLITIC MELTS

ABSTRACT

Water speciation in rhyolitic melts with dissolved water ranging from 08 to 4

wt under high pressure was investigated Samples were heated in a piston-cylinder

apparatus at 624-1027 K and 094-283 GPa for sufficient time to equilibrate hydrous

species (molecular H2O and hydroxyl group H2Om + O = 2OH) in the melts and then

quenched roughly isobarically Concentrations of two hydrous species in the quenched

glasses were measured with Fourier transform infrared (FTIR) spectroscopy For samples

with total water content less than 27 wt the equilibrium constant is independent of

total H2O concentration Incorporating samples with higher water contents the

equilibrium constant depends on total H2O content and a regular solution model is used

to describe the dependence The equilibrium constant changes nonlinearly with pressure

for samples with a given water content at a given temperature The equilibrium constant

does not change much from ambient pressure to 1 GPa but it increases significantly from

1 to 3 GPa In other words more molecular H2O reacts to form hydroxyl groups as

pressure increases from 1 GPa which is consistent with breakage of tetrahedral

aluminosilicate units due to compression of the melt induced by high pressure The effect

52

of 19 GPa (from 094 to 283 GPa) on the equilibrium constant at 873 K is equivalent to

a temperature effect of 51 K (from 873 K to 924 K) at 094 GPa The results can be used

to evaluate the role of speciation in water diffusion to estimate the apparent equilibrium

temperature and to infer the viscosity of hydrous rhyolitic melts under high pressure

1 INTRODUCTION

The nature of dissolved water in silicate melt has received considerable attention

(eg Goranson 1938 Wasserburg 1957 Shaw 1964 Burnham 1975 Stolper 1982ab

McMillan 1994 Zhang 1999 Zhang et al 2007) As the most abundant volatile

component dissolved in terrestrial silicate melts dissolved water in melts plays an

important role in igneous processes Water can alter the structure of silicate melts hence

significantly change their physical and chemical properties such as solidusliquidus

temperatures (eg Tuttle and Bowen 1958) viscosity (eg Shaw 1972 Hui and Zhang

2007) crystal nucleation rates (eg Davis et al 1997) chemical diffusion (eg Watson

1991 Behrens and Zhang 2001) and oxygen ldquoselfrdquo diffusion (eg Zhang et al 1991a

Behrens et al 2007) Some of these effects are related to the speciation reaction below

(Stolper 1982ab)

H2Om + O = 2OH (1)

where H2Om denotes dissolved H2O molecules O denotes anhydrous oxygen and OH

denotes hydroxyl groups in silicate melts Total H2O content will be denoted as H2Ot

The equilibrium and kinetics of the above speciation reaction in rhyolitic melt has been

extensively studied (Stolper 1982a b Zhang et al 1991a 1995 1997b 2003 Ihinger et

al 1999 Nowak and Behrens 2001) Two debates have occurred about speciation

53

studies (see reviews by Zhang 1999 Behrens and Nowak 2003 Zhang et al 2007) The

early debate on whether species concentrations can be quenched from high temperature

(such as 1100 K) has been settled and the conclusion is that species concentrations will

be altered during quench if the initial temperature is above the glass transition

temperature for the given quench rate (Dingwell and Webb 1990) The later debate on

quenched versus in situ speciation studies has also been resolved and the conclusion is

that species concentrations can be preserved by rapid quench from intermediate

experimental temperatures (such as 800 K depending on H2Ot and quench rate) below

the glass transition temperature for the given quench rate (Withers et al 1999 Nowak

and Behrens 2001) The speciation data not only provide an understanding of the

detailed dissolution mechanism of H2O in melts but also can be applied to understand

H2O solubility and diffusivity in silicate melts and to infer viscosity of hydrous melts

Previous experimental studies mostly investigated H2O speciation at pressures

below 1 GPa This paper extends the experimental range to higher pressures The new

data reported here span 094-283 GPa 624-1027 K and 08-40 wt H2Ot Combining

these data with previous results (Ihinger et al 1999) a regular solution model is

developed to fit H2O speciation data from low to high pressures

2 EXPERIMENTAL METHODS

In this study hydrous rhyolitic glasses were held under a constant temperature

(623-1023 K nominal temperature) and pressure (1-3 GPa nominal pressure) in a piston

cylinder apparatus for sufficient duration (96 s to 3 days) for the two hydrous species in

the melt to reach equilibrium but short enough to avoid significant crystallization The

54

samples were then quenched to room temperature roughly isobarically Species

concentrations were measured by Fourier transform infrared (FTIR) spectroscopy at

ambient environment on the quenched glasses Based on various assessments (see

Introduction and Discussion) the quenched species concentrations reflect those at high

temperature and pressure

Starting materials include both natural hydrous rhyolitic glass (KS) and synthetic

hydrous rhyolitic glass prepared by hydration of natural rhyolitic glasses Sample KS is

from Mono Crater California Samples GMR+2 and GMR+4 were synthesized by adding

water to obsidian from Glass Mountain California The chemical compositions of these

two natural rhyolitic obsidians are listed in Table 31 Hydration of rhyolitic glasses was

implemented at 05 GPa by re-melting glass powders with added H2O at University of

Hannover Germany The obsidian glass powder and water were sealed in Au-Pd

capsules The capsules were placed in an internally heated pressure vessel (IHPV) and

heated to 1473 K at 05 GPa for overnight Sample assemblages were under H2O-

undersaturated running conditions during heating so that the loaded water was completely

dissolved in the melts Samples were then quenched isobarically The hydrated glasses

were crystal-free and bubble-free

The equilibrium experiments were performed in a piston cylinder apparatus at the

University of Michigan Glass fragments were prepared into cylinders with diameters of

about 2 mm and heights of about 2 mm Then a glass cylinder was placed into a graphite

capsule which was enclosed in crushable MgO as the inner pressure medium with

graphite heater outside and then BaCO3 cell as outer pressure medium The lid of the

graphite capsule was thin (about 05 mm thickness) to minimize the distance between the

55

Table 31 Chemical compositions (oxide wt) of KS and GMR rhyolite on an anhydrous basis

KS GMR SiO2 7594 7322 TiO2 009 031 Al2O3 1298 1408 FeO 098 145 MnO 005 005 MgO 003 026 CaO 056 131 Na2O 401 406 K2O 471 432 P2O5 029 007 H2Ot

076-090

189-223 in GMR+2338-417 in GMR+4

Total 9963 9913 Glass analyses were carried out with a CAMECA 5X-100 electron microprobe using a defocused beam (10 microm) with 1 nA current at the University of Michigan The oxide wt on an anhydrous basis is calculated by dividing the electron microprobe measured oxide concentration by 1-C where C is weight percent of H2Ot obtained by infrared spectroscopy

56

thermocouple tip and the sample The glass cylinder was placed in the center of the

graphite heater The running temperature was measured with a type-S thermocouple

(Pt90Rh10-Pt) or type-D thermocouple (Re3W97-Re25W75) The distance between

thermocouple tip and the center of the sample was typically about 13 mm after

experiments

A ldquopiston-outrdquo procedure was used to bring the assemblage to the final pressure at

373 K or 473 K The sample assemblage was relaxed at this temperature and at the

desired experimental pressure for at least 2 hours to close the gaps in the sample

assemblage After relaxation of the sample assemblage under pressure temperature was

increased at a rate of 200 K per minute to the designated temperature The sample stayed

at the desired temperature for sufficient time to ensure equilibrium for the interconversion

reaction between the two hydrous species in the sample but not too long enough for

appreciable crystallization No temperature overshoot occurred and temperature

fluctuation was le 2 K The sample was quenched roughly isobarically by turning off the

power and manually pumping to keep up the pressure The cooling rate is estimated to be

~ 100 Ks (Zhang et al 2000)

The thermal gradient in the piston cylinder was calibrated using water speciation

in rhyolitic glass (Zhang et al 1997a Ihinger et al 1999) Five experiments at 05 GPa

were carried out to calibrate the temperature distribution along the central axis of the

graphite heater The temperature distribution along the distance from the center of the

charge is shown in Fig 31 The equation for the temperature correction is

∆T asymp 221(T600)x2 (2)

where x is the distance between the thermocouple tip and the center of the charge in mm

57

0

10

20

30

40

50

0 1 2 3 4 5 6

sup2T (K

)

Distance from center (mm)

Fit by sup2 T=ax2

a=154 226 228 241 258

Temperature gradient in piston cylinder

T - 600degCTemperature correction

sup2 T = (T600)middotax2

where a = 221

Fig 31 Experimental results for temperature distribution in piston cylinder 2 at the University of Michigan laboratory calibrated using hydrous species equilibrium in rhyolite based on the speciation model of Zhang et al (1997a) Curves are best fittings of the different set of experimental data with different a values shown in the figure using Eqn 2

58

T is the temperature reading of the thermocouple in ˚C ∆T is the temperature difference

between the center and the thermocouple tip in ˚C and the constant 221 is the average of

5 experiments Therefore T+∆T is the temperature at the center of sample Depending on

the IR measurement position on the glass chip a correction of up to 6˚C was added to the

nominal temperature recorded by the thermocouple The pressure effect on emf of

different thermocouples results only in a small effect on temperature at le 3 GPa (Li et al

2003) and is ignored Overall the temperature uncertainty (2σ) for the series of

experiments in this study is estimated to be about 6 K

Pressure calibration of the piston-cylinder apparatus (Piston-cylinder 2 in the

laboratory) was conducted using two types of experiments the melting point of gold

(Akella and Kennedy 1971) at le 10 GPa and the quartz-coesite transition (eg Boyd

and England 1960 Kitahara and Kennedy 1964 Akella 1979 Mirwald and Massonne

1980 Bohlen and Boettcher 1982 Bose and Ganguly 1995) at 1073 K In the

calibration using gold melting temperature a gold wire connected the two legs of a type-

D thermocouple in a piston-cylinder At a well-maintained nominal pressure the

assemblage was gradually heated until melting of the Au wire (at which the thermocouple

signal was lost) The experiments show that the actual pressure is similar to the nominal

pressure within several percent Quartz-coesite reversal experiments at 1073 K were also

carried out with a starting material of a mixture of quartz (50 wt) and coesite (50 wt)

powder moistened to accelerate the reaction and sealed in Au capsule Here the

experimental procedure of Bose and Ganguly (1995) was followed The run product of

each experiment consists of only one pure crystalline phase as verified by X-ray

diffraction The experimental results are listed in Table 32a The calculated quartz-

59

coesite phase transition pressures at 1073 K from the literature are given in Table 32b

The literature data vary by 024 GPa reflecting difficulties in the experimental

calibrations Because these results do not completely agree with each other the most

recent experimental calibration (Bose and Ganguly 1995) was adopted to correct the

pressure in the piston cylinder apparatus by -6 (ie dividing the nominal pressure by

106) Some experiments were carried out using another piston cylinder for which the

correction is 5 based on another series of experiments to be reported in Ni and Zhang

(2008)

In order to further extend the pressure range some speciation experiments at 4-6

GPa were carried out in a multi-anvil apparatus at the University of Michigan However

except for one these charges crystallized extensively Because of the extreme difficulty

in quenching liquid to glass equilibrium speciation experiments were not continued at 4-

6 GPa

3 ANALYTICAL PROCEDURES

After quench each charge was embedded in epoxy resin Then it was polished on

both sides into a thin section along the cylindrical axis The thickness of the layer

polished away on each side of the charge was at least twice of the water diffusion

distance estimated using the diffusivity of Zhang and Behrens (2000) All run products

were analyzed for concentrations of H2Om and OH expressed in terms of H2O using an

FTIR Perkin-Elmer GX spectrometer at the University of Michigan An aperture of 01

mm in diameter was used to delimit the infrared beam size This aperture size allows

acquisition of high-quality IR spectra and evaluation of sample heterogeneity The

60

Table 32a Experimental results for pressure calibration using quartz-coesite transition at 1073 K

Nominal P (GPa)

t (h) Result

2896 72 quartz

2965 70 quartz

3034 70 quartz

3103 66 quartz

3137 70 coesite

3172 67 coesite

3378 66 coesite

Table 32b Literature data on quartz-coesite transition pressure at 1073 K

P (GPa) Reference

2846 Boyd amp England (1960)

2908 Kitahara amp Kennedy (1964)

3030 Akella (1979)

2920 Akella (1979)

2862 Mirwald amp Massonne (1980)

2792 Bohlen amp Boettcher (1982)

2935 Bose amp Ganguly (1995)

61

intensities (peak heights) of the absorption bands at 5230 cm-1 (A523) and 4520 cm-1

(A452) were measured The baseline was fit by flexicurve as shown in Zhang et al

(1997a)

Species (OH and H2Om) concentrations in terms of H2O were obtained from IR

band intensities according to Beerrsquos law Extensive effort has been made to calibrate the

IR method on hydrous rhyolitic glasses (eg Newman et al 1986 Zhang et al 1997a

Withers and Behrens 1999) The calibrations of Newman et al (1986) and Withers and

Behrens (1999) assumed constant molar absorptivities whereas Zhang et al (1997a)

considered the variability of the molar absorptivities With the calibration of Zhang et al

(1997a) the H2Ot content is highly reproducible for the same sample but with different

cooling rates but less so with other calibrations Furthermore the calibration of Zhang et

al (1997a) results in concentration-independent equilibrium constants of reaction (1) at

H2Ot le 27 wt However the calibration of Zhang et al (1997a) becomes increasingly

less accurate as H2Ot increases with error of 017 wt at 38 wt 039 wt at 56 wt

and 11 wt at 77 wt (Zhang and Behrens 2000) Because H2Ot in this work is less

than 42 wt and for consistency with the low-pressure speciation data of Ihinger et al

(1999) the molar absorptivities of Zhang et al (1997a) were adopted If a different

calibration is used there would be significant and systematic differences in species

concentrations and K Nonetheless the trends of how K depends on temperature and

pressure stay the same Furthermore as long as self-consistency is maintained the

equilibrium temperature (or the apparent equilibrium temperature) can be retrieved from

species concentrations accurately

62

Whether or not equilibrium is reached for reaction (1) in a particular experiment

the parameter

Q equiv(XOH

glass)2

XH2Om

glass XOglass

is used to monitor the change of proportions of OH and H2Om in a sample where Xiglass is

the measured mole fraction of species i in the quenched glass on a single oxygen basis

(Stolper 1982a b) and O denotes an anhydrous oxygen When the reaction duration is

long enough for the interconversion of these two hydrous species in the melt to reach

equilibrium and furthermore if this equilibrium state is retained in the quench process Q

will be equal to the equilibrium constant K

4 RESULTS AND DISCUSSION

41 SPECIES CONCENTRATIONS AND EQUILIBRIUM CONSTANTS

The concentrations of H2Om and OH in all quenched glasses calculated using the

calibration of Zhang et al (1997a) are listed in Table 33 The actual IR absorbance data

are also reported because there may be further improvement in the IR calibration The

equilibrium constants are listed in Table 33 and plotted as a function of 1000T in Fig

32

The uncertainty in each IR band intensity is about 1 relative leading to an error

of 0022 in lnK not accounting for systematic uncertainty of the calibration The

uncertainty in thickness measurement is about 2 microm which results in a negligible

increase in the overall uncertainty of lnK For high-pressure data there are additional

63

Table 33 The equilibrium speciation of water in rhyolitic melts under various pressures

Measurement T$ P$ Time Abs Abs Thickness H2Ot H2Om OH X(H2Ot) X(H2Om) X(OH) 1000T lnK K GPa s 5200 4500 mm wt wt wt K-1 KS-1-21 927 094 600 00270 01034 0717 0844 0160 0684 00151 00029 00245 107873 -1538 KS-1-22 926 094 600 00278 01028 0713 0849 0166 0683 00152 00030 00245 108043 -1573 KS-1-23 926 094 600 00255 00998 0708 0819 0153 0666 00147 00027 00239 107938 -1545 KS-1-31 879 094 14400 00593 01999 1415 0845 0178 0666 00151 00032 00239 113736 -1695 KS-1-32 877 094 14400 00589 01989 1407 0845 0178 0667 00151 00032 00239 114041 -1693 KS-1-33 878 094 14400 00627 02065 1431 0869 0186 0683 00156 00033 00245 113925 -1691 KS-1-41 819 094 187200 00676 01833 1321 0868 0218 0650 00155 00039 00233 122117 -1945 KS-1-42 817 094 187200 00673 01805 1311 0863 0218 0644 00155 00039 00231 122410 -1966 KS-1-43 818 094 187200 00694 01857 1326 0880 0223 0657 00158 00040 00235 122228 -1946 GMR+2-1-11 828 094 600 01862 02472 1038 1964 0772 1192 00349 00137 00423 120769 -1977 GMR+2-1-12 827 094 600 01892 02480 1041 1974 0782 1192 00350 00139 00423 120907 -1991 GMR+2-1-13 826 094 600 01808 02449 1033 1940 0753 1187 00344 00134 00422 121022 -1960 GMR+2-1-21 777 094 600 02150 02467 1063 2014 0870 1144 00357 00154 00406 128775 -2180 GMR+2-1-22 778 094 600 02114 02467 1059 2010 0859 1151 00357 00152 00408 128497 -2155 GMR+2-1-23 778 094 600 02099 02451 1058 1997 0854 1143 00354 00152 00406 128515 -2163 GMR+2-1-31 725 094 183600 01824 01848 0885 1886 0886 1000 00335 00157 00355 137978 -2469 GMR+2-1-32 727 094 183600 01841 01873 0888 1904 0891 1012 00338 00158 00360 137634 -2452 GMR+2-1-33 726 094 183600 01868 01892 0888 1929 0905 1024 00343 00161 00364 137800 -2443 GMR+2-1-R11 776 094 720 01756 01913 0782 2180 0968 1212 00386 00172 00430 128916 -2166 GMR+2-1-R12 775 094 720 01742 01870 0773 2167 0972 1195 00384 00172 00424 129036 -2199 GMR+2-1-R13 776 094 720 01746 01903 0789 2146 0954 1193 00381 00169 00423 128916 -2186 GMR+4-1-21 726 094 10800 01375 00780 0243 4010 2485 1525 00701 00434 00533 137751 -2626 GMR+4-1-22 725 094 10800 01396 00807 0256 3893 2392 1501 00681 00418 00525 137846 -2621 GMR+4-1-23 725 094 10800 01315 00745 0236 3944 2447 1497 00689 00428 00523 137928 -2648 GMR+4-1-31 676 094 46800 02577 01364 0490 3575 2300 1276 00627 00403 00447 147921 -2914 GMR+4-1-32 675 094 46800 02586 01344 0482 3621 2348 1273 00635 00411 00446 148152 -2938 GMR+4-1-33 676 094 46800 02581 01368 0499 3515 2261 1255 00617 00397 00440 147982 -2931 GMR+4-1-41 626 094 261360 03017 01423 0573 3394 2298 1096 00596 00404 00385 159840 -3224 GMR+4-1-42 624 094 261360 03013 01414 0574 3375 2291 1084 00593 00402 00381 160157 -3242

64

GMR+4-1-43 625 094 261360 03012 01408 0568 3406 2315 1091 00598 00406 00383 159905 -3240 KS-2-11 926 189 600 00476 01838 1209 0894 0168 0727 00160 00030 00260 107938 -1459 KS-2-12 926 189 600 00475 01828 1208 0891 0167 0723 00159 00030 00259 108049 -1469 KS-2-13 926 189 600 00463 01806 1203 0880 0164 0716 00158 00029 00257 107968 -1466 KS-2-21 877 189 14400 00699 02340 1561 0904 0191 0713 00162 00034 00255 114018 -1625 KS-2-22 876 189 14400 00653 02264 1562 0864 0178 0687 00155 00032 00246 114156 -1633 KS-2-23 876 189 14400 00649 02264 1560 0865 0177 0688 00155 00032 00246 114176 -1625 KS-2-41 960 189 600 00419 01795 1189 0872 0150 0722 00156 00027 00259 104195 -1360 KS-2-42 959 189 600 00419 01795 1196 0866 0149 0717 00155 00027 00257 104320 -1368 KS-2-43 962 189 600 00415 01795 1198 0863 0147 0716 00155 00026 00256 103982 -1362 GMR+2-2-11 825 189 7200 01032 01397 0538 2153 0827 1325 00382 00147 00470 121199 -1829 GMR+2-2-12 826 189 7200 00992 01378 0536 2109 0797 1312 00374 00141 00465 121006 -1814 GMR+2-2-13 825 189 7200 00962 01329 0524 2080 0790 1289 00369 00140 00457 121179 -1841 GMR+2-2-21 777 189 86400 01633 02049 0850 2032 0827 1205 00361 00147 00428 128756 -2023 GMR+2-2-22 776 189 86400 01618 02020 0852 1998 0817 1181 00355 00145 00419 128904 -2053 GMR+2-2-23 776 189 86400 01607 02027 0852 1998 0812 1187 00355 00144 00421 128904 -2036 GMR+2-2-41 856 189 600 01450 02017 0757 2196 0826 1370 00389 00146 00486 116794 -1760 GMR+2-2-42 856 189 600 01461 02051 0759 2225 0830 1395 00394 00147 00494 116807 -1729 GMR+2-2-43 855 189 600 01468 02042 0759 2221 0834 1387 00394 00148 00491 116954 -1746 GMR+4-2-11 757 189 1260 02299 01444 0414 4165 2444 1721 00727 00426 00601 132182 -2361 GMR+4-2-12 756 189 1260 02228 01393 0403 4132 2432 1701 00721 00424 00594 132305 -2381 GMR+4-2-13 756 189 1260 02359 01500 0432 4117 2401 1716 00719 00419 00599 132297 -2351 GMR+4-2-21 726 189 14400 02950 01847 0575 3809 2249 1560 00667 00394 00546 137766 -2482 GMR+4-2-22 725 189 14400 02949 01838 0574 3804 2253 1552 00666 00394 00543 137956 -2494 GMR+4-2-23 726 189 14400 02918 01833 0578 3749 2212 1537 00656 00387 00538 137788 -2496 GMR+4-2-31 676 189 172800 04221 02261 0741 3920 2500 1420 00685 00437 00496 148015 -2778 GMR+4-2-32 675 189 172800 04178 02246 0737 3907 2488 1419 00683 00435 00496 148155 -2773 GMR+4-2-33 675 189 172800 04296 02279 0745 3953 2532 1421 00691 00443 00497 148070 -2788 KS-3-11 876 286 7200 00622 02310 1566 0870 0169 0701 00156 00030 00251 114211 -1539 KS-3-12 875 286 7200 00614 02297 1568 0863 0166 0696 00154 00030 00249 114288 -1540 KS-3-13 875 286 7200 00631 02318 1564 0877 0172 0705 00157 00031 00253 114248 -1543 KS-3-R11 877 283 14400 00349 01493 1117 0760 0133 0627 00136 00024 00225 114045 -1524 KS-3-R12 878 283 14400 00353 01499 1121 0762 0134 0628 00137 00024 00225 113841 -1532

65

KS-3-R13 877 283 14400 00357 01501 1118 0766 0136 0630 00137 00024 00226 114035 -1536 KS-3-21 977 286 600 00352 01785 1248 0799 0120 0680 00143 00021 00244 102327 -1259 KS-3-22 977 286 600 00355 01788 1248 0802 0121 0681 00144 00022 00244 102372 -1264 KS-3-23 977 286 600 00355 01785 1248 0800 0121 0679 00143 00022 00244 102347 -1269 KS-3-24 975 286 600 00348 01761 1251 0786 0118 0667 00141 00021 00239 102525 -1283 KS-3-31 926 286 600 00435 01998 1438 0785 0128 0657 00141 00023 00235 108042 -1399 KS-3-32 927 286 600 00431 01987 1439 0779 0127 0652 00140 00023 00234 107927 -1404 KS-3-33 926 286 600 00435 02005 1439 0787 0128 0659 00141 00023 00236 107982 -1391 KS-3-41 1027 286 96 00372 02101 1489 0776 0106 0670 00139 00019 00240 097390 -1168 KS-3-42 1026 286 96 00376 02105 1489 0779 0107 0671 00140 00019 00241 097456 -1174 KS-3-43 1026 286 96 00369 02093 1489 0772 0105 0667 00138 00019 00239 097456 -1168 KS-3-44 1026 286 96 00365 02082 1489 0767 0104 0663 00138 00019 00238 097490 -1170 GMR+2-3-11 876 283 600 01364 02250 0837 2102 0702 1400 00373 00124 00497 114103 -1554 GMR+2-3-12 875 283 600 01377 02250 0836 2111 0709 1402 00374 00126 00497 114243 -1563 GMR+2-3-13 876 283 600 01326 02220 0831 2078 0687 1391 00369 00122 00493 114191 -1547 GMR+2-3-21 825 283 7200 01509 02250 0845 2145 0769 1376 00380 00136 00488 121184 -1682 GMR+2-3-22 825 283 7200 02077 03063 1159 2134 0772 1362 00378 00137 00483 121149 -1706 GMR+2-3-23 825 283 7200 02067 03075 1162 2131 0766 1365 00378 00136 00484 121149 -1694 GMR+2-3-31 777 283 172800 02163 02836 1081 2202 0863 1339 00390 00153 00475 128707 -1851 GMR+2-3-32 777 283 172800 02174 02826 1082 2197 0866 1331 00389 00153 00472 128745 -1867 GMR+2-3-33 775 283 172800 02199 02841 1080 2220 0878 1342 00393 00156 00476 128972 -1864 GMR+4-3-11 776 283 960 02616 02005 0563 3871 2039 1833 00677 00357 00641 128814 -2055 GMR+4-3-12 775 283 960 02644 02014 0564 3894 2057 1837 00681 00360 00643 129041 -2059 GMR+4-3-13 776 283 960 02598 01991 0561 3857 2031 1825 00675 00355 00639 128818 -2060 GMR+4-3-31 726 283 21600 02769 01951 0580 3777 2092 1685 00661 00366 00590 137668 -2253 GMR+4-3-32 726 283 21600 02748 01930 0579 3745 2079 1666 00656 00364 00583 137835 -2271 GMR+4-3-33 726 283 21600 02763 01959 0589 3718 2054 1664 00651 00360 00583 137770 -2261 GMR+4-3-41 676 283 259200 03326 01961 0601 3999 2431 1568 00699 00425 00548 147929 -2547 GMR+4-3-42 675 283 259200 03337 01972 0602 4012 2435 1577 00701 00426 00551 148109 -2538 GMR+4-3-43 675 283 259200 03297 01955 0598 3995 2422 1574 00698 00423 00550 148041 -2536 KS-1b-11 973 00001 600 00191 00907 0611 0842 0133 0709 00151 00024 00254 102759 -1276 KS-1b-12 973 00001 600 00194 00907 0608 0849 0136 0713 00152 00024 00256 102759 -1287 KS-1b-13 973 00001 600 00190 00898 0606 0841 0134 0708 00151 00024 00253 102759 -1286

66

KS-1b-21 923 00001 600 00214 00959 0691 0787 0131 0655 00141 00024 00235 108325 -1425 KS-1b-22 923 00001 600 00206 00938 0685 0774 0128 0646 00139 00023 00231 108325 -1430 KS-1b-23 923 00001 600 00219 00966 0688 0800 0135 0664 00143 00024 00238 108325 -1427 KS-1b-R11 923 00001 7200 00402 01796 1292 0789 0132 0657 00141 00024 00235 108325 -1426 KS-1b-R12 923 00001 7200 00400 01794 1291 0788 0132 0657 00141 00024 00235 108325 -1423 KS-1b-R13 923 00001 7200 00402 01797 1292 0789 0132 0657 00141 00024 00236 108325 -1424 KS-1b-R21 923 00001 2400 00685 02875 1975 0839 0147 0692 00150 00026 00248 108325 -1430 KS-1b-R22 923 00001 2400 00685 02870 1976 0838 0147 0690 00150 00026 00247 108325 -1435 KS-1b-R23 923 00001 2400 00675 02846 1973 0830 0145 0685 00149 00026 00245 108325 -1438 KS-1b-31 873 00001 21600 00501 01763 1231 0851 0173 0678 00152 00031 00243 114528 -1632 KS-1b-32 873 00001 21600 00501 01766 1231 0852 0173 0679 00153 00031 00243 114528 -1628 KS-1b-33 873 00001 21600 00498 01757 1230 0848 0172 0676 00152 00031 00242 114528 -1633

Note $ T has been corrected using Eqn (2) P has been corrected based on pressure calibration Three or four points were measured by IR for each experimental sample they are listed as xxx1 2 3 or 4 These experiments are reversal runs (Fig 33)

67

-26

-24

-22

-2

-18

-16

-14

-12

-1

09 1 11 12 13 14 15

KSGMR+2GMR+4

00001 GPa

283 GPa

1000T

lnK

A

-28

-26

-24

-22

-2

-18

-16

-14

-12

1 11 12 13 14 15

KSGMR+2GMR+4

189 GPa

00001 GPa

1000T

lnK

B

-35

-3

-25

-2

-15

1 11 12 13 14 15 16 17

KSGMR+2GMR+4

lnK

1000T

00001 GPa

094 GPa

C

-28

-26

-24

-22

-2

-18

-16

-14

-12

1 11 12 13 14 15

KSIhinger et al 99

lnK

1000T

00001 GPaD

Fig 32 The temperature dependence of lnK at some pressures Water concentrations for samples KS (076-090 wt) and GMR+2 (189-223 wt) are less than 27 wt and speciation data on them overlap indicating that K is independent of H2Ot when water content is less than 27 wt The dashed reference line is the ideal mixing model for water content less than 27 wt at ambient pressure from Ihinger et al (1999) The solid lines are the best-fit linear regression results for the data showing that ideal solution model (Eqn 3) works well for lt 27 wt H2Ot (KS and GMR+2) The regression for GMR+4 was separated from that for other compositions and is different

68

errors in estimating the species concentrations such as density variation with pressure

Hence the uncertainty from the IR measurement in lnK is estimated to be003

42 ATTAINMENT AND RETENTION OF EQUILIBRIUM

In this section the attainment of equilibrium at the experimental temperature and

the retention during quench are examined In either of the following two scenarios the

measured species concentrations would not reflect those at equilibrium in other words Q

ne K (1) the duration for the reaction at the experimental temperature is not long enough

for it to reach equilibrium (attainment of equilibrium) or (2) species concentrations in the

melt are changed during isobarically quenching to room temperature (retention of

equilibrium)

To demonstrate the attainment of equilibrium reversal experiments have been

carried out under two sets of conditions (a GMR+2-1-R1 776 K 094 GPa and 216

wt H2Ot b KS-3-R1 877 K 283 GPa and 076 wt H2Ot Table 33) One

experiment in each reversal pair was first relaxed at a temperature above the reversal

experimental temperature and one below to obtain different Q values Hence each set of

the reversal experiments approached the same final value of Q from initially higher or

lower Q values (Fig 33) This final Q value is the equilibrium constant K These

experiments are informative for constraining the duration required for a sample to reach

equilibrium at this set of conditions Durations for all other experiments were estimated

from these experiments and from kinetic experiments under ambient pressure (Zhang et

al 1995 1997b 2000) the actual experimental duration was longer than that estimated

for reaching equilibrium at specific running condition

69

-2

-19

-18

-17

-16

-15

-14

0 5000 1 104 15 104

lnQ

time (s)

876 K 283 GPa

A

-24

-23

-22

-21

-2

-19

0 100 200 300 400 500 600 700 800time (s)

lnQ

777 K 094 GPa

B

Fig 33 Two sets of reversal experiments to examine the duration required to reach equilibrium Solid curves are schematic illustrations of Q evolution in different experiments (A) KS sample (B) GMR+2 sample The relaxation might be much faster than illustrated by the curves

70

The issue of whether or not the equilibrium state can be retained during quench

has received considerable attention during the last two decades (eg Dingwell and Webb

1990 Zhang et al 1991b 1995 Ihinger et al 1999 Withers et al 1999 Zhang 1999

Nowak and Behrens 2001 Xu and Zhang 2002 Behrens and Nowak 2003) As

reviewed in the Introduction the different sides have worked together and resolved the

debates the consensus is that species concentrations can be retained by quench if the

experimental temperature is not too high (such as le850 K depending on H2Ot see Table

33) so that it is below the glass transition temperature for the given quench rate and

pressure (Withers et al 1999 Behrens and Nowak 2003)

In summary for attainment of equilibrium the experimental temperature must be

high enough (such as 673 K depending on H2Ot and pressure see Table 33) For

retention of equilibrium species concentrations through quench the experimental

temperature must be low enough In other words the experimental temperature must

satisfy the conditions that for the time scale of the isothermal experiments the sample is

in the liquid state whereas for the time scale of quenching the sample is in the glass

state Hence there is a limited temperature window for a given H2Ot and pressure at

which equilibrium speciation can be obtained from quench experiments

43 EQUILIBRIUM CONSTANT AS A FUNCTION OF TEMPERATURE H2Ot

AND PRESSURE

Equilibrium speciation data are listed in Table 33 and results are plotted in Fig

32 as lnK versus 1000T As shown in Figs 32a 32b and 32c K is independent of

water content when H2Ot in the sample is less than 27 wt consistent with Zhang et al

71

(1997a) Some new experimental data at ambient pressure are also reported here to

extend the temperature coverage of Ihinger et al (1999) Other speciation data have been

obtained on rhyolitic or quasi-rhyolitic melts (eg Sowerby and Keppler 1999 Nowak

and Behrens 2001 Behrens and Nowak 2003) but they are based on different IR

calibrations (different molar absorptivities) and cannot be directly compared with the new

data The new 1-bar data are consistent with those of Ihinger et al (1999) as shown in

Fig 32d A simple ideal solution model (Eqn 3) can be used to describe speciation in the

rhyolitic melts with low water content (up to 27 wt H2O) at any given pressure

lnK = A +1000

TB (3)

where A and B are fitting parameters independent of chemical composition The fitting

results are shown in Figs 32 and 34a and fitting parameters at each pressure are listed in

Table 34 The high-pressure experiments show an increase of lnK with increasing

pressure systematically As shown in Fig 34a the effect of 189 GPa (from 094 to 283

GPa) on the equilibrium constant of the speciation reaction at 773 K is equivalent to that

of 67 K (from 773 K to 840 K) on the equilibrium constant at 094 GPa The enthalpy of

reaction (1) at a given pressure can be inferred from the slopes of the best-fitting lines in

Fig 34a ie from fitting parameter B As shown in Fig 34b enthalpy of reaction (1)

decreases nonlinearly with pressure from 2702 kJmol under ambient pressure to 1853

kJmol at 283 GPa (Fig 34b)

Although K for reaction (1) does not depend on H2Ot concentration for water

content less than 27 wt at higher water content (here ~ 4 wt H2Ot) it depends on

H2Ot content This result indicates either mixing between H2Om OH and O in reaction

72

18

20

22

24

26

28

0 05 1 15 2 25 3

∆H (K

Jm

ol)

P (GPa)

∆H=26975-07704P-07773P2

B

-25

-2

-15

-1

09 1 11 12 13 14 15

00001 GPa094 GPa189 GPa283 GPa

A

lnK

1000T (T in K)

7001100 1000 900 800

T (K)

change in ln K due to change in P

change in T

change in ln K due to change in T

Fig 34 (A) The dependence of K on temperature for samples with H2Ot lt27 wt at various pressures Data for 00001 GPa are from Ihinger et al (1999) and this work The curves are the best-fit linear regression results using Eqn 3 The arrow lines indicate changes in lnK and T respectively (B) The pressure dependence of enthalpy of reaction (1) for samples with H2Ot lt27 wt The solid line is the best-fit regression result with equation shown in the figure

73

(1) is non-ideal or the already complicated calibration of Zhang et al (1997a) to convert

IR band intensities to species concentrations is imperfect (Ihinger et al 1999)

In the absence of an unambiguous calibration of the molar absorptivities of two

hydrous species in high-water-content samples the simplest approximation beyond ideal

mixing of H2Om OH and O in hydrous silicate melt is a regular solution model Silver

and Stolper (1989) illustrated a way to extend the simple ideal mixing model to a regular

solution model adapted also by Silver et al (1990) Zhang et al (1991b) and Ihinger et

al (1999) The same formulation is adapted here

lnK = ln XOH2

XH2OmXO

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = A+1000

TB+C XH2Om

+ D XOH( ) (4)

where A B C and D are fitting parameters independent of H2Ot and their physical

meanings are shown in Silver and Stolper (1989) Values of these fitting parameters at

each pressure are listed in Table 34 The maximum differences for these equations to

reproduce experimental equilibrium temperature are also listed in Table 34 and they are

within 10 K at high pressures

Eqn 4 could be expanded to accommodate the dependence of K on temperature

pressure and water content if the fitting parameters A B C and D in Eqn 4 are assumed

to be functions of pressure As discussed above the dependence on pressure is not linear

After some trials the following formulation is found to fit all speciation data in rhyolitic

melt well

lnK = A0 +AP P( )+1000

T(B0 +BP P + B

P3

2P

32 ) +

⎝ ⎜

(C0 +CP P +CP

32P

32 )XH2Om

+ (D0 +DP P + DP

32P

32 )XOH

⎠ ⎟

(5)

74

Table 34 Fitting parameters for Eqns 3 4 and 6

lnK lnKrsquo

ideal mixing regular solution model regular solution model

A B A B C D ∆T (K) $ A B C D ∆T (K) $

00001 GPa 20616 -32495 18120 -30830 -74203 30437 183 27524 -28404 -12945 189

094 GPa 17636 -30599 13264 -26529 -53362 01706 79 22910 -24292 01720 -17996 77

189 GPa 14995 -27503 10359 -23199 -71853 09728 73 18976 -20068 -16630 86

283 GPa 10053 -22285 07611 -20211 -75335 18349 90 16609 -17348 -15492 102

Note Water content is less than 22 wt

$ Maximum temperature difference between experimental temperature and model predicted temperature New data reported here and literature data from Ihinger et al (1999) which include some speciation data at P le 100 MPa

75

where P is pressure in GPa T is temperature in K and X is mole fraction of species H2Om

or OH This formulation could reproduce all experimental data with a 2σ uncertainty of

0058 in lnK The best-fit parameters in Eqn 5 with 2σ errors are A0 = 18120 plusmn 01044

AP = -03832 plusmn 00418 B0 = -30830 plusmn 00796 BP = 02999 plusmn 00638 BP32 = 00507 plusmn

00386 C0 = -74203 plusmn 14953 CP = 50262 plusmn 14040 CP32 = -31271 plusmn 09076 D0 =

30437 plusmn 13731 DP = -54527 plusmn 19763 DP32 = 30464 plusmn 12441 The reproducibility of

experimental equilibrium temperature by Eqn 5 is shown in a histogram (Fig 35) which

is approximately a Gaussian distribution Fig 36 further shows how well K at some

water contents can be reproduced

44 RELATING ABSORBANCES DIRECTLY TO TEMPERATURE AND

PRESSURE

Estimating the apparent equilibrium temperature of hydrous rhyolite of a given

cooling rate for inferring viscosity is one of the most important applications of this work

(Zhang et al 2003 Zhang and Xu 2007) Owing to possible future improvement of

molar absorptivities of two hydrous species it is useful to recast speciation data directly

in terms of IR band intensities (Ihinger et al 1999 Liu et al 2004a) so that equilibrium

temperature or the apparent equilibrium temperature can be directly estimated from

infrared data Following Zhang et al (2000) K is defined below

K = A452( )2A523

where A is absorbance per mm sample thickness By analogy with the regular solution

model (Eqn 4) the following equation is used to relate K and A

76

0

10

20

30

40

50

60

-20 -10 0 10 20∆T (K)

Num

ber o

f mea

sure

men

ts

Fig 35 Histogram showing the distribution of differences between the experimental equilibrium temperature and predicted temperature by Eqn 5 Sources of data include Ihinger et al (1999) and this work

77

-24

-22

-2

-18

-16

-14

-12

773K873K973K923K823K

lnK

973 K

873 K

773 K

Š27 wt H2OtA

-32

-3

-28

-26

-24

-22

-2

-18

-16

0 05 1 15 2 25 3

lnK

P (GPa)

39 wt H2Ot

673 K

773 K

873 K

B

Fig 36 Pressure effect on lnK at some temperatures and water concentrations The curves are calculated from Eqn 5 Points are experimental data In (A) three curves are calculated at each temperature for H2Ot of 07 17 and 27 wt from top to bottom at each temperature In (B) the dashed curve means temperature is above the experimental temperature

78

lnK = lnA452( )2

A523= A +1000

TB +C A523 + D A452( ) (6)

The best-fit parameters for four different pressures are listed in Table 34 The differences

between experimental and predicted temperatures using Eqn 6 are also listed in Table

34 which are not much different from the regular solution model using species

concentrations (Eqn 4) A model was developed to directly relate K A T and P

analogous to Eqn 5 as follows

lnK = A0+APP( )+1000

T(B0+BPP + B

P3

2P

32 ) +

⎝ ⎜

(C0+CPP +CP

32P

32 )A523 + (D0+DPP + D

P3

2P

32 )A452

⎠ ⎟

(7)

where P is pressure in GPa T is temperature in K and A is absorbance per mm sample

thickness for species H2Om or OH This formulation reproduces all of the data with a 2σ

uncertainty of 0059 in lnK The best-fit parameters in Eqn 7 with 2σ errors are A0 =

27524 plusmn 00944 AP = -03890 plusmn 00395 B0 = -28404 plusmn 00809 BP = 03053 plusmn 00697

BP32 = 00531 plusmn 00433 CP = 03768 plusmn 01301 CP32 = -02261 plusmn 00836 D0 = -12945

plusmn 00893 DP = -09499 plusmn 04076 DP32 = 05121 plusmn 02573 Because Eqn 7 is

independent of molar absorptivity future improvement in molar absorptivities of these

bands will not affect the reproducibility of Eqn 7 It can reproduce experimental

temperature with a 2σ uncertainty of 13 K (similar to the reproducibility of Eqn 5 shown

in Fig 35) directly from measured absorbances

79

45 APPLICATIONS

Speciation plays an important role in H2O solubility (eg Silver et al 1990

Blank et al 1993 Zhang 1999) as well as diffusion (eg Zhang et al 1991ab Zhang

and Behrens 2000 Liu et al 2004b Zhang et al 2007) and crystal nucleation (eg

Davis et al 1997) Several models (Eqns 3-5) are provided to determine H2Om and OH

concentrations as functions of pressure temperature and H2Ot in rhyolitic melts Hence

the new results can be applied to model H2O diffusion quantify the dependence of

molecular H2O diffusivity on pressure and quantitatively understand the effect of

dissolved H2Ot on the nucleation and crystal growth in hydrous melts under high

pressure Furthermore information from this work may be useful in future models of

thermodynamic properties of hydrous silicate melts

Another application of the new results is to predict apparent equilibrium

temperature Tae (Zhang 1994) As discussed by Zhang (1994) Tae is one of the well-

defined parameters in measurements for any given cooling history and can be a good

indicator of cooling rate Because of negligible dependence of K on pressure when the

pressure is lt 1 GPa and because natural rhyolitic glasses general cool at nearly surface

pressures for naturally cooled hydrous rhyolitic glasses the equation at ambient pressure

(eg Eqn 7 in Ihinger et al 1999) is applicable to calculate apparent equilibrium

temperature For experimental glasses cooled at high pressures such as 2 GPa the

pressure effect must be considered Knowledge of Tae is critical to inferring viscosity

based on kinetic experiments of the hydrous species reaction (Zhang et al 2003 Zhang

and Xu 2007) since it is assumed that the viscosity at the apparent equilibrium

temperature is inversely proportional to the cooling rate (Dingwell and Webb 1990

80

Zhang et al 2003) Hence by conducting a controlled cooling rate experiment of a

hydrous rhyolitic melt under pressure after calculating Tae the viscosity at this

temperature (and pressure) can be estimated At present this is the only method to

estimate viscosity at P gt 1 GPa in the viscosity range of 109-1014 Pamiddots The application

for inferring viscosity is the main motivation for us to conduct this research Results from

this work are applied to infer viscosity at high pressure in Chapter IV

5 CONCLUSIONS

The equilibrium of the interconversion reaction between two dissolved water

species (H2Om and OH) was experimentally investigated as a function of pressure

(00001 094 189 and 283 GPa) temperature (624-1027 K) and H2O concentrations

(08 to 42 wt) The speciation data at total H2O content le 27 can be described by

an ideal mixing model consistent with previous results With inclusion of speciation data

at higher water contents one way to describe the speciation data is a regular solution

model The general speciation model (Eqn 5) constructed to accommodate the

dependence of H2O speciation in the rhyolitic melts on T-P-X can be used to predict

species concentrations at P le 283 GPa total H2O content le 42 wt and temperature of

624-1027 K Furthermore it can be used to calculate apparent equilibrium temperature

which can then be used to infer viscosity of hydrous rhyolitic melts under high pressure

81

REFERENCES

Akella J (1979) Quartz hArr coesite transition and the comparative friction measurements

in piston-cylinder apparatus using talc-alsimag-glass (TAG) and NaCl high-

pressure cells N Jb Miner Mh H5 217-224

Akella J and Kennedy GC (1971) Melting of gold silver and copper ndash proposal for a

new high-pressure calibration scale J Geophys Res 76 4969-4977

Behrens H and Nowak M (2003) Quantification of H2O speciation in silicate glasses

and melts by IR spectroscopy ndash in situ versus quench techniques Phase Trans 76

45-61

Behrens H and Zhang Y (2001) Ar diffusion in hydrous silicic melts implications for

volatile diffusion mechanisms and fractionation Earth Planet Sci Lett 192 363-

376

Behrens H Zhang Y Leschik M Wiedenbeck M Heide G and Frischat GH (2007)

Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts Earth

Planet Sci Lett 254 69-76

Blank JG Stolper EM and Carroll MR (1993) Solubilities of carbon dioxide and

water in rhyolitic melt at 850 ordmC and 750 bars Earth Planet Sci Lett 119 27-36

Bohlen SR and Boettcher AL (1982) The quartz hArr coesite transformation a precise

determination and the effects of other components J Geophys Res 87 7073-7078

Bose K and Ganguly J (1995) Quartz-coesite transition revisited reversed experimental

determination at 500-1200 ˚C and retrieved thermochemical properties Am

Mineral 80 231-238

82

Boyd FR and England JL (1960) The quartz-coesite transition J Geophys Res 65

749-756

Burnham CW (1975) Water and magmas a mixing model Geochim Cosmochim Acta

39 1077-1084

Davis MJ Ihinger PD and Lasaga AC (1997) The influence of water on nucleation

kinetics in silicate melt J Non-Cryst Solids 219 62-69

Dingwell DB and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

Goranson RW (1938) Silicate-water systems phase equilibria in the NaAlSi3O8-H2O

and KAlSi3O8-H2O systems at high temperatures and pressures Am J Sci 35-A

71-91

Hui H and Zhang Y (2007) Toward a general viscosity equation for natural anhydrous

and hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Ihinger PD Zhang Y and Stolper EM (1999) The speciation of dissolved water in

rhyolitic melt Geochim Cosmochim Acta 63 3567-3578

Kitahara S and Kennedy GC (1964) The quartz-coesite transition J Geophys Res 69

5395-5400

Li J Hadidiacos C Mao H Fei Y and Hemley RJ (2003) Behavior of thermocouples

under high pressure in a multi-anvil apparatus High Pressure Res 23 389-401

Liu Y Behrens H and Zhang Y (2004a) The speciation of dissolved H2O in dacitic

melt Am Mineral 89 277-284

Liu Y Zhang Y and Behrens H (2004b) H2O diffusion in dacitic melts Chem Geol

209 327-340

83

McMillan PF (1994) Water solubility and speciation models Rev Mineral 30 131-156

Mirwald PW and Massonne H-J (1980) The low-high quartz and quartz-coesite

transition to 40 kbar between 600˚ and 1600˚C and some reconnaissance data on the

effect of NaAlO2 compoenent on the low quartz-coesite transition J Geophys Res

85 6983-6990

Newman S Stolper EM and Epstein S (1986) Measurement of water in rhyolitic

glasses calibration of an infrared spectroscopic technique Am Mineral 71 1527-

1541

Ni H and Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high

pressure data Chem Geol Revised

Nowak M and Behrens H (2001) Water in rhyolitic magmas getting a grip on a slippery

problem Earth Planet Sci Lett 184 515-522

Shaw HR (1964) Theoretical solubility of H2O in silicate melts quasi-crystalline

models J Geol 72 601-617

Shaw HR (1972) Viscosities of magmatic silicate liquids an empirical method of

prediction Am J Sci 272 870-893

Silver LA and Stolper E (1989) Water in albitic glasses J Petrol 30 667-709

Silver LA Ihinger PD and Stolper E (1990) The influence of bulk composition on the

speciation of water in silicate glasses Contrib Mineral Petrol 104 142-162

Sowerby JR and Keppler H (1999) Water speciation in rhyolitic melt determined by in

situ infrared spectroscopy Am Mineral 84 1843-1849

Stolper EM (1982a) The speciation of water in silicate melts Geochim Cosmochim

Acta 46 2609-2620

Stolper EM (1982b) Water in silicate glasses an infrared spectroscopic study Contrib

Mineral Petrol 81 1-17

84

Tuttle OF and Bowen NL (1958) Origin of granite in the light of experimental studies

in the system NaAlSi3O8- KAlSi3O8- SiO2-H2O Geol Soc Am Memoir 74 1-153

Wasserburg GJ (1957) The effects of H2O in silicate systems J Geol 65 15-23

Watson EB (1991) Diffusion of dissolved CO2 and Cl in hydrous silicic to intermediate

magmas Geochim Cosmochim Acta 55 1897-1902

Withers AC and Behrens H (1999) Temperature-induced changes in the NIR spectra of

hydrous albitic and rhyolitic glasses between 300 and 100 K Phys Chem Minerals

27 119-132

Withers AC Zhang Y and Behrens H (1999) Reconciliation of experimental results on

H2O speciation in rhyolitic glass using in situ and quenching techniques Earth

Planet Sci Lett 173 343-349

Xu Z and Zhang Y (2002) Quench rates in air water and liquid nitrogen and inference

of temperature in volcanic eruption columns Earth Planet Sci Lett 200 315-330

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth Planet

Sci Lett 122 373-391

Zhang Y (1999) H2O in rhyolitic glasses and melts measurement speciation solubility

and diffusion Rev Geophys 37 493-516

Zhang Y and Behrens H (2000) H2O diffusion in rhyolitic melts and glasses Chem

Geol 169 243-262

Zhang Y Belcher R Ihinger PD Wang L Xu Z and Newman S (1997a) New

calibration of infrared measurement of dissolved water in rhyolitic glasses

Geochim Cosmochim Acta 61 3089-3100

85

Zhang Y Jenkins J and Xu Z (1997b) Kinetics of the reaction H2O + O = 2OH in

rhyolitic glasses upon cooling geospeedometry and comparison with glass

transition Geochim Cosmochim Acta 61 2167-2173

Zhang Y Solper EM and Ihinger PD (1995) Kinetics of reaction H2O + O = 2OH in

rhyolitic glasses preliminary results Am Mineral 80 593-612

Zhang Y Stolper EM and Wasserburg GJ (1991a) Diffusion of a multi-species

component and its role in oxygen and water transport in silicates Earth Planet Sci

Lett 103 228-240

Zhang Y Stolper EM and Wasserburg GJ (1991b) Diffusion of water in rhyolitic

glasses Geochim Cosmochim Acta 55 441-456

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

Improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

Zhang Y Xu Z Zhu M and Wang H (2007) Silicate melt properties and volcanic

eruptions Rev Geophys doi1010292006RG000216

86

CHAPTER IV

PRESSURE DEPENDENCE OF VISCOSITY OF RHYOLITIC MELTS

ABSTRACT

Viscosity of silicate melts is a critical property for understanding volcanic and

igneous processes in the Earth Two methods were used to study the pressure effect on

the viscosity of rhyolitic melts hydrous species reaction viscometer in a piston cylinder

and parallel plate creep viscometer in an internally-heated pressure vessel (IHPV) With

the hydrous species reaction viscometer viscosities of hydrous rhyolitic melts were

inferred based on the kinetics of hydrous species reaction in the melt upon cooling (ie

the equivalence of rheologically defined glass transition temperature and chemically

defined apparent equilibrium temperature) The cooling experiments were carried out in a

piston cylinder apparatus using hydrous rhyolitic samples with 08 to 4 wt water at

pressures up to 283 GPa Cooling rates of the experiments varied from 01 Ks to 100

Ks hence the range of viscosity inferred from this method is 3 orders of magnitude The

data from this method show that viscosity increases with increasing pressure from 1 GPa

to 3 GPa for hydrous rhyolitic melts with water content ge 08 wt Viscosity of rhyolitic

melt with 013 wt water was also measured using parallel plate viscometer at pressures

87

02 and 04 GPa in an IHPV The data show that viscosity of rhyolitic melt with 013

wt water decreaseswith increasing pressure Combining new data with literature data a

viscosity model of rhyolitic melts in the high viscosity range as a function of temperature

pressure and water content is developed

1 INTRODUCTION

Viscosity of silicate melts is a property of fundamental importance in Earth

sciences Viscosities of silicate melts under ambient pressure have been studied

extensively (eg Shaw 1972 Hui and Zhang 2007) Several experimental techniques

are available to measure viscosity directly (1) in the low viscosity range (01 to 105 Pamiddots)

concentric cylinder viscometer (eg Dingwell 1986) and falling sphere technique (eg

Shaw 1963) (2) in the high viscosity range (108 to 1014 Pamiddots) micropenetration method

(eg Hummel and Arndt 1985) parallel plate creep viscometer (eg Neuville and

Richet 1991) and fiber elongation method (eg Lillie 1931) Few viscosity data are in

the intermediate viscosity range of 105 to 108 Pamiddots (Dorfman et al 1996 1997) because

(1) the methods applicable to low viscosity cannot be used because rotation rate or falling

rate would be too slow (2) the methods applicable to high viscosities cannot be used

because the melt would flow too easily and (3) many silicate melts crystallize rapidly in

this viscosity range In most cases geologists interpolated viscosity from models

constructed using experimental data in the high and low viscosity ranges (eg Rust and

Cashman 2007)

Some of these viscometers have been adapted to high-pressure apparatus

(Dingwell 1998) In the low viscosity range viscosity data at high pressure (ge 1 GPa) are

88

obtainable with the falling sphere technique (eg Kushiro et al 1976 Liebske et al

2005) For example in situ falling sphere technique in the high-pressure apparatus such

as multi-anvil with assistance of synchrotron can reach pressures up to 13 GPa (eg

Reid et al 2003 Liebske et al 2005) On the other hand in the high viscosity range no

viscosity data exist at pressures ge 1 GPa The practical reason is the limit of the current

experimental methods For example the maximum pressure that traditional viscometers

could reach is 04 GPa (eg Behrens and Schulze 2003) Based on the equivalence of

enthalpy relaxation and viscous relaxation Rosenhauer et al (1979) used high-pressure

differential thermal analysis experiments in an internally-heated pressure vessel (IHPV)

to infer viscosities of diopside albite and trisilicate at glass transition temperatures at

elevated pressures up to 07 GPa

Many geologic processes related to silicate melts deal with elevated pressures

The pressure scales of these processes may vary from 0-200 MPa for volcanic eruptions

to a couple of GPa for crustal anatexis and mantle melting to hundreds of GPa for core-

mantle segregation This extreme range of magnitudes requires the experimental

approach of studying melt viscosities to explore a very broad spectrum of measurement

principles and technologies In this report the hydrous species viscometer is developed

for high-pressure viscosity determination

Rosenhauer et al (1979) assumed the equivalence of enthalpy relaxation and

viscous relaxation to infer viscosity Dingwell and Webb (1990) assumed the equivalence

between viscous relaxation and hydrous species equilibration (see below) Dingwell

(1998) discussed the inference of viscosity at high pressures from glass transition based

on volume relaxation enthalpy relaxation spectroscopic measurements (applied in this

89

study) and called them as ldquoone of the most important breakthroughs for the prospect of

obtaining high pressure viscosity datardquo Zhang et al (2003) and Zhang and Xu (2007)

applied the hydrous species viscometer (see section 21) to infer viscosity of hydrous

silicate melts at the glass transition temperature range This method has several

advantages and disadvantages The most important advantage here is that this method can

be adapted to high-pressure apparatus such as piston cylinder as far as glass can be

obtained by quench Because the method relies on the measurement of hydrous species

concentrations it is only applicable to hydrous silicate melts with ge 05 wt total H2O

but not to melts with less H2O With this method viscosity is inferred but not obtained

from direct measurement

In this study the hydrous species reaction viscometer was applied in a piston

cylinder to investigate viscosity of hydrous rhyolitic melts with water content from 08 to

4 wt at pressures up to 283 GPa This pressure range is aimed to cover rhyolitic

(granitic) melt generated at depth from field observations (eg Sylvester 1999) and

experimental studies (eg Rapp and Watson 1995) Furthermore as will be shown later

increasing pressure seems to have a significant effect on crystallization rate in rhyolitic

melts which seems to indicate that viscosity decreases significantly with increasing

pressure The large pressure coverage allows the evaluation of whether this is true

In addition to this new method the parallel-plate viscometer in an IHPV was also

used to directly measure viscosity of natural rhyolite from 02 GPa to 04 GPa

Combining the literature data at pressure le05 GPa a viscosity model is developed

accommodating the dependence of viscosity of rhyolitic melts on temperature pressure

and water content in the high viscosity range

90

2 EXPERIMENTAL AND ANALYTICAL METHODS

The pressure effect on melt viscosity was studied on rhyolitic melts with different

water content The concentrations of total water and hydrous species in the samples were

determined by FTIR (Fourier transform infrared spectroscopy) at the University of

Michigan following the procedure shown in Zhang et al (1997a) There are a few other

calibration methods in the literature (eg Newman et al 1986 Withers and Behrens

1999) The reason to use the calibration of Zhang et al (1997a) here is to be consistent

with the speciation study in Hui et al (2008) because their study is used to calculate the

apparent equilibrium temperature from concentrations of hydrous species retained in the

quenched glass

Starting materials include both natural rhyolitic glasses (EDF and KS) and

synthetic hydrous rhyolitic glasses prepared by hydration of natural rhyolitic glass

(GMR) Sample EDF is from Erevan Dry Fountain Armenia Sample KS is from Mono

Crater California Samples GMR+2 and GMR+4 were synthesized by adding water to a

natural obsidian (GMR) from Glass Mountain California The chemical compositions of

the samples are listed in Table 41 Hydration of rhyolitic glasses was implemented at

1473 K 05 GPa by re-melting glass powder with added H2O at University of Hannover

(Hui et al 2008) The hydrated glasses are crystal free and bubble free

21 HYDROUS SPECIES REACTION VISCOMETER

It is well known that water is present in the silicate melts as at least two species

molecular H2O (H2Om) and hydroxyl group (OH) (Stolper 1982ab) The species

reaction in the melts is

91

Table 41 Chemical compositions (oxide wt) of KS GMR and EDF rhyolite on anhydrous basis

KS GMR EDF SiO2 7594 7322 7678 TiO2 009 031 010 Al2O3 1298 1408 1277 FeO 098 145 052 MnO 005 005 009 MgO 003 026 007 CaO 056 131 056 Na2O 401 406 408 K2O 471 432 455 P2O5 029 007 - Total 9963 9913 9967

H2O 075-090

189-216 in GMR+2 354-420 in GMR+4 013

ref 1 2 1 Hui et al 2008 2 Behrens et al 2007

92

H2Om + O = 2OH (1)

where O is anhydrous bridging oxygen in the melt Total H2O content is denoted as H2Ot

The equilibrium constant K of Reaction (1) is defined as

K =XOH

2

XH2OmXO

(2)

where X means activity approximated by mole fraction The relationship between

equilibrium constant K and temperature (equilibrium line in Fig 41) can be expressed by

a regular solution model as (Silver et al 1990 Ihinger et al 1999)

lnK = A +1000

TB + CXH2Om

+ DXOH( ) (3)

where T is temperature in K and A B C and D are fitting parameters Hui et al (2008)

estimated these parameters for rhyolitic melts at high pressures During cooling at a

certain low temperature the concentrations of these two hydrous species in the melt start

to deviate from the equilibrium state In Fig 41 this is shown as curves off the straight

line (the equilibrium line) When temperature becomes too low to change species

concentrations water speciation is frozen in the melt as indicated by the horizontal

segments in Fig 41 The intersection of each horizontal line which is calculated from

the hydrous species concentrations retained in the quenched glass with the equilibrium

line defines the apparent equilibrium temperature (Zhang 1994) An equilibrated melt at

this temperature has the same water speciation as observed in the quenched glass at room

temperature This apparent equilibrium temperature depends on the cooling rate shown in

Fig 41 A higher apparent equilibrium temperature indicates a faster cooling rate

Glass transition temperature is defined rheologically as the temperature at which

viscosity is equal to 1012 Pasdots for a cooling rate of the order 10 Kmin As the cooling rate

93

ln

K

1T (K)TTT ae2ae1 e

equilibrium

rapid quench

slow quench

isothermal run rapid quench

Fig 41 Sketch of kinetics of Reaction (1) during cooling (Behrens and Nowak 2003) Tae is apparent equilibrium temperature which depends on the cooling rate Te is equilibrium temperature

94

varies the glass transition temperature also changes Based on theoretical considerations

and experimental results Moynihan et al (1976) showed the formula of dependence of

the glass transition temperature on the cooling rate

d logqd(1Tg)

= minus∆HR

(4)

where q is quench rate in Ks Tg is glass transition temperature in K R is the gas

constant and ∆H is the activation enthalpy for the relaxation times controlling the

structural enthalpy or volume relaxation which is also equal to the activation enthalpy of

the shear viscosity within experimental error Scherer (1984) generalized that viscosity is

reciprocal to the quench rate at the glass transition temperature Dingwell and Webb

(1990) advanced it further to infer viscosity from kinetics of hydrous species reaction

(ie Reaction 1) in the rhyolitic melt assuming the equivalence of the apparent

equilibrium temperature and glass transition temperature (ie time scale of Reaction 1 in

rhyolitic melt is the same as the structural relaxation time scale of rhyolitic melt because

both involve bridging oxygen in the melt structure of rhyolite) By comparing kinetic

data on Reaction (1) and viscosity data obtained by other methods (including from bubble

growth data of Liu et al 2000) Zhang et al (2003) formulated the equation below to

infer viscosity at the glass transition temperature (ie apparent equilibrium temperature)

for hydrous rhyolitic melts

logηTg= logηTae

=1145 minus logq (5)

where η is viscosity in Pasdots q is quench rate in Ks and 1145 is a constant Other

experimental studies have verified the equivalence of relaxation at the glass transition

temperature on viscosity volume and heat capacity (eg Sipp et al 1999 Toplis et al

95

2000) So the key in this method is to calculate the apparent equilibrium temperature for

a cooling experiment with known quench rate whereas viscosity at this temperature is

calculated from Eq (5)

All the cooling experiments were conducted in a piston cylinder A glass cylinder

with a diameter of about 2 mm and a height of about 2 mm was placed into a graphite

capsule which was enclosed in crushable MgO as the inner pressure medium with

graphite heater outside and then BaCO3 cell as outer pressure medium The charge was

heated to a high temperature for melt relaxation and for hydrous species in the melt to

reach equilibrium Then the sample was isobarically cooled at a desired cooling rate to

room temperature The temperature was measured with a type-S (Pt90Rh10-Pt) or type-D

(W97Re3-W75Re25) thermocouple The temperature history was recorded either by

computer or manually Pressure in the piston cylinder was calibrated using quartz-coesite

phase transition and melting of a gold wire (Hui et al 2008) The pressure of cooling

experiments ranges from 094 GPa (nominal pressure of 1 GPa) to 283 GPa (nominal

pressure of 3 GPa) Infrared spectra of the quenched glass were obtained using a Perkin-

Elmer FTIR spectrometer The baseline of IR spectra was fit by a flexicurve (Newman et

al 1986) The concentrations of hydrous species and total water content were obtained

using the calibration of Zhang et al (1997a) The apparent equilibrium temperature was

calculated from the hydrous species concentrations measured in the quenched glass using

Eqs (2) and (3) with parameters listed in Hui et al (2008) With the recorded cooling

rate viscosity was inferred from Eq (5) at the apparent equilibrium temperature The 2σ

error for viscosity inferred from this method is estimated to be 02 in terms of logη

(Zhang et al 2003)

96

In addition to the experiments in piston-cylinders at pressures below 3 GPa some

experiments at pressures above 3 GPa were also carried out in a multi-anvil device at the

University of Michigan But these experimental charges crystallized

22 PARALLEL-PLATE VISCOMETER

The parallel-plate creep viscometer in an IHPV was also used to measure

viscosity of rhyolitic melts near glass transition temperature Melt viscosity was derived

from the rate of deformation of a cylindrical sample with a diameter of 38 mm and a

height of 10 mm as a function of a constant vertically applied stress The design

operation and calibration of this viscometer are described in detail by Schulze et al

(1999) The detailed experimental procedure is explained in Behrens and Schulze (2003)

This technique can measure viscosity of the same cylinder in high viscosity range

covering three orders of magnitude from 1085 to 10115 Pasdots at pressures up to 04 GPa by

pumping in Ar (pressure media) or releasing it Effect of dehydration of the sample on the

viscosity measurements was monitored by repeated viscosity measurements at the same

P-T conditions during the whole experimental course and water content in the sample

was also checked after the experiment by infrared spectroscopy

To mitigate the effect of dehydration of the samples during measurement only the

samples with low water content was used in this method including sample EDF with

013 wt H2Ot and sample KS with 079 wt H2Ot For sample EDF viscosity was

measured at different pressures in the order of 02 04 and 02 GPa As shown in Table

42 and Fig 42 the viscosity values at the first and last 02 GPa are in good agreement

with difference within plusmn01 log units indicating that there was no significant water loss

97

or gain during viscosity measurement Temperature was corrected based on the melting

point of aluminum at 02 GPa (Lees and Williamson 1965) For sample KS dehydration

was discovered in a test run Hence only viscosity at 04 GPa was measured without

cycling back and forth to minimize the duration of the sample at high temperatures

Temperature in this measurement was corrected based on the melting point of zinc at 04

GPa (Akella et al 1973) Both samples were checked for water content by FTIR after

isobaric quench of the experimental charge Water loss or gain was negligible in both

viscosity measurement courses After experiments both samples were still in good

cylinder shapes indicating negligible temperature gradient and regular deformation

during creep experiments The reproducibility of viscosities is always within plusmn015 log

units (Behrens and Schulze 2003) However within one series of experiments the

precision is much better (within plusmn01 log units in this study)

3 EXPERIMENTAL RESULTS

Experimental results from the hydrous species reaction viscometer are

summarized in Table 43 Original IR absorbance peak heights are also reported because

there may be further improvement in the IR calibration Viscosity is plotted as a function

of 1000T at different pressures in Fig 42 Within the small temperature range of

viscosity measurements temperature dependence of viscosity of rhyolitic melts at each

pressure can be described by the Arrhenius relationship

η = η0 sdot exp Ea

RT⎛ ⎝ ⎜

⎞ ⎠ ⎟ (6)

where η0 is the pre-exponential factor and Ea is the activation energy for viscous flow

98

Table 42 Results of parallel plate creep viscometer with sample EDF at pressures of 02 and 04 GPa and sample KS at 04 GPa

EDF KS

02 GPa 04 GPa 04 GPa T logη T logη T logη K Pasdots

exp

K Pasdots exp

K Pasdots exp

103815 1142 12 102815 1119 11 84815 1151 1 104815 1128 1 103815 1103 6 85615 1135 6 104815 1121 13 103815 1101 10 86715 1114 5 106715 1083 2 105815 1078 7 88615 1060 2 106715 1074 5 108815 1025 8 90715 1030 3 108815 1052 14 111815 980 9 92515 1002 4 108715 1047 3 111815 997 4

Note means the chronological order of the measurements

99

9

95

10

105

11

115

12

125

13

EDFKS

logη

(Pasdot

s) 04 GPa

A KSGMR+2GMR+4

094 GPa

B

9

95

10

105

11

115

12

125

13

08 09 1 11 12 13 14 15

KSGMR+2GMR+4

logη

(Pasdot

s)

1000T (K)

189 GPa

C

08 09 1 11 12 13 14 15

KSGMR+2GMR+4

1000T (K)

283 GPa

D

Fig 42 Dependence of viscosities of rhyolitic melts (EDF KS GMR+2 and GMR+4) on temperature at pressures of 04 094 189 and 283 GPa All the data are from this study A is for parallel plate creep viscometer and B-D are from hydrous species reaction viscometer Straight lines are fit of the data by Arrhenius equation (ie Eq 6)

100

Table 43 Viscosity of hydrous rhyolitic melts at various pressures inferred from hydrous species reactions

Measurement P$ q Abs Abs Thickness H2Ot H2Om OH X(H2Ot) X(H2Om) X(OH) Tae logη GPa Ks 5200 4500 mm wt wt wt K Pasdots KS-1-21 094 956 00448 01608 1124 0846 0170 0677 00152 00030 00242 90603 1047 KS-1-22 094 956 00447 01604 1118 0849 0170 0679 00152 00030 00243 90711 1047 KS-1-23 094 956 00441 01610 1126 0843 0167 0677 00151 00030 00242 91123 1047 KS-1-31 094 099 00557 01717 1195 0877 0198 0678 00157 00036 00243 86261 1145 KS-1-32 094 099 00539 01689 1190 0862 0193 0669 00154 00034 00240 86308 1145 KS-1-33 094 099 00585 01748 1198 0898 0208 0690 00161 00037 00247 85979 1145 KS-1-41 094 010 00649 01883 1373 0843 0201 0642 00151 00036 00230 82961 1245 KS-1-42 094 010 00626 01857 1370 0829 0194 0634 00148 00035 00227 83131 1245 KS-1-43 094 010 00646 01883 1371 0844 0200 0643 00151 00036 00231 83140 1245 KS-1-51 094 9233 00432 01720 1163 0862 0158 0704 00154 00028 00252 95499 948 KS-1-52 094 9233 00432 01700 1150 0864 0160 0704 00155 00029 00252 95113 948 KS-1-53 094 9233 00435 01708 1164 0857 0159 0698 00153 00028 00250 94606 948 GMR+2-1-11 094 950 01720 02272 0990 1886 0747 1140 00335 00133 00405 80808 1047 GMR+2-1-12 094 950 01709 02268 0987 1886 0744 1142 00335 00132 00406 80982 1047 GMR+2-1-13 094 950 01729 02275 0991 1890 0750 1140 00336 00133 00405 80737 1047 GMR+2-1-21 094 100 01729 02048 0911 1920 0816 1104 00341 00145 00392 77482 1145 GMR+2-1-22 094 100 01750 02064 0910 1942 0827 1115 00345 00147 00396 77683 1145 GMR+2-1-23 094 100 01712 02030 0909 1905 0810 1096 00338 00144 00389 77310 1145 GMR+2-1-31 094 010 01105 01131 0502 2041 0947 1094 00362 00168 00388 74324 1245 GMR+2-1-32 094 010 01089 01118 0498 2031 0941 1090 00360 00167 00387 74289 1245 GMR+2-1-33 094 010 01097 01123 0504 2017 0937 1080 00358 00166 00383 74002 1245 GMR+4-1-21 094 968 02159 01114 0356 4116 2667 1449 00719 00466 00506 70115 1046 GMR+4-1-22 094 968 02137 01107 0351 4141 2678 1462 00723 00467 00511 70400 1046 GMR+4-1-23 094 968 02152 01107 0356 4094 2657 1437 00715 00464 00502 69869 1046 GMR+4-1-31 094 7687 01467 00859 0268 3937 2403 1534 00688 00420 00536 73394 956 GMR+4-1-32 094 7687 01540 00901 0282 3925 2397 1529 00686 00419 00534 73301 956 GMR+4-1-33 094 7687 01548 00885 0276 3989 2463 1526 00697 00430 00533 72897 956 GMR+4-1-41 094 100 01509 00789 0271 3779 2440 1339 00661 00427 00469 68409 1145

101

GMR+4-1-42 094 100 01509 00779 0267 3815 2477 1338 00668 00433 00468 68211 1145 GMR+4-1-43 094 100 01498 00792 0275 3711 2386 1325 00650 00418 00464 68296 1145 KS-2-11 189 100 00111 00396 0270 0871 0175 0696 00156 00031 00249 88340 1145 KS-2-12 189 100 00106 00397 0280 0832 0161 0671 00149 00029 00240 88552 1145 KS-2-21 189 13416 00431 01862 1201 0898 0153 0745 00161 00027 00267 98415 932 KS-2-22 189 13416 00381 01769 1192 0844 0136 0708 00151 00024 00254 98996 932 KS-2-23 189 13416 00428 01851 1202 0890 0152 0739 00159 00027 00265 97976 932 KS-2-31 189 965 00496 01892 1246 0895 0169 0726 00160 00030 00260 92376 1047 KS-2-32 189 965 00462 01842 1234 0871 0159 0712 00156 00029 00255 93137 1047 KS-2-33 189 965 00466 01848 1245 0867 0159 0707 00155 00028 00253 92731 1047 KS-2-41 189 010 00384 01244 0859 0875 0190 0685 00157 00034 00246 84743 1245 KS-2-42 189 010 00368 01219 0856 0855 0183 0672 00153 00033 00241 84746 1245 KS-2-43 189 010 00360 01203 0849 0849 0180 0668 00152 00032 00239 84782 1245 GMR+2-2-21 189 950 01595 02196 0870 2071 0789 1282 00367 00140 00455 82315 1047 GMR+2-2-22 189 950 01579 02181 0870 2052 0781 1271 00364 00139 00451 82082 1047 GMR+2-2-23 189 950 01611 02184 0860 2097 0807 1290 00372 00143 00458 82142 1047 GMR+2-2-31 189 100 02053 02498 0997 2147 0887 1259 00381 00157 00447 78631 1145 GMR+2-2-32 189 100 02008 02459 0989 2123 0875 1248 00376 00155 00443 78466 1145 GMR+2-2-33 189 100 02032 02484 0997 2129 0878 1251 00378 00156 00444 78517 1145 GMR+2-2-51 189 9072 01539 02177 0831 2142 0798 1343 00380 00142 00476 84745 949 GMR+2-2-52 189 9072 01526 02165 0825 2144 0797 1347 00380 00141 00478 84947 949 GMR+2-2-53 189 9072 01530 02180 0825 2158 0799 1359 00383 00142 00482 85415 949 GMR+4-2-31 189 100 04415 02595 0797 3997 2433 1564 00698 00425 00546 71658 1145 GMR+4-2-32 189 100 04356 02573 0796 3954 2402 1552 00691 00420 00543 71502 1145 GMR+4-2-33 189 100 04453 02581 0797 4002 2454 1548 00699 00429 00541 71181 1145 GMR+4-2-41 189 10700 02441 01593 0465 4004 2306 1698 00700 00403 00593 75759 942 GMR+4-2-42 189 10700 02370 01551 0457 3957 2277 1680 00692 00398 00587 75455 942 GMR+4-2-43 189 10700 02484 01621 0473 4005 2307 1698 00700 00403 00593 75754 942 GMR+4-2-51 189 967 03797 02294 0677 4115 2467 1648 00718 00431 00576 73632 1046 GMR+4-2-52 189 967 03914 02307 0677 4195 2545 1650 00732 00444 00576 73318 1046 GMR+4-2-53 189 967 03914 02320 0680 4188 2534 1655 00731 00442 00577 73481 1046 KS-3-11 286 100 00491 02066 1408 0847 0148 0699 00152 00027 00250 91618 1145 KS-3-12 286 100 00493 02064 1408 0847 0149 0698 00152 00027 00250 91316 1145

102

KS-3-13 286 100 00489 02064 1407 0846 0148 0698 00152 00027 00250 91667 1145 KS-3-21 283 099 00534 02252 1535 0846 0148 0698 00152 00027 00250 91666 1145 KS-3-22 283 099 00538 02256 1533 0850 0149 0701 00152 00027 00251 91589 1145 KS-3-23 283 099 00563 02289 1530 0871 0157 0714 00156 00028 00256 91206 1145 KS-3-91 283 010 00479 01785 1221 0861 0167 0694 00154 00030 00249 86565 1245 KS-3-92 283 010 00490 01803 1225 0870 0170 0700 00156 00030 00251 86401 1245 KS-3-93 283 010 00472 01765 1218 0852 0165 0687 00153 00030 00246 86242 1245 KS-3-81 283 956 00546 02581 1760 0831 0132 0699 00149 00024 00251 96821 1047 KS-3-82 283 956 00638 02732 1756 0903 0155 0748 00162 00028 00268 95734 1047 KS-3-83 283 956 00628 02723 1757 0897 0152 0744 00161 00027 00267 96032 1047 KS-3-111 283 11166 00332 01907 1389 0751 0102 0649 00135 00018 00233 102191 940 KS-3-112 283 11166 00335 01925 1395 0755 0102 0653 00135 00018 00234 102681 940 KS-3-113 283 11166 00335 01929 1395 0757 0102 0655 00136 00018 00235 102921 940 KS-3-114 283 11166 00336 01925 1392 0757 0103 0655 00136 00018 00235 102615 940 GMR+2-3-21 283 907 01210 02070 0823 1925 0632 1293 00342 00112 00459 85132 1049 GMR+2-3-22 283 907 01260 02089 0818 1977 0662 1315 00351 00118 00467 84823 1049 GMR+2-3-23 283 907 01263 02093 0823 1968 0660 1308 00349 00117 00464 84558 1049 GMR+2-3-31 283 100 01726 02538 1004 2030 0740 1290 00360 00131 00458 80291 1145 GMR+2-3-32 283 100 01740 02539 1004 2035 0746 1289 00361 00132 00458 80063 1145 GMR+2-3-33 283 100 01664 02503 1004 1983 0713 1270 00352 00127 00451 80350 1145 GMR+2-3-41 283 10430 00852 01523 0594 1944 0617 1327 00345 00110 00471 87819 943 GMR+2-3-42 283 10430 00849 01485 0572 1984 0638 1346 00352 00113 00478 87698 943 GMR+2-3-43 283 10430 00823 01449 0558 1981 0634 1347 00352 00113 00478 87944 943 GMR+4-3-41 283 100 02215 01709 0518 3540 1869 1671 00621 00328 00586 73953 1145 GMR+4-3-42 283 100 02256 01729 0516 3614 1913 1702 00633 00335 00597 74470 1145 GMR+4-3-43 283 100 02210 01673 0503 3605 1922 1683 00632 00337 00590 73843 1145 GMR+4-3-51 283 10700 01838 01477 0417 3766 1931 1835 00659 00338 00642 78153 942 GMR+4-3-52 283 10700 01812 01464 0410 3793 1938 1855 00664 00339 00649 78693 942 GMR+4-3-53 283 10700 01873 01509 0422 3803 1946 1857 00666 00341 00650 78673 942

Note A few points (two to four) were measured by IR for each experimental sample they are listed here as xxx1 2 3 or 4 $ P has been corrected based on pressure calibration q was calculated from the thermal history recorded by computer or manually

103

which depends on water content of the sample and experimental pressure Viscosity of

rhyolitic melts decreases with increasing water content systematically at a given pressure

and temperature as shown in Fig 42

Viscosities of samples EDF and KS obtained from the parallel plate creep

viscometer are listed in Table 42 including chronological order of measurements and

shown in Figs 43a and 43b Temperature dependence of viscosity of each sample at

each pressure can also be described by the Arrhenius relationship (ie Eq 6) within the

small temperature range of measurements

The pressure dependence of viscosity is more complicated For the ldquodryrdquo sample

(EDF) viscosity does not change significantly from 01 MPa to 02 GPa From 02 to 04

GPa the viscosity of sample EDF decreases by about 02 log units For hydrous samples

with 08 and 2 wt H2Ot (KS and GMR+2) viscosity increases monotonically by about

1 log unit as pressure increases from 01 MPa to 28 GPa For hydrous sample with about

4 wt H2Ot (GMR+4) viscosity first decreases as pressure increases from 01 MPa to

09 GPa and then increases from 09 to 28 GPa

At the experimental petrology laboratory of the University of Michigan a large

database has been accumulated on successful versus failed experiments in the diffusion

reaction kinetics and viscosity studies of silicate melts (Zhang et al 1997b 2000 Liu

and Zhang 2000 Zhang and Behrens 2000 Behrens and Zhang 2001 Xu and Zhang

2002 Behrens et al 2004 Liu et al 2004ab 2005 Hui et al 2008 Ni and Zhang

2008) Most of the failed experiments crystallized significantly Because these results

may be relevant to the discussion of viscosity (see Discussion) they are summarized in

Appendix D The data show

104

9

95

10

105

11

115

12

125

13

088 09 092 094 096 098

04 GPa02 GPa01 MPa (013 H2O)

logη

(Pasdot

s) A

EDF

095 1 105 11 115 12 125

283 GPa189 GPa094 GPa04 GPa01 MPa (08 H2O)

KS

B

9

95

10

105

11

115

12

125

13

11 115 12 125 13 135 14

283 GPa189 GPa094 GPa01 MPa (2 H2O)

GMR+2

logη

(Pasdot

s)

1000T (K)

C

125 13 135 14 145 15

283 GPa189 GPa094 GPa01 MPa (4 H2O)

D

GMR+4

1000T (K)

Fig 43 Comparisons of viscosities of given rhyolitic melts (EDF KS GMR+2 and GMR+4) at various pressures Data are from this study Straight lines are fit of the data by Arrhenius equation (ie Eq 6) Viscosities of various rhyolitic melts at 00001 GPa were calculated from Zhang et al (2003) as references

105

(1) It is more difficult to quench an overheated liquid into glass at high pressures than at

low pressures because of crystallization during quench at high pressures For example a

hydrous rhyolite melt containing 52 wt H2Ot quenched from 1873 K at 2 GPa (sample

239 in Appendix D) did not crystallize but a hydrous rhyolite sample containing only

09 wt H2Ot quenched from 1873 K at 4 GPa (sample 240 in Appendix D)

crystallized significantly

(2) Melts in the isothermal experiments at a temperature below the liquidus often

crystallize more easily at high pressures than at low pressures (Hui et al 2008) For

example a hydrous rhyolitic glass (09 wt H2Ot) held at 823 K and 3 GPa for 10 days

(sample 56 in Appendix D) did not crystallize significantly but a similar glass held at

the same temperature but 4 GPa for only 31 hours (sample 57 in Appendix D)

crystallized For another example a hydrous rhyolitic glass with 077 wt H2Ot held at

1123 K and 61 MPa for 72 hours (sample 172 in Appendix D) did not crystallize but

another sample with same amount of H2Ot held at 1123 K and 3 GPa for only one minute

(sample 174 in Appendix D) crystallized significantly

Fig 44 shows some more trends The findings indicate that crystallization rate

increases significantly with increasing pressure meaning crystal nucleation andor

growth rates in melts increase with increasing pressure in hydrous rhyolitic melts The

relationship with viscosity will be discussed in the next section

106

25

3

35

4

45

5

55

6

0 1 2 3 4 5

crystallizedglass

logt

(t in

s)

P (GPa)

873 plusmn 10 Κ

075-116 wt H2Ot

A

-5

-4

-3

-2

-1

0

1

2

3

0 1 2 3 4 5

crystallizedglasscritical quench 06wtcritical quench 09wtcritical quench 12wt

logq

(q in

Ks

)

P (GPa)

078-115 wt H2Ot

B

Fig 44 The effect of pressure on crystallization kinetics in the rhyolitic melt for (A) isothermal experiments and (B) controlled cooling rate experiments In (B) critical quench rates for rhyolitic melt with water contents of 06 09 and 12 wt are calculated from Eqs (8) and (9) (see text Senkov 2007) and the dashed lines are extrapolations to show the trends for 06 and 12 wt water respectively

107

4 DISCUSSION

41 PRESSURE DEPENDENCE OF VISCOSITY

Viscosities of a variety of silicate liquids in the low viscosity range have been

investigated using the falling sphere technique in high-pressure apparatus demonstrating

a complex pressure dependence of viscosities (Scarfe et al 1987 Lange 1994)

Pressure-induced viscosity change has been related to the degree of polymerization of the

melt in general (Scarfe et al 1987) Viscosities of anhydrous rhyolite melt (eg Scarfe et

al 1987) jadeite melt (eg Kushiro 1976) dacite melt (eg Tinker et al 2004)

andesite melt (eg Kushiro et al 1976) and some basalt melts (eg Scarfe et al 1987)

decrease with increasing pressure in the first several GPa whereas those of diopside melt

(eg Scarfe et al 1979) and peridotite melt (Liebske et al 2005) both highly

depolymerized increase with increasing pressure

Water dissolved in the silicate melt can depolymerize the melt by forming

hydroxyl group (Reaction 1) The negative pressure dependence of viscosity of

anhydrous melt may change to positive pressure dependence of viscosity after adding a

certain amount of water For example viscosity of anhydrous andesite melt decreases

with pressure (Kushiro et al 1976) but viscosity of andesite with 3 wt water increases

with pressure (Kushiro 1978) Also the pressure dependence of viscosity of a given melt

may change from positive to negative with further increase of pressure such as periodite

(Liebske et al 2005) or from negative to positive such as albite (Funakoshi et al

2002) In other words there may be a viscosity maximum or minimum with increasing

pressure

108

In the high viscosity range only a few studies have been conducted on the

pressure dependence of viscosity of silicate melts in a pressure range up to 04 GPa

previously Viscosity of the albite-diopside binary system shows a change in the sign of

the pressure dependence from negative for albite to positive for diopside (Schulze et al

1999 Behrens and Schulze 2003) The pressure dependence of viscosity of

haploandesite in the high viscosity range changes from negative for anhydrous melt to

positive for hydrous melt with 106 wt water or up (Liebske et al 2003) This is

consistent with pressure dependence of viscosity of andesite in the low viscosity range in

general (Kushiro et al 1976 Kushiro 1978) Moreover pressure effect on viscosity

becomes more pronounced with decreasing temperature

Due to experimental limitations viscosity of sample EDF which contained minor

amount of water was measured at pressures le 04 GPa The viscosity decreases with

increasing pressure as shown in Fig 43a in this pressure range That is it behaves as a

polymerized melt as expected But for the hydrous samples KS and GMR+2 as shown in

Figs 43b and 43c the viscosity increases with increasing pressure based on the new

data As dissolved H2O depolymerizes the melt this trend is consistent with literature

data (Kushiro et al 1976 Kushiro 1978 Liebske et al 2003) The viscosities of the

sample GMR+4 which contains about 4 wt water increase systematically from 1 GPa

to 3 GPa as shown in Fig 43d The pressure dependence of viscosity from ambient

pressure to 1 GPa is small and whether the dependence is positive or negative depends on

the temperature

109

42 MODELING THE P-T-X DEPENDENCE OF VISCOSITY

There are various models used to describe temperature dependence of viscosity of

anhydrous and hydrous natural silicate melts (eg Shaw 1972 Hui and Zhang 2007)

The pressure dependence of viscosity has been modeled for some anhydrous melts such

as peridotite liquid (Liebske et al 2005) but has not been quantified for hydrous natural

silicate melts because only limited data were available For example for hydrous

rhyolitic melt there are only two data points at pressure gt 05 GPa (one data point of

AOQ at 1173 K 1 GPa and another one at 1173 K 075 GPa Schulze et al 1996) in the

low viscosity range These new data are the first viscosity data at pressures ge 1 GPa in the

low-temperature (high viscosity) range Because data on the pressure dependence of

viscosity of rhyolitic melts in the high temperature range are limited (Schulze et al

1996) only the data in the low temperature region are considered in constructing a model

on the dependence of viscosity on temperature pressure and water content In this narrow

temperature range the Arrhenius relationship can describe the temperature dependence of

viscosity Hence parameters η0 and Ea in Eq (6) are treated as functions of water content

and pressure to construct a viscosity model The data used for the model include viscosity

data from this study and literature data in the high viscosity range (Neuville et al 1993

Stevenson et al 1995 Zhang et al 2003 Zhang and Xu 2007) Because the precision

of the parallel plate viscometer is much higher this data set was weighed 10 times more

than other data in the regression After some trials the equation below is found to fit the

data well

110

logη = a0 + aPP12

⎝ ⎜

⎠ ⎟ + b0 + bPP

12

⎝ ⎜

⎠ ⎟ 1minus exp c0 + cPP

12

⎝ ⎜

⎠ ⎟ X

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

+ d0 + dPP12

⎝ ⎜

⎠ ⎟ + e0 + ePP

12

⎝ ⎜

⎠ ⎟ 1minus exp f0 + fPP

12

⎝ ⎜

⎠ ⎟ X

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟ 1000

T

(7)

where P is pressure in GPa and X is mole fraction of total water content in the melt on a

single oxygen basis (Stolper 1982b Zhang 1999) The best-fit parameters in Eq (7)

with 2σ errors are a0 = -78470 plusmn 04972 aP = 11472 plusmn 05802 b0 = -124257 plusmn 09940

bP = 08080 plusmn 06278 c0 = -36440 plusmn 16134 cP = -101893 plusmn 17128 d0 = 213531 plusmn

05706 dP = -21722 plusmn 07371 e0 = -58335 plusmn 07198 eP = 40480 plusmn 06801 f0 = -893887

plusmn 103647 and fP = -305499 plusmn 152766 This equation can reproduce the whole database

(206 data points) with 2σ of 038 in terms of logη The dependence of viscosity as a

function of OH and molecular H2O concentrations was also examined at different

pressures but no simple relation emerged for a large range of water content Hence no

species information is included in fitting how viscosity depends on water concentration

Fig 45 shows a comparison between experimental viscosities and calculated values

using Eq (7) Although the fit is good extrapolation of the model beyond experimental

conditions is not recommended That is calculated viscosity at high pressures should be

inside the range of 109 to 1012 Pamiddots and T-P-XH2Ot conditions should be within conditions

shown in Fig 46 The calculated pressure dependence of viscosity of rhyolitic melts

with different water contents is shown in Fig 47 and it is in agreement with Figs 43b

43c and 43d

Glass transition temperature is an important rheological parameter of glass and

Eq (7) can be used to estimate glass transition temperature of rhyolitic melt under high

111

8

10

12

14

16

18

8 10 12 14 16 18

our dataliterature data11 line

measured logη

calc

ulat

ed lo

Fig 45 Comparison of measured viscosity data of rhyolitic melts with those calculated from Eq (7)

112

500

600

700

800

900

1000

1100

1200

1300

0 05 1 15 2 25 3

T (K

)

P (GPa)

0

1

2

3

4

5

6

7

8

0 05 1 15 2 25 3

H2O

t (w

t)

P (GPa)

A

B

Fig 46 P-T-XH2Ot range of all experimental data of the model ie Eq (7)

113

765

785

765755

845

815

775

794

815

845

A

9

95

10

105

11

115

12

0 005 01 015 02 025 03 035 04

logη

(Pasdot

s)

P (GPa)

750C

800C

850C

900C

750

800

850

900

469

605

575

529

577

549

512

535

502

C

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3

450C

500C

550C

600C

logη

(Pasdot

s)

P (GPa)

450

500

550

468

512483

462

441

459

428

410

477

369

D

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3

400C

450C

500C

logη

(Pasdot

s)

P (GPa)

400400

450

500

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3P (GPa)

logη

(Pasdot

s)

550C

600C

650C

700C750C

550

600

650

700

558

678

635

589

574

689

642

591

711

654

611

753

A558

678

635

589

574

689

642

591

711

654

611

753

AB575583

594

613

634

652

Fig 47 Pressure effect on viscosity at some temperatures and water concentrations The curves (with temperature indicated by large numbers) are calculated from Eq (7) with different water concentrations (A) 013 wt (B) 08 wt (C) 2 wt and (D) 4 wt Points are experimental data at indicated temperatures (small numbers) and points at 01 MPa are calculated from the viscosity model of Zhang et al (2003)

114

pressure Fig 48 shows pressure dependence of glass transition temperatures of hydrous

rhyolitic melts containing different water contents calculated from Eq (7) with a cooling

rate of 028 Ks = 168 Kmin (at η = 1012 Pamiddots) The trend of pressure dependence of the

glass transition temperature (Fig 48) is the same as that of viscosity (Fig 47)

43 AN APPARENT PARADOX OF THE PRESSURE EFFECT ON VISCOSITY

AND ON GLASS FORMATION

Appendix 4 lists the melt compositions the experimental conditions and whether

the sample charges crystallized significantly during experiments Pressure facilitates

crystallization in both isothermal experiments and cooling experiments based on the

results in Appendix 4 as summarized in the Experimental results That is as pressure

increases crystallization is more rapid in isothermal experiments and it is also more

difficult to quench the same hydrous melt into glass from liquid One might expect that

the increased easiness of crystallization at high pressures were related to increasing

diffusivity and hence decreasing viscosity with increasing pressure However new

viscosity data show that viscosity of hydrous rhyolitic melt increases rather than

decreases with increasing pressure Hence there is an apparent paradox of increasing

viscosity as well as increased easiness of crystallization with increasing pressure

Raising the pressure increases the density of the melt and changes the structure of

the melt which might facilitate crystallization More importantly increasing the pressure

raises the liquidus of the melt Hence for a supercooled metastable liquid at a given

temperature the degree of undercooling is larger at higher pressure That is the Gibbs

free energy difference between the melt and the crystals ∆Gm-c increases with pressure

115

650

700

750

800

850

900

0 05 1 15 2 25 3

08 wt2 wt4 wt

T g (K

)

P (GPa)

Fig 48 Pressure dependence of glass transition temperatures of hydrous rhyolitic melts with different water contents (08 2 and 4 wt H2O) calculated from Eq (7) when η = 1012 Pamiddots (ie cooling rate is 028 Ks)

116

The increased easiness of crystallization at isothermal conditions may be partly attributed

to greater ∆Gm-c although quantification is not available at the moment

For cooling of a liquid from a temperature above the liquidus as the pressure

increases the liquidus is crossed at a higher temperature That is crystallization starts at a

higher temperature where kinetics is more rapid Furthermore there is a larger

temperature interval (and hence a larger time interval) for crystallization Hence more

crystallization is expected For this case the glass-forming ability (that is the degree of

difficulty of crystallization) has been proposed recently using the concept of fragility

(eg Martinez and Angell 2001 Senkov 2007) If the temperature dependence of

viscosity is Arrhenian from low to high viscosity (001 to 1015 Pamiddots) the liquid is said to

be strong If the temperature dependence of viscosity deviates from Arrhenian behavior

more the liquid is said to be more fragile It is easier for strong liquids to quench to

glass Senkov (2007) defined a dimensionless glass forming ability (GFA) parameter F1

which can be expressed as follows

F1 =2(Tg minus T0 )

2(Tg minus T0 ) + (TL minus Tg ) (8)

where TL is the liquidus Tg is the temperature at which the viscosity is 1012 Pamiddots and T0

(related to fragility) is the temperature in the VFT equation of logη = A + B(T-T0)

Senkov (2007) further related the critical cooling rate required for glass formation to the

GFA parameter as follows

qc = 10(054-F1)0047 (9)

If the cooling rate is above qc the liquid would be cooled into a glass Otherwise there

would be significant crystallization In order to apply the above approach TL as a

117

function of H2Ot and P was estimated from the MELTS program (Ghiorso and Sack

1995 Asimow and Ghiorso 1998) and Tg from the viscosity model developed in this

work (ie Eq 7) For T0 at low pressures the viscosity model of Zhang et al (2003) is

used which resulted in T0 of 300plusmn30 K for H2Ot gt 06 wt For viscosities of hydrous

rhyolitic melt at high pressures there are not enough data in the low-viscosity range to

estimate T0 Hence a constant T0 of 300 K was assumed to roughly estimate F1 and qc

The critical cooling rate as a function of pressure for a few H2Ot contents is plotted in

Fig 44b It can be seen that the limited experimental data are in agreement with this

approach Hence it appears that the paradox of increased easiness of crystallization at

high pressures and increasing viscosity with pressure can be reconciled by the GFA

parameter of Senkov (2007)

5 CONCLUDING REMARKS

Viscosity of hydrous rhyolitic melts containing 08 to 4 wt water was inferred

using the hydrous species reaction viscometer at pressures up to 283 GPa This

represents the first viscosity data at low temperature (high viscosity) and pressures above

1 GPa Viscosity of rhyolitic melts with 013 wt and 08 wt water was also measured

using the parallel plate creep viscometer at pressures up to 04 GPa No experimental

method is available to determine viscosity of ldquodryrdquo melt at higher pressures Combining

the data of this study with literature data a viscosity model is constructed as a function of

temperature pressure and water content in the high viscosity range The model (ie Eq

7) can be utilized for interpolation within the range of available data (Fig 46) but is not

recommended for extrapolation

118

REFERENCES

Akella J Ganguly J Grover R and Kennedy G (1973) Melting of lead and zinc to

60 kbar J Phys Chem Solids 34 631-636

Asimow PD and Ghiorso MS (1998) Algorithmic modifications extending MELTS to

calculate subsolidus phase relations Am Mineral 83 1127-1131

Behrens H and Nowak M (2003) Quantification of H2O speciation in silicate glasses

and melts by IR spectroscopy ndash in situ versus quench techniques Phase Trans 76

45-61

Behrens H and Schulze F (2003) Pressure dependence of melt viscosity in the system

NaAlSi3O8-CaMgSi2O6 Am Mineral 88 1351-1363

Behrens H and Zhang Y (2001) Ar diffusion in hydrous rhyolitic and albitic

glassesmelts Earth Planet Sci Lett 192 363-376

Behrens H Zhang Y and Xu Z (2004) H2O diffusion in dacitic and andesitic melts

Geochim Cosmochim Acta 68 5139-5150

Behrens H Zhang Y Leschik M Wiedenbeck M Heide G and Frischat GH

(2007) Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts

Earth Planet Sci Lett 254 69-76

Dingwell D (1986) Viscosity-temperature relationships in the system Na2Si2O5-

Na4Al2O5 Geochim Cosmochim Acta 50 1261-1265

Dingwell DB (1998) Melt viscosity and diffusion under elevated pressures Rev

Mineral 37 397-422

Dingwell DB and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

119

Dorfman A Dingwell DB and Bagdassarov NS (1997) A rotating autoclave for

centrifuge studies Falling sphere viscometry Eur J Mineral 9 345-350

Dorfman A Hess K-U and Dingwell DB (1996) Centrifuge-assisted falling sphere

viscometry Eur J Mineral 8 507-514

Funakoshi K-i Suzuki A and Terasaki H (2002) In situ viscosity measurements of

albite melt under high pressure J Phys Condensed Matt 14 11343-11347

Ghiorso MS and Sack RO (1995) Chemical mass transfer in magmatic processes IV

A revised and internally consistent thermodynamic model for the interpolation and

extrapolation of liquid-solid equilibria in magmatic systems at elevated

temperatures and pressures Contrib Mineral Petrol 119 197-212

Hui H and Zhang Y (2007) Toward a general viscosity equation for natural anhydrous

and hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Hui H Zhang Y Xu Z and Behrens H (2008) Pressure dependence of the speciation

of dissolved water in rhyolitic melts Geochim Cosmochim Acta In revision

Hummel W and Arndt J (1985) Variation of viscosity with temperature and

composition in the plagioclase system Contrib Mineral Petrol 90 83-92

Ihinger PD Zhang Y and Stolper EM (1999) The speciation of dissolved water in

rhyolitic melt Geochim Cosmochim Acta 63 3567-3578

Kushiro I (1976) Changes in viscosity and structure of melt of NaAlSi2O6 composition

at high pressures J Geophys Res 81 6347-6350

Kushiro I (1978) Density and viscosity of hydrous calc-alkalic andesite magma at high

pressures Carnegie Inst Washington Year Book 77 675-677

120

Kushiro I Yoder HS Jr and Myson BO (1976) Viscosities of basalt and andesite

melts at high pressures J Geophys Res 81 6351-6356

Lange RA (1994) The effect of H2O CO2 and F on the density and viscosity of silicate

melts Rev Mineral 30 331-365

Lees J and Williamson BHJ (1965) Combined very high pressurehigh temperature

calibration of the tetrahedral anvil apparatus fusion curves of zinc aluminium

germanium and silicon to 60 kilobars Nature 208 278-279

Liebske C Behrens H Holtz F and Lange RA (2003) The influence of pressure and

composition on the viscosity of andesitic melts Geochim Cosmochim Acta 67

473-485

Liebske C Schmickler B Terasaki H Poe BT Suzuki A Funakoshi K-i Ando

R and Rubie DC (2005) Viscosity of peridotite liquid up to 13 GPa Implications

for magma ocean viscosities Earth Planet Sci Lett 240 589-604

Lillie HR (1931) Viscosity of glass between the strain point and melting temperature J

Am Ceram Soc 14 502-512

Liu Y and Zhang Y (2000) Bubble growth in rhyolitic melt Earth Planet Sci Lett

181 251-264

Liu Y Behrens H and Zhang Y (2004a) The speciation of dissolved H2O in dacitic

melt Am Mineral 89 277-284

Liu Y Zhang Y and Behrens H (2004b) H2O diffusion in dacitic melt Chem Geol

209 327-340

Liu Y Zhang Y and Behrens H (2005) Solubility of H2O in rhyolitic melts at low

pressures J Volcanol Geotherm Res 143 219-235

121

Martinez L-M and Angell CA (2001) A thermodynamic connection to the fragility of

glass-forming liquids Nature 410 663-667

Moynihan CT Easteal AJ Wilder J and Tucker J (1976) Dependence of the glass

transition temperature on heating and cooling rate J Phys Chem 78 2673-2677

Neuville DR and Richet P (1991) Viscosity and mixing in molten (Ca Mg) pyroxenes

and garnets Geochim Cosmochim Acta 55 1011-1019

Neuville DR Courtial P Dingwell DB and Richet P (1993) Thermodynamic and

rheological properties of rhyolite and andesite melts Contrib Mineral Petrol 113

572-581

Newman S Stolper EM and Epstein S (1986) Measurement of water in rhyolitic

glasses calibration of an infrared spectroscopic technique Am Mineral 71 1527-

1541

Ni H and Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high

pressure data Chem Geol Revised

Rapp RP and Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar

Implications for continental growth and crust-mantle recycling J Petrol 36 891-

931

Reid J E Suzuki A Funakoshi K Terasaki H Poe BT Rubie DC and Ohtani

E (2003) The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa Phys

Earth Planet Inter 139 45-54

Richet P Lejeune A-M Holtz F and Roux J (1996) Water and the viscosity of

andesite melts Chem Geol 128 185-197

122

Rosenhauer M Scarfe CM and Virgo D (1979) Pressure dependence of the glass

transition temperature in glasses of diopside albite and sodium trisilicate

composition Carnegie Inst Washington Year Book 78 556-559

Rust AC and Cashman KV (2007) Multiple origins of obsidian pyroclasts and

implications for changes in the dynamics of the 1300 BP eruption of Newberry

Volcano USA Bull Volcanol 69 825-845

Scarfe CM Mysen BO and Virgo D (1979) Changes in viscosity and density of

melts of sodium disilicate sodium metasilicate and diopside composition with

pressure Carnegie Inst Washington Year Book 78 547-551

ScarfeCM Mysen BO and Virgo D (1987) Pressure dependence of the viscosity of

silicate melts In Mysen BO (ed) Magmatic Processes Physicochemical

Principles Geochem Soc Spec Pub 1 59-67

Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural

relaxation J Am Ceram Soc 67 504-511

Schulze F Behrens H and Hurkuck W (1999) Determination of the influence of

pressure and dissolved water on the viscosity of highly viscous melts Application

of a new parallel-plate viscometer Am Mineral 84 1512-1520

Schulze F Behrens H Holtz F Roux J and Johannes W (1996) The influence of

H2O on the viscosity of a haplogranitic melt Am Mineral 81 1155-1165

Senkov ON (2007) Correlation between fragility and glass-forming ability of metallic

alloys Phys Rev B 76 104202 DOI 101103PhysRevB76104202

Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature

range 700deg to 900degC J Geophys Res 68 6337-6343

123

Shaw HR (1972) Viscosities of magmatic silicate liquids An empirical method of

prediction Am J Sci 272 870-893

Silver LA Ihinger PD and Stolper E (1990) The influence of bulk composition on

the speciation of water in silicate glasses Contrib Mineral Petrol 104 142-162

Stevenson RJ Dingwell DB Webb SL and Bagdassarov NS (1995) The

equivalence of enthalpy and shear stress relaxation in rhyolitic obsidians and

quantification of the liquid-glass transition in volcanic processes J Volcanol

Geotherm Res 68 297-306

Stolper EM (1982a) The speciation of water in silicate melts Geochim Cosmochim

Acta 46 2609-2620

Stolper EM (1982b) Water in silicate glasses an infrared spectroscopic study Contrib

Mineral Petrol 81 1-17

Sylvester PJ (1998) Post-collisional strongly peraluminous granites Lithos 45 29-44

Tinker D Lesher CE Baxter GM Uchida T and Wang Y (2004) High-pressure

viscometry of polymerized silicate melts and limitations of the Eyring equation

Am Mineral 89 1701-1708

Withers AC and Behrens H (1999) Temperature-induced changes in the NIR spectra

of hydrous albitic and rhyolitic glasses between 300 and 100 K Phys Chem

Minerals 27 119-132

Xu Z and Zhang Y (2002) Quench rates in air water and liquid nitrogen and

inference of temperature in volcanic eruption columns Earth Planet Sci Lett 200

315-330

124

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth

Planet Sci Lett 122 373-391

Zhang Y (1999) H2O in rhyolitic glasses and melts Measurement speciation solubility

and diffusion Rev Geophys 37 493-516

Zhang Y and Behrens H (2000) H2O diffusion in rhyolitic melts and glasses Chem

Geol 169 243-262

Zhang Y Belcher R Ihinger PD Wang L Xu Z and Newman S (1997a) New

calibration of infrared measurement of dissolved water in rhyolitic glasses

Geochim Cosmochim Acta 61 3089-3100

Zhang Y Jenkins J and Xu Z (1997b) Kinetics of the reaction H2O + O hArr 2OH in

rhyolitic glasses upon cooling Geospeedometry and comparison with glass

transition Geochim Cosmochim Acta 61 2167-2173

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

Improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

ZhangY and Xu Z (2007) A long-duration experiment on hydrous species

geospeedometer and hydrous melt viscosity Geochim Cosmochim Acta 71 5226-

5232

125

CHAPTER V

CONCLUSIONS

The goal of this dissertation is to understand viscosity of natural silicate melts A

two-pronged approach is used One is to construct a general viscosity model using

available viscosity data (mostly at pressures below 05 GPa) to predict viscosity of all

natural silicate melts in all experimental temperature range at low pressures The second

is to experimentally investigate viscosity at high pressures and in the low temperature

range (high viscosity range) because such data are lacking Concerted effort on viscosity

measurements at high pressures will allow an even more general viscosity model

accounting for the effect of composition temperature and pressure

A new empirical viscosity equation for all natural and nearly natural silicate melts

at all experimentally covered temperature conditions is presented in Chapter II using the

following formulation

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

where η is viscosity in Pamiddots T is temperature in K and A B C and D are linear functions

of mole fractions of oxide components except for H2O The formulation is first applied

successfully to fit the temperature and compositional dependence of viscosity for four

binary systems Then a simpler version of the model with eight parameters is found to fit

126

the compositional and temperature dependence of the viscosity data of anhydrous natural

silicate melts better than the best model in literature A general viscosity equation with 37

parameters using this empirical formulation can fit the entire high- and low-temperature

viscosity database (1451 data points) of all ldquonaturalrdquo anhydrous and hydrous silicate

melts

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

where η is viscosity in Pamiddots T is temperature in K Xi means mole fraction of oxide

component i and Z=(XH2O)1[1+(185797T)] Al2O3ex or (Na K)2Oex mean excess oxide after

forming (Na K)AlO2 The 2σ deviation of the fit is 061 logη units This general model

can be used to calculate viscosity for modeling magma chamber processes and volcanic

eruptions It also can be used to calculate glass transition temperature for different silicate

melts

Temperature and melt composition affect melt viscosity but pressure can also

affect the viscosity of silicate melt The pressure dependence of hydrous melt viscosity in

the high viscosity range is not known Hence the pressure dependence of rhyolitic melts

in the high viscosity range has been investigated in this dissertation (Chapters III and IV)

Hydrous species reaction viscometer in piston cylinder and parallel-plate creep

viscometer in internally heated pressure vessel were used to investigate viscosity under

127

high pressure In order to use hydrous species reaction viscometer under high pressure it

is necessary to study the speciation of dissolved water in rhyolitic melt under high

pressure first

The equilibrium of reaction between two dissolved water species (H2Om and OH)

as a function of pressure (00001 094 189 and 283 GPa) temperature (624-1027 K)

and H2O concentrations (08 to 42 wt) was investigated in this study The speciation

data with total H2O content le 22 can be described by an ideal mixing model consistent

with previous results With inclusion of speciation data at higher water contents one way

to describe the speciation data is a regular solution model A speciation model was

constructed to accommodate the dependence of H2O speciation in the rhyolitic melts on

T-P-X

( )

2 m

32

3 32 2

H O OH

1000ln 18120 03832 ( 30830+02999 +00507 )+

( 74203+50262 31271 ) (30437 54527 +30464 )

K P P PT

P P X P P X

⎛= minus + minus⎜

⎝⎞

minus minus + minus ⎟⎠

where P is pressure in GPa T is temperature in K and X is mole fraction of species H2Om

or OH This formulation can be used to predict species concentrations at P le 283 GPa

total H2O content le 42 wt and temperature of 624-1027 K Furthermore it can be used

to calculate apparent equilibrium temperature which can then be used to infer viscosity

of hydrous rhyolitic melts under high pressure The results of Chapter III provide basis

for the study of Chapter IV

With the study of the speciation of dissolved water in rhyolitic melt under high

pressure viscosity of hydrous rhyolitic melts containing 08 to 4 wt water was inferred

using the hydrous species reaction viscometer at pressures up to 283 GPa Viscosity of

128

rhyolitic melts with 013 wt and 08 wt water was also measured using the parallel

plate creep viscometer at pressures up to 04 GPa but no experiment method is available

to determine viscosity of ldquodryrdquo melt at pressures gt 05 GPa Combining the data of this

study with previous data an Arrhenian viscosity model in high viscosity range is

constructed

logη = minus78470 +11472P12

⎝ ⎜

⎠ ⎟ +

minus124257 + 08080P12

⎝ ⎜

⎠ ⎟ 1minus exp minus36440 minus101893P

12

⎝ ⎜

⎠ ⎟ x

⎝ ⎜ ⎜

⎠ ⎟ ⎟ +

213531minus 21722P12

⎝ ⎜

⎠ ⎟ +

⎝ ⎜ ⎜

minus58335 + 40480P12

⎝ ⎜

⎠ ⎟ 1minus exp minus893887 minus 305499P

12

⎝ ⎜

⎠ ⎟ x

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ⎞

⎠ ⎟ ⎟ 1000

T

where P is pressure in GPa and X is mole fraction of total water content in the melt This

model can be utilized for interpolation but is not recommended for extrapolation beyond

the range of available data (Figure 46 in Chapter IV)

129

APPENDICES

130

APPENDIX A

VISCOSITY DATA OF NATURAL SILICATE MELTS

The viscosity data on the following pages are used to fit Eqn 11 in Chapter II The reference numbers of all the viscosity data

points is the same as the ones in Table 23

Table A1 Viscosity database used to fit Eqn 11

measured calculated SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O K2O P2O5 H2O T logη logη ∆

Comp wt wt wt wt wt wt wt wt wt wt wt K Pas Pas ref

1 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 1573 041 002 -039 12 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9774 916 917 001 13 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9829 894 903 009 14 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9927 866 877 011 15 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8865 137 1368 -002 16 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8923 134 1307 -033 17 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8992 1299 1247 -052 18 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9121 1222 116 -062 19 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9136 1216 1151 -065 1

10 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9187 1183 1124 -059 111 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9242 1156 1097 -059 1

131

12 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9292 1126 1075 -051 113 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9341 1104 1055 -049 114 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9409 1075 103 -045 115 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9447 1051 1016 -035 116 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9528 1017 989 -028 117 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9582 993 972 -021 118 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9595 988 968 -02 119 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9664 957 948 -009 120 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 972 935 932 -003 121 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8458 122 119 -03 122 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8511 1195 1158 -037 123 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 856 1164 1131 -033 124 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8671 1113 1076 -037 125 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8721 1091 1053 -038 126 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8773 1066 1032 -034 127 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8878 1025 991 -034 128 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8193 1215 123 015 129 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8269 1176 1182 006 130 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8342 1135 1141 006 131 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8409 1108 1106 -002 132 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8456 1084 1084 0 133 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8516 1055 1057 002 134 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8563 1035 1037 002 135 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8615 1013 1016 003 136 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 800 1238 1259 021 137 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8032 1207 1237 03 138 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8095 1188 1198 01 139 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8141 1159 1171 012 140 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8206 1136 1136 0 141 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8253 1111 1112 001 142 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8305 1086 1088 002 143 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8359 106 1063 003 1

132

44 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 841 1039 1042 003 145 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8457 1018 1023 005 146 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 7945 1233 1262 029 147 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8051 1192 1195 003 148 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8204 1102 1114 012 149 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8284 1076 1076 0 150 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8362 1034 1043 009 151 Bn3 4357 297 1018 0 0 917 2607 759 096 0 188 7617 123 1297 067 152 Bn3 4357 297 1018 0 0 917 2607 759 096 0 188 8023 1072 1083 011 153 Bn3 4357 297 1018 0 0 917 2607 759 096 0 196 7794 1157 1175 018 154 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14139 196 294 098 155 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14635 165 239 074 156 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14975 145 203 058 157 Te2 5056 235 1403 0 0 879 15 704 301 0 002 15132 138 187 049 158 Te2 5056 235 1403 0 0 879 15 704 301 0 002 1565 113 136 023 159 Te2 5056 235 1403 0 0 879 15 704 301 0 002 16144 091 091 0 160 Te2 5056 235 1403 0 0 879 15 704 301 0 002 16662 07 047 -023 161 Te2 5056 235 1403 0 0 879 15 704 301 0 002 17186 05 004 -046 162 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9763 993 1052 059 163 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9831 971 1032 061 164 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9867 957 1021 064 165 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9921 93 1006 076 166 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9972 918 993 075 167 Te2 5056 235 1403 0 0 879 15 704 301 0 002 10081 873 964 091 168 Te2 5056 235 1403 0 0 879 15 704 301 0 002 918 1285 1294 009 169 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9307 1205 1225 02 170 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9341 1186 1209 023 171 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9464 1132 1156 024 172 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9567 1075 1117 042 173 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9606 1061 1103 042 174 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9673 1038 108 042 175 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9712 1021 1068 047 1

133

76 Te2 5056 235 1403 0 0 879 15 704 301 0 012 905 127 1272 002 177 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9156 1201 1218 017 178 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9265 1177 1169 -008 179 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9374 112 1126 006 180 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9478 1067 109 023 181 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9589 1023 1054 031 182 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9684 987 1025 038 183 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8684 1249 1238 -011 184 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8785 1197 1193 -004 185 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8898 1157 1148 -009 186 Te2 5056 235 1403 0 0 879 15 704 301 0 052 899 1099 1114 015 187 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8342 1238 1258 02 188 Te2 5056 235 1403 0 0 879 15 704 301 0 088 844 1178 1216 038 189 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8555 1158 1171 013 190 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8665 1121 113 009 191 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8761 1077 1097 02 192 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8304 1239 1262 023 193 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8416 1215 1214 -001 194 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8518 1163 1174 011 195 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8621 1143 1136 -007 196 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8695 1049 111 061 197 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8828 1041 1065 024 198 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8935 995 1032 037 199 Te2 5056 235 1403 0 0 879 15 704 301 0 092 918 892 961 069 1

100 Te2 5056 235 1403 0 0 879 15 704 301 0 136 822 1251 1179 -072 1101 Te2 5056 235 1403 0 0 879 15 704 301 0 136 832 1189 1144 -045 1102 Te2 5056 235 1403 0 0 879 15 704 301 0 136 8366 1141 1128 -013 1103 Te2 5056 235 1403 0 0 879 15 704 301 0 136 8475 1112 1091 -021 1104 Te2 5056 235 1403 0 0 879 15 704 301 0 16 8255 1131 1121 -01 1105 Te2 5056 235 1403 0 0 879 15 704 301 0 16 816 1213 1153 -06 1106 Te2 5056 235 1403 0 0 879 15 704 301 0 16 847 1091 1052 -039 1107 Te2 5056 235 1403 0 0 879 15 704 301 0 227 818 1079 1046 -033 1

134

108 Te2 5056 235 1403 0 0 879 15 704 301 0 227 7827 126 1158 -102 1109 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 18155 192 15 -042 2110 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 1766 212 176 -036 2111 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 17219 233 201 -032 2112 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 16694 257 233 -024 2113 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 16174 286 266 -02 2114 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9733 1039 1004 -035 2115 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 990 997 97 -027 2116 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10051 962 94 -022 2117 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10152 938 921 -017 2118 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10268 915 9 -015 2119 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10348 897 886 -011 2120 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10464 866 866 0 2121 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 8892 1312 1206 -106 2122 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 8982 1271 1181 -09 2123 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 911 1225 1148 -077 2124 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 920 1196 1125 -071 2125 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9322 1155 1095 -06 2126 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9415 1129 1074 -055 2127 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9523 1094 1049 -045 2128 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9625 1067 1027 -04 2129 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7308 1202 1147 -055 2130 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7406 1154 1121 -033 2131 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7501 1121 1096 -025 2132 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7617 1091 1067 -024 2133 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7823 1031 1017 -014 2134 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7303 1203 1139 -064 2135 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 741 1179 111 -069 2136 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7617 1092 1057 -035 2137 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7809 104 1011 -029 2138 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6764 1234 1201 -033 2139 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6835 1197 1179 -018 2

135

140 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6914 1167 1155 -012 2141 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7026 1139 1123 -016 2142 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7176 1089 1081 -008 2143 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7279 1053 1053 0 2144 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7381 1022 1027 005 2145 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7479 1005 1003 -002 2146 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6541 1214 1183 -031 2147 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 664 1176 1152 -024 2148 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6751 1137 1118 -019 2149 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6859 109 1086 -004 2150 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 7043 1035 1035 0 2151 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 7164 996 1003 007 2152 Ph4 5882 079 1942 0 0 187 235 931 744 0 472 587 1237 1221 -016 2153 Ph4 5882 079 1942 0 0 187 235 931 744 0 472 6013 1177 1168 -009 2154 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 18277 186 142 -044 2155 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 17765 209 173 -036 2156 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 17258 232 205 -027 2157 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 16778 256 238 -018 2158 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 16285 283 273 -01 2159 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1578 312 312 0 2160 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 15317 341 35 009 2161 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9733 1196 1243 047 2162 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9818 1167 1212 045 2163 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9942 1123 117 047 2164 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9984 1114 1156 042 2165 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9992 1109 1153 044 2166 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10146 1059 1106 047 2167 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10361 1004 1046 042 2168 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1045 982 1023 041 2169 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10572 953 993 04 2170 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10658 934 973 039 2171 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10826 899 935 036 2

136

172 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1092 881 915 034 2173 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 11031 858 892 034 2174 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 11137 837 871 034 2175 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 19287 146 086 -06 2176 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 18796 164 113 -051 2177 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9511 1277 1331 054 2178 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 8792 1216 1175 -041 2179 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 8895 1178 115 -028 2180 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9099 1114 1102 -012 2181 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9309 105 1054 004 2182 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9422 1024 1029 005 2183 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9579 985 995 01 2184 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9659 96 978 018 2185 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9793 931 951 02 2186 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9893 908 93 022 2187 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8324 122 1202 -018 2188 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8362 1208 1193 -015 2189 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8371 1199 1191 -008 2190 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8426 1183 1178 -005 2191 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8472 1173 1167 -006 2192 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8582 1142 1141 -001 2193 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8698 1104 1115 011 2194 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8793 108 1093 013 2195 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8899 1049 107 021 2196 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 7944 1221 1209 -012 2197 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 7998 1201 1195 -006 2198 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8048 1186 1183 -003 2199 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8121 1166 1165 -001 2200 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8207 1137 1144 007 2201 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8286 1115 1126 011 2202 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8393 109 1101 011 2203 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8466 1066 1084 018 2

137

204 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8548 1042 1066 024 2205 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7254 1231 1238 007 2206 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 736 1193 1207 014 2207 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7436 1157 1185 028 2208 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7491 1145 117 025 2209 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7578 1119 1146 027 2210 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 769 1086 1116 03 2211 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7806 1057 1086 029 2212 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7912 1025 106 035 2213 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 8022 1001 1033 032 2214 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 6922 1223 1254 031 2215 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 7033 1189 1218 029 2216 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 713 1148 1189 041 2217 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 7229 1121 1159 038 2218 Tr6 6445 05 1671 0 0 292 536 67 337 0 492 6211 123 13 07 2219 Tr6 6445 05 1671 0 0 292 536 67 337 0 492 6308 1189 1264 075 2220 H3 786 0 125 0 0 0 0 46 42 0 002 14532 679 736 057 3221 H3 786 0 125 0 0 0 0 46 42 0 002 11549 1102 1117 015 4222 H3 786 0 125 0 0 0 0 46 42 0 002 11782 1063 108 017 4223 H3 786 0 125 0 0 0 0 46 42 0 002 11989 1028 1048 02 4224 H3 786 0 125 0 0 0 0 46 42 0 002 1212 1016 1029 013 4225 H3 786 0 125 0 0 0 0 46 42 0 002 16702 49 548 058 4226 H3 786 0 125 0 0 0 0 46 42 0 002 17192 453 512 059 4227 H3 786 0 125 0 0 0 0 46 42 0 002 17682 415 478 063 4228 H3 786 0 125 0 0 0 0 46 42 0 002 18172 381 446 065 4229 H3 786 0 125 0 0 0 0 46 42 0 002 18672 358 416 058 4230 H3 786 0 125 0 0 0 0 46 42 0 002 19162 324 387 063 4231 H5 741 0 117 0 0 0 0 9 44 0 002 94765 974 1007 033 4232 H5 741 0 117 0 0 0 0 9 44 0 002 91965 1045 1063 018 4233 H5 741 0 117 0 0 0 0 9 44 0 002 90365 107 1097 027 4234 H5 741 0 117 0 0 0 0 9 44 0 002 88345 1135 1142 007 4235 H5 741 0 117 0 0 0 0 9 44 0 002 12132 601 639 038 4

138

236 H5 741 0 117 0 0 0 0 9 44 0 002 11432 684 716 032 4237 H5 741 0 117 0 0 0 0 9 44 0 002 10732 784 804 02 4238 H5 741 0 117 0 0 0 0 9 44 0 002 12932 533 564 031 4239 H5 741 0 117 0 0 0 0 9 44 0 002 17682 253 268 015 4240 H5 741 0 117 0 0 0 0 9 44 0 002 17192 272 29 018 4241 H5 741 0 117 0 0 0 0 9 44 0 002 16702 291 314 023 4242 H5 741 0 117 0 0 0 0 9 44 0 002 16212 314 34 026 4243 H5 741 0 117 0 0 0 0 9 44 0 002 15712 338 367 029 4244 H5 741 0 117 0 0 0 0 9 44 0 002 15222 361 396 035 4245 H5 741 0 117 0 0 0 0 9 44 0 002 14732 387 427 04 4246 H7 746 0 118 0 0 0 0 44 92 0 002 96935 1016 1086 07 4247 H7 746 0 118 0 0 0 0 44 92 0 002 94575 1065 1135 07 4248 H7 746 0 118 0 0 0 0 44 92 0 002 92725 1115 1175 06 4249 H7 746 0 118 0 0 0 0 44 92 0 002 18672 254 248 -006 4250 H7 746 0 118 0 0 0 0 44 92 0 002 18172 272 271 -001 4251 H7 746 0 118 0 0 0 0 44 92 0 002 17682 292 295 003 4252 H7 746 0 118 0 0 0 0 44 92 0 002 17192 314 32 006 4253 H7 746 0 118 0 0 0 0 44 92 0 002 16702 336 347 011 4254 H7 746 0 118 0 0 0 0 44 92 0 002 16212 357 376 019 4255 H7 746 0 118 0 0 0 0 44 92 0 002 15712 382 407 025 4256 H2 779 0 1189 0 0 0 0 453 417 0 002 12424 977 978 001 5257 H2 779 0 1189 0 0 0 0 453 417 0 002 11765 109 1076 -014 5258 H2 779 0 1189 0 0 0 0 453 417 0 002 11174 115 1173 023 5259 H2 779 0 1189 0 0 0 0 453 417 0 002 19652 298 353 055 5260 H1 7612 0 1353 0 0 0 0 465 568 0 003 16732 491 502 011 6261 H1 7612 0 1353 0 0 0 0 465 568 0 003 16732 492 502 01 6262 H1 7612 0 1353 0 0 0 0 465 568 0 105 14732 421 505 084 6263 H1 7612 0 1353 0 0 0 0 465 568 0 105 15732 377 435 058 6264 H1 7612 0 1353 0 0 0 0 465 568 0 155 14732 385 437 052 6265 H1 7612 0 1353 0 0 0 0 465 568 0 155 15732 345 371 026 6266 H1 7612 0 1353 0 0 0 0 465 568 0 155 16732 298 308 01 6267 H1 7612 0 1353 0 0 0 0 465 568 0 209 14732 361 377 016 6

139

268 H1 7612 0 1353 0 0 0 0 465 568 0 209 15732 32 313 -007 6269 H1 7612 0 1353 0 0 0 0 465 568 0 258 15732 307 272 -035 6270 H1 7612 0 1353 0 0 0 0 465 568 0 322 14732 327 288 -039 6271 H1 7612 0 1353 0 0 0 0 465 568 0 322 15732 288 232 -056 6272 H1 7612 0 1353 0 0 0 0 465 568 0 375 15732 254 208 -046 6273 H1 7612 0 1353 0 0 0 0 465 568 0 5 12732 337 332 -005 6274 H1 7612 0 1353 0 0 0 0 465 568 0 5 14232 275 246 -029 6275 H1 7612 0 1353 0 0 0 0 465 568 0 5 11732 395 398 003 6276 H1 7612 0 1353 0 0 0 0 465 568 0 59 12732 318 307 -011 6277 H1 7612 0 1353 0 0 0 0 465 568 0 59 11732 371 37 -001 6278 H1 7612 0 1353 0 0 0 0 465 568 0 59 11732 363 37 007 6279 H1 7612 0 1353 0 0 0 0 465 568 0 59 10732 425 441 016 6280 H1 7612 0 1353 0 0 0 0 465 568 0 703 10732 403 414 011 6281 H1 7612 0 1353 0 0 0 0 465 568 0 703 11732 346 346 0 6282 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 368 394 026 6283 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 367 394 027 6284 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 372 394 022 6285 H1 7612 0 1353 0 0 0 0 465 568 0 821 11732 313 33 017 6286 H1 7612 0 1353 0 0 0 0 465 568 0 821 11732 312 33 018 6287 H3 786 0 125 0 0 0 0 46 42 0 041 97675 1076 112 044 7288 H3 786 0 125 0 0 0 0 46 42 0 042 92185 118 1184 004 7289 H3 786 0 125 0 0 0 0 46 42 0 042 96045 114 1134 -006 7290 H3 786 0 125 0 0 0 0 46 42 0 095 93975 942 992 05 7291 H3 786 0 125 0 0 0 0 46 42 0 096 86685 1098 1098 0 7292 H3 786 0 125 0 0 0 0 46 42 0 096 88455 1045 1068 023 7293 H3 786 0 125 0 0 0 0 46 42 0 099 88425 1048 1062 014 7294 H3 786 0 125 0 0 0 0 46 42 0 099 92275 968 1005 037 7295 H3 786 0 125 0 0 0 0 46 42 0 128 88565 983 1004 021 7296 H3 786 0 125 0 0 0 0 46 42 0 13 89455 96 986 026 7297 H3 786 0 125 0 0 0 0 46 42 0 131 87595 988 1015 027 7298 H3 786 0 125 0 0 0 0 46 42 0 132 85605 1038 1048 01 7299 H3 786 0 125 0 0 0 0 46 42 0 133 82255 1096 1112 016 7

140

300 H3 786 0 125 0 0 0 0 46 42 0 135 80155 1139 1154 015 7301 H3 786 0 125 0 0 0 0 46 42 0 137 84055 1058 1069 011 7302 H3 786 0 125 0 0 0 0 46 42 0 18 84975 969 987 018 7303 H3 786 0 125 0 0 0 0 46 42 0 185 78015 113 1127 -003 7304 H3 786 0 125 0 0 0 0 46 42 0 188 81975 1009 1035 026 7305 H3 786 0 125 0 0 0 0 46 42 0 225 81845 962 992 03 7306 H3 786 0 125 0 0 0 0 46 42 0 229 77505 1049 1082 033 7307 H3 786 0 125 0 0 0 0 46 42 0 261 82185 912 946 034 7308 H3 786 0 125 0 0 0 0 46 42 0 335 78825 993 943 -05 7309 A4 624 055 2001 003 002 322 908 352 093 012 0 9962 1276 1295 019 8310 A4 624 055 2001 003 002 322 908 352 093 012 0 10079 1232 1243 011 8311 A4 624 055 2001 003 002 322 908 352 093 012 0 10114 1218 1229 011 8312 A4 624 055 2001 003 002 322 908 352 093 012 0 10185 1195 12 005 8313 A4 624 055 2001 003 002 322 908 352 093 012 0 10249 1174 1176 002 8314 A4 624 055 2001 003 002 322 908 352 093 012 0 10335 1141 1145 004 8315 A4 624 055 2001 003 002 322 908 352 093 012 0 10437 1109 1111 002 8316 A4 624 055 2001 003 002 322 908 352 093 012 0 10538 1076 1079 003 8317 A4 624 055 2001 003 002 322 908 352 093 012 0 10589 1057 1064 007 8318 A4 624 055 2001 003 002 322 908 352 093 012 0 10689 1033 1035 002 8319 A4 624 055 2001 003 002 322 908 352 093 012 0 1073 1019 1024 005 8320 A4 624 055 2001 003 002 322 908 352 093 012 0 10846 987 993 006 8321 A4 624 055 2001 003 002 322 908 352 093 012 0 10941 96 969 009 8322 A4 624 055 2001 003 002 322 908 352 093 012 0 11077 93 936 006 8323 A4 624 055 2001 003 002 322 908 352 093 012 0 11138 912 922 01 8324 A4 624 055 2001 003 002 322 908 352 093 012 0 11238 892 9 008 8325 A4 624 055 2001 003 002 322 908 352 093 012 0 15137 335 367 032 8326 A4 624 055 2001 003 002 322 908 352 093 012 0 15366 317 346 029 8327 A4 624 055 2001 003 002 322 908 352 093 012 0 15755 29 312 022 8328 A4 624 055 2001 003 002 322 908 352 093 012 0 16011 273 29 017 8329 A4 624 055 2001 003 002 322 908 352 093 012 0 16224 259 273 014 8330 A4 624 055 2001 003 002 322 908 352 093 012 0 16504 242 25 008 8331 A4 624 055 2001 003 002 322 908 352 093 012 0 16731 228 233 005 8

141

332 A4 624 055 2001 003 002 322 908 352 093 012 0 16986 215 214 -001 8333 A4 624 055 2001 003 002 322 908 352 093 012 0 17286 197 192 -005 8334 A4 624 055 2001 003 002 322 908 352 093 012 0 17531 185 175 -01 8335 A4 624 055 2001 003 002 322 908 352 093 012 0 17762 174 159 -015 8336 A4 624 055 2001 003 002 322 908 352 093 012 0 18017 162 142 -02 8337 A4 624 055 2001 003 002 322 908 352 093 012 0 18039 16 141 -019 8338 A4 624 055 2001 003 002 322 908 352 093 012 0 18295 148 125 -023 8339 A4 624 055 2001 003 002 322 908 352 093 012 0 18522 139 11 -029 8340 A4 624 055 2001 003 002 322 908 352 093 012 0 18746 128 097 -031 8341 A4 624 055 2001 003 002 322 908 352 093 012 0 19041 116 079 -037 8342 A4 624 055 2001 003 002 322 908 352 093 012 0 19294 105 065 -04 8343 A4 624 055 2001 003 002 322 908 352 093 012 0 1952 096 052 -044 8344 A4 624 055 2001 003 002 322 908 352 093 012 0 19779 086 038 -048 8345 A4 624 055 2001 003 002 322 908 352 093 012 027 9357 127 1279 009 8346 A4 624 055 2001 003 002 322 908 352 093 012 027 9461 1232 1242 01 8347 A4 624 055 2001 003 002 322 908 352 093 012 027 9654 1164 1178 014 8348 A4 624 055 2001 003 002 322 908 352 093 012 027 9824 1109 1125 016 8349 A4 624 055 2001 003 002 322 908 352 093 012 027 9989 1054 1077 023 8350 A4 624 055 2001 003 002 322 908 352 093 012 027 10108 1023 1045 022 8351 A4 624 055 2001 003 002 322 908 352 093 012 027 10218 993 1016 023 8352 A4 624 055 2001 003 002 322 908 352 093 012 027 10416 946 967 021 8353 A4 624 055 2001 003 002 322 908 352 093 012 027 10614 903 921 018 8354 A4 624 055 2001 003 002 322 908 352 093 012 027 10813 856 878 022 8355 A4 624 055 2001 003 002 322 908 352 093 012 1 8645 1219 118 -039 8356 A4 624 055 2001 003 002 322 908 352 093 012 1 8776 1173 1147 -026 8357 A4 624 055 2001 003 002 322 908 352 093 012 1 8984 1103 1097 -006 8358 A4 624 055 2001 003 002 322 908 352 093 012 1 9114 1062 1066 004 8359 A4 624 055 2001 003 002 322 908 352 093 012 1 9223 1033 1041 008 8360 A4 624 055 2001 003 002 322 908 352 093 012 1 9423 978 996 018 8361 A4 624 055 2001 003 002 322 908 352 093 012 1 9632 928 951 023 8362 A4 624 055 2001 003 002 322 908 352 093 012 1 9861 874 903 029 8363 A4 624 055 2001 003 002 322 908 352 093 012 2 7937 1187 1166 -021 8

142

364 A4 624 055 2001 003 002 322 908 352 093 012 2 804 1148 1139 -009 8365 A4 624 055 2001 003 002 322 908 352 093 012 2 8245 1072 1088 016 8366 A4 624 055 2001 003 002 322 908 352 093 012 2 8251 1075 1087 012 8367 A4 624 055 2001 003 002 322 908 352 093 012 2 8252 1073 1087 014 8368 A4 624 055 2001 003 002 322 908 352 093 012 2 8255 1074 1086 012 8369 A4 624 055 2001 003 002 322 908 352 093 012 2 8257 107 1085 015 8370 A4 624 055 2001 003 002 322 908 352 093 012 2 8461 1008 1038 03 8371 A4 624 055 2001 003 002 322 908 352 093 012 2 8664 949 992 043 8372 A4 624 055 2001 003 002 322 908 352 093 012 266 7215 1342 1288 -054 8373 A4 624 055 2001 003 002 322 908 352 093 012 266 7426 1266 1223 -043 8374 A4 624 055 2001 003 002 322 908 352 093 012 266 7537 122 119 -03 8375 A4 624 055 2001 003 002 322 908 352 093 012 266 7651 117 1158 -012 8376 A4 624 055 2001 003 002 322 908 352 093 012 266 7867 109 11 01 8377 A4 624 055 2001 003 002 322 908 352 093 012 266 7992 1049 1068 019 8378 A4 624 055 2001 003 002 322 908 352 093 012 266 823 975 1011 036 8379 A4 624 055 2001 003 002 322 908 352 093 012 266 8438 923 964 041 8380 A4 624 055 2001 003 002 322 908 352 093 012 266 864 875 921 046 8381 A4 624 055 2001 003 002 322 908 352 093 012 346 723 1249 1195 -054 8382 A4 624 055 2001 003 002 322 908 352 093 012 346 7331 121 1165 -045 8383 A4 624 055 2001 003 002 322 908 352 093 012 346 7445 116 1132 -028 8384 A4 624 055 2001 003 002 322 908 352 093 012 346 7552 1121 1102 -019 8385 A4 624 055 2001 003 002 322 908 352 093 012 346 7644 1078 1077 -001 8386 A4 624 055 2001 003 002 322 908 352 093 012 346 7911 995 1009 014 8387 A4 624 055 2001 003 002 322 908 352 093 012 346 7978 976 993 017 8388 A4 624 055 2001 003 002 322 908 352 093 012 346 8123 942 959 017 8389 A4 624 055 2001 003 002 322 908 352 093 012 346 8348 875 909 034 8390 R6 7379 005 1511 042 005 007 097 471 402 001 88 97315 511 469 -042 9391 R6 7379 005 1511 042 005 007 097 471 402 001 88 10732 414 392 -022 9392 R6 7379 005 1511 042 005 007 097 471 402 001 88 11732 345 327 -018 9393 R14 7692 01 1292 089 005 011 086 389 425 003 008 12212 864 885 021 10394 R14 7692 01 1292 089 005 011 086 389 425 003 008 12062 881 906 025 10395 R14 7692 01 1292 089 005 011 086 389 425 003 008 11792 92 945 025 10

143

396 R14 7692 01 1292 089 005 011 086 389 425 003 008 11512 965 987 022 10397 R14 7692 01 1292 089 005 011 086 389 425 003 008 11382 982 1007 025 10398 R15 7699 003 1302 071 01 004 048 431 431 0 149 72315 1318 1326 008 10399 R15 7699 003 1302 071 01 004 048 431 431 0 149 73715 1285 1286 001 10400 R15 7699 003 1302 071 01 004 048 431 431 0 149 74815 1245 1256 011 10401 R15 7699 003 1302 071 01 004 048 431 431 0 149 75815 1214 123 016 10402 R15 7699 003 1302 071 01 004 048 431 431 0 149 77415 1191 1189 -002 10403 R15 7699 003 1302 071 01 004 048 431 431 0 149 78415 1145 1165 02 10404 R15 7699 003 1302 071 01 004 048 431 431 0 149 79415 1155 1141 -014 10405 R15 7699 003 1302 071 01 004 048 431 431 0 149 80415 1092 1119 027 10406 R15 7699 003 1302 071 01 004 048 431 431 0 149 81415 1105 1097 -008 10407 R15 7699 003 1302 071 01 004 048 431 431 0 149 82215 106 108 02 10408 R15 7699 003 1302 071 01 004 048 431 431 0 149 83215 1058 1059 001 10409 R15 7699 003 1302 071 01 004 048 431 431 0 149 84215 1039 1039 0 10410 R15 7699 003 1302 071 01 004 048 431 431 0 149 85115 1026 1022 -004 10411 R15 7699 003 1302 071 01 004 048 431 431 0 149 86215 101 1001 -009 10412 R17 7701 003 1314 071 01 004 051 428 418 0 001 12332 964 922 -042 10413 R17 7701 003 1314 071 01 004 051 428 418 0 001 12052 993 963 -03 10414 R17 7701 003 1314 071 01 004 051 428 418 0 001 11582 1069 1038 -031 10415 R17 7701 003 1314 071 01 004 051 428 418 0 001 11352 112 1077 -043 10416 R17 7701 003 1314 071 01 004 051 428 418 0 001 11112 1127 1119 -008 10417 R17 7701 003 1314 071 01 004 051 428 418 0 001 10882 1195 1162 -033 10418 R17 7701 003 1314 071 01 004 051 428 418 0 001 10642 1238 1209 -029 10419 R19 7708 009 1244 13 002 002 036 449 42 0 004 12312 884 869 -015 10420 R19 7708 009 1244 13 002 002 036 449 42 0 004 12067 916 902 -014 10421 R19 7708 009 1244 13 002 002 036 449 42 0 004 11792 951 942 -009 10422 R19 7708 009 1244 13 002 002 036 449 42 0 004 11612 971 968 -003 10423 R19 7708 009 1244 13 002 002 036 449 42 0 004 11422 998 997 -001 10424 R21 7717 008 124 13 002 001 035 45 42 0 012 10702 1016 1064 048 10425 R21 7717 008 124 13 002 001 035 45 42 0 012 10922 1008 103 022 10426 R21 7717 008 124 13 002 001 035 45 42 0 012 11002 993 1018 025 10427 R21 7717 008 124 13 002 001 035 45 42 0 012 11292 953 976 023 10

144

428 R21 7717 008 124 13 002 001 035 45 42 0 012 11582 896 935 039 10429 R21 7717 008 124 13 002 001 035 45 42 0 012 11872 857 896 039 10430 R26 7748 017 122 13 005 017 114 39 36 0 013 11882 85 872 022 10431 R26 7748 017 122 13 005 017 114 39 36 0 013 11522 91 923 013 10432 R26 7748 017 122 13 005 017 114 39 36 0 013 11272 951 96 009 10433 R26 7748 017 122 13 005 017 114 39 36 0 013 10932 1005 1013 008 10434 R26 7748 017 122 13 005 017 114 39 36 0 013 10932 1025 1013 -012 10435 R26 7748 017 122 13 005 017 114 39 36 0 013 10612 1062 1065 003 10436 R27 7753 017 1217 13 005 017 113 389 36 0 004 11342 1007 996 -011 10437 R27 7753 017 1217 13 005 017 113 389 36 0 004 11522 981 967 -014 10438 R27 7753 017 1217 13 005 017 113 389 36 0 004 11592 962 956 -006 10439 R27 7753 017 1217 13 005 017 113 389 36 0 004 11782 934 926 -008 10440 R27 7753 017 1217 13 005 017 113 389 36 0 004 11872 909 912 003 10441 R27 7753 017 1217 13 005 017 113 389 36 0 004 11962 904 899 -005 10442 R27 7753 017 1217 13 005 017 113 389 36 0 004 12247 862 858 -004 10443 R28 7788 007 1273 076 004 006 05 393 403 001 002 11852 1012 998 -014 10444 R28 7788 007 1273 076 004 006 05 393 403 001 002 12082 979 963 -016 10445 R31 78 009 1215 054 007 006 05 408 448 002 006 12382 866 895 029 10446 R31 78 009 1215 054 007 006 05 408 448 002 006 12232 889 915 026 10447 R31 78 009 1215 054 007 006 05 408 448 002 006 12042 906 942 036 10448 R31 78 009 1215 054 007 006 05 408 448 002 006 11852 948 969 021 10449 R31 78 009 1215 054 007 006 05 408 448 002 006 11712 951 99 039 10450 R31 78 009 1215 054 007 006 05 408 448 002 006 11657 969 998 029 10451 R31 78 009 1215 054 007 006 05 408 448 002 006 11369 1004 1042 038 10452 R31 78 009 1215 054 007 006 05 408 448 002 006 11199 1029 1069 04 10453 R31 78 009 1215 054 007 006 05 408 448 002 006 10778 1089 114 051 10454 R31 78 009 1215 054 007 006 05 408 448 002 006 10403 1165 1207 042 10455 R32 78 009 1215 054 007 007 05 408 448 0 013 11712 92 95 03 10456 R32 78 009 1215 054 007 007 05 408 448 0 013 11202 999 1022 023 10457 R32 78 009 1215 054 007 007 05 408 448 0 013 10782 1049 1084 035 10458 R32 78 009 1215 054 007 007 05 408 448 0 013 10242 1154 117 016 10459 R32 78 009 1215 054 007 007 05 408 448 0 013 99215 12 1224 024 10

145

460 A3 6117 084 1729 539 0 335 583 385 139 0 002 9811 1133 1117 -016 11461 A3 6117 084 1729 539 0 335 583 385 139 0 002 9922 1083 1089 006 11462 A3 6117 084 1729 539 0 335 583 385 139 0 002 10118 1025 1042 017 11463 A3 6117 084 1729 539 0 335 583 385 139 0 002 10255 99 1012 022 11464 A3 6117 084 1729 539 0 335 583 385 139 0 002 10368 967 987 02 11465 A3 6117 084 1729 539 0 335 583 385 139 0 002 1670 219 23 011 11466 A3 6117 084 1729 539 0 335 583 385 139 0 002 1719 197 196 -001 11467 A3 6117 084 1729 539 0 335 583 385 139 0 002 1768 174 164 -01 11468 A3 6117 084 1729 539 0 335 583 385 139 0 002 1818 152 133 -019 11469 A3 6117 084 1729 539 0 335 583 385 139 0 002 1867 133 104 -029 11470 A3 6117 084 1729 539 0 335 583 385 139 0 002 9393 1266 1235 -031 11471 A3 6117 084 1729 539 0 335 583 385 139 0 002 9506 123 1201 -029 11472 A3 6117 084 1729 539 0 335 583 385 139 0 002 9617 1185 1169 -016 11473 A3 6117 084 1729 539 0 335 583 385 139 0 002 9718 1164 1141 -023 11474 R30 779 007 1205 076 0 005 052 401 406 0 0 1670 479 473 -006 11475 R30 779 007 1205 076 0 005 052 401 406 0 0 1719 441 438 -003 11476 R30 779 007 1205 076 0 005 052 401 406 0 0 1768 409 404 -005 11477 R30 779 007 1205 076 0 005 052 401 406 0 0 1817 381 373 -008 11478 R30 779 007 1205 076 0 005 052 401 406 0 0 1867 35 343 -007 11479 R30 779 007 1205 076 0 005 052 401 406 0 0 1051 121 1259 049 11480 R30 779 007 1205 076 0 005 052 401 406 0 0 10706 1192 1217 025 11481 R30 779 007 1205 076 0 005 052 401 406 0 0 10813 1181 1194 013 11482 R30 779 007 1205 076 0 005 052 401 406 0 0 11006 1134 1156 022 11483 R30 779 007 1205 076 0 005 052 401 406 0 0 10984 1127 116 033 11484 R30 779 007 1205 076 0 005 052 401 406 0 0 11111 1105 1136 031 11485 R30 779 007 1205 076 0 005 052 401 406 0 0 11269 1089 1106 017 11486 R30 779 007 1205 076 0 005 052 401 406 0 0 11272 1073 1106 033 11487 R30 779 007 1205 076 0 005 052 401 406 0 0 11674 1019 1035 016 11488 R30 779 007 1205 076 0 005 052 401 406 0 0 11935 978 992 014 11489 R30 779 007 1205 076 0 005 052 401 406 0 0 10969 1137 1163 026 11490 R30 779 007 1205 076 0 005 052 401 406 0 0 10976 1134 1162 028 11491 R30 779 007 1205 076 0 005 052 401 406 0 0 11068 1118 1144 026 11

146

492 R30 779 007 1205 076 0 005 052 401 406 0 0 11203 1092 1118 026 11493 R30 779 007 1205 076 0 005 052 401 406 0 0 11261 1081 1108 027 11494 R30 779 007 1205 076 0 005 052 401 406 0 0 11305 1077 1099 022 11495 R30 779 007 1205 076 0 005 052 401 406 0 0 11345 1066 1092 026 11496 R30 779 007 1205 076 0 005 052 401 406 0 0 11347 1063 1092 029 11497 R30 779 007 1205 076 0 005 052 401 406 0 0 11469 1042 107 028 11498 R30 779 007 1205 076 0 005 052 401 406 0 0 11551 1031 1056 025 11499 R30 779 007 1205 076 0 005 052 401 406 0 0 11563 103 1054 024 11500 R30 779 007 1205 076 0 005 052 401 406 0 0 11671 1015 1035 02 11501 R30 779 007 1205 076 0 005 052 401 406 0 0 11771 999 1018 019 11502 R30 779 007 1205 076 0 005 052 401 406 0 0 11941 973 991 018 11503 R30 779 007 1205 076 0 005 052 401 406 0 0 12133 936 961 025 11504 R30 779 007 1205 076 0 005 052 401 406 0 0 10983 1156 116 004 11505 R30 779 007 1205 076 0 005 052 401 406 0 0 11106 1137 1137 0 11506 R30 779 007 1205 076 0 005 052 401 406 0 0 11203 1121 1118 -003 11507 R30 779 007 1205 076 0 005 052 401 406 0 0 11344 1093 1092 -001 11508 R30 779 007 1205 076 0 005 052 401 406 0 0 11513 1065 1062 -003 11509 R30 779 007 1205 076 0 005 052 401 406 0 0 11661 1036 1037 001 11510 R30 779 007 1205 076 0 005 052 401 406 0 0 11757 1018 1021 003 11511 R30 779 007 1205 076 0 005 052 401 406 0 0 11902 995 997 002 11512 R30 779 007 1205 076 0 005 052 401 406 0 0 12045 974 974 0 11513 R30 779 007 1205 076 0 005 052 401 406 0 0 12191 954 952 -002 11514 R30 779 007 1205 076 0 005 052 401 406 0 0 12308 936 934 -002 11515 R30 779 007 1205 076 0 005 052 401 406 0 0 988 1377 1408 031 11516 R30 779 007 1205 076 0 005 052 401 406 0 0 1063 1249 1233 -016 11517 R30 779 007 1205 076 0 005 052 401 406 0 0 1068 1226 1222 -004 11518 R30 779 007 1205 076 0 005 052 401 406 0 0 1091 1187 1175 -012 11519 R30 779 007 1205 076 0 005 052 401 406 0 0 1094 1151 1169 018 11520 R30 779 007 1205 076 0 005 052 401 406 0 0 1128 1102 1104 002 11521 R30 779 007 1205 076 0 005 052 401 406 0 0 1129 1102 1102 0 11522 R30 779 007 1205 076 0 005 052 401 406 0 0 1131 1092 1099 007 11523 R30 779 007 1205 076 0 005 052 401 406 0 0 1135 1087 1091 004 11

147

524 R30 779 007 1205 076 0 005 052 401 406 0 0 1136 109 1089 -001 11525 R30 779 007 1205 076 0 005 052 401 406 0 0 1138 1084 1086 002 11526 R30 779 007 1205 076 0 005 052 401 406 0 0 1157 1062 1052 -01 11527 R30 779 007 1205 076 0 005 052 401 406 0 0 1186 1007 1004 -003 11528 R30 779 007 1205 076 0 005 052 401 406 0 0 1219 955 952 -003 11529 R30 779 007 1205 076 0 005 052 401 406 0 0 1221 957 949 -008 11530 R30 779 007 1205 076 0 005 052 401 406 0 0 1253 919 902 -017 11531 R30 779 007 1205 076 0 005 052 401 406 0 0 920 1508 1601 093 11532 R30 779 007 1205 076 0 005 052 401 406 0 0 1916 322 315 -007 11533 R20 7715 009 1282 056 007 007 052 411 461 001 012 12313 868 874 006 12534 R20 7715 009 1282 056 007 007 052 411 461 001 012 1219 889 89 001 12535 R20 7715 009 1282 056 007 007 052 411 461 001 012 1201 912 913 001 12536 R20 7715 009 1282 056 007 007 052 411 461 001 012 11765 947 946 -001 12537 R20 7715 009 1282 056 007 007 052 411 461 001 012 11493 991 983 -008 12538 R22 7718 009 1291 061 007 007 051 405 452 001 01 12382 866 874 008 12539 R22 7718 009 1291 061 007 007 051 405 452 001 01 12232 889 893 004 12540 R22 7718 009 1291 061 007 007 051 405 452 001 01 12042 906 919 013 12541 R22 7718 009 1291 061 007 007 051 405 452 001 01 11852 948 944 -004 12542 R22 7718 009 1291 061 007 007 051 405 452 001 01 11662 969 971 002 12543 R22 7718 009 1291 061 007 007 051 405 452 001 01 11372 1004 1012 008 12544 R29 7788 016 1203 119 005 005 106 364 388 001 011 11882 888 897 009 12545 R29 7788 016 1203 119 005 005 106 364 388 001 011 11782 913 911 -002 12546 R29 7788 016 1203 119 005 005 106 364 388 001 011 11642 931 931 0 12547 R29 7788 016 1203 119 005 005 106 364 388 001 011 11532 954 947 -007 12548 R29 7788 016 1203 119 005 005 106 364 388 001 011 11488 948 953 005 12549 R29 7788 016 1203 119 005 005 106 364 388 001 011 11412 975 965 -01 12550 R29 7788 016 1203 119 005 005 106 364 388 001 011 11212 1003 995 -008 12551 R29 7788 016 1203 119 005 005 106 364 388 001 011 11162 1021 1003 -018 12552 R29 7788 016 1203 119 005 005 106 364 388 001 011 10922 105 104 -01 12553 R29 7788 016 1203 119 005 005 106 364 388 001 011 10742 1073 107 -003 12554 R10 7638 006 1159 103 005 036 325 244 466 0 002 10482 1161 1168 007 13555 R10 7638 006 1159 103 005 036 325 244 466 0 002 10732 1101 1109 008 13

148

556 R10 7638 006 1159 103 005 036 325 244 466 0 002 10982 1048 1054 006 13557 R10 7638 006 1159 103 005 036 325 244 466 0 002 11232 1002 1003 001 13558 R10 7638 006 1159 103 005 036 325 244 466 0 002 11482 957 955 -002 13559 R10 7638 006 1159 103 005 036 325 244 466 0 002 10732 11 1109 009 13560 R10 7638 006 1159 103 005 036 325 244 466 0 002 11232 997 1003 006 13561 R10 7638 006 1159 103 005 036 325 244 466 0 002 11732 912 91 -002 13562 R10 7638 006 1159 103 005 036 325 244 466 0 002 11982 875 868 -007 13563 R11 7657 006 1165 104 007 036 323 246 462 0 017 99815 1165 1158 -007 13564 R11 7657 006 1165 104 007 036 323 246 462 0 017 10232 1091 1107 016 13565 R11 7657 006 1165 104 007 036 323 246 462 0 017 10232 1094 1107 013 13566 R11 7657 006 1165 104 007 036 323 246 462 0 017 10482 1036 1059 023 13567 R11 7657 006 1165 104 007 036 323 246 462 0 017 10732 987 1012 025 13568 R11 7657 006 1165 104 007 036 323 246 462 0 017 10982 942 968 026 13569 R11 7657 006 1165 104 007 036 323 246 462 0 017 11232 906 926 02 13570 R16 77 006 1177 1 006 036 329 248 468 0 055 94815 1146 1069 -077 13571 R16 77 006 1177 1 006 036 329 248 468 0 055 97315 1085 1029 -056 13572 R16 77 006 1177 1 006 036 329 248 468 0 055 97315 1088 1029 -059 13573 R16 77 006 1177 1 006 036 329 248 468 0 055 99815 105 99 -06 13574 R16 77 006 1177 1 006 036 329 248 468 0 055 10232 996 952 -044 13575 R16 77 006 1177 1 006 036 329 248 468 0 055 10232 994 952 -042 13576 R16 77 006 1177 1 006 036 329 248 468 0 055 10732 905 88 -025 13577 R18 7707 006 1167 099 007 035 328 242 462 0 027 97315 1154 115 -004 13578 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1128 1103 -025 13579 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1123 1103 -02 13580 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1057 1058 001 13581 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1083 1058 -025 13582 R18 7707 006 1167 099 007 035 328 242 462 0 027 10482 1002 1014 012 13583 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 957 972 015 13584 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 981 972 -009 13585 R18 7707 006 1167 099 007 035 328 242 462 0 027 10982 937 931 -006 13586 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1151 1103 -048 13587 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1083 1058 -025 13

149

588 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1089 1058 -031 13589 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 984 972 -012 13590 R23 7727 003 1175 105 005 036 331 243 473 0 058 97315 1071 102 -051 13591 R23 7727 003 1175 105 005 036 331 243 473 0 058 99815 1029 982 -047 13592 R23 7727 003 1175 105 005 036 331 243 473 0 058 10232 986 944 -042 13593 R23 7727 003 1175 105 005 036 331 243 473 0 058 10482 943 908 -035 13594 R23 7727 003 1175 105 005 036 331 243 473 0 058 10732 902 873 -029 13595 R23 7727 003 1175 105 005 036 331 243 473 0 058 10982 866 838 -028 13596 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1016 1014 -002 13597 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1042 1014 -028 13598 R24 7738 005 117 103 005 036 324 244 48 0 037 10482 969 974 005 13599 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 932 934 002 13600 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 947 934 -013 13601 R24 7738 005 117 103 005 036 324 244 48 0 037 10982 896 896 0 13602 R24 7738 005 117 103 005 036 324 244 48 0 037 11232 875 859 -016 13603 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1014 1014 0 13604 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1034 1014 -02 13605 R24 7738 005 117 103 005 036 324 244 48 0 037 10482 974 974 0 13606 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 935 934 -001 13607 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 951 934 -017 13608 R24 7738 005 117 103 005 036 324 244 48 0 037 10982 903 896 -007 13609 R24 7738 005 117 103 005 036 324 244 48 0 037 11232 879 859 -02 13610 R25 7746 005 1164 104 007 035 323 245 47 0 031 99815 1095 1082 -013 13611 R25 7746 005 1164 104 007 035 323 245 47 0 031 10232 1044 1039 -005 13612 R25 7746 005 1164 104 007 035 323 245 47 0 031 10482 997 997 0 13613 R25 7746 005 1164 104 007 035 323 245 47 0 031 10732 953 956 003 13614 R25 7746 005 1164 104 007 035 323 245 47 0 031 10982 912 916 004 13615 R25 7746 005 1164 104 007 035 323 245 47 0 031 11232 882 878 -004 13616 R25 7746 005 1164 104 007 035 323 245 47 0 031 94815 1244 1173 -071 13617 R25 7746 005 1164 104 007 035 323 245 47 0 031 97315 117 1127 -043 13618 R25 7746 005 1164 104 007 035 323 245 47 0 031 99815 1131 1082 -049 13619 R9 7603 006 1148 105 006 036 321 242 46 0 0 10732 1148 1135 -013 13

150

620 R9 7603 006 1148 105 006 036 321 242 46 0 0 10982 1086 1076 -01 13621 R9 7603 006 1148 105 006 036 321 242 46 0 0 11232 104 1022 -018 13622 R9 7603 006 1148 105 006 036 321 242 46 0 0 11482 991 972 -019 13623 R9 7603 006 1148 105 006 036 321 242 46 0 0 11732 946 926 -02 13624 R9 7603 006 1148 105 006 036 321 242 46 0 0 11982 913 882 -031 13625 R12 7659 008 1267 1 0 003 052 398 488 0 168 738 1235 1252 017 14626 R12 7659 008 1267 1 0 003 052 398 488 0 173 710 1322 1324 002 14627 R12 7659 008 1267 1 0 003 052 398 488 0 157 671 152 1476 -044 14628 R12 7659 008 1267 1 0 003 052 398 488 0 182 709 1323 1313 -01 14629 R12 7659 008 1267 1 0 003 052 398 488 0 186 731 1234 1244 01 14630 R12 7659 008 1267 1 0 003 052 398 488 0 188 755 1153 1177 024 14631 R12 7659 008 1267 1 0 003 052 398 488 0 237 729 1162 118 018 14632 R12 7659 008 1267 1 0 003 052 398 488 0 255 804 968 98 012 14633 R12 7659 008 1267 1 0 003 052 398 488 0 184 845 963 982 019 14634 R12 7659 008 1267 1 0 003 052 398 488 0 263 678 1322 1296 -026 14635 R12 7659 008 1267 1 0 003 052 398 488 0 306 682 1242 1233 -009 14636 R12 7659 008 1267 1 0 003 052 398 488 0 3 710 1171 1158 -013 14637 R12 7659 008 1267 1 0 003 052 398 488 0 142 730 1322 1317 -005 14638 R12 7659 008 1267 1 0 003 052 398 488 0 143 757 123 1241 011 14639 R12 7659 008 1267 1 0 003 052 398 488 0 142 787 1157 1168 011 14640 R12 7659 008 1267 1 0 003 052 398 488 0 093 769 1323 1305 -018 14641 R12 7659 008 1267 1 0 003 052 398 488 0 112 780 1227 1238 011 14642 R12 7659 008 1267 1 0 003 052 398 488 0 116 810 1149 116 011 14643 R12 7659 008 1267 1 0 003 052 398 488 0 239 643 152 1446 -074 14644 R12 7659 008 1267 1 0 003 052 398 488 0 051 841 1323 1253 -07 14645 R12 7659 008 1267 1 0 003 052 398 488 0 203 873 872 907 035 14646 R12 7659 008 1267 1 0 003 052 398 488 0 197 798 103 1062 032 14647 R12 7659 008 1267 1 0 003 052 398 488 0 197 773 1082 112 038 14648 R12 7659 008 1267 1 0 003 052 398 488 0 204 848 926 951 025 14649 R12 7659 008 1267 1 0 003 052 398 488 0 203 824 968 999 031 14650 R12 7659 008 1267 1 0 003 052 398 488 0 136 873 97 999 029 14651 R12 7659 008 1267 1 0 003 052 398 488 0 141 848 103 1038 008 14

151

652 R12 7659 008 1267 1 0 003 052 398 488 0 146 873 962 984 022 14653 R12 7659 008 1267 1 0 003 052 398 488 0 38 750 962 981 019 14654 R12 7659 008 1267 1 0 003 052 398 488 0 38 642 13 1281 -019 14655 R12 7659 008 1267 1 0 003 052 398 488 0 38 625 1423 1339 -084 14656 R12 7659 008 1267 1 0 003 052 398 488 0 56 707 96 95 -01 14657 R12 7659 008 1267 1 0 003 052 398 488 0 56 604 1324 1249 -075 14658 R12 7659 008 1267 1 0 003 052 398 488 0 56 648 1144 1107 -037 14659 R12 7659 008 1267 1 0 003 052 398 488 0 77 670 96 921 -039 14660 R12 7659 008 1267 1 0 003 052 398 488 0 77 573 1324 1211 -113 14661 R12 7659 008 1267 1 0 003 052 398 488 0 77 603 1145 1108 -037 14662 R12 7659 008 1267 1 0 003 052 398 488 0 078 825 1224 1207 -017 14663 R12 7659 008 1267 1 0 003 052 398 488 0 08 823 1224 1207 -017 14664 R12 7659 008 1267 1 0 003 052 398 488 0 082 820 1224 1209 -015 14665 R12 7659 008 1267 1 0 003 052 398 488 0 079 971 961 962 001 14666 R12 7659 008 1267 1 0 003 052 398 488 0 084 846 1153 115 -003 14667 R12 7659 008 1267 1 0 003 052 398 488 0 083 892 1064 1069 005 14668 R12 7659 008 1267 1 0 003 052 398 488 0 089 772 1323 1305 -018 14669 R12 7659 008 1267 1 0 003 052 398 488 0 081 804 1276 1246 -03 14670 R12 7659 008 1267 1 0 003 052 398 488 0 084 765 1371 1335 -036 14671 R12 7659 008 1267 1 0 003 052 398 488 0 084 752 142 137 -05 14672 R12 7659 008 1267 1 0 003 052 398 488 0 083 784 132 1289 -031 14673 R12 7659 008 1267 1 0 003 052 398 488 0 084 779 132 1299 -021 14674 R12 7659 008 1267 1 0 003 052 398 488 0 081 728 152 1446 -074 14675 R12 7659 008 1267 1 0 003 052 398 488 0 114 748 1322 1318 -004 14676 R12 7659 008 1267 1 0 003 052 398 488 0 117 897 948 991 043 14677 R13 766 01 127 117 0 002 031 41 46 0 43 1073 551 5 -051 15678 R13 766 01 127 117 0 002 031 41 46 0 43 1073 545 5 -045 15679 R13 766 01 127 117 0 002 031 41 46 0 43 1123 526 46 -066 15680 R13 766 01 127 117 0 002 031 41 46 0 43 1123 517 46 -057 15681 R13 766 01 127 117 0 002 031 41 46 0 43 1173 488 422 -066 15682 R13 766 01 127 117 0 002 031 41 46 0 62 973 552 52 -032 15683 R13 766 01 127 117 0 002 031 41 46 0 62 1023 505 475 -03 15

152

684 R13 766 01 127 117 0 002 031 41 46 0 62 1073 457 435 -022 15685 R13 766 01 127 117 0 002 031 41 46 0 62 1073 463 435 -028 15686 R13 766 01 127 117 0 002 031 41 46 0 62 1123 425 398 -027 15687 R1 6677 039 2015 431 001 072 364 137 217 0 002 15732 377 399 022 16688 R1 6677 039 2015 431 001 072 364 137 217 0 002 16232 329 359 03 16689 R1 6677 039 2015 431 001 072 364 137 217 0 002 16732 29 322 032 16690 R1 6677 039 2015 431 001 072 364 137 217 0 002 17232 267 287 02 16691 R1 6677 039 2015 431 001 072 364 137 217 0 002 17232 264 287 023 16692 R1 6677 039 2015 431 001 072 364 137 217 0 002 17732 235 254 019 16693 R1 6677 039 2015 431 001 072 364 137 217 0 002 18232 209 223 014 16694 R1 6677 039 2015 431 001 072 364 137 217 0 002 18732 186 193 007 16695 R2 6716 001 2165 281 001 073 265 285 182 0 002 17232 288 331 043 16696 R2 6716 001 2165 281 001 073 265 285 182 0 002 17732 26 298 038 16697 R2 6716 001 2165 281 001 073 265 285 182 0 002 18232 233 266 033 16698 R2 6716 001 2165 281 001 073 265 285 182 0 002 18732 209 237 028 16699 R3 7122 024 168 291 006 08 262 309 194 0 002 16232 392 379 -013 16700 R3 7122 024 168 291 006 08 262 309 194 0 002 16732 361 342 -019 16701 R3 7122 024 168 291 006 08 262 309 194 0 002 17232 328 307 -021 16702 R3 7122 024 168 291 006 08 262 309 194 0 002 17732 3 275 -025 16703 R3 7122 024 168 291 006 08 262 309 194 0 002 18232 273 244 -029 16704 R3 7122 024 168 291 006 08 262 309 194 0 002 18732 248 215 -033 16705 R4 7142 001 161 458 001 157 094 194 292 0 002 15732 419 423 004 16706 R4 7142 001 161 458 001 157 094 194 292 0 002 16232 387 385 -002 16707 R4 7142 001 161 458 001 157 094 194 292 0 002 16732 352 349 -003 16708 R4 7142 001 161 458 001 157 094 194 292 0 002 17232 322 316 -006 16709 R4 7142 001 161 458 001 157 094 194 292 0 002 17732 292 285 -007 16710 R4 7142 001 161 458 001 157 094 194 292 0 002 18232 265 255 -01 16711 R4 7142 001 161 458 001 157 094 194 292 0 002 18732 24 228 -012 16712 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 16732 385 357 -028 16713 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17132 359 328 -031 16714 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17532 337 301 -036 16715 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17932 31 275 -035 16

153

716 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 18332 292 25 -042 16717 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 18732 276 226 -05 16718 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 17532 319 311 -008 16719 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 17932 3 285 -015 16720 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18132 257 272 015 16721 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18332 242 259 017 16722 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18532 231 247 016 16723 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18732 222 235 013 16724 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16532 368 375 007 16725 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16732 355 36 005 16726 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16932 342 346 004 16727 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17132 326 331 005 16728 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17332 311 317 006 16729 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17532 3 304 004 16730 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17732 285 291 006 16731 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17932 275 278 003 16732 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18132 264 265 001 16733 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18332 255 252 -003 16734 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18532 242 24 -002 16735 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18732 234 228 -006 16736 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 16332 41 377 -033 16737 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 16732 371 347 -024 16738 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17132 344 319 -025 16739 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17532 318 292 -026 16740 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17932 295 266 -029 16741 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 18332 273 241 -032 16742 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 18732 259 217 -042 16743 Bl2 4781 194 1791 109 019 475 996 394 211 048 0 10202 994 956 -038 17744 Bl2 4781 194 1791 109 019 475 996 394 211 048 0 94615 1165 1134 -031 17745 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 98315 994 1008 014 17746 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 10132 869 925 056 17747 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 95315 1141 1117 -024 17

154

748 R8 7537 007 1284 157 007 004 072 419 513 0 014 99315 111 1146 036 17749 R8 7537 007 1284 157 007 004 072 419 513 0 014 10112 1078 1115 037 17750 R8 7537 007 1284 157 007 004 072 419 513 0 014 10432 1018 1062 044 17751 R8 7537 007 1284 157 007 004 072 419 513 0 014 10842 956 997 041 17752 R8 7537 007 1284 157 007 004 072 419 513 0 014 11142 915 952 037 17753 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 785 792 007 18754 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 782 792 01 18755 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 787 792 005 18756 R7 747 008 1328 165 0 0 077 43 522 0 0 13232 726 73 004 18757 R7 747 008 1328 165 0 0 077 43 522 0 0 13732 679 673 -006 18758 R7 747 008 1328 165 0 0 077 43 522 0 0 13732 677 673 -004 18759 R7 747 008 1328 165 0 0 077 43 522 0 0 14232 625 62 -005 18760 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 1744 -022 -068 -046 19761 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 17194 -016 -049 -033 19762 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16948 -009 -029 -02 19763 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16702 -002 -009 -007 19764 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16456 007 012 005 19765 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 1621 016 034 018 19766 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 97515 1026 1014 -012 19767 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 98275 981 991 01 19768 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 98315 1005 99 -015 19769 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 965 1077 1048 -029 19770 Ph1 512 067 186 61 013 25 73 375 79 04 002 18179 097 092 -005 19771 Ph1 512 067 186 61 013 25 73 375 79 04 002 17933 107 107 0 19772 Ph1 512 067 186 61 013 25 73 375 79 04 002 17687 117 121 004 19773 Ph1 512 067 186 61 013 25 73 375 79 04 002 1744 128 136 008 19774 Ph1 512 067 186 61 013 25 73 375 79 04 002 17194 138 152 014 19775 Ph1 512 067 186 61 013 25 73 375 79 04 002 16948 15 168 018 19776 Ph1 512 067 186 61 013 25 73 375 79 04 002 16702 163 184 021 19777 Ph1 512 067 186 61 013 25 73 375 79 04 002 16456 175 201 026 19778 Ph1 512 067 186 61 013 25 73 375 79 04 002 1621 188 219 031 19779 Ph1 512 067 186 61 013 25 73 375 79 04 002 97815 1066 1034 -032 19

155

780 Ph1 512 067 186 61 013 25 73 375 79 04 002 9975 1015 985 -03 19781 Ph1 512 067 186 61 013 25 73 375 79 04 002 10164 975 942 -033 19782 Ph5 597 046 1852 36 017 065 28 389 845 015 002 1744 245 23 -015 19783 Ph5 597 046 1852 36 017 065 28 389 845 015 002 17194 258 245 -013 19784 Ph5 597 046 1852 36 017 065 28 389 845 015 002 16948 272 261 -011 19785 Ph5 597 046 1852 36 017 065 28 389 845 015 002 1621 316 311 -005 19786 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15964 332 329 -003 19787 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15718 348 348 0 19788 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15472 366 367 001 19789 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15226 383 386 003 19790 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14979 402 407 005 19791 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14733 42 428 008 19792 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14487 44 45 01 19793 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14241 46 472 012 19794 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10346 103 996 -034 19795 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10477 1011 971 -04 19796 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10675 973 934 -039 19797 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10838 955 905 -05 19798 Ph5 597 046 1852 36 017 065 28 389 845 015 002 11041 911 871 -04 19799 Te1 492 083 164 72 013 51 102 27 65 072 002 18179 053 038 -015 19800 Te1 492 083 164 72 013 51 102 27 65 072 002 17933 062 052 -01 19801 Te1 492 083 164 72 013 51 102 27 65 072 002 17687 071 068 -003 19802 Te1 492 083 164 72 013 51 102 27 65 072 002 1744 081 083 002 19803 Te1 492 083 164 72 013 51 102 27 65 072 002 17194 09 099 009 19804 Te1 492 083 164 72 013 51 102 27 65 072 002 16948 101 116 015 19805 Te1 492 083 164 72 013 51 102 27 65 072 002 16702 112 133 021 19806 Te1 492 083 164 72 013 51 102 27 65 072 002 16456 124 15 026 19807 Te1 492 083 164 72 013 51 102 27 65 072 002 1621 136 169 033 19808 Te1 492 083 164 72 013 51 102 27 65 072 002 9806 1055 1041 -014 19809 Te1 492 083 164 72 013 51 102 27 65 072 002 99335 1017 997 -02 19810 Te1 492 083 164 72 013 51 102 27 65 072 002 10023 978 969 -009 19811 Te1 492 083 164 72 013 51 102 27 65 072 002 10179 951 925 -026 19

156

812 Te1 492 083 164 72 013 51 102 27 65 072 002 10294 913 895 -018 19813 Te1 492 083 164 72 013 51 102 27 65 072 002 10401 879 87 -009 19814 Te1 492 083 164 72 013 51 102 27 65 072 002 96995 1098 1084 -014 19815 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18671 214 198 -016 19816 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18425 225 211 -014 19817 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18179 237 225 -012 19818 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17933 25 239 -011 19819 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17687 263 253 -01 19820 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1744 276 268 -008 19821 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17194 291 283 -008 19822 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16948 305 299 -006 19823 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16702 32 315 -005 19824 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16456 336 331 -005 19825 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1621 352 348 -004 19826 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15964 368 366 -002 19827 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15718 385 384 -001 19828 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15472 4 403 003 19829 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15226 421 423 002 19830 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 14979 44 443 003 19831 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 14733 459 464 005 19832 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 99603 1077 1091 014 19833 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10103 1053 1062 009 19834 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10117 1041 106 019 19835 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10163 1049 1051 002 19836 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10229 1019 1038 019 19837 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10338 995 1018 023 19838 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1055 963 979 016 19839 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10797 911 937 026 19840 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17692 237 248 011 20841 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17442 249 263 014 20842 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17192 263 279 016 20843 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16952 277 294 017 20

157

844 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16702 292 31 018 20845 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16462 308 327 019 20846 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16212 324 344 02 20847 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15962 34 363 023 20848 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15722 358 381 023 20849 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15472 376 4 024 20850 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15222 394 42 026 20851 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14982 414 44 026 20852 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14732 434 462 028 20853 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14492 454 483 029 20854 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 11342 932 857 -075 20855 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 11092 984 898 -086 20856 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 10762 1044 954 -09 20857 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 10562 1083 991 -092 20858 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 83515 1112 1122 01 20859 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 84215 1094 1107 013 20860 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 85215 1075 1086 011 20861 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 86815 1044 1052 008 20862 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 86915 103 105 02 20863 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 87715 1009 1034 025 20864 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 80215 1086 1065 -021 20865 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 81915 1036 1027 -009 20866 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 82615 1014 1011 -003 20867 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 78115 1052 1048 -004 20868 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 77915 1044 1053 009 20869 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 81115 994 98 -014 20870 Tr1 6074 027 1922 337 018 028 211 528 632 006 296 73215 1076 1058 -018 20871 Tr1 6074 027 1922 337 018 028 211 528 632 006 296 74015 1027 1038 011 20872 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 69115 1128 1123 -005 20873 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 71515 1045 1057 012 20874 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 73015 988 1018 03 20875 Tr4 6388 031 171 29 013 024 182 567 682 005 002 17687 25 245 -005 20

158

876 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1744 262 259 -003 20877 Tr4 6388 031 171 29 013 024 182 567 682 005 002 17194 275 274 -001 20878 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16948 289 29 001 20879 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16702 303 306 003 20880 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16456 318 322 004 20881 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1621 333 339 006 20882 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15964 349 357 008 20883 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15718 365 375 01 20884 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15472 382 394 012 20885 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15226 397 413 016 20886 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14979 417 434 017 20887 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14733 436 454 018 20888 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14487 455 476 021 20889 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1017 1003 1046 043 20890 Tr4 6388 031 171 29 013 024 182 567 682 005 002 97925 1071 1124 053 20891 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1090 876 913 037 20892 Tr4 6388 031 171 29 013 024 182 567 682 005 002 10425 956 997 041 20893 Tr4 6388 031 171 29 013 024 182 567 682 005 002 9586 1108 1169 061 20894 Tr4 6388 031 171 29 013 024 182 567 682 005 1 83915 1064 1066 002 20895 Tr4 6388 031 171 29 013 024 182 567 682 005 1 84815 1047 1047 0 20896 Tr4 6388 031 171 29 013 024 182 567 682 005 1 86215 1022 1019 -003 20897 Tr4 6388 031 171 29 013 024 182 567 682 005 1 87015 1008 1003 -005 20898 Tr4 6388 031 171 29 013 024 182 567 682 005 139 78815 1097 1113 016 20899 Tr4 6388 031 171 29 013 024 182 567 682 005 139 81815 1031 1044 013 20900 Tr4 6388 031 171 29 013 024 182 567 682 005 139 84315 99 99 0 20901 Tr4 6388 031 171 29 013 024 182 567 682 005 241 74515 1059 1077 018 20902 Tr4 6388 031 171 29 013 024 182 567 682 005 241 78815 967 974 007 20903 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67415 1085 1118 033 20904 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67315 108 112 04 20905 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67115 1079 1126 047 20906 Tr4 6388 031 171 29 013 024 182 567 682 005 386 65815 116 1166 006 20907 A1 5856 064 1898 745 0 348 617 324 092 0 083 14732 275 259 -016 21

159

908 A1 5856 064 1898 745 0 348 617 324 092 0 083 15732 222 185 -037 21909 A1 5856 064 1898 745 0 348 617 324 092 0 083 15732 215 185 -03 21910 A1 5856 064 1898 745 0 348 617 324 092 0 083 16232 176 152 -024 21911 A1 5856 064 1898 745 0 348 617 324 092 0 072 14732 237 27 033 21912 A1 5856 064 1898 745 0 348 617 324 092 0 1 14232 25 283 033 21913 A1 5856 064 1898 745 0 348 617 324 092 0 1 14732 225 244 019 21914 A1 5856 064 1898 745 0 348 617 324 092 0 1 13732 364 326 -038 21915 A1 5856 064 1898 745 0 348 617 324 092 0 1 14732 201 244 043 21916 A1 5856 064 1898 745 0 348 617 324 092 0 46 13732 18 174 -006 21917 A1 5856 064 1898 745 0 348 617 324 092 0 46 14732 145 118 -027 21918 Bl3 4821 125 155 1064 0 908 1192 24 008 014 022 13732 286 319 033 21919 Bl3 4821 125 155 1064 0 908 1192 24 008 014 022 15232 23 174 -056 21920 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 13732 174 183 009 21921 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 15732 091 048 -043 21922 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 13732 142 183 041 21923 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 15732 08 048 -032 21924 Bl4 5354 105 1729 782 0 546 832 359 164 02 636 12732 13 177 047 21925 Bl4 5354 105 1729 782 0 546 832 359 164 02 636 15732 027 021 -006 21926 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 14732 36 339 -021 21927 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 15732 216 25 034 21928 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 14732 34 339 -001 21929 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 15732 294 25 -044 21930 R5 7323 019 136 278 0 017 169 378 411 013 21 10732 61 619 009 21931 R5 7323 019 136 278 0 017 169 378 411 013 21 13732 325 356 031 21932 R5 7323 019 136 278 0 017 169 378 411 013 3 10732 48 548 068 21933 R5 7323 019 136 278 0 017 169 378 411 013 33 14732 225 229 004 21934 R5 7323 019 136 278 0 017 169 378 411 013 52 10732 397 444 047 21935 R5 7323 019 136 278 0 017 169 378 411 013 52 14732 167 188 021 21936 R5 7323 019 136 278 0 017 169 378 411 013 123 11232 32 325 005 21937 R5 7323 019 136 278 0 017 169 378 411 013 123 12232 24 281 041 21938 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17732 22 213 -007 22939 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17482 232 226 -006 22

160

940 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17232 244 24 -004 22941 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16982 257 254 -003 22942 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16732 27 268 -002 22943 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16482 283 283 0 22944 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16232 297 298 001 22945 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15982 311 314 003 22946 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15732 326 331 005 22947 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15482 342 348 006 22948 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15232 357 365 008 22949 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14982 374 383 009 22950 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14732 391 402 011 22951 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14482 407 421 014 22952 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14232 427 441 014 22953 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 13982 446 462 016 22954 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 13732 465 484 019 22955 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 10104 899 925 026 22956 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 88785 1163 1164 001 22957 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 92395 1085 1086 001 22958 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 94585 1031 1042 011 22959 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 96475 10 1006 006 22960 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 86705 879 925 046 22961 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 80455 1033 1052 019 22962 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 79395 1059 1075 016 22963 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 78045 1105 1107 002 22964 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 82175 99 1015 025 22965 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 76375 1084 1126 042 22966 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 77495 1082 1099 017 22967 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 77845 1045 1091 046 22968 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 78565 1025 1074 049 22969 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 74215 1016 994 -022 22970 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 72835 1055 1027 -028 22971 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 75905 959 955 -004 22

161

972 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 70335 957 912 -045 22973 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 66285 11 1017 -083 22974 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 67535 105 983 -067 22975 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 16702 228 201 -027 23976 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 1621 254 235 -019 23977 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 15718 283 271 -012 23978 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 15226 315 31 -005 23979 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 14733 348 351 003 23980 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 14241 387 395 008 23981 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 13749 429 443 014 23982 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 13257 475 494 019 23983 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 9804 1066 1019 -047 23984 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 99985 102 977 -043 23985 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10295 978 917 -061 23986 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10443 958 888 -07 23987 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10783 881 828 -053 23988 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 9621 1105 1062 -043 23989 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 84825 94 967 027 23990 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 83675 971 993 022 23991 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 81535 1035 1043 008 23992 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 78315 1129 1124 -005 23993 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 79515 916 977 061 23994 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 77905 962 1017 055 23995 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 75945 1016 1067 051 23996 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 73445 11 1136 036 23997 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 73605 984 101 026 23998 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 71765 1033 106 027 23999 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 70885 1061 1085 024 23

1000 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 16702 196 203 007 231001 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 1621 225 237 012 231002 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 15718 256 274 018 231003 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 15226 291 312 021 23

162

1004 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 14733 329 354 025 231005 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 14241 372 398 026 231006 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 13749 422 446 024 231007 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 13257 477 497 02 231008 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 98165 1026 1022 -004 231009 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 9961 997 99 -007 231010 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10254 944 93 -014 231011 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10283 901 924 023 231012 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10432 898 895 -003 231013 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 96235 1068 1067 -001 231014 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 86735 917 947 03 231015 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 86005 92 963 043 231016 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 84065 984 1006 022 231017 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 81885 1032 1057 025 231018 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 80555 1064 109 026 231019 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 78955 1105 113 025 231020 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 75375 932 947 015 231021 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 74875 946 96 014 231022 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 72775 982 1015 033 231023 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 71765 1025 1042 017 231024 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 70435 1082 108 -002 231025 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 79995 89 952 062 231026 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 77855 94 1003 063 231027 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 74675 1029 1086 057 231028 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 17692 249 21 -039 231029 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 17192 274 24 -034 231030 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 16702 301 272 -029 231031 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 16212 33 305 -025 231032 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 15722 362 341 -021 231033 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 15222 396 379 -017 231034 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 14732 433 42 -013 231035 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 14242 473 463 -01 23

163

1036 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10873 845 881 036 231037 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10385 932 968 036 231038 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10097 977 1024 047 231039 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 98515 1056 1076 02 231040 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 97335 1075 1102 027 231041 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 95695 1129 114 011 231042 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 72365 99 995 005 231043 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 70935 1031 1032 001 231044 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 68885 1105 1089 -016 231045 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 79455 97 962 -008 231046 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 77665 1005 1003 -002 231047 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 76125 1065 104 -025 231048 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 74385 1097 1085 -012 231049 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 82165 955 943 -012 231050 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 79545 102 1001 -019 231051 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 77575 108 1047 -033 231052 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 76385 1104 1077 -027 231053 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 91745 904 881 -023 231054 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 88545 972 94 -032 231055 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 86505 1008 98 -028 231056 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 84985 1042 1012 -03 231057 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 81965 1124 1078 -046 231058 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 17194 279 244 -035 231059 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 16702 306 275 -031 231060 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 1621 335 309 -026 231061 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 15718 367 345 -022 231062 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 15226 402 383 -019 231063 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 14733 439 424 -015 231064 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 14241 48 468 -012 231065 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10056 1039 1039 0 231066 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10414 941 968 027 231067 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10579 906 938 032 23

164

1068 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 96708 1118 1122 004 231069 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 87285 933 949 016 231070 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 85375 974 988 014 231071 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 83085 1009 1036 027 231072 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 81415 1056 1074 018 231073 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 81125 1062 1081 019 231074 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 79915 1085 1109 024 231075 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 79465 1119 112 001 231076 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 72425 985 993 008 231077 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 71805 1005 1009 004 231078 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 69875 1052 1061 009 231079 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 69335 1095 1076 -019 231080 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 67945 1133 1116 -017 231081 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 67735 1143 1122 -021 231082 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 86275 954 981 027 231083 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 84505 1001 1018 017 231084 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 82755 1024 1056 032 231085 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 80285 1074 1113 039 231086 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 79825 1102 1124 022 231087 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 78645 1156 1153 -003 231088 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 95945 883 875 -008 231089 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 90155 988 979 -009 231090 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 85905 107 1065 -005 231091 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 84075 1135 1105 -03 231092 D2 66 036 1523 408 01 221 501 384 216 014 002 1744 209 216 007 241093 D2 66 036 1523 408 01 221 501 384 216 014 002 17194 221 231 01 241094 D2 66 036 1523 408 01 221 501 384 216 014 002 16948 234 248 014 241095 D2 66 036 1523 408 01 221 501 384 216 014 002 16702 248 264 016 241096 D2 66 036 1523 408 01 221 501 384 216 014 002 16456 262 281 019 241097 D2 66 036 1523 408 01 221 501 384 216 014 002 1621 276 299 023 241098 D2 66 036 1523 408 01 221 501 384 216 014 002 15964 292 317 025 241099 D2 66 036 1523 408 01 221 501 384 216 014 002 15718 308 336 028 24

165

1100 D2 66 036 1523 408 01 221 501 384 216 014 002 15472 325 355 03 241101 D2 66 036 1523 408 01 221 501 384 216 014 002 15226 343 376 033 241102 D2 66 036 1523 408 01 221 501 384 216 014 002 14979 361 396 035 241103 D2 66 036 1523 408 01 221 501 384 216 014 002 14733 38 418 038 241104 D2 66 036 1523 408 01 221 501 384 216 014 002 14487 4 44 04 241105 D2 66 036 1523 408 01 221 501 384 216 014 002 14241 421 463 042 241106 D2 66 036 1523 408 01 221 501 384 216 014 002 13995 444 488 044 241107 D2 66 036 1523 408 01 221 501 384 216 014 002 13749 466 513 047 241108 D2 66 036 1523 408 01 221 501 384 216 014 002 10342 105 1034 -016 241109 D2 66 036 1523 408 01 221 501 384 216 014 002 10578 985 979 -006 241110 D2 66 036 1523 408 01 221 501 384 216 014 002 10742 928 944 016 241111 D2 66 036 1523 408 01 221 501 384 216 014 002 10912 891 91 019 241112 D2 66 036 1523 408 01 221 501 384 216 014 131 86205 1056 1017 -039 241113 D2 66 036 1523 408 01 221 501 384 216 014 131 83505 1118 1076 -042 241114 D2 66 036 1523 408 01 221 501 384 216 014 164 77205 1195 1173 -022 241115 D2 66 036 1523 408 01 221 501 384 216 014 164 80795 1112 1084 -028 241116 D2 66 036 1523 408 01 221 501 384 216 014 164 80845 1093 1083 -01 241117 D2 66 036 1523 408 01 221 501 384 216 014 164 83855 986 1015 029 241118 D2 66 036 1523 408 01 221 501 384 216 014 198 80395 1048 1045 -003 241119 D2 66 036 1523 408 01 221 501 384 216 014 198 81505 999 102 021 241120 D2 66 036 1523 408 01 221 501 384 216 014 198 83355 963 979 016 241121 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 84835 116 1193 033 251122 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 87035 108 1123 043 251123 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 87505 1074 1109 035 251124 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 88475 105 1081 031 251125 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 89165 1042 1061 019 251126 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 89255 1033 1059 026 251127 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 82635 1099 112 021 251128 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 83105 1089 1106 017 251129 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 83765 1073 1087 014 251130 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 84845 1037 1057 02 251131 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 80545 112 1093 -027 25

166

1132 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 81775 1088 1059 -029 251133 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82235 1057 1046 -011 251134 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82485 1054 1039 -015 251135 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82995 1025 1026 001 251136 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 84995 975 974 -001 251137 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 79775 1016 1005 -011 251138 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 80795 977 978 001 251139 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 81805 957 952 -005 251140 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 18179 018 01 -008 251141 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17933 026 026 0 251142 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17687 034 042 008 251143 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17441 043 059 016 251144 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17395 052 062 01 251145 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 16949 062 094 032 251146 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 16703 072 112 04 251147 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 98505 1082 993 -089 251148 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 98905 107 983 -087 251149 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 10042 1023 949 -074 251150 A2 5869 001 2157 002 002 538 949 33 157 0 0 1036 1158 1151 -007 261151 A2 5869 001 2157 002 002 538 949 33 157 0 0 1054 1077 1074 -003 261152 A2 5869 001 2157 002 002 538 949 33 157 0 0 1065 1045 1034 -011 261153 A2 5869 001 2157 002 002 538 949 33 157 0 0 1075 1016 10 -016 261154 A2 5869 001 2157 002 002 538 949 33 157 0 0 1084 987 972 -015 261155 A2 5869 001 2157 002 002 538 949 33 157 0 0 1096 955 938 -017 261156 A2 5869 001 2157 002 002 538 949 33 157 0 0 1106 93 911 -019 261157 A2 5869 001 2157 002 002 538 949 33 157 0 0 1116 906 886 -02 261158 A2 5869 001 2157 002 002 538 949 33 157 0 0 1036 1132 1151 019 261159 A2 5869 001 2157 002 002 538 949 33 157 0 0 1054 1083 1074 -009 261160 A2 5869 001 2157 002 002 538 949 33 157 0 0 1062 103 1044 014 261161 A2 5869 001 2157 002 002 538 949 33 157 0 0 1065 1044 1034 -01 261162 A2 5869 001 2157 002 002 538 949 33 157 0 0 1074 1015 1003 -012 261163 A2 5869 001 2157 002 002 538 949 33 157 0 0 1083 974 975 001 26

167

1164 A2 5869 001 2157 002 002 538 949 33 157 0 0 1088 963 96 -003 261165 A2 5869 001 2157 002 002 538 949 33 157 0 0 1094 948 943 -005 261166 A2 5869 001 2157 002 002 538 949 33 157 0 0 1103 925 919 -006 261167 A2 5869 001 2157 002 002 538 949 33 157 0 0 1113 899 893 -006 261168 A2 5869 001 2157 002 002 538 949 33 157 0 0 1123 875 87 -005 261169 A2 5869 001 2157 002 002 538 949 33 157 0 0 1081 1002 981 -021 261170 A2 5869 001 2157 002 002 538 949 33 157 0 0 1091 972 952 -02 261171 A2 5869 001 2157 002 002 538 949 33 157 0 0 1100 944 927 -017 261172 A2 5869 001 2157 002 002 538 949 33 157 0 0 1110 917 901 -016 261173 A2 5869 001 2157 002 002 538 949 33 157 0 0 1120 891 877 -014 261174 A2 5869 001 2157 002 002 538 949 33 157 0 0 1130 867 854 -013 261175 A2 5869 001 2157 002 002 538 949 33 157 0 106 917 1055 1067 012 261176 A2 5869 001 2157 002 002 538 949 33 157 0 106 928 1044 1035 -009 261177 A2 5869 001 2157 002 002 538 949 33 157 0 106 937 1007 101 003 261178 A2 5869 001 2157 002 002 538 949 33 157 0 106 935 997 1016 019 261179 A2 5869 001 2157 002 002 538 949 33 157 0 106 954 954 964 01 261180 A2 5869 001 2157 002 002 538 949 33 157 0 106 976 9 908 008 261181 A2 5869 001 2157 002 002 538 949 33 157 0 106 985 874 887 013 261182 A2 5869 001 2157 002 002 538 949 33 157 0 106 996 854 861 007 261183 A2 5869 001 2157 002 002 538 949 33 157 0 106 1013 813 823 01 261184 A2 5869 001 2157 002 002 538 949 33 157 0 106 908 1103 1093 -01 261185 A2 5869 001 2157 002 002 538 949 33 157 0 106 918 1065 1064 -001 261186 A2 5869 001 2157 002 002 538 949 33 157 0 106 938 1007 1007 0 261187 A2 5869 001 2157 002 002 538 949 33 157 0 106 948 981 98 -001 261188 A2 5869 001 2157 002 002 538 949 33 157 0 106 948 978 98 002 261189 A2 5869 001 2157 002 002 538 949 33 157 0 106 957 957 956 -001 261190 A2 5869 001 2157 002 002 538 949 33 157 0 106 977 904 906 002 261191 A2 5869 001 2157 002 002 538 949 33 157 0 106 987 877 882 005 261192 A2 5869 001 2157 002 002 538 949 33 157 0 196 840 108 1057 -023 261193 A2 5869 001 2157 002 002 538 949 33 157 0 196 849 1052 1036 -016 261194 A2 5869 001 2157 002 002 538 949 33 157 0 196 851 1043 1032 -011 261195 A2 5869 001 2157 002 002 538 949 33 157 0 196 859 102 1013 -007 26

168

1196 A2 5869 001 2157 002 002 538 949 33 157 0 196 870 985 988 003 261197 A2 5869 001 2157 002 002 538 949 33 157 0 196 879 957 968 011 261198 A2 5869 001 2157 002 002 538 949 33 157 0 196 889 932 945 013 261199 A2 5869 001 2157 002 002 538 949 33 157 0 196 844 108 1048 -032 261200 A2 5869 001 2157 002 002 538 949 33 157 0 196 853 1051 1027 -024 261201 A2 5869 001 2157 002 002 538 949 33 157 0 196 863 1017 1004 -013 261202 A2 5869 001 2157 002 002 538 949 33 157 0 196 864 1015 1002 -013 261203 A2 5869 001 2157 002 002 538 949 33 157 0 196 873 986 981 -005 261204 A2 5869 001 2157 002 002 538 949 33 157 0 196 883 956 959 003 261205 A2 5869 001 2157 002 002 538 949 33 157 0 196 893 927 936 009 261206 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1006 1073 1124 051 271207 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1013 1052 103 -022 271208 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1013 1043 103 -013 271209 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1017 1025 989 -036 271210 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1018 1013 98 -033 271211 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18669 -097 -101 -004 271212 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18571 -094 -095 -001 271213 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18473 -09 -089 001 271214 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 18732 -006 -093 -086 281215 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 18232 008 -056 -064 281216 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 17732 023 -018 -04 281217 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 17232 039 023 -016 281218 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 16732 055 066 011 281219 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 16232 073 111 038 281220 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 15732 094 16 066 281221 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 15232 117 212 094 281222 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 18672 -005 -069 -063 281223 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 18182 009 -033 -042 281224 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 17692 024 004 -02 281225 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 17192 04 044 004 281226 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 16702 057 085 028 281227 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 18732 -005 -089 -084 28

169

1228 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 18232 008 -052 -06 281229 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 17732 022 -014 -035 281230 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 17232 037 027 -01 281231 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 16732 053 07 017 281232 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 16232 072 116 044 281233 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 15732 092 164 073 281234 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 15232 116 216 101 281235 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 18672 -002 -073 -071 281236 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 18182 011 -037 -049 281237 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 17692 026 0 -026 281238 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 17192 042 041 -002 281239 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 16702 059 083 024 281240 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 16212 077 127 051 281241 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 15722 098 175 077 281242 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 15222 122 226 105 281243 A5 5946 073 179 518 013 371 645 423 147 0 0 16232 222 262 04 291244 A5 5946 073 179 518 013 371 645 423 147 0 0 15232 274 344 07 291245 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 17732 009 -004 -013 291246 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 16732 035 074 039 291247 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 15232 103 211 108 291248 D1 6528 059 1705 402 008 182 47 434 129 013 002 15712 322 343 021 301249 D1 6528 059 1705 402 008 182 47 434 129 013 002 16202 291 305 014 301250 D1 6528 059 1705 402 008 182 47 434 129 013 002 16702 261 269 008 301251 D1 6528 059 1705 402 008 182 47 434 129 013 002 17192 235 235 0 301252 D1 6528 059 1705 402 008 182 47 434 129 013 002 17682 211 204 -007 301253 D1 6528 059 1705 402 008 182 47 434 129 013 002 18172 187 174 -013 301254 D1 6528 059 1705 402 008 182 47 434 129 013 002 18672 166 145 -021 301255 D1 6528 059 1705 402 008 182 47 434 129 013 002 10091 106 1099 039 301256 D1 6528 059 1705 402 008 182 47 434 129 013 002 10235 1025 1065 04 301257 D1 6528 059 1705 402 008 182 47 434 129 013 002 10377 10 1033 033 301258 D1 6528 059 1705 402 008 182 47 434 129 013 002 10571 953 991 038 301259 D1 6528 059 1705 402 008 182 47 434 129 013 002 10759 925 953 028 30

170

1260 R33 7312 019 1356 319 0 018 168 386 42 0 21 12732 385 419 034 311261 R33 7312 019 1356 319 0 018 168 386 42 0 21 13732 332 343 011 311262 R33 7312 019 1356 319 0 018 168 386 42 0 21 14732 273 275 002 311263 R33 7312 019 1356 319 0 018 168 386 42 0 52 11732 369 357 -012 311264 R33 7312 019 1356 319 0 018 168 386 42 0 52 12732 305 289 -016 311265 R33 7312 019 1356 319 0 018 168 386 42 0 52 13732 251 232 -019 311266 R33 7312 019 1356 319 0 018 168 386 42 0 52 14732 203 184 -019 311267 R33 7312 019 1356 319 0 018 168 386 42 0 56 11732 36 347 -013 311268 R33 7312 019 1356 319 0 018 168 386 42 0 56 12732 297 281 -016 311269 R33 7312 019 1356 319 0 018 168 386 42 0 56 13732 242 227 -015 311270 R33 7312 019 1356 319 0 018 168 386 42 0 56 14732 185 181 -004 311271 R33 7312 019 1356 319 0 018 168 386 42 0 88 11732 3 304 004 311272 R33 7312 019 1356 319 0 018 168 386 42 0 88 14732 147 181 034 311273 A6 6215 076 168 496 025 326 508 502 172 0 0 16232 26 277 017 321274 A6 6215 076 168 496 025 326 508 502 172 0 0 16232 252 277 025 321275 H4 736 0 156 0 0 0 21 44 38 0 21 88045 897 899 002 331276 H4 736 0 156 0 0 0 21 44 38 0 21 83595 979 98 001 331277 H4 736 0 156 0 0 0 21 44 38 0 21 79595 1085 1065 -02 331278 H4 736 0 156 0 0 0 21 44 38 0 21 79495 1099 1067 -032 331279 H4 736 0 156 0 0 0 21 44 38 0 089 95135 962 984 022 331280 H4 736 0 156 0 0 0 21 44 38 0 089 97615 915 952 037 331281 H4 736 0 156 0 0 0 21 44 38 0 089 93835 103 1002 -028 331282 H4 736 0 156 0 0 0 21 44 38 0 089 91675 1081 1034 -047 331283 R34 7389 006 1577 075 0 014 058 462 419 0 666 12282 3 321 022 341284 R34 7389 006 1577 075 0 014 058 462 419 0 666 10862 386 419 033 341285 R34 7389 006 1577 075 0 014 058 462 419 0 398 13732 31 302 -008 341286 R34 7389 006 1577 075 0 014 058 462 419 0 398 12742 378 367 -011 341287 R34 7389 006 1577 075 0 014 058 462 419 0 398 11802 445 435 -01 341288 R34 7389 006 1577 075 0 014 058 462 419 0 666 11332 358 384 027 341289 R34 7389 006 1577 075 0 014 058 462 419 0 666 11832 324 35 026 341290 R34 7389 006 1577 075 0 014 058 462 419 0 666 11282 354 388 034 341291 R34 7389 006 1577 075 0 014 058 462 419 0 666 10732 394 429 035 34

171

1292 R34 7389 006 1577 075 0 014 058 462 419 0 666 11382 354 381 027 341293 R34 7389 006 1577 075 0 014 058 462 419 0 666 11332 352 384 033 341294 H5 741 0 117 0 0 0 0 9 44 0 29 62235 1005 1014 009 351295 H5 741 0 117 0 0 0 0 9 44 0 29 66145 869 915 046 351296 H5 741 0 117 0 0 0 0 9 44 0 29 59965 1094 108 -014 351297 H5 741 0 117 0 0 0 0 9 44 0 29 64375 908 958 05 351298 H5 741 0 117 0 0 0 0 9 44 0 181 65365 1082 1073 -009 351299 H5 741 0 117 0 0 0 0 9 44 0 181 69845 944 964 02 351300 H5 741 0 117 0 0 0 0 9 44 0 181 68515 968 994 026 351301 H5 741 0 117 0 0 0 0 9 44 0 697 49345 1068 1093 025 351302 H5 741 0 117 0 0 0 0 9 44 0 697 51745 91 999 089 351303 H5 741 0 117 0 0 0 0 9 44 0 697 52495 87 972 102 351304 H5 741 0 117 0 0 0 0 9 44 0 092 74475 1003 1014 011 351305 H5 741 0 117 0 0 0 0 9 44 0 092 71685 1094 1074 -02 351306 H5 741 0 117 0 0 0 0 9 44 0 129 74535 928 944 016 351307 H5 741 0 117 0 0 0 0 9 44 0 129 70725 1038 1026 -012 351308 H5 741 0 117 0 0 0 0 9 44 0 129 68655 1062 1074 012 351309 H5 741 0 117 0 0 0 0 9 44 0 063 77645 1017 1017 0 351310 H5 741 0 117 0 0 0 0 9 44 0 063 75635 1096 1057 -039 351311 H5 741 0 117 0 0 0 0 9 44 0 063 80445 931 966 035 351312 H5 741 0 117 0 0 0 0 9 44 0 077 77405 948 988 04 351313 H5 741 0 117 0 0 0 0 9 44 0 077 74415 108 1048 -032 351314 H6 741 0 122 0 0 0 52 44 4 0 002 10323 1091 1187 096 361315 H6 741 0 122 0 0 0 52 44 4 0 002 10535 1034 113 096 361316 H6 741 0 122 0 0 0 52 44 4 0 002 1076 964 1075 111 361317 H6 741 0 122 0 0 0 52 44 4 0 002 14732 449 488 039 361318 H6 741 0 122 0 0 0 52 44 4 0 002 15222 415 443 028 361319 H6 741 0 122 0 0 0 52 44 4 0 002 15712 383 401 018 361320 H6 741 0 122 0 0 0 52 44 4 0 002 16212 352 362 01 361321 H6 741 0 122 0 0 0 52 44 4 0 002 16702 326 326 0 361322 H6 741 0 122 0 0 0 52 44 4 0 002 17192 3 292 -008 361323 H6 741 0 122 0 0 0 52 44 4 0 002 17682 277 261 -016 36

172

1324 H6 741 0 122 0 0 0 52 44 4 0 002 18172 255 231 -024 361325 H6 741 0 122 0 0 0 52 44 4 0 002 18672 233 203 -03 361326 H9 756 0 12 0 0 49 0 45 4 0 002 10788 11 1145 045 361327 H9 756 0 12 0 0 49 0 45 4 0 002 10969 1066 1085 019 361328 H9 756 0 12 0 0 49 0 45 4 0 002 11136 1014 1035 021 361329 H9 756 0 12 0 0 49 0 45 4 0 002 11301 971 99 019 361330 H9 756 0 12 0 0 49 0 45 4 0 002 15224 441 431 -01 361331 H9 756 0 12 0 0 49 0 45 4 0 002 15716 406 391 -015 361332 H9 756 0 12 0 0 49 0 45 4 0 002 16208 372 353 -019 361333 H9 756 0 12 0 0 49 0 45 4 0 002 1670 34 318 -022 361334 H9 756 0 12 0 0 49 0 45 4 0 002 17192 312 285 -027 361335 H9 756 0 12 0 0 49 0 45 4 0 002 17684 286 254 -032 361336 H9 756 0 12 0 0 49 0 45 4 0 002 18176 261 225 -036 361337 H9 756 0 12 0 0 49 0 45 4 0 002 18668 235 197 -038 361338 H11 772 0 139 0 0 0 0 45 43 0 0 11761 113 1109 -021 371339 H11 772 0 139 0 0 0 0 45 43 0 0 11981 1108 1074 -034 371340 H11 772 0 139 0 0 0 0 45 43 0 0 12172 1048 1044 -004 371341 H11 772 0 139 0 0 0 0 45 43 0 0 12344 1014 1019 005 371342 H11 772 0 139 0 0 0 0 45 43 0 0 12574 1007 986 -021 371343 H11 772 0 139 0 0 0 0 45 43 0 107 86935 11 1075 -025 371344 H11 772 0 139 0 0 0 0 45 43 0 107 90875 1055 1012 -043 371345 H11 772 0 139 0 0 0 0 45 43 0 218 81505 1064 1014 -05 371346 H11 772 0 139 0 0 0 0 45 43 0 254 76725 1058 1078 02 371347 H11 772 0 139 0 0 0 0 45 43 0 254 79455 1019 1016 -003 371348 H11 772 0 139 0 0 0 0 45 43 0 254 74705 112 1127 007 371349 H8 754 0 161 0 0 0 0 47 43 0 0 12529 1012 996 -016 371350 H8 754 0 161 0 0 0 0 47 43 0 0 12339 1035 1023 -012 371351 H8 754 0 161 0 0 0 0 47 43 0 0 12161 107 1049 -021 371352 H8 754 0 161 0 0 0 0 47 43 0 0 12679 985 976 -009 371353 H8 754 0 161 0 0 0 0 47 43 0 0 1213 1058 1053 -005 371354 H8 754 0 161 0 0 0 0 47 43 0 117 89155 1052 1022 -03 371355 H8 754 0 161 0 0 0 0 47 43 0 117 86975 1085 106 -025 37

173

1356 H8 754 0 161 0 0 0 0 47 43 0 117 85655 1112 1084 -028 371357 H8 754 0 161 0 0 0 0 47 43 0 203 81945 1042 1029 -013 371358 H8 754 0 161 0 0 0 0 47 43 0 203 83285 984 1002 018 371359 H8 754 0 161 0 0 0 0 47 43 0 203 80135 107 1068 -002 371360 H8 754 0 161 0 0 0 0 47 43 0 203 79265 108 1088 008 371361 H8 754 0 161 0 0 0 0 47 43 0 277 76475 1014 1066 052 371362 H8 754 0 161 0 0 0 0 47 43 0 277 75555 106 1088 028 371363 H8 754 0 161 0 0 0 0 47 43 0 277 79285 991 1002 011 371364 H8 754 0 161 0 0 0 0 47 43 0 277 74785 1075 1107 032 371365 H10 7688 0 1145 0 0 0 0 36 56 0 002 12772 915 898 -017 381366 H10 7688 0 1145 0 0 0 0 36 56 0 002 12435 957 943 -014 381367 H10 7688 0 1145 0 0 0 0 36 56 0 002 12107 999 989 -01 381368 H10 7688 0 1145 0 0 0 0 36 56 0 002 11559 1085 1073 -012 381369 H10 7688 0 1145 0 0 0 0 36 56 0 002 11232 1135 1127 -008 381370 H12 7814 0 1164 0 0 0 0 126 911 0 002 12612 96 941 -019 381371 H12 7814 0 1164 0 0 0 0 126 911 0 002 1244 986 965 -021 381372 H12 7814 0 1164 0 0 0 0 126 911 0 002 12161 1031 1005 -026 381373 H12 7814 0 1164 0 0 0 0 126 911 0 002 11953 1075 1036 -039 381374 H12 7814 0 1164 0 0 0 0 126 911 0 002 11232 1212 1153 -059 381375 H13 7821 0 1169 0 0 0 0 241 743 0 002 12635 972 934 -038 381376 H13 7821 0 1169 0 0 0 0 241 743 0 002 1245 992 959 -033 381377 H13 7821 0 1169 0 0 0 0 241 743 0 002 11994 1052 1025 -027 381378 H13 7821 0 1169 0 0 0 0 241 743 0 002 11965 1072 103 -042 381379 H13 7821 0 1169 0 0 0 0 241 743 0 002 11232 118 1148 -032 381380 H14 7828 0 1192 0 0 0 0 591 223 0 002 12478 902 96 058 381381 H14 7828 0 1192 0 0 0 0 591 223 0 002 12253 934 992 058 381382 H14 7828 0 1192 0 0 0 0 591 223 0 002 12048 96 1021 061 381383 H14 7828 0 1192 0 0 0 0 591 223 0 002 11838 994 1053 059 381384 H14 7828 0 1192 0 0 0 0 591 223 0 002 11732 1013 107 057 381385 H14 7828 0 1192 0 0 0 0 591 223 0 002 11232 1092 1152 06 381386 H15 786 0 1199 0 0 0 0 457 42 0 002 11549 1102 1112 01 381387 H15 786 0 1199 0 0 0 0 457 42 0 002 11782 1063 1074 011 38

174

1388 H15 786 0 1199 0 0 0 0 457 42 0 002 11989 1028 1043 015 381389 H15 786 0 1199 0 0 0 0 457 42 0 002 1212 1016 1023 007 381390 H15 786 0 1199 0 0 0 0 457 42 0 002 11232 1153 1165 012 381391 H16 8103 0 991 0 0 0 0 124 739 0 002 12668 1025 985 -04 381392 H16 8103 0 991 0 0 0 0 124 739 0 002 12567 1036 999 -037 381393 H16 8103 0 991 0 0 0 0 124 739 0 002 1236 1056 1029 -027 381394 H16 8103 0 991 0 0 0 0 124 739 0 002 12375 1063 1027 -036 381395 H16 8103 0 991 0 0 0 0 124 739 0 002 12225 1097 1049 -048 381396 H16 8103 0 991 0 0 0 0 124 739 0 002 12243 11 1046 -054 381397 H16 8103 0 991 0 0 0 0 124 739 0 002 12137 1127 1062 -065 381398 H16 8103 0 991 0 0 0 0 124 739 0 002 11232 1308 1212 -096 381399 H17 8174 0 1003 0 0 0 0 247 566 0 002 12637 997 986 -011 381400 H17 8174 0 1003 0 0 0 0 247 566 0 002 12416 1023 1017 -006 381401 H17 8174 0 1003 0 0 0 0 247 566 0 002 12173 1059 1053 -006 381402 H17 8174 0 1003 0 0 0 0 247 566 0 002 11941 11 1089 -011 381403 H17 8174 0 1003 0 0 0 0 247 566 0 002 11232 1216 1208 -008 381404 H18 8222 0 1017 0 0 0 0 366 389 0 002 12708 986 984 -002 381405 H18 8222 0 1017 0 0 0 0 366 389 0 002 12538 1015 1008 -007 381406 H18 8222 0 1017 0 0 0 0 366 389 0 002 12262 1044 1048 004 381407 H18 8222 0 1017 0 0 0 0 366 389 0 002 1197 1095 1093 -002 381408 H18 8222 0 1017 0 0 0 0 366 389 0 002 11232 1212 1217 005 381409 H19 8231 0 1016 0 0 0 0 589 07 0 002 12425 986 1004 018 381410 H19 8231 0 1016 0 0 0 0 589 07 0 002 12268 1018 1027 009 381411 H19 8231 0 1016 0 0 0 0 589 07 0 002 12033 1054 1062 008 381412 H19 8231 0 1016 0 0 0 0 589 07 0 002 11768 1091 1104 013 381413 H19 8231 0 1016 0 0 0 0 589 07 0 002 11232 1187 1196 009 381414 H20 8294 0 103 0 0 0 0 468 241 0 001 12605 973 1005 032 381415 H20 8294 0 103 0 0 0 0 468 241 0 001 12367 101 104 03 381416 H20 8294 0 103 0 0 0 0 468 241 0 001 12155 1059 1072 013 381417 H20 8294 0 103 0 0 0 0 468 241 0 001 12173 106 1069 009 381418 H20 8294 0 103 0 0 0 0 468 241 0 001 11915 1114 111 -004 381419 H20 8294 0 103 0 0 0 0 468 241 0 001 11232 1272 1227 -045 38

175

1420 H21 7349 0 1326 0 0 0 0 24 898 0 003 12463 986 908 -078 381421 H21 7349 0 1326 0 0 0 0 24 898 0 003 12213 1022 941 -081 381422 H21 7349 0 1326 0 0 0 0 24 898 0 003 12025 1049 967 -082 381423 H21 7349 0 1326 0 0 0 0 24 898 0 003 1177 1089 1004 -085 381424 H21 7349 0 1326 0 0 0 0 24 898 0 003 11232 1177 1088 -089 381425 H22 749 0 1352 0 0 0 0 364 722 0 002 12679 946 891 -055 381426 H22 749 0 1352 0 0 0 0 364 722 0 002 12403 99 927 -063 381427 H22 749 0 1352 0 0 0 0 364 722 0 002 12266 101 946 -064 381428 H22 749 0 1352 0 0 0 0 364 722 0 002 11914 106 996 -064 381429 H22 749 0 1352 0 0 0 0 364 722 0 002 11232 1176 1101 -075 381430 H23 7552 0 139 0 0 0 0 477 553 0 002 12652 936 915 -021 381431 H23 7552 0 139 0 0 0 0 477 553 0 002 12364 996 954 -042 381432 H23 7552 0 139 0 0 0 0 477 553 0 002 1223 1012 972 -04 381433 H23 7552 0 139 0 0 0 0 477 553 0 002 11884 1066 1022 -044 381434 H23 7552 0 139 0 0 0 0 477 553 0 002 11232 1192 1125 -067 381435 H24 7608 0 1389 0 0 0 0 596 384 0 002 12174 954 976 022 381436 H24 7608 0 1389 0 0 0 0 596 384 0 002 11923 1013 1013 0 381437 H24 7608 0 1389 0 0 0 0 596 384 0 002 11769 105 1036 -014 381438 H24 7608 0 1389 0 0 0 0 596 384 0 002 11513 109 1075 -015 381439 H24 7608 0 1389 0 0 0 0 596 384 0 002 11232 1159 1121 -038 381440 H25 7652 0 1405 0 0 0 0 714 219 0 002 12188 964 972 008 381441 H25 7652 0 1405 0 0 0 0 714 219 0 002 11976 999 1002 003 381442 H25 7652 0 1405 0 0 0 0 714 219 0 002 1175 1034 1036 002 381443 H25 7652 0 1405 0 0 0 0 714 219 0 002 1150 108 1074 -006 381444 H25 7652 0 1405 0 0 0 0 714 219 0 002 11232 1127 1118 -009 381445 H26 7898 0 1211 0 0 0 0 704 062 0 001 12711 915 935 02 381446 H26 7898 0 1211 0 0 0 0 704 062 0 001 12586 945 952 007 381447 H26 7898 0 1211 0 0 0 0 704 062 0 001 12394 965 979 014 381448 H26 7898 0 1211 0 0 0 0 704 062 0 001 12099 1035 1022 -013 381449 H26 7898 0 1211 0 0 0 0 704 062 0 001 11893 1074 1053 -021 381450 H26 7898 0 1211 0 0 0 0 704 062 0 001 11686 1124 1086 -038 381451 H26 7898 0 1211 0 0 0 0 704 062 0 001 11232 1224 1162 -062 38

176

APPENDIX B

FTIR SPECTRA FOR EQUILIBRIUM SPECIATION EXPERIMENTS

The FTIR spectra on the following pages are for the measurements listed in Table

33 in Chapter III All spectra were normalized to the sample thickness (mm)

Fig B1 FTIR spectra for equilibrium speciation experiments

053

058

063

068

073

40004500500055006000

KS-1-21

wavenumber (cm-1)

A (1

mm

)

049

054

059

064

069

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-22

055

06

065

07

075

40004500500055006000

KS-1-23

wavenumber (cm-1)

A (1

mm

)

025

027

029

031

033

035

037

039

041

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-31

177

022

024

026

028

03

032

034

036

038

40004500500055006000

KS-1-32

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-33

035

037

039

041

043

045

047

049

051

40004500500055006000

KS-1-41

A (1

mm

)

wavenumber (cm-1)

034

036

038

04

042

044

046

048

05

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-42

027

029

031

033

035

037

039

041

043

40004500500055006000

KS-1-43

A (1

mm

)

wavenumber (cm-1)

038

042

046

05

054

058

062

066

40004500500055006000

GMR+2-1-11

A (1

mm

)

wavenumber (cm-1)

178

034

038

042

046

05

054

058

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-12

035

039

043

047

051

055

059

063

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-13

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-21

045

05

055

06

065

07

075

08

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-22

045

05

055

06

065

07

075

08

40004500500055006000

GMR+2-1-23

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-31

179

033

038

043

048

053

058

063

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-32

033

038

043

048

053

058

063

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-33

045

05

055

06

065

07

075

08

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-R11

04

045

05

055

06

065

07

075

40004500500055006000

GMR+2-1-R12

A (1

mm

)

wavenumber (cm-1)

045

05

055

06

065

07

075

08

40004500500055006000

GMR+2-1-R13

wavenumber (cm-1)

A (1

mm

)

12

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-21

180

11

13

15

17

19

21

23

25

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-22

11

13

15

17

19

21

23

25

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-23

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-31

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-32

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-33

04

05

06

07

08

09

1

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-41

181

04

05

06

07

08

09

1

40004500500055006000

GMR+4-1-42A

(1m

m)

wavenumber (cm-1)

04

05

06

07

08

09

1

40004500500055006000

GMR+4-1-43

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

40004500500055006000

KS-2-11

wavenumber (cm-1)

A (1

mm

)

033

038

043

048

053

40004500500055006000

KS-2-12

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

40004500500055006000

KS-2-13

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

40004500500055006000

KS-2-21

wavenumber (cm-1)

A (1

mm

)

182

023

028

033

038

043

40004500500055006000

KS-2-22

A (1

mm

)

wavenumber (cm-1)

022

027

032

037

042

40004500500055006000

KS-2-23

wavenumber (cm-1)

A (1

mm

)

033

038

043

048

053

40004500500055006000

KS-2-41

wavenumber (cm-1)

A (1

mm

)

029

034

039

044

049

40004500500055006000

wavenumber (cm-1)

KS-2-42

A (1

mm

)

028

033

038

043

048

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-43

045

05

055

06

065

07

075

08

085

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-11

183

055

06

065

07

075

08

085

09

095

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-12

055

06

065

07

075

08

085

09

095

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-13

032

037

042

047

052

057

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-21

032

037

042

047

052

057

062

40004500500055006000

GMR+2-2-22

A (1

mm

)

wavenumber (cm-1)

032

037

042

047

052

057

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-23

055

06

065

07

075

08

085

09

40004500500055006000

GMR+2-2-41

A (1

mm

)

wavenumber (cm-1)

184

05

055

06

065

07

075

08

085

40004500500055006000

GMR+2-2-42

wavenumber (cm-1)

A (1

mm

)

045

05

055

06

065

07

075

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-43

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-11

08

1

12

14

16

18

40004500500055006000

GMR+4-2-12

A (1

mm

)

wavenumber (cm-1)

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-13

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-21

A (1

mm

)

wavenumber (cm-1)

185

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-22A

(1m

m)

wavenumber (cm-1)

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-23

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-31

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-32

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-33

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

40004500500055006000

KS-3-11

A (1

mm

)

wavenumber (cm-1)

186

04

045

05

055

06

40004500500055006000

KS-3-12

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

40004500500055006000

KS-3-13

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

KS-3-21

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-22

025

03

035

04

045

40004500500055006000

KS-3-23

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

KS-3-24

wavenumber (cm-1)

A (1

mm

)

187

023

025

027

029

031

033

035

037

039

40004500500055006000

KS-3-31

wavenumber (cm-1)

A (1

mm

)

023

025

027

029

031

033

035

037

039

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-32

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-3-33

A (1

mm

)

wavenumber (cm-1)

025

027

029

031

033

035

037

039

041

40004500500055006000

KS-3-41

wavenumber (cm-1)

A (1

mm

)

026

028

03

032

034

036

038

04

042

40004500500055006000

KS-3-42

A (1

mm

)

wavenumber (cm-1)

026

028

03

032

034

036

038

04

042

40004500500055006000

KS-3-43

wavenumber (cm-1)

A (1

mm

)

188

027

029

031

033

035

037

039

041

043

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-44

045

047

049

051

053

055

057

059

061

40004500500055006000

KS-3-R11

wavenumber (cm-1)

A (1

mm

)

036

038

04

042

044

046

048

05

052

40004500500055006000

KS-3-R12

wavenumber (cm-1)

A (1

mm

)

033

035

037

039

041

043

045

047

049

40004500500055006000

KS-3-R13

wavenumber (cm-1)

A (1

mm

)

032

037

042

047

052

057

062

067

40004500500055006000

GMR+2-3-11

A (1

mm

)

wavenumber (cm-1)

032

037

042

047

052

057

062

067

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-12

189

032

037

042

047

052

057

062

067

40004500500055006000

GMR+2-3-13A

(1m

m)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-3-21

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-22

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-23

wavenumber (cm-1)

A (1

mm

)

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-31

wavenumber (cm-1)

A (1

mm

)

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-32

A (1

mm

)

wavenumber (cm-1)

190

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-33

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-11

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-12

A (1

mm

)

wavenumber (cm-1)05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-13

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-31

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-32

wavenumber (cm-1)

A (1

mm

)

191

04

05

06

07

08

09

1

40004500500055006000

GMR+4-3-33A

(1m

m)

wavenumber (cm-1)

04

05

06

07

08

09

1

11

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+4-3-41

04

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-42

A (1

mm

)

wavenumber (cm-1)

04

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-43

A (1

mm

)

wavenumber (cm-1)

023

028

033

038

043

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-11

045

05

055

06

065

40004500500055006000

KS-1b-12

A (1

mm

)

wavenumber (cm-1)

192

027

032

037

042

047

40004500500055006000

KS-1b-13

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-1b-21

wavenumber (cm-1)

A (1

mm

)

021

023

025

027

029

031

033

035

037

40004500500055006000

KS-1b-22

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-1b-23

A (1

mm

)

wavenumber (cm-1)

028

031

034

037

04

043

046

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1b-31

031

034

037

04

043

046

049

40004500500055006000

KS-1b-32

A (1

mm

)

wavenumber (cm-1)

193

033

036

039

042

045

048

051

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-33

024

026

028

03

032

034

036

038

04

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-R11

027

029

031

033

035

037

039

041

043

40004500500055006000

KS-1b-R12

A (1

mm

)

wavenumber (cm-1)

031

033

035

037

039

041

043

045

047

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-R13

063

065

067

069

071

073

075

077

079

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1b-R21

054

056

058

06

062

064

066

068

07

40004500500055006000

KS-1b-R22

A (1

mm

)

wavenumber (cm-1)

194

058

06

062

064

066

068

07

072

074

40004500500055006000

KS-1b-R23

A (1

mm

)

wavenumber (cm-1)

195

APPENDIX C

FTIR SPECTRA FOR COOLING EXPERIMENTS

The FTIR spectra on the following pages are for the measurements listed in Table

43 in Chapter IV All spectra were normalized to the sample thickness (mm)

Fig C1 FTIR spectra for cooling experiments

042

044

046

048

05

052

054

056

058

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-21

036

038

04

042

044

046

048

05

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-22

05

052

054

056

058

06

062

064

40004500500055006000

KS-1-23

A (1

mm

)

wavenumber (cm-1)

048

05

052

054

056

058

06

062

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-31

196

044

046

048

05

052

054

056

058

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-32

036

038

04

042

044

046

048

05

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-33

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-41

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-42

022

024

026

028

03

032

034

036

038

40004500500055006000

KS-1-43

wavenumber (cm-1)

A (1

mm

)

028

032

036

04

044

048

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1-51

197

028

032

036

04

044

048

40004500500055006000

KS-1-52

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

40004500500055006000

KS-1-53

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-11

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-12

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-13

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-21

wavenumber (cm-1)

A (1

mm

)

198

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-22

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-23

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-31

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-32

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-33

wavenumber (cm-1)

A (1

mm

)

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-21

199

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

GMR+4-1-22

wavenumber (cm-1)

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-23

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-31

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-32

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-33

wavenumber (cm-1)

A (1

mm

)

14

16

18

2

22

24

26

28

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-41

200

14

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-42

A (1

mm

)

wavenumber (cm-1)

14

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-43

wavenumber (cm-1)

A (1

mm

)

-065

-06

-055

-05

-045

-04

40004500500055006000

KS-2-11

A (1

mm

)

wavenumber (cm-1)

-025

-02

-015

-01

-005

0

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-2-12

032

036

04

044

048

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-21

028

032

036

04

044

048

40004500500055006000

KS-2-22

A (1

mm

)

wavenumber (cm-1)

201

025

029

033

037

041

045

40004500500055006000

KS-2-23

wavenumber (cm-1)

A (1

mm

)

026

031

036

041

046

40004500500055006000

KS-2-31

wavenumber (cm-1)

A (1

mm

)

024

029

034

039

044

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-32

03

035

04

045

05

40004500500055006000

KS-2-33

wavenumber (cm-1)

A (1

mm

)

-008

-0044

-0008

0028

0064

01

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-41

-02

-0164

-0128

-0092

-0056

-002

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-2-42

202

-006

-0024

0012

0048

0084

012

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-43

03

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-21

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-22

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-23

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-31

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-32

A (1

mm

)

wavenumber (cm-1)

203

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-33

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-51

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-52

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-53

wavenumber (cm-1)

A (1

mm

)

01

02

03

04

05

06

07

08

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-31

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-32

wavenumber (cm-1)

A (1

mm

)

204

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-33

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-41

A (1

mm

)

wavenumber (cm-1)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-42

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-43

wavenumber (cm-1)

A (1

mm

)

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-51

A (1

mm

)

wavenumber (cm-1)

01

02

03

04

05

06

07

08

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-52

205

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-53A

(1m

m)

wavenumber (cm-1)

025

03

035

04

045

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-11

025

03

035

04

045

40004500500055006000

KS-3-12

A (1

mm

)

wavenumber (cm-1)

023

028

033

038

043

40004500500055006000

KS-3-13

A (1

mm

)

wavenumber (cm-1)

028

031

034

037

04

043

046

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-3-21

029

032

035

038

041

044

047

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-22

206

031

034

037

04

043

046

049

40004500500055006000wavenumber (cm-1)

A (1

mm

)KS-3-23

025

03

035

04

045

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-81

03

035

04

045

05

40004500500055006000

KS-3-82

A (1

mm

)

wavenumber (cm-1)

026

031

036

041

046

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-83

04

045

05

055

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-91

036

04

044

048

052

056

40004500500055006000

KS-3-92

A (1

mm

)

wavenumber (cm-1)

207

038

043

048

053

058

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-93

039

041

043

045

047

049

051

053

055

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-111

04

042

044

046

048

05

052

054

056

40004500500055006000

KS-3-112

A (1

mm

)

wavenumber (cm-1)

041

043

045

047

049

051

053

055

057

40004500500055006000

KS-3-113

A (1

mm

)

wavenumber (cm-1)

033

035

037

039

041

043

045

047

049

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-114

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-21

wavenumber (cm-1)

A (1

mm

)

208

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-22A

(1m

m)

wavenumber (cm-1)03

035

04

045

05

055

06

065

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-3-23

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-31

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-32

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-33

A (1

mm

)

wavenumber (cm-1)

04

045

05

055

06

065

07

075

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-41

209

04

045

05

055

06

065

07

075

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-3-42

04

045

05

055

06

065

07

075

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-43

08

1

12

14

16

18

40004500500055006000

GMR+4-3-41

A (1

mm

)

wavenumber (cm-1)

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-3-42

08

1

12

14

16

18

40004500500055006000

GMR+4-3-43

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-3-51

210

03

04

05

06

07

08

09

40004500500055006000wavenumber (cm-1)

A (1

mm

)GMR+4-3-52

03

04

05

06

07

08

09

40004500500055006000

GMR+4-3-53

wavenumber (cm-1)

A (1

mm

)

211

APPENDIX D

DATABASE FOR EASINESS OF CRYSTALLIZATION FOR DIFFERENT MELTS AT DIFFERENT P-T CONDITION

Experimental database for easiness of crystallization for different melts at

different P-T condition has been accumulated at the experimental petrology laboratory

the University of Michigan The references are listed at the end of the table

Table D1 Pressure dependence of easiness of crystallization for different melts at

different temperatures

Composition H2Ot P T t q Crystallization Refloz wt GPa K s Ks

1 rhyolite 653 05 613 7200 50 N 42 rhyolite 653 05 613 1260 50 N 43 rhyolite 46 03 623 18000 50 N 134 rhyolite 389 1 623 261360 50 N 115 rhyolite 653 05 643 300 0017 N 46 rhyolite 533 05 673 300 0017 N 47 rhyolite 389 1 673 46800 50 N 118 rhyolite 389 2 673 172800 50 N 119 rhyolite 518 2 673 720000 50 N 12

10 rhyolite 371 3 673 259200 50 N 1111 rhyolite 365 05 678 300 00017 N 412 rhyolite 365 05 678 600 59 N 413 rhyolite 364 05 703 300 0017 N 414 rhyolite 263 00001 723 600 0017 N 115 rhyolite 365 05 723 300 1 N 416 rhyolite 18 1 723 183600 50 N 1117 rhyolite 389 1 723 10800 50 N 1118 rhyolite 389 2 723 14400 50 N 1119 rhyolite 389 3 723 21600 50 N 1120 rhyolite 389 3 723 21600 50 N 1121 rhyolite 527 05 733 300 1 N 422 rhyolite 239 00001 735 600 0000177 N 1

212

23 rhyolite 653 05 743 300 50 N 424 rhyolite 1571 00001 752 600 0000177 N 125 rhyolite 306 00001 753 600 0108 N 126 rhyolite 365 05 753 600 1 N 427 rhyolite 527 05 753 240 50 N 428 rhyolite 087 05 753 1067900 30 N 329 rhyolite 389 2 753 1260 50 N 1130 rhyolite 51 2 753 172800 50 Y 1231 rhyolite 085 3 763 36000 50 Y 1132 rhyolite 149 00001 773 176220 427 N 233 rhyolite 46 03 773 300 50 N 1334 rhyolite 18 1 773 600 50 N 1135 rhyolite 389 1 773 600 50 N 1136 rhyolite 18 2 773 86400 50 N 1137 rhyolite 591 2 773 54000 50 Y 1238 rhyolite 18 3 773 172800 50 N 1139 rhyolite 389 3 773 960 50 N 1140 rhyolite 09 4 773 10800 50 Y 1141 rhyolite 09 62 773 10800 50 Y 1142 rhyolite 3 00001 783 600 055 N 143 rhyolite 365 05 793 300 52 N 444 rhyolite 177 00001 798 26820 1259 N 245 rhyolite 371 05 803 68520 30 N 346 rhyolite 0809 00001 813 600 00002 N 147 rhyolite 08 1 813 187200 54 N 1148 rhyolite 1729 00001 823 600 0017 N 149 rhyolite 1824 00001 823 600 0017 N 150 rhyolite 1681 00001 823 600 0125 N 151 rhyolite 1855 00001 823 600 013 N 152 rhyolite 1879 00001 823 600 082 N 153 rhyolite 18 1 823 600 55 N 1154 rhyolite 18 2 823 7200 55 N 1155 rhyolite 09 3 823 176400 55 N 1156 rhyolite 09 3 823 864000 55 N 1157 rhyolite 09 4 823 11100 55 Y 1158 rhyolite 18 3 823 7200 55 N 1159 rhyolite 181 00001 824 10800 59 N 260 rhyolite 0186 00001 825 3628800 20 N 1061 rhyolite 76 05 828 9065 70 N 362 rhyolite 073 05 836 236800 30 N 363 rhyolite 0839 00001 843 600 0002 N 164 rhyolite 1421 00001 843 600 0017 N 165 rhyolite 1433 00001 843 600 0141 N 166 rhyolite 0928 00001 847 600 0017 N 167 rhyolite 192 00001 848 2700 84 N 268 rhyolite 131 00001 848 16800 141 N 269 rhyolite 18 2 853 600 58 N 1170 rhyolite 142 00001 863 600 0762 N 1

213

71 rhyolite 082 081 865 252900 30 N 372 rhyolite 081 005 868 167700 30 N 373 rhyolite 0811 00001 872 600 0049 N 174 rhyolite 0839 00001 873 600 00055 N 175 rhyolite 085 00001 873 21600 65 N 1176 rhyolite 085 3 873 7200 60 Y 1177 rhyolite 087 1 873 14400 60 N 1178 rhyolite 088 3 873 2400 60 N 1179 rhyolite 09 2 873 14400 60 N 1180 rhyolite 09 4 873 10800 60 Y 1181 rhyolite 09 4 873 10800 60 Y 1182 rhyolite 1118 00001 873 600 015 N 183 rhyolite 1155 00001 873 600 0915 N 184 rhyolite 116 00001 873 5760 20 N 285 rhyolite 139 00001 873 3900 20 N 286 rhyolite 187 00001 873 1215 20 N 287 rhyolite 2 2 873 600 60 N 1188 rhyolite 2 3 873 600 60 N 1189 rhyolite 226 2 873 43200 60 N 1290 rhyolite 228 2 873 86400 60 N 1291 rhyolite 361 3 873 60 1 N 1392 rhyolite 396 2 873 14400 60 Y 1293 rhyolite 51 1 873 36000 60 N 1294 rhyolite 079 02 874 227760 30 N 395 rhyolite 0892 00001 875 600 0017 N 196 rhyolite 079 05 875 263650 30 N 397 rhyolite 077 00001 876 93160 30 N 398 rhyolite 186 05 878 144300 30 N 399 rhyolite 0802 00001 880 600 0161 N 1

100 rhyolite 085 3 883 3600 001 Y 13101 rhyolite 0831 00001 893 600 0018 N 1102 rhyolite 084 00001 893 600 0018 N 1103 rhyolite 085 3 903 3600 001 Y 13104 rhyolite 08 00001 923 600 75 N 11105 rhyolite 08 00001 923 7200 75 N 11106 rhyolite 084 00001 923 2400 75 N 11107 rhyolite 085 1 923 600 65 N 11108 rhyolite 089 2 923 600 65 N 11109 rhyolite 085 3 923 600 33 Y 13110 rhyolite 085 3 923 600 033 Y 13111 rhyolite 201 1 923 600 01 N 13112 rhyolite 382 1 923 120 1 N 13113 rhyolite 0513 00001 941 600 0017 N 1114 rhyolite 087 2 953 600 68 N 11115 rhyolite 76 05 969 720 30 N 3116 rhyolite 0124 00001 971 1450800 20 N 10117 rhyolite 137 0011 973 259200 05 N 10118 rhyolite 218 00249 973 172800 05 N 10

214

119 rhyolite 389 2 973 60 1 N 13120 rhyolite 389 3 973 60 10 N 13121 rhyolite 08 00001 973 600 50 N 11122 rhyolite 082 1 973 480 70 N 11123 rhyolite 08 1 973 300 01 N 13124 rhyolite 08 2 973 300 01 N 13125 rhyolite 085 3 973 600 70 Y 11126 rhyolite 082 3 973 300 01 Y 13127 rhyolite 09 4 973 3600 70 Y 11128 rhyolite 0836 00001 993 300 127 N 6129 rhyolite 09 4 993 600 05 Y 13130 rhyolite 0805 00001 1000 300 20 N 6131 rhyolite 0784 00001 1003 600 79 N 6132 rhyolite 088 00001 1013 60 127 N 6133 rhyolite 08 00001 1021 300 65 N 6134 rhyolite 0116 00001 1023 1292400 20 N 10135 rhyolite 068 00001 1023 300 178 N 6136 rhyolite 0766 00001 1023 300 84 N 6137 rhyolite 08 3 1023 600 0333 Y 13138 rhyolite 082 1 1023 120 1 N 13139 rhyolite 082 2 1023 120 1 N 13140 rhyolite 082 3 1023 120 10 N 13141 rhyolite 083 3 1023 120 1 N 13142 rhyolite 084 00001 1023 450 130 N 6143 rhyolite 085 3 1023 120 75 N 11144 rhyolite 085 3 1023 120 1 N 13145 rhyolite 0855 00001 1023 600 174 N 6146 rhyolite 18 2 1023 120 10 N 13147 rhyolite 18 2 1023 120 1 N 13148 rhyolite 18 3 1023 120 10 N 13149 rhyolite 18 3 1023 120 1 N 13150 rhyolite 183 1 1023 120 1 N 13151 rhyolite 389 2 1023 60 10 N 13152 rhyolite 389 3 1023 60 75 Y 13153 rhyolite 08 00001 1024 600 14 N 6154 rhyolite 07 1 1073 60 10 N 13155 rhyolite 08 1 1073 120 80 N 13156 rhyolite 08 2 1073 120 10 N 13157 rhyolite 082 02 1073 300 0167 N 4158 rhyolite 083 01 1073 600 0167 N 4159 rhyolite 085 2 1073 300 0167 N 13160 rhyolite 178 02 1073 600 80 N 4161 rhyolite 181 1 1073 60 10 N 13162 rhyolite 182 2 1073 60 80 N 13163 rhyolite 241 01 1073 600 80 N 4164 rhyolite 25 02 1073 600 80 N 4165 rhyolite 389 1 1073 60 10 N 13166 rhyolite 389 1 1073 60 80 N 13

215

167 rhyolite 389 2 1073 60 80 N 13168 rhyolite 389 3 1073 60 80 Y 13169 rhyolite 09 4 1103 300 4 Y 13170 rhyolite 0103 00001 1123 219600 20 N 10171 rhyolite 0105 00001 1123 867600 20 N 10172 rhyolite 077 00061 1123 259200 05 N 10173 rhyolite 077 2 1123 120 85 N 13174 rhyolite 077 3 1123 60 85 Y 13175 rhyolite 085 2 1123 300 85 N 13176 rhyolite 11 00112 1123 338400 05 N 10177 rhyolite 111 00114 1123 172800 05 N 10178 rhyolite 176 00253 1123 176400 05 N 10179 rhyolite 18 3 1123 120 85 Y 13180 rhyolite 241 02 1123 3600 067 N 4181 rhyolite 389 3 1123 60 85 Y 13182 rhyolite 0106 00001 1124 1134000 20 N 10183 rhyolite 76 05 1126 240 30 N 3184 rhyolite 6 025 1135 1800 2 N 3185 rhyolite 76 05 1173 0 2 N 3186 rhyolite 76 05 1173 1800 2 N 3187 rhyolite 23 05 1173 7200 167 N 5188 rhyolite 0225 05 1180 36000 30 N 3189 rhyolite 07 00061 1268 173160 05 N 10190 rhyolite 0102 00001 1272 1083600 20 N 10191 rhyolite 0099 00001 1273 691200 20 N 10192 rhyolite 012 01 1273 1800 167 N 5193 rhyolite 012 01 1273 14400 167 N 5194 rhyolite 012 03 1273 14400 167 N 5195 rhyolite 078 02 1273 300 100 N 4196 rhyolite 081 02 1273 300 67 N 4197 rhyolite 083 02 1273 300 083 N 4198 rhyolite 09 4 1273 120 100 Y 13199 rhyolite 099 00114 1275 88200 05 N 10200 rhyolite 115 05 1273 600 0017 N 4201 rhyolite 115 05 1273 600 100 N 4202 rhyolite 155 00252 1273 86400 05 N 10203 rhyolite 157 0025 1273 86400 05 N 10204 rhyolite 5 05 1273 600 100 N 5205 rhyolite 5 1 1273 600 100 N 5206 rhyolite 5 15 1273 600 100 N 5207 rhyolite 0219 05 1298 14400 30 N 3208 rhyolite 09 05 1298 14400 167 N 5209 rhyolite 024 05 1307 5400 167 N 5210 rhyolite 22 05 1307 5400 167 N 5211 rhyolite 22 05 1307 5400 167 N 5212 rhyolite 2 05 1307 5400 167 N 5213 rhyolite 078 01 1373 300 100 N 4214 rhyolite 371 2 1373 60 100 N 13

216

215 rhyolite 51 2 1373 624 100 N 12216 rhyolite 51 2 1373 613 100 N 12217 rhyolite 024 05 1375 1800 167 N 5218 rhyolite 09 05 1375 1800 167 N 5219 rhyolite 22 05 1375 1800 167 N 5220 rhyolite 38 05 1375 1800 167 N 5221 rhyolite 2 05 1375 1800 167 N 5222 rhyolite 09 05 1471 1200 167 N 5223 rhyolite 24 05 1471 1200 167 N 5224 rhyolite 41 05 1471 1200 167 N 5225 rhyolite 064 00061 1473 144000 05 N 10226 rhyolite 089 0011 1473 86400 05 N 10227 rhyolite 144 0025 1473 79200 05 N 10228 rhyolite 147 0025 1473 82800 05 N 10229 rhyolite 148 0025 1473 86400 05 N 10230 rhyolite 361 3 1473 60 100 N 13231 rhyolite 64 05 1478 900 2 N 3232 rhyolite 6 025 1488 1200 2 N 3233 rhyolite 51 1 1573 248 100 N 12234 rhyolite 397 2 1573 252 100 N 12235 rhyolite 227 2 1573 587 100 N 12236 rhyolite 09 41 1673 120 100 Y 13237 rhyolite 591 2 1773 120 100 N 12238 rhyolite 002 05 1873 7200 100 N 13239 rhyolite 517 2 1873 128 100 N 12240 rhyolite 09 4 1873 60 100 Y 13241 andesite 157 1 1523 0 100 N 7242 andesite 32 1 1573 300 100 N 7243 andesite 157 1 1573 300 100 N 7244 andesite 56 1 1573 120 100 N 7245 andesite 35 05 1673 90 100 N 7246 andesite 35 15 1673 90 100 N 7247 andesite 21 1 1773 60 100 N 7248 andesite 151 1 1773 60 100 N 7249 andesite 159 1 1813 126 100 N 7250 dacite 2517 00001 753 3000 20 N 8251 dacite 1453 00001 773 4202 20 N 8252 dacite 2513 00001 773 1800 20 N 8253 dacite 245 01 776 172200 30 N 9254 dacite 2354 00001 791 270 20 N 8255 dacite 1463 00001 792 1200 20 N 8256 dacite 1453 00001 792 2100 20 N 8257 dacite 2314 00001 810 484 20 N 8258 dacite 074 00001 824 1744680 20 N 9259 dacite 1425 00001 833 600 20 N 8260 dacite 245 01 834 689315 30 N 9261 dacite 1518 00001 845 180 20 N 8262 dacite 1525 00001 845 180 20 N 8

217

263 dacite 1411 00001 863 180 20 N 8264 dacite 245 01 878 103975 30 N 9265 dacite 145 0097 881 180900 100 N 9266 dacite 075 00975 881 413880 100 N 9267 dacite 245 014 881 40878 100 N 9268 dacite 245 013 910 19660 100 N 9269 dacite 073 0099 911 484260 100 N 9270 dacite 47 1 1423 300 100 N 7271 dacite 46 1 1473 300 100 N 7272 dacite 35 05 1573 73 100 N 7273 dacite 29 1 1573 480 100 N 7274 dacite 62 05 1673 120 100 N 7275 dacite 63 15 1673 120 100 N 7276 dacite 31 1 1773 90 100 N 7

ldquoNrdquo means no crystallization in the quenched glass and ldquoYrdquo means significant crystallization The crystallized samples were classified as failed experiments and were not discussed in the respective papers even though the samples were part of the respective study loz references 1 Zhang et al 1997b 2 Liu and Zhang 2000 3 Zhang and Behrens 2000 4 Zhang et al 2000 5 Behrens and Zhang 2001 6 Xu and Zhang 2002 7 Behrens et al 2004 8 Liu et al 2004a 9 Liu et al 2004b 10 Liu et al 2005 11 Hui et al in revision 12 Ni and Zhang revised 13 this study

Page 3: VISCOSITY OF SILICATE MELTS

ii

To

Xiaoqing and our families

iii

ACKNOWLEDGEMENTS

I would first of all like to thank my dissertation advisor Dr Youxue Zhang who

offered me this great opportunity to be a scientist and guided my academic development

with patience I have great respect and admiration of his enthusiasm in science critical

thinking and hard work I would like to thank other members in my dissertation

committee Drs Eric Essene Becky Lange Lars Stixrude and John Kieffer Special

thanks go to Dr Eric Essene for his advice and encouragements along my study I

benefited a lot from his wealth of knowledge and directness during my study here My

sincere thanks go to Dr Becky Lange I learned a lot on the melt not only in her igneous

petrology class but also in her group meeting I would like to thank Dr Lars Stixrude I

benefited a lot from his scientific thoughts and insightful comments on this dissertation

Finally I would like to thank my cognate Dr John Kieffer He provided helpful

comments and fresh perspectives from the outside of geology

I would also like to thank all other people who have contributed to my dissertation

in various ways My sincere thanks go to Zhengjiu Xu who taught me a lot of things in

the lab Dr Harald Behrens at University of Hannover who provided advice on various

aspects of the research in this disseration and his hospitality during my stay in Hannover

Perio Del Gaudio Francesco Vetere Jan Schuuml ler Otto Diedrich and other people in

Hannover who gave me a lot of help during this visit Tony Withers provided a lot of

instructions from temperature recording system of piston cylinder to salt cell

iv

Yang Liu taught me a lot to do experiments Yang Chen provided help in glass

composition analysis with EMPA Wenjun Yong and Lixing Jin helped me with XRD

Huaiwei Ni helped in pressure calibration

I would like to express my gratitude to my fellow students for their friendship and

support including Yang Liu Daming Wang Maodu Yan Kate Kenedi Zeb Page Qiong

Liu Matt Mannon Yang Chen Huaiwei Ni Wenjun Yong Xiqiao Xu Ni Sun Steven

Ownby Lixing Jin Lin Ma and Tie Sun I also would like to express my special thanks

to my friend and former landlord Bob Trees for his support and help during my hard

time at Ann Arbor

My deepest gratitude goes to my wife Xiaoqing and our families Their love and

support are critically important for me to accomplish this work

v

TABLE OF CONTENTS

DEDICATIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipii

ACKNOWLEDGMENTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipiii

LIST OF FIGUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipvii

LIST OF TABLEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipix

LIST OF APPENDICEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipx

CHAPTER

I INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip1

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip5

II TOWARD A GENERAL VISCOSITY EQUATION OF NATURAL

ANHYDROUS AND HYDROUS SILICATE MELTShelliphelliphelliphelliphelliphellip7

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip7

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip8

TEMPERATURE DEPENDENCE OF VISCOSITYhelliphelliphelliphellip10

VISCOSITY OF BINARY MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip12

VISCOSITY MODELS FOR NATURAL ANHYDROUS AND

HYDROUS SILICATE EMLTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip19

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip42

III PRESSURE DEPENDENCE OF THE SPECIATION OF DISSOLVED

WATER IN RHYOLITC MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip52

EXPERIMENTAL METHODShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip53

ANALYTICAL PROCEDUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip59

RESULTS AND DISCUSSIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip62

CONCLUSIONShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip80

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip81

vi

IV PRESSURE DEPENDENCE OF VISCOSITY OF RHYOLITIC

MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip86

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip86

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip87

EXPERIMENTAL AND ANALYTICAL METHODShelliphelliphellip90

DISCUSSIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip107

CONCLUDING REMARKShelliphelliphelliphelliphelliphelliphelliphellip117

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip118

V CONCLUSIONShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip125

APPENDICEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip129

vii

LIST OF FIGURES

Figure

21 Comparisons of fitting results using Equations 2 3 and 4a for viscosityhelliphelliphelliphellip13

22 Comparisons of experiments viscosity data with calculated valueshelliphelliphelliphelliphelliphelliphellip16

23 Viscosity as a function of composition in four binary systemshelliphelliphelliphelliphelliphelliphelliphellip18

24 Comparison of experimental viscosity data with calculated valueshelliphelliphelliphelliphelliphellip23

25 Total alkalis versus SiO2 diagramhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip29

26 Comparison of experimental viscosity values with calculated valueshelliphelliphelliphelliphelliphellip36

27 The prediction of Equation 12helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip39

31 Experimental results for temperature distribution in piston cylinderhelliphelliphelliphelliphelliphellip57

32 The temperature dependence of lnK at some pressureshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip67

33 Two sets of reversal experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip69

34 Temperature dependence of K and pressure dependence of enthalpyhelliphelliphelliphelliphelliphellip72

35 The distribution of differences between experimental and predicted temperatureshellip76

36 Pressure effect on lnK at some temperatures and water concentrationshelliphelliphelliphelliphellip77

41 Sketch of kinetics of reaction 1 during coolinghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip93

42 Temperature dependence of viscosity of rhyolitic melts at various pressureshelliphelliphellip99

43 Comparison of viscosities of given rhyolitic melts at various pressureshelliphelliphelliphellip104

44 Pressure effect on crystallization in the rhyolitic meltshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip106

viii

45 Comparison of measured viscosity data of rhyolites with calculated valueshelliphelliphellip111

46 P-T-XH2Ot range of all experimental data of the modelhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip112

47 Pressure effect on viscosity at some temperatures and water concentrationshelliphelliphellip113

48 Pressure dependence of glass transition temperature of hydrous rhyoliteshelliphelliphellip115

B1 FTIR spectra for Chapter IIIhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip176

C1 FTIR spectra for Chapter IVhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip195

ix

LIST OF TABLES

Table

21 Fitting parameters of Equation 5 in four binary systemshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip17

22 Fitting parameters for Equation 8helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip22

23 Melt composition on anhydrous basishelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip26

24 Fitting parameters for Equation 11helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip33

25 Examples of calculation using Equation 12helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip35

26 The 2 deviations and data points of sub-groups in the viscosity databasehelliphelliphelliphellip37

31 Chemical compositions of KS and GMR rhyolite on anhydrous basishelliphelliphelliphelliphellip55

32a Experimental results for pressure calibration at 1073 Khelliphelliphelliphelliphelliphelliphelliphelliphelliphellip60

32b Literature data on quartz-coesite transition pressure at 1073 Khelliphelliphelliphelliphelliphelliphelliphellip60

33 The equilibrium speciation of water in rhyolitic melts under various pressureshelliphellip63

34 Fitting parameters for Equations 3 4 and 6helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip74

41 Chemical composition of KS GMR and EDF rhyolite on anhydrous basishelliphelliphellip91

42 Viscosity of EDF under pressures 02 and 04 GPa and KS at 04 GPahelliphelliphelliphelliphellip98

43 Viscosity of hydrous rhyolitic melts under various pressureshelliphelliphelliphelliphelliphelliphelliphellip100

A1 Viscosity database used to fit Equation 11helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip130

D1 Pressure dependence of easiness of crystallization for different meltshelliphelliphelliphelliphellip211

x

LIST OF APPENDICES

Appendix

A Viscosity data of natural silicate meltshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip130

B FTIR spectra for equilibrium speciation experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip176

C FTIR spectra for cooling experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip195

D Database for easiness of crystallization for different melts at different P-T

conditionhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip211

1

CHAPTER 1

INTRODUCTION

Knowledge of viscosity of silicate melts is necessary in order to quantitatively

model volcanic and magmatic processes and in turn to provide insights into the structure

and dynamics of silicate melts A mechanistic study of xenolith dissolution may aid in

understanding the diagenesis of magmatic system (eg Morgan et al 2006 Shaw

2006) A numerical model of bubble growth may advance in predicting the mode of

volcanic eruption (eg Proussevitch and Sahagian 1998 Liu and Zhang 2000) The

success of these models in accurately predicting kinetic and dynamic processes in

igneous systems is critically dependent on the quality of viscosity data of silicate melts

Laboratory viscosity measurements are performed to better understand detailed

physicochemical behaviors and the results of these studies are then used to understand the

behavior of the melts in nature (eg Scaillet et al 1996) Because the conditions that

pertained in laboratory experiments cannot always be identical to those occurring in

nature it is also important to have means of interpolating or extrapolating laboratory

results to different (T P X) conditions In this study one of the primary aims is to

establish a general viscosity model to estimate viscosity of silicate melts at ambient

pressure Furthermore hydrous species reaction viscometer based on the kinetics of

hydrous species reaction in the rhyolitic melts at high pressure is used to infer viscosity

2

of hydrous rhyolitic melts at pressure up to 283 GPa and parallel-plate creep viscometer

in an internally-heated pressure vessel is employed to measure natural rhyolitic melts at

pressure up to 04 GPa and the pressure effect on the viscosity of rhyolitic melts is

examined

Chapter II presents a new and empirical viscosity equation of anhydrous and

hydrous natural silicate melts The compositional dependence of viscosity of silicate

melts is of fundamental importance to understand the evolution of magmatic systems

(eg Marsh 2006) However previous viscosity models can only provide viscosity

prediction of silicate melts either in a limited composition range over a large temperature

range (eg Hess and Dingwell 1996 Zhang et al 2003) or in a limited temperature

range in a large compositional range (eg Shaw 1972) This chapter provides a general

viscosity model of silicate melts which can be used to calculate viscosity of all natural

silicate melts in a large temperature range Natural and nearly natural melt compositions

covered in this model include anhydrous peridotite to rhyolite anhydrous peralkaline to

peraluminous melts hydrous basalt to rhyolite hydrous peralkaline to peraluminous

melts This model can also be used to estimate the glass transition temperatures and

cooling rate of natural silicate melts The results of this study have been published in

Geochimica et Cosmochimica Acta (Hui and Zhang 2007)

Chapter III is an experimental study of the speciation of dissolved water in

rhyolitic melts at pressure up to 283 GPa This study is prerequisite for inferring

viscosity of hydrous rhyolitic melts using the hydrous species reaction viscometer

(Dingwell and Webb 1990 Zhang et al 2003) at high pressure (Chapter IV)

Furthermore the quantification of hydrous speciation in the rhyolitic melts under high

3

pressure can be applied to model H2O diffusion and understand the structure of hydrous

melts at high pressure In addition information from this study is also useful in future

models of thermodynamic properties of hydrous silicate melts Chapter III addresses the

first systematic experimental study of H2O speciation in rhyolitic melts containing 08 ndash 4

wt water at high pressure 094 ndash 283 GPa A speciation model accommodating

temperature pressure and water content dependence of hydrous species in rhyolitic melts

is also presented in this chapter The results from this study have been submitted to

Geochimica et Cosmochimica Acta (Hui et al 2008)

Chapter IV contains the first experimental study of viscosity of any melts at

pressure up to 283 GPa in the high viscosity range It extends a newly developed method

(hydrous species reaction viscometer Zhang et al 2003) to high pressures This new

development represents the only method capable of extracting viscosity data of melts in

the high viscosity range at pressures above 1 GPa Previously high-pressure (ge 1 GPa)

viscosity data were obtained by the falling-sphere technique in high-pressure apparatus

which can be applied only in the low viscosity range Hence all previous viscosity data at

high pressure (ge 1GPa) fall in the high temperature range (ie low viscosity range) No

viscosity data in the low temperature range at high pressure ((ge 1GPa) have been

published This study is the first to infer viscosity of hydrous rhyolitic melts containing

08 ndash 4 wt water using the hydrous species reaction viscometer (Dingwell and Webb

1990 Zhang et al 2003) at high pressures The viscosity of natural rhyolitic melts

containing 013 and 08 wt water at pressures up to 04 GPa also has been measured

using a parallel plate creep viscometer A viscosity model of rhyolitic melts in the high

viscosity range accounting for the dependence on pressure temperature and water content

4

is also presented in this chapter The results from this chapter have been submitted to

Geochimica et Cosmochimica Acta (Hui et al 2008)

5

REFERENCES

Dingwell DB Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2 427-

449

Hess K-U Dingwell DB (1996) Viscosities of hydrous leucogranitic melts A non-

Arrhenian model Am Mineral 81 1297-1300

Hui H Zhang Y (2007) Toward a general viscosity equation of natural anhydrous and

hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Hui H Zhang Y Xu Z Behrens H (2008) Pressure dependence of the speciation of

dissolved water in rhyolitic melts Geochim Cosmochim Acta In revision

Hui H Zhang Y Xu Z Del Gaudio P Behrens H (2008) Pressure dependence of

viscosity of rhyolitic melts Geochim Cosmochim Acta Submitted

Liu Y Zhang Y (2000) Bubble growth in rhyolitic melt Earth Planet Sci Lett 181

251-264

Marsh BD (2006) Dynamics of magmatic systems Elements 2 287-292

Morgan Z Liang Y Hess P (2006) An experimental study of anorthosite dissolution

in lunar picritic magmas Implications for assimilation processes Geochim

Cosmochim Acta 70 3477-3491

Proussevitch AA Sahagian DL (1998) Dynamics and energetics of bubble growth in

magmas analytical formulation and numerical modeling J Geophys Res 103

18223-18251

Scaillet B Holtz F Pichavant M Schmidt M (1996) Viscosity of Himalayan

leucogranites Implications for mechanisms of granitic magma ascent J Geophys

Res 101 27691-27699

6

Shaw CSJ (2006) Effects of melt viscosity and silica activity on the rate and

mechanism of quartz dissolution in melts of the CMAS and CAS systems Contrib

Mineral Petrol 151 665-680

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

7

CHAPTER II

TOWARD A GENERAL VISCOSITY EQUATION OF NATURAL ANHYDROUS AND HYDROUS SILICATE

MELTS

ABSTRACT

A new and empirical viscosity equation for anhydrous and hydrous natural silicate

melts has been developed using the following formulation

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

where η is viscosity in Pamiddots T is temperature in K and A B C and D are linear functions

of mole fractions of oxide components except for H2O The formulation is applied

successfully to fit the temperature and compositional dependence of viscosity for some

binary systems Furthermore the new model with eight parameters fits the compositional

and temperature dependence of the viscosity data of anhydrous natural silicate melts

better than the ten-parameter model in the literature The main purpose of this work is to

fit the entire high- and low-temperature viscosity database (1451 data points) of all

ldquonaturalrdquo silicate melts using this empirical formulation The general viscosity equation

has 37 parameters and is as follows

8

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

where η is viscosity in Pamiddots T is temperature in K Xi means mole fraction of oxide

component i and Z=(XH2O)1[1+(185797T)] Al2O3ex or (Na K)2Oex mean excess oxides

after forming (Na K)AlO2 The 2σ deviation of the fit is 061 logη units This general

model is recommended for viscosity calculations in modeling magma chamber processes

and volcanic eruptions

1 INTRODUCTION

Knowledge of the viscosity of silicate melts is critical to the understanding of

igneous processes such as melt segregation and migration in source regions magma

recharge magma mixing differentiation by crystal fractionation convection in magma

chambers dynamics and style of eruptions and magma fragmentation Numerous

measurements have been made on the viscosity of various silicate melts from felsic (eg

rhyolitic melt Neuville et al 1993) to ultramafic composition (eg peridotite liquid

Dingwell et al 2004) from anhydrous (eg Neuville et al 1993) to hydrous ones (eg

Whittington et al 2000) and from high temperature to low temperature A number of

authors have made efforts to model the viscosity data for the purpose of interpolation and

extrapolation Bottinga and Weill (1972) and Shaw (1972) were pioneers in developing

9

viscosity models for natural silicate melts Because of the extreme difficulty in

calibrating a better viscosity model these models were the only ones available for over

twenty years (Lange 1994) More advanced models and relationships have been

developed for specific melt compositions such as rhyolitic melts (eg Hess and

Dingwell 1996 Zhang et al 2003) For melt compositions from rhyolite to peridotite

Persikov (1998) developed a viscosity model for anhydrous and hydrous silicate melts at

high temperatures (for viscosity below 105 Pamiddots) and Giordano and Dingwell (2003a)

developed new models for anhydrous silicate melts applicable to a larger temperature

range 700 ndash 1600ordmC

In spite of recent advances in viscosity models there is still a need for a general

model that would apply to all natural silicate melts all accessible temperature ranges and

especially including the effect of H2O content The model of Giordano and Dingwell

(2003a) is noteworthy in this connection In the modeled temperature range (700-

1600degC) for anhydrous melts it has a 2σ uncertainty of 078 in logη However the model

is limited to anhydrous melts and cannot be applied to estimate viscosity at lower

temperatures For example the model predicts logη of 169 for a phonolite at 6147degC

while the experimentally determined logη is 1163 (Giordano et al 2000) Viscosity at lt

700degC is critical for understanding magma fragmentation and welding in tuffs The

purpose of this work is to develop a practical viscosity model for natural silicate melts

that is applicable to both anhydrous and hydrous natural melts and to the entire

temperature range in which experimental data are available

10

2 TEMPERATURE DEPENDENCE OF VISCOSITY

The temperature dependence of viscosity of silicate melts has been extensively

studied from a theoretical point of view or through empirical fitting of viscosity data For

a narrow temperature range usually for viscosities between 01 to 104 Pamiddots the

dependence of viscosity on temperature is well described by the Arrhenius equation (eg

Bottinga and Weill 1972 Shaw 1972) When the temperature range is large enough

most silicate melts exhibit a non-Arrhenian relationship between viscosity and

temperature (eg Neuville et al 1993 Hess and Dingwell 1996 Whittington et al

2000) It is possible that the isostructural viscosity variation is Arrhenian (Scherer 1984)

but viscosity variation due to temperature-induced structure change is the origin of the

non-Arrhenian behavior Many equations have been proposed to explain or fit the

temperature dependence of viscosity (eg Brush 1962)

One thermodynamic description of the temperature dependence of viscosity of

silicate melts is the Adam-Gibbs equation (eg Adam and Gibbs 1965 Richet 1984)

η = Ae exp Be TSconf( )[ ] (1)

where η is viscosity Ae is the pre-exponential factor independent of temperature Be is an

energy term T is temperature in K and Sconf is the configurational entropy of the melt

For compositions corresponding to a pure stable crystalline phase (such as diopside) the

configurational entropy as a function of temperature can be determined from appropriate

heat capacity measurements of liquids and crystals and glasses down to zero K (Richet et

al 1986) However for a multicomponent melt system in which oxide concentrations are

variable the configurational entropy as a function of temperature and composition cannot

be evaluated independently The above equation becomes a fitting equation with many

11

parameters which loses its theoretical appeal Hence this model is not used often to fit

viscosity-temperature relationship of silicate melts

The most often used empirical description for the temperature dependence of

viscosity is the VFT (Vogel-Fulcher-Tammann) equation (eg Fulcher 1925 Tammann

and Hesse 1926)

logη = A +B

T minus T0 (2)

where A B and T0 are fitting parameters Another model related to the fragility of the

melt has also been used (eg Avramov 1998 Zhang et al 2003)

logη = A +BT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ α

(3)

where α is fragility parameter and depends on heat capacity For a restricted

compositional range α is found to depend linearly on chemical composition as illustrated

by data in sodium or lead silicates (Avramov 1998)

Both Eqns 2 and 3 are three-parameter equations with no explicit consideration

of melt composition which is the least number of parameters to fit the non-Arrhenian

behavior Eqns 2 and 3 were extended to multicomponent melts by allowing the three

parameters to vary with composition but no working scheme was found to fit the

viscosity data (2σ uncertainty in logη is too large gt 09 log unit) With many trials the

following empirical relation was found to be extendable to multicomponent melts

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ (4)

where A B C and D are fitting parameters and are allowed to vary linearly with mole

fraction of oxide components in melts This equation would imply that the activation

12

energy for viscous relaxation depends on temperature exponentially Ea = d(lnη)d(1T) =

2303[B + Dexp(C+DT)] consistent with the activation energy of viscous flow derived

from Eqn 1 in Richet et al (1986) It is not clear whether there is theoretical basis for

Eqn 4 but it works empirically to fit viscosity data of multicomponent silicate melts

Although the above four-parameter equation can also fit viscosity data of a single

composition not all four parameters are necessary and a three-parameter equation either

Eqn 2 or 3 would be more advisable Nonetheless letting C = 0 reduces Eqn 4 to a

three-parameter equation which may fit viscosity data of a single composition

logη = A +BT

+ exp DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ (4a)

Fig 21 compares fits of viscosity data using Eqns 2 3 and 4a on anhydrous trachyte

melt (AMS_D1 Romano et al 2003) and tephrite melt (Whittington et al 2000) As

shown in Fig 21 these three equations all fit viscosity data well for a given anhydrous

melt

The primary purpose of proposing Eqn 4 is to fit viscosity data of

multicomponent silicate melts by making the four parameters linearly dependent on

composition Below first the compositional dependence of viscosity in binary melts is

discussed then Eqn 4 is applied to fit viscosity of anhydrous natural silicate melts and

finally the entire viscosity database on ldquonaturalrdquo anhydrous and hydrous silicate melts

3 VISCOSITY OF BINARY MELTS

At low temperatures the viscosity of melts in simple binary systems often shows

minima at intermediate compositions This minimum diminishes with increasing

13

0

2

4

6

8

10

12

14

05 06 07 08 09 1 11

TephriteEqn 2Eqn 3Eqn 4a

058 06 062 064 066 068 0705

075

1

125

15

175

2

B

logη

(η in

Pasdot

s)

1000T (T in K)

2

4

6

8

10

12

AMS_D1Eqn 2Eqn 3Eqn 4a

Eqn 4a-53257A87284B19105D

099972R

Eqn 3-19571A42355B17285α

099962R

Eqn 2-3851A90912B35116T0

09997R

AA

logη

(η in

Pasdot

s)

Fig 21 Comparisons of fitting results using Eqns 2 3 and 4a for viscosity data of (a) AMS_D1 trachyte (Romano et al 2003) and (b) tephrite (Whittington et al 2000)

14

temperature and eventually disappears at high enough temperature (Neuville and Richet

1991) The minimum of viscosity data in a binary system can be explained by a

combination of the Adam-Gibbs model and mixing law of configurational entropy of two

end-members (Neuville and Richet 1991) However in this strategy many fitting

parameters are needed to account for the viscosity dependence on composition and

temperature For example Neuville and Richet (1991) used a fifteen-parameter equation

to fit the viscosity data of Ca3Al2Si3O12-Mg3Al2Si3O12 binary system Moreover

asymmetry of viscosity as a function of composition such as in the Na2Si3O7-K2Si3O7

binary system can make it even more difficult for the Adam-Gibbs model to fit the

viscosity data in the binary system (Richet 1984)

On the other hand assuming that each of the four parameters is a linear function

of composition Eqn 4 becomes an eight-parameter equation to fit the temperature and

compositional dependence of viscosity of a binary system

( ) ( ) ( ) ( )1 1 2 2 1 1 2 21 1 2 2 1 1 2 2log exp

b X b X d X d Xa X a X c X c X

T Tη

+ +⎛ ⎞= + + + + +⎜ ⎟

⎝ ⎠ (5)

where a b c and d with subscript 1 and 2 are fitting parameters X is mole fraction of two

end-members in the system Compared to the fifteen-parameter equation of Neuville and

Richet (1991) the number of fitting parameters is almost halved although the physical

meaning of each parameter is less clear in Eqn 5

Fits using Eqn 5 and all fits below are carried out using the commercially

available program MatLab or Stata which employs nonlinear least square regression to

minimize χ2 = sum(logηcalci-logηobsi)2 The fitting errors on all parameters are obtained by

the program Stata When the standard error of a parameter is larger than the absolute

15

value of the parameter the parameter is removed and a new fit with one less fitting

parameter is carried out

Figure 22 shows fits of viscosity data of four binary systems MgSiO3-CaSiO3

(Urbain et al 1982 Scarfe and Cronin 1986 Neuville and Richet 1991)

Mg3Al2Si3O12-Ca3Al2Si3O12 pyrope-grossular (Neuville and Richet 1991) NaAlSi3O8-

CaAl2Si2O8 albite-anorthite (Kozu and Kani 1944 Urbain et al 1982 Hummel and

Arndt 1985) and NS3-KS3 Na2Si3O7-K2Si3O7 (Taylor and Dear 1937 Lillie 1939

Taylor and Doran 1941 Poole 1948 Shartsis et al 1952 Bockris et al 1955

Mackenzie 1957 Taylor and Rindone 1970 Ammar et al 1977) The viscosities of

partially crystallized samples during measurement are not used in the fitting The fitting

parameters are shown in Table 21 The 2σ deviations in terms of logη for CaSiO3-

MgSiO3 garnet plagioclase and NS3-KS3 systems are 039 025 029 and 030

respectively There is a minimum viscosity at intermediate compositions in all four

binary systems at low temperatures such as CaSiO3-MgSiO3 and garnet at 1050 K (Fig

23A) plagioclase at 1123 K (Fig 23B) and NS3-KS3 at 715 K (Fig 23C)

The compositional location of viscosity minimum varies with temperature This

can be seen from the viscosity data of plagioclase (albite-anorthite) binary system

(Hummel and Arndt 1985) As shown in Fig 23B the viscosity minimum of albite-

anorthite system is located at around 40 mole of anorthite in the composition range at

1123 K but the minimum is at a greater anorthite content at higher temperatures This

variation has been explained by Richet (1984) to be due to the mixing of configurational

entropies of anorthite and albite melts which increase at considerably different rates with

increasing temperature The magnitude of the viscosity minimum diminishes with

16

Fig 22 Comparisons of experimental viscosity data with calculated values using Eqn 5 with fitting parameters in Table 21 The data sources are as follows CaSiO3-MgSiO3 (Urbain et al 1982 Scarfe and Cronin 1986 Neuville and Richet 1991) Ca3Al2Si3O12-Mg3Al2Si3O12 garnets (Neuville and Richet 1991) CaAl2Si2O8-NaAlSi3O8 plagioclases (Kozu and Kani 1944 Urbain et al 1982 Hummel and Arndt 1985) NS3-KS3 (Na2Si3O7-K2Si3O7) (Taylor and Dear 1937 Lillie 1939 Taylor and Doran 1941 Poole 1948 Shartsis et al 1952 Bockris et al 1955 Mackenzie 1957 Taylor and Rindone 1970 Ammar et al 1977)

Neuville and Richet 199111 line

garnet

-2

0

2

4

6

8

10

12

14

-2 0 2 4 6 8 10 12 14

Ktradezu and Kani 1944Hummel and Arndt 1985Urbain et al 198211 line

Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s)

plagioclase

-2 0 2 4 6 8 10 12 14

Ammar et al 1977

Bockris et al 1955

Lillie 1939

Mackenzie 1957

Poole 1948

Shartsis et al 1952

Taylor and Dear 1937

Taylor and Doran 1941

Taylor and Rindone 1970

Measured logη (η in Pasdots)

11 line

(Na K) Si O2 3 7

-2

0

2

4

6

8

10

12

14

Neuville and Richet 1991Urbain et al 1982Scarfe and Cronin 198611 line

Cal

cula

ted

logη

(η in

Pasdot

s)

(Ca Mg)SiO3

17

Table 21 Fitting parameters of Eqn 5 in the binary systems of CaSiO3-MgSiO3 garnet plagioclase and NS3-KS3

parameter CaSiO3-MgSiO3 garnet plagioclase NS3-KS3

a1 -31287 (04255)

23593 (11691)

-45179 (10170)

-32839 (05488)

a2 -94323 (04710)

-43178 (01053)

-63903 (06947)

-61410 (07446)

b1 -212604 (16359)

59402 (34463)

47706 (20814)

b2 179038 (9527)

165512 (19446)

118218 (13486)

c1 -12322 (03808)

08438 (01057)

-20844 (09118)

-11788 (09117)

c2 -59221 (09186)

-31234 (15216)

-51302 (32636)

d1 40716 (3713)

27049 (1157)

50614 (8312)

24647 (4784)

d2 74655 (8636)

28789 (88)

46909 (12991)

42955 (20116)

Note Numbers in parentheses are 2 times the standard errors (2σ) of the fitting respective parameters For CaSiO3-MgSiO3 1=CaSiO3 2=MgSiO3 for garnet 1=Ca3Al2Si3O12 (grossular) 2=Mg3Al2Si3O12 (pyrope) for plagioclase 1=CaAl2Si2O8 (anorthite) 2=NaAlSi3O8 (albite) for NS3-KS3 1=Na2Si3O7 2=K2Si3O7

18

85

95

105

115

125

135

0 02 04 06 08 1

MgSiO3-CaSiO3 (1050 K)Py-Gr (1050 K)

mole fraction (Ca-end member)

logη

(η in

Pasdot

s) A

8

9

10

11

12

0 02 04 06 08 1Ab An

logη

(η in

Pasdot

s)

T=1123K

T=1153K

T=1183K

B

0

2

4

6

8

10

12

14

0 02 04 06 08 1

logη

(η in

Pasdot

s)

KS NS3 3

T=715K

T=823K

T=1073K

T=1673K

C

Fig 23 Viscosity as a function of composition in four binary systems (A) CaSiO3-MgSiO3 and garnet (B) plagioclase and (C) NS3-KS3 (Na2Si3O7-K2Si3O7) The solid curves are calculated from Eqn 5 with fitting parameters in Table 21 The sources of viscosity data are as follows (A) interpolated from Neuville and Richet (1991) using Arrhenius relationship of viscosity and temperature (narrow temperature range) with the same compositions (B) open symbols Hummel and Arndt 1985 solid symbols interpolated data from Hummel and Arndt (1985) using Arrhenius relationship of viscosity and temperature (narrow temperature range) (C) data are from Taylor and Dear 1937 Lillie 1939 Taylor and Doran 1941 Poole 1948 Bockris et al 1955 Mackenzie 1957 Ammar et al 1977 interpolated data from Taylor and Doran (1941) Poole (1948) Shartsis et al (1952) Bockris et al (1955) and Ammar et al (1977) and Poole (1948) and Mackenzie (1957) using VFT equation for the same compositions

19

increasing temperature as inferred by Neuville and Richet (1991) As shown in Fig

23C the viscosity minimum in NS3-KS3 system is less pronounced at 1673K than the

one at 715K

4 VISCOSITY MODELS FOR NATURAL ANHYDROUS AND

HYDROUS SILICATE MELTS

The main purpose of this work is to present a working model for calculation of

the viscosity of all natural anhydrous and hydrous silicate melts covering the entire

experimental temperature range The equation used to fit the viscosity data is Eqn 4

with each of A B C and D as a linear function of the compositional parameters For

example for an N-component system the parameter A may be written as

A = ai Xii=1

Nsum (6a)

Or A = a0 + ai Xii=1

Nminus1sum (6b)

where a0 and ai are fitting parameters with i being the ith oxide in the anhydrous melts

This formulation requires many fitting parameters In order to avoid the impression that

the model works only because of many parameters first an effort to use formulation of

Eqn 4 to fit a smaller data set that has been modeled recently by Giordano and Dingwell

(2003a) is presented to show that the new model can fit the same data using a smaller

number of parameters than that of Giordano and Dingwell (2003a)

20

41 A SIMPLE MODEL FOR NATURAL ANHYDROUS MELTS

For multicomponent silicate melts the dependence of viscosity on melt

composition is complicated In the quest of seeking simpler equations with a smaller

number of fitting parameters various parameters such as NBOT (eg Giordano and

Dingwell 2003a) and SM (SM = sum (Na2O+K2O+CaO+MgO+MnO+FeOtot2))

(Giordano and Dingwell 2003a) have been used in modeling melt viscosity Various

parameters were explored to simplify the compositional dependence After a number of

trials using the sum of network formers SiO2 Al2O3 and P2O5 as one single parameter is

found to work well in the context of Eqn 6b Hence this parameter is defined as

SAP = XSiO2+ XAl2O3

+ XP2O5 (7)

where Xi is mole fraction of oxide i in the melt Based on the above considerations the

following equation to relate viscosity temperature and melt composition is used

logη = a0 + a1X( )+b0 + b1X( )

T+ exp c0 + c1X( )+

d0 + d1X( )T

⎝ ⎜

⎠ ⎟ (8)

where X = SAP a b c and d with subscript 0 or 1 are fitting parameters

Giordano and Dingwell (2003a) presented two models for the viscosity of

anhydrous silicate melts The data set contained 314 viscosity data points Their preferred

model using the parameter SM contained 10 fitting parameters Although their database

contained viscosity data below 700degC they only modeled the data in the temperature

range of 700-1600degC With 10 parameters the 2σ deviation of their preferred model is

078 logη units at 700-1600degC

The purpose of using Eqn 8 to fit viscosity data is to compare with previous fits

Hence fitting the same viscosity database of the anhydrous natural silicate melts as used

21

by Giordano and Dingwell (2003a) is the ideal solution All the viscosity data used by

them plus the data at temperatures below 700degC are used to carry out the nonlinear fit and

the new model is as follows

logη = minus213517 +127366X( )+293003minus 97574X

T

+ exp 299791minus 324047X( )+minus588688 + 650818X

T⎛ ⎝ ⎜

⎞ ⎠ ⎟ (9)

The standard errors for the fitting parameters are shown in Table 22 Applying the above

equation to viscosity data at 700-1600degC the 2σ deviation is 063 logη units (Fig 24A)

That is with a smaller number of fitting parameters (8 versus 10) the formulation of Eqn

4 is able to fit anhydrous melt viscosity data to a slightly better precision at this

temperature range than the model of Giordano and Dingwell (2003a)

Another measure of a successful model is applicability to a wide range of

conditions For example Hess and Dingwell (1996) compared their viscosity model for

hydrous rhyolite at both high and low temperatures to the model of Shaw (1972) although

his model was for all anhydrous and hydrous silicate melts but at high temperatures only

and showed that their model is superior to that of Shaw (1972) at low temperatures The

eight-parameter model is able to fit low-temperature viscosity data (ie data at le 700degC

Fig 24B) For the whole temperature range Eqn 9 reproduces the experimental data

with a 2σ standard uncertainty of 077 (Fig 24) The model of Giordano and Dingwell

(2003a) on the other hand did not include data at le 700degC in the fit and hence did not

predict the data well Although Giordano and Dingwellrsquos model is not designed for

application below 700degC the applicability of this eight-parameter model to the full

temperature range of viscosity data demonstrates its superiority Viscosity data at le700degC

are of importance in processes such as magma fragmentation and welding in tuffs

22

Table 22 Fitting parameters for Eqn 8

a b c d 0

-213517 (21976)

293003 (21590)

299791 (147288)

-588688 (271124)

1

127366 (38896)

-97574 (37088)

-324047 (168378)

650818 (302724)

Note Numbers in parentheses are 2σ errors of fitting coefficients respectively

23

-1

1

3

5

7

9

11

13

-1 1 3 5 7 9 11 13

Giordano and Dingwell (2003a)Eqn 911 line

AC

alcu

late

d lo

gη (η

in P

asdots)

9

10

11

12

13

14

15

16

17

9 10 11 12 13 14 15 16 17

Giordano and Dingwell (2003a)Eqn 911 line

Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s) B

Fig 24 Comparison of experimental viscosity data with calculated values (A) in the temperature range from 700 to 1600degC (which is the temperature range that Giordano and Dingwell (2003a) recommended for their model) and (B) below 700degC

24

In summary with a smaller number of fitting parameters the new model does a

better job than the most recent viscosity models (Giordano and Dingwell 2003a) This

verifies that Eqn 4 provides a practical way to describe the compositional and

temperature dependences of the viscosity of natural silicate melts and the success of the

model below is not purely because of the many parameters involved

42 VISCOSITY DATA

The primary motivation of this work is to develop a practical viscosity model for

natural anhydrous and hydrous silicate melts Viscosity data for the development of new

viscosity model come from literature The compositional range is limited to ldquonaturalrdquo

silicate melts (including Fe-free haplogranitic haploandesitic haplobasanitic

haplotephritic haplophonolitic and haplotrachytic melts) The compositions range from

peridotite to rhyolite from peralkaline to peraluminous silicate melts and from

anhydrous to hydrous melts Simple synthetic melts such as Li2O-SiO2 Na2O-SiO2

K2O-SiO2 CaSiO3-MgSiO3 feldspar systems are not included but synthetic melts

intended to approximate natural silicate melt are included Simple synthetic melts are

excluded from the new model because there is still more work needed in developing a

completely general compositional model for the viscosity of all silicate melts For

example including simple melts such as Na2O-SiO2 would expand the compositional

space to pure Na2O melt which may require parameters A B C and D in Eqn 4 to vary

as a nonlinear function of oxide mole fractions This limitation was also encountered in

literature when other silicate liquid properties are modeled (1) The density model of

liquids is developed only for natural silicate liquids excluding simple synthetic melts

25

(Lange and Carmichael 1987 Lange 1997) (2) The thermodynamic model of silicate

melts is also developed only for natural silicate liquids excluding simple synthetic melts

(Ghiorso et al 1983 2002)

The compositions of ldquonaturalrdquo silicate melts for which viscosity data are available

are listed in Table 23 on an anhydrous basis The references are also given in Table 23

There are 1451 viscosity measurements Natural melt compositions covered in the

database are presented in Fig 25 on an anhydrous basis The compositions covered by

the data include anhydrous peridotite to rhyolite anhydrous peralkaline to peraluminous

melts hydrous basalt to rhyolite hydrous peralkaline to peraluminous melts The FeO-

free melts include haplogranitic melts (H1-26) haploandesite (A2 and A4) haplobasanite

(Bn3) haplotephrite (Te2) haplophonolite (Ph4) and haplotrachyte (Tr6) as shown in

Table 23 Some samples with the same or similar sample names (such as two HPG8 and

one HPG08) but different chemical compositions are treated as different samples with

different chemical compositions (that is all compositions were treated to be different and

the chemical analyses were not averaged) The viscosity ranges from 01 to 1015 Pamiddots

The temperature ranges from 573 to 19779 K The H2O concentration is le123 wt for

rhyolitic melt and below 5 wt for other melts

Viscosity data from partially crystallized melt (such as andesite ME113e Richet

et al 1996) are not used Viscosity data of phonolite melt with 088 wt water in

Whittington et al (2001) are shown by these authors to be outliers and are hence not

included The viscosities of Sample A (LGB rhyolite) in Neuville et al (1993) are not

used because these authors suspected the quality of the viscosity data Data on rhyolite

shown to be outliers by Zhang et al (2003) are not included The data of

26

Table 23 Melt composition on anhydrous basis (on wt basis)

Composition SiO2 TiO2 Al2O3 FeO MnOMgOCaO Na2OK2O P2O5 total ID ref Basanite (EIF) 4115 274 1210 1011 000 1124 1566 276 304 102 9982 Bn1 19 Basanite (EIF) 4122 274 1212 1003 000 1126 1569 276 305 102 9989 Bn2 17 Basanite (NIQ) 4357 297 1018 000 000 917 2607 759 096 000 10051 Bn3 1 Peridotite 4583 018 487 863 000 3163 637 032 000 000 9783 Pr 27 Basalt (ETN) 4703 161 1628 1088 020 517 1047 375 194 059 9792 Bl1 25 Basalt (ETN) 4781 194 1791 1090 019 475 996 394 211 048 9999 Bl2 17 Basalt 4821 125 1550 1064 000 908 1192 240 008 014 9922 Bl3 21 Tephrite (Ves_G_tot) 4920 083 1640 720 013 510 1020 270 650 072 9898 Te1 19 Basalt (MTV9) 4961 427 1101 1473 000 446 1004 281 047 251 9991 Bl5 28 Basalt (Kilauea 1921) 5001 260 1256 1079 024 939 1088 233 048 000 9937 Bl7 29 Tephrite 5056 235 1403 000 000 879 1500 704 301 000 10078 Te2 1 Basalt (MTV4) 5066 395 1135 1390 000 394 960 298 051 240 9929 Bl6 28 Basalt (MTV6) 5084 426 1138 1505 000 442 1018 301 055 004 9973 Bl8 28 Basalt (MTV2) 5087 405 1136 1420 000 423 962 306 052 009 9800 Bl9 28 Phonolite (Ves_W_tot) 5120 067 1860 610 013 250 730 375 790 040 9855 Ph1 19 Phonolite (V_1631_G) 5314 059 1984 472 013 177 675 477 828 000 9999 Ph2 23 Phonolite (V_1631_W) 5352 060 1984 480 014 176 676 466 791 000 9999 Ph3 23 Basalt 5354 105 1729 782 000 546 832 359 164 020 9891 Bl4 21 Andesite 5856 064 1898 745 000 348 617 324 092 000 9944 A1 21 Andesite 5869 001 2157 002 002 538 949 330 157 000 10005 A2 26 Phonolite 5882 079 1942 000 000 187 235 931 744 000 10000 Ph4 2 Andesite (Crater Lake) 5946 073 1790 518 010 371 645 423 147 000 9926 A5 29 Phonolite (ATN) 5970 046 1852 360 017 065 280 389 845 015 9839 Ph5 19 Phonolite (Td_ph) 6046 056 1881 331 020 036 067 976 545 006 9964 Ph6 22 Trachyte (IGC) 6074 027 1922 337 018 028 211 528 632 006 9783 Tr1 20 Trachyte (AMS_D1) 6086 039 1827 388 012 090 296 412 850 000 10000 Tr2 23 Andesite 6117 084 1729 539 000 335 583 385 139 000 9911 A3 11 Trachyte (AMS_B1) 6126 038 1838 350 014 074 297 458 804 000 9999 Tr3 23 Andesite (Crater Lake) 6215 076 1680 496 025 326 508 502 172 000 10000 A6 32 Andesite 6240 055 2001 003 002 322 908 352 093 012 9988 A4 8 Trachyte (MNV) 6388 031 1710 290 013 024 182 567 682 005 9892 Tr4 20 Trachyte (PVC) 6399 045 1696 255 014 032 083 633 637 009 9803 Tr5 19 Trachyte 6445 050 1671 000 000 292 536 670 337 000 10001 Tr6 2 Dacite 6528 059 1705 402 008 182 470 434 129 013 9930 D1 30 Dacite (UNZ) 6600 036 1523 408 010 221 501 384 216 014 9913 D2 24 Granite (263-2) 6677 039 2015 431 001 072 364 137 217 000 9953 R1 16 Trachyte (570-2) 6695 087 2124 257 006 001 163 183 455 000 9971 Tr7 16 Plagioliparite (851-2) 6716 001 2165 281 001 073 265 285 182 000 9969 R2 16 Trachyte (570-3) 6871 090 1928 259 006 000 165 187 466 000 9972 Tr8 16 Trachyte (570-1) 7016 092 1718 274 006 000 170 207 488 000 9971 Tr9 16 Plagioliparite (851-1) 7122 024 1680 291 006 080 262 309 194 000 9968 R3 16 Granite (130) 7142 001 1610 458 001 157 094 194 292 000 9949 R4 16 Granite (Barlak) 7312 019 1356 319 000 018 168 386 420 000 9998 R33 31 Rhyolite 7323 019 1360 278 000 017 169 378 411 013 9968 R5 21

27

Trachyte (570-4) 7335 090 1483 238 007 000 164 187 470 000 9974 Tr1016 HPG05 7349 000 1326 000 000 000 000 240 898 000 9813 H21 38 HPG8An10 7360 000 1560 000 000 000 210 440 380 000 9950 H4 33 Rhyolite 7379 005 1511 042 005 007 097 471 402 001 9920 R6 9 Rhyolite (GB4) 7389 006 1577 075 000 014 058 462 419 000 10000 R34 34 HPG8Na5 7410 000 1170 000 000 000 000 900 440 000 9920 H5 435HPG8Ca5 (Ca5) 7410 000 1220 000 000 000 520 440 400 000 9990 H6 36 HPG8K5 7460 000 1180 000 000 000 000 440 920 000 10000 H7 4 Rhyolite (M981023) 7470 008 1328 165 000 000 077 430 522 000 10000 R7 18 HPG04 7490 000 1352 000 000 000 000 364 722 000 9928 H22 38 Rhyolite (P3RR) 7537 007 1284 157 007 004 072 419 513 000 10000 R8 17 HPG8Al5 (Al05) 7540 000 1610 000 000 000 000 470 430 000 10050 H8 37 HPG03 7552 000 1390 000 000 000 000 477 553 000 9972 H23 38 HPG8Mg5 (Mg5) 7560 000 1200 000 000 490 000 450 400 000 10100 H9 36 Rhyolite 7603 006 1148 105 006 036 321 242 460 000 9927 R9 13 HPG02 7608 000 1389 000 000 000 000 596 384 000 9977 H24 38 AOQ 7612 000 1353 000 000 000 000 465 568 000 9998 H1 6 Rhyolite 7638 006 1159 103 005 036 325 244 466 000 9982 R10 13 HPG01 7652 000 1405 000 000 000 000 714 219 000 9990 H25 38 Rhyolite 7657 006 1165 104 007 036 323 246 462 000 10006 R11 13 Rhyolite (MCR) 7659 008 1267 100 000 003 052 398 488 000 9975 R12 14 Rhyolite 7660 010 1270 117 000 002 031 410 460 000 9960 R13 15 HPG09 7688 000 1145 000 000 000 000 360 560 000 9753 H10 38 Rhyolite (LGB) 7692 010 1292 089 005 011 086 389 425 003 10002 R14 10 Rhyolite (RH) 7699 003 1302 071 010 004 048 431 431 000 9999 R15 10 Rhyolite 7700 006 1177 100 006 036 329 248 468 000 10070 R16 13 Rhyolite (RH-r) 7701 003 1314 071 010 004 051 428 418 000 10000 R17 10 Rhyolite 7707 006 1167 099 007 035 328 242 462 000 10053 R18 13 Rhyolite (SH-r) 7708 009 1244 130 002 002 036 449 420 000 10000 R19 10 Rhyolite (EDFmr) 7715 009 1282 056 007 007 052 411 461 001 10001 R20 12 Rhyolite (SH) 7717 008 1240 130 002 001 035 450 420 000 10003 R21 10 Rhyolite (EDF) 7718 009 1291 061 007 007 051 405 452 001 10002 R22 12 HPG8Al2 (Al02) 7720 000 1390 000 000 000 000 450 430 000 9990 H11 37 Rhyolite 7727 003 1175 105 005 036 331 243 473 000 10098 R23 13 Rhyolite 7738 005 1170 103 005 036 324 244 480 000 10105 R24 13 Rhyolite 7746 005 1164 104 007 035 323 245 470 000 10099 R25 13 Rhyolite (BL6) 7748 017 1220 130 005 017 114 390 360 000 10001 R26 10 Rhyolite (BL6-r) 7753 017 1217 130 005 017 113 389 360 000 10001 R27 10 Rhyolite (LGB-r) 7788 007 1273 076 004 006 050 393 403 001 10001 R28 10 Rhyolite (BL3) 7788 016 1203 119 005 005 106 364 388 001 9995 R29 12 HPG8 7790 000 1189 000 000 000 000 453 417 000 9849 H2 5 Rhyolite 7790 007 1205 076 000 005 052 401 406 000 9942 R30 11 Rhyolite (EDF-1) 7800 009 1215 054 007 006 050 408 448 002 9999 R31 10 Rhyolite (EDF-2) 7800 009 1215 054 007 007 050 408 448 000 9998 R32 10 HPG11 7814 000 1164 000 000 000 000 126 911 000 10015 H12 38 HPG10 7821 000 1169 000 000 000 000 241 743 000 9974 H13 38 HPG07 7828 000 1192 000 000 000 000 591 223 000 9834 H14 38

28

HPG8 7860 000 1250 000 000 000 000 460 420 000 9990 H3 347HPG08 7860 000 1199 000 000 000 000 457 420 000 9936 H15 38 HPG06 7898 000 1211 000 000 000 000 704 062 000 9875 H26 38 HPG16 8103 000 991 000 000 000 000 124 739 000 9957 H16 38 HPG15 8174 000 1003 000 000 000 000 247 566 000 9990 H17 38 HPG14 8222 000 1017 000 000 000 000 366 389 000 9994 H18 38 HPG12 8231 000 1016 000 000 000 000 589 070 000 9906 H19 38 HPG13 8294 000 1030 000 000 000 000 468 241 000 10033 H20 38

The melt compositions are listed according to SiO2 content References 1 Whittington et al (2000) 2 Whittington et al (2001) 3 Dorfman et al (1996) 4 Hess et al (1995) 5 Dingwell et al (1992) 6 Schulze et al (1996) 7 Dingwell et al (1996) 8 Richet et al (1996) 9 Burnham (1964) 10 Stevenson et al (1998) 11 Neuville et al (1993) 12 Stevenson et al (1996) 13 Goto et al (2005) 14 Zhang et al (2003) 15 Shaw (1963) 16 Goto et al (1997) 17 Gottsmann et al (2002) 18 Stein and Spera (1993) 19 Giordano and Dingwell (2003a) 20 Giordano et al (2004) 21 Persikov (1991) 22 Giordano et al (2000) 23 Romano et al (2003) 24 Giordano et al (2005) 25 Giordano and Dingwell (2003b) 26 Liebskie et al (2003) 27 Dingwell et al (2004) 28 Toplis et al (1994) 29 Kushiro et al (1976) 30 Alidibirov et al (1997) 31 Persikov et al (1986) 32 Dunn and Scarfe (1986) 33 Dingwell et al (2000) 34 Scaillet et al (1996) 35 Dingwell et al (1998a) 36 Hess et al (1996) 37 Dingwell et al (1998b) 38 Hess et al (2001)

29

0

3

6

9

12

15

18

40 50 60 70 80SiO (wt)2

Na

O+K

O (w

t)

22

R

O

T

OOBPc

U

U

U

Ph

SS

S

F

1

1

1

2

2

2

3

3

3

Fig 25 Total alkalis versus SiO2 diagram (Le Bas et al 1986) showing the compositions of samples modeled in this work Pc picrobasalt B basalt O1 basaltic andesite O2 andesite O3 dacite R rhyolite S1 trachybasalt S2 basaltic trachyandesite S3 trachyandesite T trachyte or trachydacite U1 basanite or tephrite U2 phonotephrite U3 tephriphonolite Ph phonolite F foidite

30

Friedman (1963) are not used due to their large uncertainty Some viscosity data of

identical composition experimental temperature and viscosity value were reported in two

or more publications and it is not clear to us whether or not they mean the same

measurements Such data are counted only once in the database and in the regression

such as viscosity data of EIF basanite (Gottsmann et al 2002 Giordano and Dingwell

2003a) All the viscosity data used in the following fit are listed in Appendix A

Most viscosity data in the database are at 1 bar and some are at pressures up to 5

kbars The pressure effect is ignored as it has been shown that the effect is negligible for

pressures up to 5 kbars (Persikov 1998 Zhang et al 2003)

43 THE PREFERRED MODEL

The eight-parameter model (Eqn 9) grouped the effects of SiO2 Al2O3 and P2O5

on viscosity The model although appealing because of its simplicity still does not

reproduce experimental viscosity data well Furthermore it does not apply to hydrous

melts In order to produce a model that can be used to calculate viscosity to better

precision more compositional parameters are necessary In the preferred model in this

section the goal is to fit the entire viscosity database on natural silicate melts as

accurately as possible Although using the least number of parameters to fit is also a goal

it is subordinate to the goal of fitting the viscosity data as accurately as possible

In the preferred model parameters A B C and D in Eqn 4 are assumed to be

linear functions of oxide mole fractions because the assumption is simple and because it

considers different effects of the different oxide components to the viscosity Fe in the

natural silicate melts has two oxidation states ferric and ferrous The two behave

31

differently in the structure of the silicate melts Although the oxidation state of Fe has

been found to affect melt viscosity significantly especially at low temperatures

(Dingwell and Virgo 1987 Liebske et al 2003) often there is not enough information to

calculate the ferric to ferrous ratio of the experimental melts at low temperatures Hence

all iron is considered as FeO

Previous studies (eg Riebling 1966 Bruckner 1983) show that aluminum-

saturated melts [NaAl (molar) = 1] have higher viscosities than either aluminum-

oversaturated (peraluminous) or aluminum-undersaturated (alkaline to peralkaline) melts

Hence NaAlO2 and KAlO2 would be reasonable end members in this multicomponent

system Al2O3 in the melt is considered to combine with alkalis to form (Na K)AlO2

After forming (Na K)AlO2 either excess alkalis or excess aluminum are left as a

component in the melts

For hydrous melts H2O content plays a major role and the effect is not linear

Viscosity decreases rapidly with the first small amount of total dissolved water and then

not so rapidly at higher H2O contents (Lange 1994 Dingwell et al 1996) Water is

present in the silicate melts as at least two species molecular H2O and hydroxyl group

(Stolper 1982) The exact role of OH and molecular H2O on affecting melt viscosity is

not known H2O content raised to some power as an additional parameter is used as

shown in Zhang et al (2003) After many trials the following parameter seems useful in

fitting viscosity data of hydrous melts

( )1

2

11+

H O( ) e TZ X= (10)

32

where e1 is constant T is temperature in K and XH2O is oxide mole fraction of total

dissolved H2O Combining Eqns 4 6a and 10 the following model is used to fit all the

viscosity data in the database

log expi i i i

i ii i i i

i i

b X d Xa X c X

T Tη

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎝ ⎠

sum sumsum sum (11)

where Xi is the mole fraction of SiO2 TiO2 Al2O3ex FeOT MnO MgO CaO (Na

K)2Oex P2O5 H2O (Na K)AlO2 plus another term related to H2O (XH2O)1[1+(e1T)]

because a simple linear term with H2O is not enough to account for the dependence of

viscosity on H2O content The values of ai bi ci di and e1 with standard errors obtained

from the fit are listed in Table 24 In the process of fitting some parameters turned out to

be unnecessary and some could be combined These simplifications were made to reduce

the number of parameters The final fit contains 37 fitting parameters As shown in Table

24 all the fitting parameters are statistically significant This model can reproduce all the

viscosity data (in the electronic annex) with a 2σ deviation of 061 logη units in the

available temperature and compositional range of natural silicate melts Fig 26 shows

comparison between measured viscosity values of all the melts in the database including

hydrous and anhydrous natural melts and those calculated from Eqn 11 Because this is

the preferred model the full equation is written down as follows

33

Table 24 Fitting parameters for Eqn 11

a b103 c d103 SiO2

-683 (047)

1814 (047)

216 (016)

TiO2

-17079 (2098)

24893 (3312)

-14305 (2657)

Al2O3ex

-1471 (432)

3261 (470)

2173 (1075)

-2210 (1127)

(Fe Mn)O

-6198 (2591)

3856 (2681)

MgO

-1801 (278)

2596 (416)

-10553 (1950)

11083 (1995)

CaO

-1976 (327)

2264 (365)

-6992 (1123)

6712 (1126)

(Na K)2Oex

3431 (960)

-6829 (796)

-8567 (5049)

5801 (4609)

P2O5

38477 (11821)

Z

-14038 (7846)

3884 (2710)

33201 (18953)

-40497 (23747)

H2O

15926 (7994)

-4855 (2976)

-43222 (20727)

51375 (26004)

(Na K)AlO2

-843 (170)

1612 (168)

-316 (083)

e1

185797 (91556)

Note Numbers in parentheses are 2σ errors of fitting coefficients respectively

34

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

(12)

where Z=(XH2O)1[1+(185797T)] and all mole fractions (including H2O) add up to 1

Examples of calculation are given in Table 25

Fig 26 compares calculated viscosity with experimental viscosity for all data in the

database and shows that there is no systematic misfit The behavior of Eqn (12) was

examined by varying temperature and various oxide concentrations The calculated

viscosity varies smoothly and monotonically with these parameters with no up and down

fluctuations Furthermore in order to investigate whether some melts are systematically

misfit or are not fit as well as other melts ∆plusmn2σ for each melt composition is listed in

Table 26 where ∆ is the average difference between the experimental logη and

calculated logη and σ is the standard deviation The value of ∆ characterizes systematic

misfit and 2σ is a measure of data scatter As shown in Table 26 all rock groups of melts

have small ∆ values but ∆ values for subgroups vary from 0 up to 030 and most

subgroups still have small ∆ values There is no correlation between the ∆ values and

compositions of the melts On 2σ values there are some variations but no group is

obviously misfit There is no correlation between the reproducibility and the degree of

polymerization

Two sets of viscosity data on hydrous leucogranite (Whittington et al 2004) and

35

Table 25 Examples of calculation using Eqn 12

composition wt composition

mole fraction T (K)

calculated logη (Pas)

SiO2 5352 SiO2 05336 75375 947 TiO2 060 TiO2 00045 74875 960 Al2O3 1984 Al2O3ex 00212 72775 1015 FeOt 480 (Fe Mn)O 00412 71765 1042 MnO 014 MgO 00262 70435 1080 MgO 176 CaO 00722 CaO 676 (Na K)2Oex 00000 Na2O 466 P2O5 00000 K2O 791 H2O 01104 P2O5 000 (Na K)AlO2 01907 H2O 332

Note The melt is hydrous phonolite from Romano et al (2003)

36

-2

2

6

10

14

18

-2 2 6 10 14 18Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s)

Fig 26 Comparison of experimental viscosity values with calculated values using Eqn 12

37

Table 26 The 2σ deviations and data points of sub-groups in the viscosity database

Composition ∆plusmn2σ

number of data points

∆plusmn2σ (rock group)

anhydrous -021plusmn056 33 basanite (Bn1-3) hydrous 001plusmn045 33

-010 plusmn055

anhydrous 023plusmn073 38 tephrite (Te1-2) hydrous 001plusmn072 33

013 plusmn075

anhydrous -004plusmn054 40 Ph1-3 hydrous 030plusmn038 25 anhydrous -015plusmn057 59

phonolite

Ph4-6 hydrous -013plusmn063 40

-005 plusmn063

anhydrous -004plusmn071 43 Tr1-3 hydrous -001plusmn039 56 anhydrous 011plusmn052 68 Tr4-6 hydroous 013plusmn043 55

Trachyte

Tr7-10 anhydrous -012plusmn041 31

004plusmn053

anhydrous -005plusmn040 27 A1-2 A5 hydrous -002plusmn037 42

anhydrous -003plusmn040 52

Andesite

A3-4 A6 hydrous 006plusmn052 45

-001 plusmn043

R1-4 anhydrous 005plusmn045 25 anhydrous 002plusmn013 7 R5-8

R33-34 hydrous 013plusmn051 40 anhydrous 004plusmn043 83

Rhyolite

R9-32 hydrous -006plusmn058 197

-000plusmn054

anhydrous 020plusmn037 32 dacite (D1-2) hydrous -009plusmn053 9

014 plusmn047

anhydrous -011plusmn105 20 Bl1-3 Bl5 hydrous 007plusmn051 21

anhydrous 006plusmn109 28

Basalt

Bl4 Bl6-9 hydrous 003plusmn074 6

001 plusmn092

periodite (Pr) anhydrous -007plusmn055 8 -007plusmn055 anhydrous -001plusmn078 161 haplogranitic melt

(H1-26) hydrous 009plusmn061 94 003 plusmn072

leucogranite hydrous -015plusmn051 14 HPG8An10 anhydrous -002plusmn022 8

the melt used to test the model

38

anhydrous HPG8An10 (Dingwell et al 2000) are not included in the fit but are chosen

to test whether this preferred model can predict data not included in the fit Because water

content in the ldquoanhydrousrdquo melt of Whittington et al (2004) is not determined the

viscosity data of anhydrous melt are not used due to large effect of a small amount of

water on viscosity (Lange 1994 Zhang et al 2003) As shown in Fig 27 this new

model has the capability to predict the viscosity at low temperature with a 2σ deviation of

061

There are many viscosity models for specific compositions and many of them

have better accuracy than the 37-parameter general model For example the viscosity

model for hydrous and anhydrous rhyolitic melt by Zhang et al (2003) has a 2σ

uncertainty of 036 logη units specific models for five individual anhydrous and hydrous

melt compositions by Giordano et al (2005) have very low 2σ uncertainties Therefore

although the use of this grand model is recommended some specific models have better

accuracy and should be used when appropriate

One unattractive feature of the preferred model is the large number of parameters

used This means the fitting parameters themselves are not well resolved However it

does not affect the accuracy of the calculation of viscosities as long as no extrapolation is

attempted That is the model should not be extrapolated to binary systems nor to

viscosities above 1015 Pamiddots nor to temperature below 573 K nor to H2O content above 5

wt for melts other than rhyolite (For rhyolite the highest H2O content in the viscosity

database is 123 wt) As mentioned earlier Eqn 12 predicts smooth and monotonic

variations of logη with mole fraction of oxides or temperature Although it is desirable to

develop a model with a smaller number of fitting parameters the drawback of many

39

2

4

6

8

10

12

14

2 4 6 8 10 12 14

Cal

cula

ted

logη

(η in

Pasdot

s)

Measured logη (η in Pasdots)

Fig 27 The predictions of Eqn 12 Data sources filled symbols Whittington et al (2004) open symbols Dingwell et al (2000)

40

fitting parameters should not prevent the use of Eqn 12 in calculating viscosity of natural

silicate melts in a wide range of applications such as volcanic eruption dynamics as well

as other magmatic processes For example the viscosity model of Bottinga and Weill

(1972) has 285 fitting parameters for anhydrous melts at high temperatures and it was

widely applied Eqn 12 is easy to include in a software program or in a spreadsheet

program Using it to calculate viscosities of all natural silicate melts is recommended

Other applications of the viscosity model include (1) estimation of glass transition

temperature of any natural silicate melt given cooling rate (Dingwell and Webb 1990

Dingwell et al 2004 Giordano et al 2005) and (2) estimation of cooling rate of any

natural hydrous silicate glass based on apparent equilibrium temperature from H2O

speciation (Dingwell and Webb 1990 Zhang 1994 Zhang et al 2000 2003)

Even though this viscosity model can reproduce the entire viscosity database to a

better accuracy and for a greater range of compositions than previous models the

uncertainty in reproducing the viscosity data is still larger than the experimental data

uncertainty which is usually 01 logη units or less Hence there is still much room for

improvement The most important improvement might come from the development of a

better functional equation to describe viscosity dependence on temperature pressure and

composition For example new models adopted a different functional form of viscosity

A second improvement might derive from consideration of the effect of ferric and ferrous

iron which requires knowledge of experimental conditions under which the glasses were

prepared for the low-temperature viscosity measurements A third improvement might

arise from improved quantification of the effect of H2O on viscosity both in terms of

accurate determination of H2O for reported viscosity data and in terms of the functional

41

form used to handle the dependence of viscosity on H2O content Specifically in the

future every viscosity data should be accompanied by H2O content and other

concentrations simply describing a melt as dry is not good enough A fourth

improvement might originate from the incorporation of the effect of CO2 and other

volatile components in the melt So far the effect of CO2 on the viscosity of silicate melts

has only been carried out in several synthetic melts (Lange 1994 Bourgue and Richet

2001) A fifth improvement might stem from the incorporation of the pressure effect

(Persikov 1998) New experimental viscosity data are needed especially at high

pressures at low temperatures for melts with well-characterized ferricferrous ratios and

for melts with various and well-characterized volatile (H2O and CO2) concentrations

42

REFERENCES

Adam G and Gibbs JH (1965) On the temperature dependence of cooperative relaxation

properties in glass-forming liquids J Chem Phys 43 139-146

Alidibirov M Dingwell DB Stevenson RJ Hess K-U Webb SL and Zinke J

(1997) Physical properties of the 1980 Mount St Helens cryptodome magma Bull

Volcanol 59 103-111

Ammar MM El-Badry Kh and Gharib S (1977) Viscous properties of some alkali

silicate glasses in the annealing range Egypt J Phys 8 1-8

Avramov I (1998) Viscosity of glassforming melts Glastech Ber 71C 198-203

Bockris J OrsquoM Mackenzie JD and Kitchener JA (1955) Viscous flow in silica and

binary liquid silicates Trans Faraday Soc 51 1734-1748

Bottinga Y and Weill DF (1972) The viscosity of magmatic silicate liquids a model for

calculation Am J Sci 272 438-475

Bourgue E and Richet P (2001) The effects of dissolved CO2 on the density and

viscosity of silicate melts a preliminary study Earth Planet Sci Lett 193 57-68

Bruckner R (1983) Structure and properties of silicate melts Bull Mineacuteral 106 9-22

Brush SG (1962) Theories of liquid viscosity Chem Rev 62 513-548

Burnham CW (1964) Viscosity of a H2O rich pegmatite melt at high pressure (abstract)

Geol Soc Am Special Paper 76 26

Dingwell DB and Virgo D (1987) The effect of oxidation state on the viscosity of melts

in the system Na2O-FeO-Fe2O3-SiO2 Geochim Cosmochim Acta 51 195-205

Dingwell D B and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

43

Dingwell DB Courtial P Giordano D and Nichols ARL (2004) Viscosity of

peridotite liquid Earth Planet Sci Lett 226 127-138

Dingwell DB Hess K-U and Romano C (1998a) Extremely fluid behavior of hydrous

peralkaline rhyolites Earth Planet Sci Lett 158 31-38

Dingwell DB Hess K-U and Romano C (1998b) Viscosity data for hydrous

peraluminous granitic melts Comparison with a metaluminous model Am

Mineral 83 236-239

Dinwell DB Hess K-U and Romano C (2000) Viscosities of granitic (sensu lato)

melts Influence of the anorthite component Am Mineral 85 1342-1348

Dingwell DB Knoche R and Webb SL (1992) The effect of B2O3 on the viscosity of

haplogranitic liquids Am Mineral 77 457-461

Dingwell DB Romano C and Hess K-U (1996) The effect of water on the viscosity of

a haplogranitic melt under P-T-X conditions relevant to volcanism Contrib

Mineral Petrol 124 19-28

Dorfman A Hess K-U and Dingwell D (1996) Centrifuge-assisted falling-sphere

viscometry Eur J Mineral 8 507-514

Dunn T and Scarfe CM (1986) Variation of the chemical diffusivity of oxygen and

viscosity of an andesite melt with pressure at constant temperature Chem Geol 54

203-215

Friedman I Long W and Smith RL (1963) Viscosity and water content of rhyolitic

glass J Geophys Res 68 6523-6535

Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses J Am

Ceram Soc 8 339-355

44

Ghiorso MS Carmichael ISE Rivers ML and Sack RO (1983) The Gibbs free

energy of mixing of natural silicate liquids an expanded regular solution

approximation for the calculation of magmatic intensive variables Contrib

Mineral Petrol 84 107-145

Ghiorso MS Hirschmann MM Reiners PW and Kress VC III (2002) The pMELTS

A revision of MELTS for improved calculation of phase relations and major

element partitioning related to partial melting of the mantle to 3 GPa Geochem

Geophys Geosys 3 1010292001GC000217

Giordano D and Dingwell DB (2003a) Non-Arrhenian multicomponent melt viscosity

a model Earth Planet Sci Lett 208 337-349

Giordano D and Dingwell DB (2003b) Viscosity of hydrous Etna basalt implications

for Plinian-style basaltic eruptions Bull Volcanol 65 8-14

Giordano D Dingwell DB and Romano C (2000) Viscosity of a Teide phonolite in the

welding interval J Volcanol Geotherm Res 103 239-245

Giordano D Nichols ARL and Dingwell DB (2005) Glass transition temperatures of

natural hydrous melts a relationship with shear viscosity and implications for the

welding process J Volcanol Geotherm Res 142 105-118

Giordano D Romano C Papale P and Dingwell DB (2004) The viscosity of trachytes

and comparison with basalts phonolites and rhyolites Chem Geol 213 49-61

Goto A Oshima H and Nishida Y (1997) Empirical method of calculating the viscosity

of peraluminous silicate melts at high temperatures J Volcanol Geotherm Res 76

319-327

45

Goto A Taniguchi H and Kitakaze A (2005) Viscosity measurements of hydrous

rhyolitic melts using the fiber elongation method Bull Volcanol 67 590-596

Gottsmann J Giordano D and Dingwell DB (2002) Predicting shear viscosity during

volcanic processes at the glass transition a calorimetric calibration Earth Planet

Sci Lett 198 417-427

Hess K-U and Dingwell DB (1996) Viscosities of hydrous leucogranitic melts A non-

Arrhenian model Am Mineral 81 1297-1300

Hess K-U Dingwell DB Gennaro C and Mincione V (2001) Viscosity-temperature

behavior of dry melts in the Qz-Ab-Or system Chem Geol 174 133-142

Hess K-U Dingwell DB and Webb SL (1995) The influence of excess alkalis on the

viscosity of a haplogranitic melt Am Mineral 80 297-304

Hess KU Dingwell DB and Webb SL (1996) The influence of alkaline-earth oxides

(BeO MgO CaO SrO BaO) on the viscosity of a haplogranitic melt systematics

of non-Arrhenian behaviour Eur J Mineral 8 371-381

Hummel W and Arndt J (1985) Variation of viscosity with temperature and composition

in the plagioclase system Contrib Mineral Petrol 90 83-92

Kozu S and Kani K (1944) Viscosity measurements of the ternary system diopside-

albite-anorthite at high temperatures Bull Am Ceram Soc 23 377-378

Kushiro I Yoder HSJr and Mysen BO (1976) Viscosities of basalt and andesite melts

at high pressures J Geophys Res 81 6351-6356

Lange RA (1994) The effect of H2O CO2 and F on the density and viscosity of silicate

melts Rev Mineral 30 331-360

46

Lange RA (1997) A revised model for the density and thermal expansivity of K2O-

Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K extension to crustal

magmatic temperatures Contrib Mineral Petrol 130 1-11

Lange RA and Carmichael ISE (1987) Densities of Na2O-K2O-CaO-MgO-FeO-

Fe2O3-Al2O3-TiO2-SiO2 liquids new measurements and derived partial molar

properties Geochim Cosmochim Acta 53 2195-2204

Le Bas MJ Le Maitre RW Streckeisen A and Zanettin B (1986) A chemical

classification of volcanic rocks based on the total alkali-silica diagram J Petrol

27 745-750

Liebske C Behrens H Holtz F and Lange RA (2003) The influence of pressure and

composition on the viscosity of andesitic melts Geochim Cosmochim Acta 67

473-485

Lillie HR (1939) High-temperature viscosities of soda-silica glasses J Am Ceram Soc

22 367-374

Mackenzie JD (1957) The discrete ion theory and viscous flow in liquid silicates Trans

Faraday Soc 53 1488-1493

Neuville DR and Richet P (1991) Viscosity and mixing in molten (Ca Mg) pyroxenes

and garnets Geochim Cosmochim Acta 55 1011-1019

Neuville DR Courtial P Dingwell DB and Richet P (1993) Thermodynamic and

rheological properties of rhyolite and andesite melts Contrib Mineral Petrol 113

572-581

Persikov ES Epelrsquobaum MB and Bukhtiyarov PG (1986) The viscosity of a granite

magma interacting with an aqueous chloride fluid Geochem Intern 23 21-30

47

Persikov ES (1991) The viscosity of magmatic liquids Experiment generalized

patterns a model for calculation and prediction application Adv Phys Geochem

9 1-40

Persikov ES (1998) Viscosities of model and magmatic melts at the pressures and

temperatures of the Earthrsquos crust and upper mantle Russian Geol Geophys 39

1780-1792

Poole JP (1948) Viscositeacute a basse tempeacuterature des verres alcalino-silicateacutes Verres

Reacutefract 2 222-228

Richet P (1984) Viscosity and configurational entropy of silicate melts Geochim

Cosmochim Acta 48 471-483

Richet P Lejeune A-M Holtz F and Roux J (1996) Water and the viscosity of

andesite melts Chem Geol 128 185-197

Richet P Robie RA and Hemingway BS (1986) Low-temperature heat capacity of

diopside glass (CaMgSi2O6) a calorimetric test of the configurational-entropy

theory applied to the viscosity of liquid silicates Geochim Cosmochim Acta 50

1521-1533

Riebling EF (1966) Structure of sodium aluminosilicate melts containing at least 50

mole SiO2 at 1500 ˚C J Chem Phys 44 2857-2865

Romano C Giordano D Papale P Mincione V Dingwell DB and Rosi M (2003)

The dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean

Fields Chem Geol 202 23-38

48

Scaillet B Holtz F Pichavant M and Schmidt M (1996) Viscosity of Himalayan

leucogranites Implication for mechanisms of granitic magma ascent J Geophys

Res 101 27691-27699

Scarfe CM and Cronin DJ (1986) Viscosity-temperature relationships at 1 atm in the

system diopside-albite Am Mineral 71 767-771

Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural

relaxation J Am Ceram Soc 67 504-511

Schulze F Behrens H Holtz F Roux J and Johannes W (1996) The influence of H2O

on the viscosity of a haplogranitic melt Am Mineral 81 1155-1165

Shartsis L Spinner S and Capps W (1952) Density expansivity and viscosity of

molten alkali silicates J Am Ceram Soc 35 155-160

Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature

range 700deg to 900degC J Geophys Res 68 1512-1520

Shaw HR (1972) Viscosities of magmatic silicate liquids an empirical method of

prediction Am J Sci 272 870-893

Stein DJ and Spera FJ (1993) Experimental rheometry of melts and supercolled liquids

in the system NaAlSiO4-SiO2 Implications for structure and dynamics Am

Mineral 78 710-723

Stein DJ and Spera FJ (2002) Shear viscosity of rhyolite-vaporemulsions at magmatic

temperatures by concentric cylinder rheometry J Volcanol Geotherm Res 113

243-258

Stevenson RJ Bagdassarov NS and Dingwell DB (1998) The influence of trace

amounts of water on the viscosity of rhyolites Bull Volcanol 60 89-97

49

Stevenson RJ Dingwell DB Webb SL and Sharp TG (1996) Viscosity of microlite-

bearing rhyolitic obsidians an experimental study Bull Volcanol 58 298-309

Stolper E (1982) The speciation of water in silicate melts Geochim Cosmochim Acta

46 2609-2620

Tammann G and Hesse W (1926) Die abhaumlngigkeit der viscositaumlt von der temperatur bei

unterkuumlhlten fluumlssigkeiten Z Anorg Allg Chem 156 245-257

Taylor NW and Dear PS (1937) Elastic and viscous properties of several soda-silica

glasses in the annealing range of temperature J Am Ceram Soc 20 296-304

Taylor NW and Doran RF (1941) Elastic and viscous properties of several potash-

silica glasses in the annealing range of temperature J Am Ceram Soc 24 103-

109

Taylor TD and Rindone GE (1970) Properties of soda aluminosilicate glasses V low-

temperature viscosities J Am Ceram Soc 53 692-695

Toplis MJ Dingwell DB and Libourel G (1994) The effect of phosphorus on the iron

redox ratio viscosity and density of an envolved ferro-basalt Contrib Mineral

Petrol 117 293-304

Urbain G Bottinga Y and Richet P (1982) Viscosity of liquid silica silicates and

alumino-silicates Geochim Cosmochim Acta 46 1061-1072

Whittington A Richet P and Holtz F (2000) Water and the viscosity of depolymerized

aluminosilicate melts Geochim Cosmochim Acta 64 3725-3736

Whittington A Richet P and Holtz F (2001) The viscosity of hydrous phonolites and

trachytes Chem Geol 174 209-223

50

Whittington A Richet P Behrens H Holtz F and Scaillet B (2004) Experimental

temperature-X(H2O)-viscosity relationship for leucogranites and comparison with

synthetic silicic liquids Tran Royal Soc Edinburgh Earth Sci 95 59-71

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth Planet

Sci Lett 122 373-391

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

51

CHAPTER III

PRESSURE DEPENDENCE OF THE SPECIATION OF DISSOLVED WATER IN RHYOLITIC MELTS

ABSTRACT

Water speciation in rhyolitic melts with dissolved water ranging from 08 to 4

wt under high pressure was investigated Samples were heated in a piston-cylinder

apparatus at 624-1027 K and 094-283 GPa for sufficient time to equilibrate hydrous

species (molecular H2O and hydroxyl group H2Om + O = 2OH) in the melts and then

quenched roughly isobarically Concentrations of two hydrous species in the quenched

glasses were measured with Fourier transform infrared (FTIR) spectroscopy For samples

with total water content less than 27 wt the equilibrium constant is independent of

total H2O concentration Incorporating samples with higher water contents the

equilibrium constant depends on total H2O content and a regular solution model is used

to describe the dependence The equilibrium constant changes nonlinearly with pressure

for samples with a given water content at a given temperature The equilibrium constant

does not change much from ambient pressure to 1 GPa but it increases significantly from

1 to 3 GPa In other words more molecular H2O reacts to form hydroxyl groups as

pressure increases from 1 GPa which is consistent with breakage of tetrahedral

aluminosilicate units due to compression of the melt induced by high pressure The effect

52

of 19 GPa (from 094 to 283 GPa) on the equilibrium constant at 873 K is equivalent to

a temperature effect of 51 K (from 873 K to 924 K) at 094 GPa The results can be used

to evaluate the role of speciation in water diffusion to estimate the apparent equilibrium

temperature and to infer the viscosity of hydrous rhyolitic melts under high pressure

1 INTRODUCTION

The nature of dissolved water in silicate melt has received considerable attention

(eg Goranson 1938 Wasserburg 1957 Shaw 1964 Burnham 1975 Stolper 1982ab

McMillan 1994 Zhang 1999 Zhang et al 2007) As the most abundant volatile

component dissolved in terrestrial silicate melts dissolved water in melts plays an

important role in igneous processes Water can alter the structure of silicate melts hence

significantly change their physical and chemical properties such as solidusliquidus

temperatures (eg Tuttle and Bowen 1958) viscosity (eg Shaw 1972 Hui and Zhang

2007) crystal nucleation rates (eg Davis et al 1997) chemical diffusion (eg Watson

1991 Behrens and Zhang 2001) and oxygen ldquoselfrdquo diffusion (eg Zhang et al 1991a

Behrens et al 2007) Some of these effects are related to the speciation reaction below

(Stolper 1982ab)

H2Om + O = 2OH (1)

where H2Om denotes dissolved H2O molecules O denotes anhydrous oxygen and OH

denotes hydroxyl groups in silicate melts Total H2O content will be denoted as H2Ot

The equilibrium and kinetics of the above speciation reaction in rhyolitic melt has been

extensively studied (Stolper 1982a b Zhang et al 1991a 1995 1997b 2003 Ihinger et

al 1999 Nowak and Behrens 2001) Two debates have occurred about speciation

53

studies (see reviews by Zhang 1999 Behrens and Nowak 2003 Zhang et al 2007) The

early debate on whether species concentrations can be quenched from high temperature

(such as 1100 K) has been settled and the conclusion is that species concentrations will

be altered during quench if the initial temperature is above the glass transition

temperature for the given quench rate (Dingwell and Webb 1990) The later debate on

quenched versus in situ speciation studies has also been resolved and the conclusion is

that species concentrations can be preserved by rapid quench from intermediate

experimental temperatures (such as 800 K depending on H2Ot and quench rate) below

the glass transition temperature for the given quench rate (Withers et al 1999 Nowak

and Behrens 2001) The speciation data not only provide an understanding of the

detailed dissolution mechanism of H2O in melts but also can be applied to understand

H2O solubility and diffusivity in silicate melts and to infer viscosity of hydrous melts

Previous experimental studies mostly investigated H2O speciation at pressures

below 1 GPa This paper extends the experimental range to higher pressures The new

data reported here span 094-283 GPa 624-1027 K and 08-40 wt H2Ot Combining

these data with previous results (Ihinger et al 1999) a regular solution model is

developed to fit H2O speciation data from low to high pressures

2 EXPERIMENTAL METHODS

In this study hydrous rhyolitic glasses were held under a constant temperature

(623-1023 K nominal temperature) and pressure (1-3 GPa nominal pressure) in a piston

cylinder apparatus for sufficient duration (96 s to 3 days) for the two hydrous species in

the melt to reach equilibrium but short enough to avoid significant crystallization The

54

samples were then quenched to room temperature roughly isobarically Species

concentrations were measured by Fourier transform infrared (FTIR) spectroscopy at

ambient environment on the quenched glasses Based on various assessments (see

Introduction and Discussion) the quenched species concentrations reflect those at high

temperature and pressure

Starting materials include both natural hydrous rhyolitic glass (KS) and synthetic

hydrous rhyolitic glass prepared by hydration of natural rhyolitic glasses Sample KS is

from Mono Crater California Samples GMR+2 and GMR+4 were synthesized by adding

water to obsidian from Glass Mountain California The chemical compositions of these

two natural rhyolitic obsidians are listed in Table 31 Hydration of rhyolitic glasses was

implemented at 05 GPa by re-melting glass powders with added H2O at University of

Hannover Germany The obsidian glass powder and water were sealed in Au-Pd

capsules The capsules were placed in an internally heated pressure vessel (IHPV) and

heated to 1473 K at 05 GPa for overnight Sample assemblages were under H2O-

undersaturated running conditions during heating so that the loaded water was completely

dissolved in the melts Samples were then quenched isobarically The hydrated glasses

were crystal-free and bubble-free

The equilibrium experiments were performed in a piston cylinder apparatus at the

University of Michigan Glass fragments were prepared into cylinders with diameters of

about 2 mm and heights of about 2 mm Then a glass cylinder was placed into a graphite

capsule which was enclosed in crushable MgO as the inner pressure medium with

graphite heater outside and then BaCO3 cell as outer pressure medium The lid of the

graphite capsule was thin (about 05 mm thickness) to minimize the distance between the

55

Table 31 Chemical compositions (oxide wt) of KS and GMR rhyolite on an anhydrous basis

KS GMR SiO2 7594 7322 TiO2 009 031 Al2O3 1298 1408 FeO 098 145 MnO 005 005 MgO 003 026 CaO 056 131 Na2O 401 406 K2O 471 432 P2O5 029 007 H2Ot

076-090

189-223 in GMR+2338-417 in GMR+4

Total 9963 9913 Glass analyses were carried out with a CAMECA 5X-100 electron microprobe using a defocused beam (10 microm) with 1 nA current at the University of Michigan The oxide wt on an anhydrous basis is calculated by dividing the electron microprobe measured oxide concentration by 1-C where C is weight percent of H2Ot obtained by infrared spectroscopy

56

thermocouple tip and the sample The glass cylinder was placed in the center of the

graphite heater The running temperature was measured with a type-S thermocouple

(Pt90Rh10-Pt) or type-D thermocouple (Re3W97-Re25W75) The distance between

thermocouple tip and the center of the sample was typically about 13 mm after

experiments

A ldquopiston-outrdquo procedure was used to bring the assemblage to the final pressure at

373 K or 473 K The sample assemblage was relaxed at this temperature and at the

desired experimental pressure for at least 2 hours to close the gaps in the sample

assemblage After relaxation of the sample assemblage under pressure temperature was

increased at a rate of 200 K per minute to the designated temperature The sample stayed

at the desired temperature for sufficient time to ensure equilibrium for the interconversion

reaction between the two hydrous species in the sample but not too long enough for

appreciable crystallization No temperature overshoot occurred and temperature

fluctuation was le 2 K The sample was quenched roughly isobarically by turning off the

power and manually pumping to keep up the pressure The cooling rate is estimated to be

~ 100 Ks (Zhang et al 2000)

The thermal gradient in the piston cylinder was calibrated using water speciation

in rhyolitic glass (Zhang et al 1997a Ihinger et al 1999) Five experiments at 05 GPa

were carried out to calibrate the temperature distribution along the central axis of the

graphite heater The temperature distribution along the distance from the center of the

charge is shown in Fig 31 The equation for the temperature correction is

∆T asymp 221(T600)x2 (2)

where x is the distance between the thermocouple tip and the center of the charge in mm

57

0

10

20

30

40

50

0 1 2 3 4 5 6

sup2T (K

)

Distance from center (mm)

Fit by sup2 T=ax2

a=154 226 228 241 258

Temperature gradient in piston cylinder

T - 600degCTemperature correction

sup2 T = (T600)middotax2

where a = 221

Fig 31 Experimental results for temperature distribution in piston cylinder 2 at the University of Michigan laboratory calibrated using hydrous species equilibrium in rhyolite based on the speciation model of Zhang et al (1997a) Curves are best fittings of the different set of experimental data with different a values shown in the figure using Eqn 2

58

T is the temperature reading of the thermocouple in ˚C ∆T is the temperature difference

between the center and the thermocouple tip in ˚C and the constant 221 is the average of

5 experiments Therefore T+∆T is the temperature at the center of sample Depending on

the IR measurement position on the glass chip a correction of up to 6˚C was added to the

nominal temperature recorded by the thermocouple The pressure effect on emf of

different thermocouples results only in a small effect on temperature at le 3 GPa (Li et al

2003) and is ignored Overall the temperature uncertainty (2σ) for the series of

experiments in this study is estimated to be about 6 K

Pressure calibration of the piston-cylinder apparatus (Piston-cylinder 2 in the

laboratory) was conducted using two types of experiments the melting point of gold

(Akella and Kennedy 1971) at le 10 GPa and the quartz-coesite transition (eg Boyd

and England 1960 Kitahara and Kennedy 1964 Akella 1979 Mirwald and Massonne

1980 Bohlen and Boettcher 1982 Bose and Ganguly 1995) at 1073 K In the

calibration using gold melting temperature a gold wire connected the two legs of a type-

D thermocouple in a piston-cylinder At a well-maintained nominal pressure the

assemblage was gradually heated until melting of the Au wire (at which the thermocouple

signal was lost) The experiments show that the actual pressure is similar to the nominal

pressure within several percent Quartz-coesite reversal experiments at 1073 K were also

carried out with a starting material of a mixture of quartz (50 wt) and coesite (50 wt)

powder moistened to accelerate the reaction and sealed in Au capsule Here the

experimental procedure of Bose and Ganguly (1995) was followed The run product of

each experiment consists of only one pure crystalline phase as verified by X-ray

diffraction The experimental results are listed in Table 32a The calculated quartz-

59

coesite phase transition pressures at 1073 K from the literature are given in Table 32b

The literature data vary by 024 GPa reflecting difficulties in the experimental

calibrations Because these results do not completely agree with each other the most

recent experimental calibration (Bose and Ganguly 1995) was adopted to correct the

pressure in the piston cylinder apparatus by -6 (ie dividing the nominal pressure by

106) Some experiments were carried out using another piston cylinder for which the

correction is 5 based on another series of experiments to be reported in Ni and Zhang

(2008)

In order to further extend the pressure range some speciation experiments at 4-6

GPa were carried out in a multi-anvil apparatus at the University of Michigan However

except for one these charges crystallized extensively Because of the extreme difficulty

in quenching liquid to glass equilibrium speciation experiments were not continued at 4-

6 GPa

3 ANALYTICAL PROCEDURES

After quench each charge was embedded in epoxy resin Then it was polished on

both sides into a thin section along the cylindrical axis The thickness of the layer

polished away on each side of the charge was at least twice of the water diffusion

distance estimated using the diffusivity of Zhang and Behrens (2000) All run products

were analyzed for concentrations of H2Om and OH expressed in terms of H2O using an

FTIR Perkin-Elmer GX spectrometer at the University of Michigan An aperture of 01

mm in diameter was used to delimit the infrared beam size This aperture size allows

acquisition of high-quality IR spectra and evaluation of sample heterogeneity The

60

Table 32a Experimental results for pressure calibration using quartz-coesite transition at 1073 K

Nominal P (GPa)

t (h) Result

2896 72 quartz

2965 70 quartz

3034 70 quartz

3103 66 quartz

3137 70 coesite

3172 67 coesite

3378 66 coesite

Table 32b Literature data on quartz-coesite transition pressure at 1073 K

P (GPa) Reference

2846 Boyd amp England (1960)

2908 Kitahara amp Kennedy (1964)

3030 Akella (1979)

2920 Akella (1979)

2862 Mirwald amp Massonne (1980)

2792 Bohlen amp Boettcher (1982)

2935 Bose amp Ganguly (1995)

61

intensities (peak heights) of the absorption bands at 5230 cm-1 (A523) and 4520 cm-1

(A452) were measured The baseline was fit by flexicurve as shown in Zhang et al

(1997a)

Species (OH and H2Om) concentrations in terms of H2O were obtained from IR

band intensities according to Beerrsquos law Extensive effort has been made to calibrate the

IR method on hydrous rhyolitic glasses (eg Newman et al 1986 Zhang et al 1997a

Withers and Behrens 1999) The calibrations of Newman et al (1986) and Withers and

Behrens (1999) assumed constant molar absorptivities whereas Zhang et al (1997a)

considered the variability of the molar absorptivities With the calibration of Zhang et al

(1997a) the H2Ot content is highly reproducible for the same sample but with different

cooling rates but less so with other calibrations Furthermore the calibration of Zhang et

al (1997a) results in concentration-independent equilibrium constants of reaction (1) at

H2Ot le 27 wt However the calibration of Zhang et al (1997a) becomes increasingly

less accurate as H2Ot increases with error of 017 wt at 38 wt 039 wt at 56 wt

and 11 wt at 77 wt (Zhang and Behrens 2000) Because H2Ot in this work is less

than 42 wt and for consistency with the low-pressure speciation data of Ihinger et al

(1999) the molar absorptivities of Zhang et al (1997a) were adopted If a different

calibration is used there would be significant and systematic differences in species

concentrations and K Nonetheless the trends of how K depends on temperature and

pressure stay the same Furthermore as long as self-consistency is maintained the

equilibrium temperature (or the apparent equilibrium temperature) can be retrieved from

species concentrations accurately

62

Whether or not equilibrium is reached for reaction (1) in a particular experiment

the parameter

Q equiv(XOH

glass)2

XH2Om

glass XOglass

is used to monitor the change of proportions of OH and H2Om in a sample where Xiglass is

the measured mole fraction of species i in the quenched glass on a single oxygen basis

(Stolper 1982a b) and O denotes an anhydrous oxygen When the reaction duration is

long enough for the interconversion of these two hydrous species in the melt to reach

equilibrium and furthermore if this equilibrium state is retained in the quench process Q

will be equal to the equilibrium constant K

4 RESULTS AND DISCUSSION

41 SPECIES CONCENTRATIONS AND EQUILIBRIUM CONSTANTS

The concentrations of H2Om and OH in all quenched glasses calculated using the

calibration of Zhang et al (1997a) are listed in Table 33 The actual IR absorbance data

are also reported because there may be further improvement in the IR calibration The

equilibrium constants are listed in Table 33 and plotted as a function of 1000T in Fig

32

The uncertainty in each IR band intensity is about 1 relative leading to an error

of 0022 in lnK not accounting for systematic uncertainty of the calibration The

uncertainty in thickness measurement is about 2 microm which results in a negligible

increase in the overall uncertainty of lnK For high-pressure data there are additional

63

Table 33 The equilibrium speciation of water in rhyolitic melts under various pressures

Measurement T$ P$ Time Abs Abs Thickness H2Ot H2Om OH X(H2Ot) X(H2Om) X(OH) 1000T lnK K GPa s 5200 4500 mm wt wt wt K-1 KS-1-21 927 094 600 00270 01034 0717 0844 0160 0684 00151 00029 00245 107873 -1538 KS-1-22 926 094 600 00278 01028 0713 0849 0166 0683 00152 00030 00245 108043 -1573 KS-1-23 926 094 600 00255 00998 0708 0819 0153 0666 00147 00027 00239 107938 -1545 KS-1-31 879 094 14400 00593 01999 1415 0845 0178 0666 00151 00032 00239 113736 -1695 KS-1-32 877 094 14400 00589 01989 1407 0845 0178 0667 00151 00032 00239 114041 -1693 KS-1-33 878 094 14400 00627 02065 1431 0869 0186 0683 00156 00033 00245 113925 -1691 KS-1-41 819 094 187200 00676 01833 1321 0868 0218 0650 00155 00039 00233 122117 -1945 KS-1-42 817 094 187200 00673 01805 1311 0863 0218 0644 00155 00039 00231 122410 -1966 KS-1-43 818 094 187200 00694 01857 1326 0880 0223 0657 00158 00040 00235 122228 -1946 GMR+2-1-11 828 094 600 01862 02472 1038 1964 0772 1192 00349 00137 00423 120769 -1977 GMR+2-1-12 827 094 600 01892 02480 1041 1974 0782 1192 00350 00139 00423 120907 -1991 GMR+2-1-13 826 094 600 01808 02449 1033 1940 0753 1187 00344 00134 00422 121022 -1960 GMR+2-1-21 777 094 600 02150 02467 1063 2014 0870 1144 00357 00154 00406 128775 -2180 GMR+2-1-22 778 094 600 02114 02467 1059 2010 0859 1151 00357 00152 00408 128497 -2155 GMR+2-1-23 778 094 600 02099 02451 1058 1997 0854 1143 00354 00152 00406 128515 -2163 GMR+2-1-31 725 094 183600 01824 01848 0885 1886 0886 1000 00335 00157 00355 137978 -2469 GMR+2-1-32 727 094 183600 01841 01873 0888 1904 0891 1012 00338 00158 00360 137634 -2452 GMR+2-1-33 726 094 183600 01868 01892 0888 1929 0905 1024 00343 00161 00364 137800 -2443 GMR+2-1-R11 776 094 720 01756 01913 0782 2180 0968 1212 00386 00172 00430 128916 -2166 GMR+2-1-R12 775 094 720 01742 01870 0773 2167 0972 1195 00384 00172 00424 129036 -2199 GMR+2-1-R13 776 094 720 01746 01903 0789 2146 0954 1193 00381 00169 00423 128916 -2186 GMR+4-1-21 726 094 10800 01375 00780 0243 4010 2485 1525 00701 00434 00533 137751 -2626 GMR+4-1-22 725 094 10800 01396 00807 0256 3893 2392 1501 00681 00418 00525 137846 -2621 GMR+4-1-23 725 094 10800 01315 00745 0236 3944 2447 1497 00689 00428 00523 137928 -2648 GMR+4-1-31 676 094 46800 02577 01364 0490 3575 2300 1276 00627 00403 00447 147921 -2914 GMR+4-1-32 675 094 46800 02586 01344 0482 3621 2348 1273 00635 00411 00446 148152 -2938 GMR+4-1-33 676 094 46800 02581 01368 0499 3515 2261 1255 00617 00397 00440 147982 -2931 GMR+4-1-41 626 094 261360 03017 01423 0573 3394 2298 1096 00596 00404 00385 159840 -3224 GMR+4-1-42 624 094 261360 03013 01414 0574 3375 2291 1084 00593 00402 00381 160157 -3242

64

GMR+4-1-43 625 094 261360 03012 01408 0568 3406 2315 1091 00598 00406 00383 159905 -3240 KS-2-11 926 189 600 00476 01838 1209 0894 0168 0727 00160 00030 00260 107938 -1459 KS-2-12 926 189 600 00475 01828 1208 0891 0167 0723 00159 00030 00259 108049 -1469 KS-2-13 926 189 600 00463 01806 1203 0880 0164 0716 00158 00029 00257 107968 -1466 KS-2-21 877 189 14400 00699 02340 1561 0904 0191 0713 00162 00034 00255 114018 -1625 KS-2-22 876 189 14400 00653 02264 1562 0864 0178 0687 00155 00032 00246 114156 -1633 KS-2-23 876 189 14400 00649 02264 1560 0865 0177 0688 00155 00032 00246 114176 -1625 KS-2-41 960 189 600 00419 01795 1189 0872 0150 0722 00156 00027 00259 104195 -1360 KS-2-42 959 189 600 00419 01795 1196 0866 0149 0717 00155 00027 00257 104320 -1368 KS-2-43 962 189 600 00415 01795 1198 0863 0147 0716 00155 00026 00256 103982 -1362 GMR+2-2-11 825 189 7200 01032 01397 0538 2153 0827 1325 00382 00147 00470 121199 -1829 GMR+2-2-12 826 189 7200 00992 01378 0536 2109 0797 1312 00374 00141 00465 121006 -1814 GMR+2-2-13 825 189 7200 00962 01329 0524 2080 0790 1289 00369 00140 00457 121179 -1841 GMR+2-2-21 777 189 86400 01633 02049 0850 2032 0827 1205 00361 00147 00428 128756 -2023 GMR+2-2-22 776 189 86400 01618 02020 0852 1998 0817 1181 00355 00145 00419 128904 -2053 GMR+2-2-23 776 189 86400 01607 02027 0852 1998 0812 1187 00355 00144 00421 128904 -2036 GMR+2-2-41 856 189 600 01450 02017 0757 2196 0826 1370 00389 00146 00486 116794 -1760 GMR+2-2-42 856 189 600 01461 02051 0759 2225 0830 1395 00394 00147 00494 116807 -1729 GMR+2-2-43 855 189 600 01468 02042 0759 2221 0834 1387 00394 00148 00491 116954 -1746 GMR+4-2-11 757 189 1260 02299 01444 0414 4165 2444 1721 00727 00426 00601 132182 -2361 GMR+4-2-12 756 189 1260 02228 01393 0403 4132 2432 1701 00721 00424 00594 132305 -2381 GMR+4-2-13 756 189 1260 02359 01500 0432 4117 2401 1716 00719 00419 00599 132297 -2351 GMR+4-2-21 726 189 14400 02950 01847 0575 3809 2249 1560 00667 00394 00546 137766 -2482 GMR+4-2-22 725 189 14400 02949 01838 0574 3804 2253 1552 00666 00394 00543 137956 -2494 GMR+4-2-23 726 189 14400 02918 01833 0578 3749 2212 1537 00656 00387 00538 137788 -2496 GMR+4-2-31 676 189 172800 04221 02261 0741 3920 2500 1420 00685 00437 00496 148015 -2778 GMR+4-2-32 675 189 172800 04178 02246 0737 3907 2488 1419 00683 00435 00496 148155 -2773 GMR+4-2-33 675 189 172800 04296 02279 0745 3953 2532 1421 00691 00443 00497 148070 -2788 KS-3-11 876 286 7200 00622 02310 1566 0870 0169 0701 00156 00030 00251 114211 -1539 KS-3-12 875 286 7200 00614 02297 1568 0863 0166 0696 00154 00030 00249 114288 -1540 KS-3-13 875 286 7200 00631 02318 1564 0877 0172 0705 00157 00031 00253 114248 -1543 KS-3-R11 877 283 14400 00349 01493 1117 0760 0133 0627 00136 00024 00225 114045 -1524 KS-3-R12 878 283 14400 00353 01499 1121 0762 0134 0628 00137 00024 00225 113841 -1532

65

KS-3-R13 877 283 14400 00357 01501 1118 0766 0136 0630 00137 00024 00226 114035 -1536 KS-3-21 977 286 600 00352 01785 1248 0799 0120 0680 00143 00021 00244 102327 -1259 KS-3-22 977 286 600 00355 01788 1248 0802 0121 0681 00144 00022 00244 102372 -1264 KS-3-23 977 286 600 00355 01785 1248 0800 0121 0679 00143 00022 00244 102347 -1269 KS-3-24 975 286 600 00348 01761 1251 0786 0118 0667 00141 00021 00239 102525 -1283 KS-3-31 926 286 600 00435 01998 1438 0785 0128 0657 00141 00023 00235 108042 -1399 KS-3-32 927 286 600 00431 01987 1439 0779 0127 0652 00140 00023 00234 107927 -1404 KS-3-33 926 286 600 00435 02005 1439 0787 0128 0659 00141 00023 00236 107982 -1391 KS-3-41 1027 286 96 00372 02101 1489 0776 0106 0670 00139 00019 00240 097390 -1168 KS-3-42 1026 286 96 00376 02105 1489 0779 0107 0671 00140 00019 00241 097456 -1174 KS-3-43 1026 286 96 00369 02093 1489 0772 0105 0667 00138 00019 00239 097456 -1168 KS-3-44 1026 286 96 00365 02082 1489 0767 0104 0663 00138 00019 00238 097490 -1170 GMR+2-3-11 876 283 600 01364 02250 0837 2102 0702 1400 00373 00124 00497 114103 -1554 GMR+2-3-12 875 283 600 01377 02250 0836 2111 0709 1402 00374 00126 00497 114243 -1563 GMR+2-3-13 876 283 600 01326 02220 0831 2078 0687 1391 00369 00122 00493 114191 -1547 GMR+2-3-21 825 283 7200 01509 02250 0845 2145 0769 1376 00380 00136 00488 121184 -1682 GMR+2-3-22 825 283 7200 02077 03063 1159 2134 0772 1362 00378 00137 00483 121149 -1706 GMR+2-3-23 825 283 7200 02067 03075 1162 2131 0766 1365 00378 00136 00484 121149 -1694 GMR+2-3-31 777 283 172800 02163 02836 1081 2202 0863 1339 00390 00153 00475 128707 -1851 GMR+2-3-32 777 283 172800 02174 02826 1082 2197 0866 1331 00389 00153 00472 128745 -1867 GMR+2-3-33 775 283 172800 02199 02841 1080 2220 0878 1342 00393 00156 00476 128972 -1864 GMR+4-3-11 776 283 960 02616 02005 0563 3871 2039 1833 00677 00357 00641 128814 -2055 GMR+4-3-12 775 283 960 02644 02014 0564 3894 2057 1837 00681 00360 00643 129041 -2059 GMR+4-3-13 776 283 960 02598 01991 0561 3857 2031 1825 00675 00355 00639 128818 -2060 GMR+4-3-31 726 283 21600 02769 01951 0580 3777 2092 1685 00661 00366 00590 137668 -2253 GMR+4-3-32 726 283 21600 02748 01930 0579 3745 2079 1666 00656 00364 00583 137835 -2271 GMR+4-3-33 726 283 21600 02763 01959 0589 3718 2054 1664 00651 00360 00583 137770 -2261 GMR+4-3-41 676 283 259200 03326 01961 0601 3999 2431 1568 00699 00425 00548 147929 -2547 GMR+4-3-42 675 283 259200 03337 01972 0602 4012 2435 1577 00701 00426 00551 148109 -2538 GMR+4-3-43 675 283 259200 03297 01955 0598 3995 2422 1574 00698 00423 00550 148041 -2536 KS-1b-11 973 00001 600 00191 00907 0611 0842 0133 0709 00151 00024 00254 102759 -1276 KS-1b-12 973 00001 600 00194 00907 0608 0849 0136 0713 00152 00024 00256 102759 -1287 KS-1b-13 973 00001 600 00190 00898 0606 0841 0134 0708 00151 00024 00253 102759 -1286

66

KS-1b-21 923 00001 600 00214 00959 0691 0787 0131 0655 00141 00024 00235 108325 -1425 KS-1b-22 923 00001 600 00206 00938 0685 0774 0128 0646 00139 00023 00231 108325 -1430 KS-1b-23 923 00001 600 00219 00966 0688 0800 0135 0664 00143 00024 00238 108325 -1427 KS-1b-R11 923 00001 7200 00402 01796 1292 0789 0132 0657 00141 00024 00235 108325 -1426 KS-1b-R12 923 00001 7200 00400 01794 1291 0788 0132 0657 00141 00024 00235 108325 -1423 KS-1b-R13 923 00001 7200 00402 01797 1292 0789 0132 0657 00141 00024 00236 108325 -1424 KS-1b-R21 923 00001 2400 00685 02875 1975 0839 0147 0692 00150 00026 00248 108325 -1430 KS-1b-R22 923 00001 2400 00685 02870 1976 0838 0147 0690 00150 00026 00247 108325 -1435 KS-1b-R23 923 00001 2400 00675 02846 1973 0830 0145 0685 00149 00026 00245 108325 -1438 KS-1b-31 873 00001 21600 00501 01763 1231 0851 0173 0678 00152 00031 00243 114528 -1632 KS-1b-32 873 00001 21600 00501 01766 1231 0852 0173 0679 00153 00031 00243 114528 -1628 KS-1b-33 873 00001 21600 00498 01757 1230 0848 0172 0676 00152 00031 00242 114528 -1633

Note $ T has been corrected using Eqn (2) P has been corrected based on pressure calibration Three or four points were measured by IR for each experimental sample they are listed as xxx1 2 3 or 4 These experiments are reversal runs (Fig 33)

67

-26

-24

-22

-2

-18

-16

-14

-12

-1

09 1 11 12 13 14 15

KSGMR+2GMR+4

00001 GPa

283 GPa

1000T

lnK

A

-28

-26

-24

-22

-2

-18

-16

-14

-12

1 11 12 13 14 15

KSGMR+2GMR+4

189 GPa

00001 GPa

1000T

lnK

B

-35

-3

-25

-2

-15

1 11 12 13 14 15 16 17

KSGMR+2GMR+4

lnK

1000T

00001 GPa

094 GPa

C

-28

-26

-24

-22

-2

-18

-16

-14

-12

1 11 12 13 14 15

KSIhinger et al 99

lnK

1000T

00001 GPaD

Fig 32 The temperature dependence of lnK at some pressures Water concentrations for samples KS (076-090 wt) and GMR+2 (189-223 wt) are less than 27 wt and speciation data on them overlap indicating that K is independent of H2Ot when water content is less than 27 wt The dashed reference line is the ideal mixing model for water content less than 27 wt at ambient pressure from Ihinger et al (1999) The solid lines are the best-fit linear regression results for the data showing that ideal solution model (Eqn 3) works well for lt 27 wt H2Ot (KS and GMR+2) The regression for GMR+4 was separated from that for other compositions and is different

68

errors in estimating the species concentrations such as density variation with pressure

Hence the uncertainty from the IR measurement in lnK is estimated to be003

42 ATTAINMENT AND RETENTION OF EQUILIBRIUM

In this section the attainment of equilibrium at the experimental temperature and

the retention during quench are examined In either of the following two scenarios the

measured species concentrations would not reflect those at equilibrium in other words Q

ne K (1) the duration for the reaction at the experimental temperature is not long enough

for it to reach equilibrium (attainment of equilibrium) or (2) species concentrations in the

melt are changed during isobarically quenching to room temperature (retention of

equilibrium)

To demonstrate the attainment of equilibrium reversal experiments have been

carried out under two sets of conditions (a GMR+2-1-R1 776 K 094 GPa and 216

wt H2Ot b KS-3-R1 877 K 283 GPa and 076 wt H2Ot Table 33) One

experiment in each reversal pair was first relaxed at a temperature above the reversal

experimental temperature and one below to obtain different Q values Hence each set of

the reversal experiments approached the same final value of Q from initially higher or

lower Q values (Fig 33) This final Q value is the equilibrium constant K These

experiments are informative for constraining the duration required for a sample to reach

equilibrium at this set of conditions Durations for all other experiments were estimated

from these experiments and from kinetic experiments under ambient pressure (Zhang et

al 1995 1997b 2000) the actual experimental duration was longer than that estimated

for reaching equilibrium at specific running condition

69

-2

-19

-18

-17

-16

-15

-14

0 5000 1 104 15 104

lnQ

time (s)

876 K 283 GPa

A

-24

-23

-22

-21

-2

-19

0 100 200 300 400 500 600 700 800time (s)

lnQ

777 K 094 GPa

B

Fig 33 Two sets of reversal experiments to examine the duration required to reach equilibrium Solid curves are schematic illustrations of Q evolution in different experiments (A) KS sample (B) GMR+2 sample The relaxation might be much faster than illustrated by the curves

70

The issue of whether or not the equilibrium state can be retained during quench

has received considerable attention during the last two decades (eg Dingwell and Webb

1990 Zhang et al 1991b 1995 Ihinger et al 1999 Withers et al 1999 Zhang 1999

Nowak and Behrens 2001 Xu and Zhang 2002 Behrens and Nowak 2003) As

reviewed in the Introduction the different sides have worked together and resolved the

debates the consensus is that species concentrations can be retained by quench if the

experimental temperature is not too high (such as le850 K depending on H2Ot see Table

33) so that it is below the glass transition temperature for the given quench rate and

pressure (Withers et al 1999 Behrens and Nowak 2003)

In summary for attainment of equilibrium the experimental temperature must be

high enough (such as 673 K depending on H2Ot and pressure see Table 33) For

retention of equilibrium species concentrations through quench the experimental

temperature must be low enough In other words the experimental temperature must

satisfy the conditions that for the time scale of the isothermal experiments the sample is

in the liquid state whereas for the time scale of quenching the sample is in the glass

state Hence there is a limited temperature window for a given H2Ot and pressure at

which equilibrium speciation can be obtained from quench experiments

43 EQUILIBRIUM CONSTANT AS A FUNCTION OF TEMPERATURE H2Ot

AND PRESSURE

Equilibrium speciation data are listed in Table 33 and results are plotted in Fig

32 as lnK versus 1000T As shown in Figs 32a 32b and 32c K is independent of

water content when H2Ot in the sample is less than 27 wt consistent with Zhang et al

71

(1997a) Some new experimental data at ambient pressure are also reported here to

extend the temperature coverage of Ihinger et al (1999) Other speciation data have been

obtained on rhyolitic or quasi-rhyolitic melts (eg Sowerby and Keppler 1999 Nowak

and Behrens 2001 Behrens and Nowak 2003) but they are based on different IR

calibrations (different molar absorptivities) and cannot be directly compared with the new

data The new 1-bar data are consistent with those of Ihinger et al (1999) as shown in

Fig 32d A simple ideal solution model (Eqn 3) can be used to describe speciation in the

rhyolitic melts with low water content (up to 27 wt H2O) at any given pressure

lnK = A +1000

TB (3)

where A and B are fitting parameters independent of chemical composition The fitting

results are shown in Figs 32 and 34a and fitting parameters at each pressure are listed in

Table 34 The high-pressure experiments show an increase of lnK with increasing

pressure systematically As shown in Fig 34a the effect of 189 GPa (from 094 to 283

GPa) on the equilibrium constant of the speciation reaction at 773 K is equivalent to that

of 67 K (from 773 K to 840 K) on the equilibrium constant at 094 GPa The enthalpy of

reaction (1) at a given pressure can be inferred from the slopes of the best-fitting lines in

Fig 34a ie from fitting parameter B As shown in Fig 34b enthalpy of reaction (1)

decreases nonlinearly with pressure from 2702 kJmol under ambient pressure to 1853

kJmol at 283 GPa (Fig 34b)

Although K for reaction (1) does not depend on H2Ot concentration for water

content less than 27 wt at higher water content (here ~ 4 wt H2Ot) it depends on

H2Ot content This result indicates either mixing between H2Om OH and O in reaction

72

18

20

22

24

26

28

0 05 1 15 2 25 3

∆H (K

Jm

ol)

P (GPa)

∆H=26975-07704P-07773P2

B

-25

-2

-15

-1

09 1 11 12 13 14 15

00001 GPa094 GPa189 GPa283 GPa

A

lnK

1000T (T in K)

7001100 1000 900 800

T (K)

change in ln K due to change in P

change in T

change in ln K due to change in T

Fig 34 (A) The dependence of K on temperature for samples with H2Ot lt27 wt at various pressures Data for 00001 GPa are from Ihinger et al (1999) and this work The curves are the best-fit linear regression results using Eqn 3 The arrow lines indicate changes in lnK and T respectively (B) The pressure dependence of enthalpy of reaction (1) for samples with H2Ot lt27 wt The solid line is the best-fit regression result with equation shown in the figure

73

(1) is non-ideal or the already complicated calibration of Zhang et al (1997a) to convert

IR band intensities to species concentrations is imperfect (Ihinger et al 1999)

In the absence of an unambiguous calibration of the molar absorptivities of two

hydrous species in high-water-content samples the simplest approximation beyond ideal

mixing of H2Om OH and O in hydrous silicate melt is a regular solution model Silver

and Stolper (1989) illustrated a way to extend the simple ideal mixing model to a regular

solution model adapted also by Silver et al (1990) Zhang et al (1991b) and Ihinger et

al (1999) The same formulation is adapted here

lnK = ln XOH2

XH2OmXO

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = A+1000

TB+C XH2Om

+ D XOH( ) (4)

where A B C and D are fitting parameters independent of H2Ot and their physical

meanings are shown in Silver and Stolper (1989) Values of these fitting parameters at

each pressure are listed in Table 34 The maximum differences for these equations to

reproduce experimental equilibrium temperature are also listed in Table 34 and they are

within 10 K at high pressures

Eqn 4 could be expanded to accommodate the dependence of K on temperature

pressure and water content if the fitting parameters A B C and D in Eqn 4 are assumed

to be functions of pressure As discussed above the dependence on pressure is not linear

After some trials the following formulation is found to fit all speciation data in rhyolitic

melt well

lnK = A0 +AP P( )+1000

T(B0 +BP P + B

P3

2P

32 ) +

⎝ ⎜

(C0 +CP P +CP

32P

32 )XH2Om

+ (D0 +DP P + DP

32P

32 )XOH

⎠ ⎟

(5)

74

Table 34 Fitting parameters for Eqns 3 4 and 6

lnK lnKrsquo

ideal mixing regular solution model regular solution model

A B A B C D ∆T (K) $ A B C D ∆T (K) $

00001 GPa 20616 -32495 18120 -30830 -74203 30437 183 27524 -28404 -12945 189

094 GPa 17636 -30599 13264 -26529 -53362 01706 79 22910 -24292 01720 -17996 77

189 GPa 14995 -27503 10359 -23199 -71853 09728 73 18976 -20068 -16630 86

283 GPa 10053 -22285 07611 -20211 -75335 18349 90 16609 -17348 -15492 102

Note Water content is less than 22 wt

$ Maximum temperature difference between experimental temperature and model predicted temperature New data reported here and literature data from Ihinger et al (1999) which include some speciation data at P le 100 MPa

75

where P is pressure in GPa T is temperature in K and X is mole fraction of species H2Om

or OH This formulation could reproduce all experimental data with a 2σ uncertainty of

0058 in lnK The best-fit parameters in Eqn 5 with 2σ errors are A0 = 18120 plusmn 01044

AP = -03832 plusmn 00418 B0 = -30830 plusmn 00796 BP = 02999 plusmn 00638 BP32 = 00507 plusmn

00386 C0 = -74203 plusmn 14953 CP = 50262 plusmn 14040 CP32 = -31271 plusmn 09076 D0 =

30437 plusmn 13731 DP = -54527 plusmn 19763 DP32 = 30464 plusmn 12441 The reproducibility of

experimental equilibrium temperature by Eqn 5 is shown in a histogram (Fig 35) which

is approximately a Gaussian distribution Fig 36 further shows how well K at some

water contents can be reproduced

44 RELATING ABSORBANCES DIRECTLY TO TEMPERATURE AND

PRESSURE

Estimating the apparent equilibrium temperature of hydrous rhyolite of a given

cooling rate for inferring viscosity is one of the most important applications of this work

(Zhang et al 2003 Zhang and Xu 2007) Owing to possible future improvement of

molar absorptivities of two hydrous species it is useful to recast speciation data directly

in terms of IR band intensities (Ihinger et al 1999 Liu et al 2004a) so that equilibrium

temperature or the apparent equilibrium temperature can be directly estimated from

infrared data Following Zhang et al (2000) K is defined below

K = A452( )2A523

where A is absorbance per mm sample thickness By analogy with the regular solution

model (Eqn 4) the following equation is used to relate K and A

76

0

10

20

30

40

50

60

-20 -10 0 10 20∆T (K)

Num

ber o

f mea

sure

men

ts

Fig 35 Histogram showing the distribution of differences between the experimental equilibrium temperature and predicted temperature by Eqn 5 Sources of data include Ihinger et al (1999) and this work

77

-24

-22

-2

-18

-16

-14

-12

773K873K973K923K823K

lnK

973 K

873 K

773 K

Š27 wt H2OtA

-32

-3

-28

-26

-24

-22

-2

-18

-16

0 05 1 15 2 25 3

lnK

P (GPa)

39 wt H2Ot

673 K

773 K

873 K

B

Fig 36 Pressure effect on lnK at some temperatures and water concentrations The curves are calculated from Eqn 5 Points are experimental data In (A) three curves are calculated at each temperature for H2Ot of 07 17 and 27 wt from top to bottom at each temperature In (B) the dashed curve means temperature is above the experimental temperature

78

lnK = lnA452( )2

A523= A +1000

TB +C A523 + D A452( ) (6)

The best-fit parameters for four different pressures are listed in Table 34 The differences

between experimental and predicted temperatures using Eqn 6 are also listed in Table

34 which are not much different from the regular solution model using species

concentrations (Eqn 4) A model was developed to directly relate K A T and P

analogous to Eqn 5 as follows

lnK = A0+APP( )+1000

T(B0+BPP + B

P3

2P

32 ) +

⎝ ⎜

(C0+CPP +CP

32P

32 )A523 + (D0+DPP + D

P3

2P

32 )A452

⎠ ⎟

(7)

where P is pressure in GPa T is temperature in K and A is absorbance per mm sample

thickness for species H2Om or OH This formulation reproduces all of the data with a 2σ

uncertainty of 0059 in lnK The best-fit parameters in Eqn 7 with 2σ errors are A0 =

27524 plusmn 00944 AP = -03890 plusmn 00395 B0 = -28404 plusmn 00809 BP = 03053 plusmn 00697

BP32 = 00531 plusmn 00433 CP = 03768 plusmn 01301 CP32 = -02261 plusmn 00836 D0 = -12945

plusmn 00893 DP = -09499 plusmn 04076 DP32 = 05121 plusmn 02573 Because Eqn 7 is

independent of molar absorptivity future improvement in molar absorptivities of these

bands will not affect the reproducibility of Eqn 7 It can reproduce experimental

temperature with a 2σ uncertainty of 13 K (similar to the reproducibility of Eqn 5 shown

in Fig 35) directly from measured absorbances

79

45 APPLICATIONS

Speciation plays an important role in H2O solubility (eg Silver et al 1990

Blank et al 1993 Zhang 1999) as well as diffusion (eg Zhang et al 1991ab Zhang

and Behrens 2000 Liu et al 2004b Zhang et al 2007) and crystal nucleation (eg

Davis et al 1997) Several models (Eqns 3-5) are provided to determine H2Om and OH

concentrations as functions of pressure temperature and H2Ot in rhyolitic melts Hence

the new results can be applied to model H2O diffusion quantify the dependence of

molecular H2O diffusivity on pressure and quantitatively understand the effect of

dissolved H2Ot on the nucleation and crystal growth in hydrous melts under high

pressure Furthermore information from this work may be useful in future models of

thermodynamic properties of hydrous silicate melts

Another application of the new results is to predict apparent equilibrium

temperature Tae (Zhang 1994) As discussed by Zhang (1994) Tae is one of the well-

defined parameters in measurements for any given cooling history and can be a good

indicator of cooling rate Because of negligible dependence of K on pressure when the

pressure is lt 1 GPa and because natural rhyolitic glasses general cool at nearly surface

pressures for naturally cooled hydrous rhyolitic glasses the equation at ambient pressure

(eg Eqn 7 in Ihinger et al 1999) is applicable to calculate apparent equilibrium

temperature For experimental glasses cooled at high pressures such as 2 GPa the

pressure effect must be considered Knowledge of Tae is critical to inferring viscosity

based on kinetic experiments of the hydrous species reaction (Zhang et al 2003 Zhang

and Xu 2007) since it is assumed that the viscosity at the apparent equilibrium

temperature is inversely proportional to the cooling rate (Dingwell and Webb 1990

80

Zhang et al 2003) Hence by conducting a controlled cooling rate experiment of a

hydrous rhyolitic melt under pressure after calculating Tae the viscosity at this

temperature (and pressure) can be estimated At present this is the only method to

estimate viscosity at P gt 1 GPa in the viscosity range of 109-1014 Pamiddots The application

for inferring viscosity is the main motivation for us to conduct this research Results from

this work are applied to infer viscosity at high pressure in Chapter IV

5 CONCLUSIONS

The equilibrium of the interconversion reaction between two dissolved water

species (H2Om and OH) was experimentally investigated as a function of pressure

(00001 094 189 and 283 GPa) temperature (624-1027 K) and H2O concentrations

(08 to 42 wt) The speciation data at total H2O content le 27 can be described by

an ideal mixing model consistent with previous results With inclusion of speciation data

at higher water contents one way to describe the speciation data is a regular solution

model The general speciation model (Eqn 5) constructed to accommodate the

dependence of H2O speciation in the rhyolitic melts on T-P-X can be used to predict

species concentrations at P le 283 GPa total H2O content le 42 wt and temperature of

624-1027 K Furthermore it can be used to calculate apparent equilibrium temperature

which can then be used to infer viscosity of hydrous rhyolitic melts under high pressure

81

REFERENCES

Akella J (1979) Quartz hArr coesite transition and the comparative friction measurements

in piston-cylinder apparatus using talc-alsimag-glass (TAG) and NaCl high-

pressure cells N Jb Miner Mh H5 217-224

Akella J and Kennedy GC (1971) Melting of gold silver and copper ndash proposal for a

new high-pressure calibration scale J Geophys Res 76 4969-4977

Behrens H and Nowak M (2003) Quantification of H2O speciation in silicate glasses

and melts by IR spectroscopy ndash in situ versus quench techniques Phase Trans 76

45-61

Behrens H and Zhang Y (2001) Ar diffusion in hydrous silicic melts implications for

volatile diffusion mechanisms and fractionation Earth Planet Sci Lett 192 363-

376

Behrens H Zhang Y Leschik M Wiedenbeck M Heide G and Frischat GH (2007)

Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts Earth

Planet Sci Lett 254 69-76

Blank JG Stolper EM and Carroll MR (1993) Solubilities of carbon dioxide and

water in rhyolitic melt at 850 ordmC and 750 bars Earth Planet Sci Lett 119 27-36

Bohlen SR and Boettcher AL (1982) The quartz hArr coesite transformation a precise

determination and the effects of other components J Geophys Res 87 7073-7078

Bose K and Ganguly J (1995) Quartz-coesite transition revisited reversed experimental

determination at 500-1200 ˚C and retrieved thermochemical properties Am

Mineral 80 231-238

82

Boyd FR and England JL (1960) The quartz-coesite transition J Geophys Res 65

749-756

Burnham CW (1975) Water and magmas a mixing model Geochim Cosmochim Acta

39 1077-1084

Davis MJ Ihinger PD and Lasaga AC (1997) The influence of water on nucleation

kinetics in silicate melt J Non-Cryst Solids 219 62-69

Dingwell DB and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

Goranson RW (1938) Silicate-water systems phase equilibria in the NaAlSi3O8-H2O

and KAlSi3O8-H2O systems at high temperatures and pressures Am J Sci 35-A

71-91

Hui H and Zhang Y (2007) Toward a general viscosity equation for natural anhydrous

and hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Ihinger PD Zhang Y and Stolper EM (1999) The speciation of dissolved water in

rhyolitic melt Geochim Cosmochim Acta 63 3567-3578

Kitahara S and Kennedy GC (1964) The quartz-coesite transition J Geophys Res 69

5395-5400

Li J Hadidiacos C Mao H Fei Y and Hemley RJ (2003) Behavior of thermocouples

under high pressure in a multi-anvil apparatus High Pressure Res 23 389-401

Liu Y Behrens H and Zhang Y (2004a) The speciation of dissolved H2O in dacitic

melt Am Mineral 89 277-284

Liu Y Zhang Y and Behrens H (2004b) H2O diffusion in dacitic melts Chem Geol

209 327-340

83

McMillan PF (1994) Water solubility and speciation models Rev Mineral 30 131-156

Mirwald PW and Massonne H-J (1980) The low-high quartz and quartz-coesite

transition to 40 kbar between 600˚ and 1600˚C and some reconnaissance data on the

effect of NaAlO2 compoenent on the low quartz-coesite transition J Geophys Res

85 6983-6990

Newman S Stolper EM and Epstein S (1986) Measurement of water in rhyolitic

glasses calibration of an infrared spectroscopic technique Am Mineral 71 1527-

1541

Ni H and Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high

pressure data Chem Geol Revised

Nowak M and Behrens H (2001) Water in rhyolitic magmas getting a grip on a slippery

problem Earth Planet Sci Lett 184 515-522

Shaw HR (1964) Theoretical solubility of H2O in silicate melts quasi-crystalline

models J Geol 72 601-617

Shaw HR (1972) Viscosities of magmatic silicate liquids an empirical method of

prediction Am J Sci 272 870-893

Silver LA and Stolper E (1989) Water in albitic glasses J Petrol 30 667-709

Silver LA Ihinger PD and Stolper E (1990) The influence of bulk composition on the

speciation of water in silicate glasses Contrib Mineral Petrol 104 142-162

Sowerby JR and Keppler H (1999) Water speciation in rhyolitic melt determined by in

situ infrared spectroscopy Am Mineral 84 1843-1849

Stolper EM (1982a) The speciation of water in silicate melts Geochim Cosmochim

Acta 46 2609-2620

Stolper EM (1982b) Water in silicate glasses an infrared spectroscopic study Contrib

Mineral Petrol 81 1-17

84

Tuttle OF and Bowen NL (1958) Origin of granite in the light of experimental studies

in the system NaAlSi3O8- KAlSi3O8- SiO2-H2O Geol Soc Am Memoir 74 1-153

Wasserburg GJ (1957) The effects of H2O in silicate systems J Geol 65 15-23

Watson EB (1991) Diffusion of dissolved CO2 and Cl in hydrous silicic to intermediate

magmas Geochim Cosmochim Acta 55 1897-1902

Withers AC and Behrens H (1999) Temperature-induced changes in the NIR spectra of

hydrous albitic and rhyolitic glasses between 300 and 100 K Phys Chem Minerals

27 119-132

Withers AC Zhang Y and Behrens H (1999) Reconciliation of experimental results on

H2O speciation in rhyolitic glass using in situ and quenching techniques Earth

Planet Sci Lett 173 343-349

Xu Z and Zhang Y (2002) Quench rates in air water and liquid nitrogen and inference

of temperature in volcanic eruption columns Earth Planet Sci Lett 200 315-330

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth Planet

Sci Lett 122 373-391

Zhang Y (1999) H2O in rhyolitic glasses and melts measurement speciation solubility

and diffusion Rev Geophys 37 493-516

Zhang Y and Behrens H (2000) H2O diffusion in rhyolitic melts and glasses Chem

Geol 169 243-262

Zhang Y Belcher R Ihinger PD Wang L Xu Z and Newman S (1997a) New

calibration of infrared measurement of dissolved water in rhyolitic glasses

Geochim Cosmochim Acta 61 3089-3100

85

Zhang Y Jenkins J and Xu Z (1997b) Kinetics of the reaction H2O + O = 2OH in

rhyolitic glasses upon cooling geospeedometry and comparison with glass

transition Geochim Cosmochim Acta 61 2167-2173

Zhang Y Solper EM and Ihinger PD (1995) Kinetics of reaction H2O + O = 2OH in

rhyolitic glasses preliminary results Am Mineral 80 593-612

Zhang Y Stolper EM and Wasserburg GJ (1991a) Diffusion of a multi-species

component and its role in oxygen and water transport in silicates Earth Planet Sci

Lett 103 228-240

Zhang Y Stolper EM and Wasserburg GJ (1991b) Diffusion of water in rhyolitic

glasses Geochim Cosmochim Acta 55 441-456

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

Improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

Zhang Y Xu Z Zhu M and Wang H (2007) Silicate melt properties and volcanic

eruptions Rev Geophys doi1010292006RG000216

86

CHAPTER IV

PRESSURE DEPENDENCE OF VISCOSITY OF RHYOLITIC MELTS

ABSTRACT

Viscosity of silicate melts is a critical property for understanding volcanic and

igneous processes in the Earth Two methods were used to study the pressure effect on

the viscosity of rhyolitic melts hydrous species reaction viscometer in a piston cylinder

and parallel plate creep viscometer in an internally-heated pressure vessel (IHPV) With

the hydrous species reaction viscometer viscosities of hydrous rhyolitic melts were

inferred based on the kinetics of hydrous species reaction in the melt upon cooling (ie

the equivalence of rheologically defined glass transition temperature and chemically

defined apparent equilibrium temperature) The cooling experiments were carried out in a

piston cylinder apparatus using hydrous rhyolitic samples with 08 to 4 wt water at

pressures up to 283 GPa Cooling rates of the experiments varied from 01 Ks to 100

Ks hence the range of viscosity inferred from this method is 3 orders of magnitude The

data from this method show that viscosity increases with increasing pressure from 1 GPa

to 3 GPa for hydrous rhyolitic melts with water content ge 08 wt Viscosity of rhyolitic

melt with 013 wt water was also measured using parallel plate viscometer at pressures

87

02 and 04 GPa in an IHPV The data show that viscosity of rhyolitic melt with 013

wt water decreaseswith increasing pressure Combining new data with literature data a

viscosity model of rhyolitic melts in the high viscosity range as a function of temperature

pressure and water content is developed

1 INTRODUCTION

Viscosity of silicate melts is a property of fundamental importance in Earth

sciences Viscosities of silicate melts under ambient pressure have been studied

extensively (eg Shaw 1972 Hui and Zhang 2007) Several experimental techniques

are available to measure viscosity directly (1) in the low viscosity range (01 to 105 Pamiddots)

concentric cylinder viscometer (eg Dingwell 1986) and falling sphere technique (eg

Shaw 1963) (2) in the high viscosity range (108 to 1014 Pamiddots) micropenetration method

(eg Hummel and Arndt 1985) parallel plate creep viscometer (eg Neuville and

Richet 1991) and fiber elongation method (eg Lillie 1931) Few viscosity data are in

the intermediate viscosity range of 105 to 108 Pamiddots (Dorfman et al 1996 1997) because

(1) the methods applicable to low viscosity cannot be used because rotation rate or falling

rate would be too slow (2) the methods applicable to high viscosities cannot be used

because the melt would flow too easily and (3) many silicate melts crystallize rapidly in

this viscosity range In most cases geologists interpolated viscosity from models

constructed using experimental data in the high and low viscosity ranges (eg Rust and

Cashman 2007)

Some of these viscometers have been adapted to high-pressure apparatus

(Dingwell 1998) In the low viscosity range viscosity data at high pressure (ge 1 GPa) are

88

obtainable with the falling sphere technique (eg Kushiro et al 1976 Liebske et al

2005) For example in situ falling sphere technique in the high-pressure apparatus such

as multi-anvil with assistance of synchrotron can reach pressures up to 13 GPa (eg

Reid et al 2003 Liebske et al 2005) On the other hand in the high viscosity range no

viscosity data exist at pressures ge 1 GPa The practical reason is the limit of the current

experimental methods For example the maximum pressure that traditional viscometers

could reach is 04 GPa (eg Behrens and Schulze 2003) Based on the equivalence of

enthalpy relaxation and viscous relaxation Rosenhauer et al (1979) used high-pressure

differential thermal analysis experiments in an internally-heated pressure vessel (IHPV)

to infer viscosities of diopside albite and trisilicate at glass transition temperatures at

elevated pressures up to 07 GPa

Many geologic processes related to silicate melts deal with elevated pressures

The pressure scales of these processes may vary from 0-200 MPa for volcanic eruptions

to a couple of GPa for crustal anatexis and mantle melting to hundreds of GPa for core-

mantle segregation This extreme range of magnitudes requires the experimental

approach of studying melt viscosities to explore a very broad spectrum of measurement

principles and technologies In this report the hydrous species viscometer is developed

for high-pressure viscosity determination

Rosenhauer et al (1979) assumed the equivalence of enthalpy relaxation and

viscous relaxation to infer viscosity Dingwell and Webb (1990) assumed the equivalence

between viscous relaxation and hydrous species equilibration (see below) Dingwell

(1998) discussed the inference of viscosity at high pressures from glass transition based

on volume relaxation enthalpy relaxation spectroscopic measurements (applied in this

89

study) and called them as ldquoone of the most important breakthroughs for the prospect of

obtaining high pressure viscosity datardquo Zhang et al (2003) and Zhang and Xu (2007)

applied the hydrous species viscometer (see section 21) to infer viscosity of hydrous

silicate melts at the glass transition temperature range This method has several

advantages and disadvantages The most important advantage here is that this method can

be adapted to high-pressure apparatus such as piston cylinder as far as glass can be

obtained by quench Because the method relies on the measurement of hydrous species

concentrations it is only applicable to hydrous silicate melts with ge 05 wt total H2O

but not to melts with less H2O With this method viscosity is inferred but not obtained

from direct measurement

In this study the hydrous species reaction viscometer was applied in a piston

cylinder to investigate viscosity of hydrous rhyolitic melts with water content from 08 to

4 wt at pressures up to 283 GPa This pressure range is aimed to cover rhyolitic

(granitic) melt generated at depth from field observations (eg Sylvester 1999) and

experimental studies (eg Rapp and Watson 1995) Furthermore as will be shown later

increasing pressure seems to have a significant effect on crystallization rate in rhyolitic

melts which seems to indicate that viscosity decreases significantly with increasing

pressure The large pressure coverage allows the evaluation of whether this is true

In addition to this new method the parallel-plate viscometer in an IHPV was also

used to directly measure viscosity of natural rhyolite from 02 GPa to 04 GPa

Combining the literature data at pressure le05 GPa a viscosity model is developed

accommodating the dependence of viscosity of rhyolitic melts on temperature pressure

and water content in the high viscosity range

90

2 EXPERIMENTAL AND ANALYTICAL METHODS

The pressure effect on melt viscosity was studied on rhyolitic melts with different

water content The concentrations of total water and hydrous species in the samples were

determined by FTIR (Fourier transform infrared spectroscopy) at the University of

Michigan following the procedure shown in Zhang et al (1997a) There are a few other

calibration methods in the literature (eg Newman et al 1986 Withers and Behrens

1999) The reason to use the calibration of Zhang et al (1997a) here is to be consistent

with the speciation study in Hui et al (2008) because their study is used to calculate the

apparent equilibrium temperature from concentrations of hydrous species retained in the

quenched glass

Starting materials include both natural rhyolitic glasses (EDF and KS) and

synthetic hydrous rhyolitic glasses prepared by hydration of natural rhyolitic glass

(GMR) Sample EDF is from Erevan Dry Fountain Armenia Sample KS is from Mono

Crater California Samples GMR+2 and GMR+4 were synthesized by adding water to a

natural obsidian (GMR) from Glass Mountain California The chemical compositions of

the samples are listed in Table 41 Hydration of rhyolitic glasses was implemented at

1473 K 05 GPa by re-melting glass powder with added H2O at University of Hannover

(Hui et al 2008) The hydrated glasses are crystal free and bubble free

21 HYDROUS SPECIES REACTION VISCOMETER

It is well known that water is present in the silicate melts as at least two species

molecular H2O (H2Om) and hydroxyl group (OH) (Stolper 1982ab) The species

reaction in the melts is

91

Table 41 Chemical compositions (oxide wt) of KS GMR and EDF rhyolite on anhydrous basis

KS GMR EDF SiO2 7594 7322 7678 TiO2 009 031 010 Al2O3 1298 1408 1277 FeO 098 145 052 MnO 005 005 009 MgO 003 026 007 CaO 056 131 056 Na2O 401 406 408 K2O 471 432 455 P2O5 029 007 - Total 9963 9913 9967

H2O 075-090

189-216 in GMR+2 354-420 in GMR+4 013

ref 1 2 1 Hui et al 2008 2 Behrens et al 2007

92

H2Om + O = 2OH (1)

where O is anhydrous bridging oxygen in the melt Total H2O content is denoted as H2Ot

The equilibrium constant K of Reaction (1) is defined as

K =XOH

2

XH2OmXO

(2)

where X means activity approximated by mole fraction The relationship between

equilibrium constant K and temperature (equilibrium line in Fig 41) can be expressed by

a regular solution model as (Silver et al 1990 Ihinger et al 1999)

lnK = A +1000

TB + CXH2Om

+ DXOH( ) (3)

where T is temperature in K and A B C and D are fitting parameters Hui et al (2008)

estimated these parameters for rhyolitic melts at high pressures During cooling at a

certain low temperature the concentrations of these two hydrous species in the melt start

to deviate from the equilibrium state In Fig 41 this is shown as curves off the straight

line (the equilibrium line) When temperature becomes too low to change species

concentrations water speciation is frozen in the melt as indicated by the horizontal

segments in Fig 41 The intersection of each horizontal line which is calculated from

the hydrous species concentrations retained in the quenched glass with the equilibrium

line defines the apparent equilibrium temperature (Zhang 1994) An equilibrated melt at

this temperature has the same water speciation as observed in the quenched glass at room

temperature This apparent equilibrium temperature depends on the cooling rate shown in

Fig 41 A higher apparent equilibrium temperature indicates a faster cooling rate

Glass transition temperature is defined rheologically as the temperature at which

viscosity is equal to 1012 Pasdots for a cooling rate of the order 10 Kmin As the cooling rate

93

ln

K

1T (K)TTT ae2ae1 e

equilibrium

rapid quench

slow quench

isothermal run rapid quench

Fig 41 Sketch of kinetics of Reaction (1) during cooling (Behrens and Nowak 2003) Tae is apparent equilibrium temperature which depends on the cooling rate Te is equilibrium temperature

94

varies the glass transition temperature also changes Based on theoretical considerations

and experimental results Moynihan et al (1976) showed the formula of dependence of

the glass transition temperature on the cooling rate

d logqd(1Tg)

= minus∆HR

(4)

where q is quench rate in Ks Tg is glass transition temperature in K R is the gas

constant and ∆H is the activation enthalpy for the relaxation times controlling the

structural enthalpy or volume relaxation which is also equal to the activation enthalpy of

the shear viscosity within experimental error Scherer (1984) generalized that viscosity is

reciprocal to the quench rate at the glass transition temperature Dingwell and Webb

(1990) advanced it further to infer viscosity from kinetics of hydrous species reaction

(ie Reaction 1) in the rhyolitic melt assuming the equivalence of the apparent

equilibrium temperature and glass transition temperature (ie time scale of Reaction 1 in

rhyolitic melt is the same as the structural relaxation time scale of rhyolitic melt because

both involve bridging oxygen in the melt structure of rhyolite) By comparing kinetic

data on Reaction (1) and viscosity data obtained by other methods (including from bubble

growth data of Liu et al 2000) Zhang et al (2003) formulated the equation below to

infer viscosity at the glass transition temperature (ie apparent equilibrium temperature)

for hydrous rhyolitic melts

logηTg= logηTae

=1145 minus logq (5)

where η is viscosity in Pasdots q is quench rate in Ks and 1145 is a constant Other

experimental studies have verified the equivalence of relaxation at the glass transition

temperature on viscosity volume and heat capacity (eg Sipp et al 1999 Toplis et al

95

2000) So the key in this method is to calculate the apparent equilibrium temperature for

a cooling experiment with known quench rate whereas viscosity at this temperature is

calculated from Eq (5)

All the cooling experiments were conducted in a piston cylinder A glass cylinder

with a diameter of about 2 mm and a height of about 2 mm was placed into a graphite

capsule which was enclosed in crushable MgO as the inner pressure medium with

graphite heater outside and then BaCO3 cell as outer pressure medium The charge was

heated to a high temperature for melt relaxation and for hydrous species in the melt to

reach equilibrium Then the sample was isobarically cooled at a desired cooling rate to

room temperature The temperature was measured with a type-S (Pt90Rh10-Pt) or type-D

(W97Re3-W75Re25) thermocouple The temperature history was recorded either by

computer or manually Pressure in the piston cylinder was calibrated using quartz-coesite

phase transition and melting of a gold wire (Hui et al 2008) The pressure of cooling

experiments ranges from 094 GPa (nominal pressure of 1 GPa) to 283 GPa (nominal

pressure of 3 GPa) Infrared spectra of the quenched glass were obtained using a Perkin-

Elmer FTIR spectrometer The baseline of IR spectra was fit by a flexicurve (Newman et

al 1986) The concentrations of hydrous species and total water content were obtained

using the calibration of Zhang et al (1997a) The apparent equilibrium temperature was

calculated from the hydrous species concentrations measured in the quenched glass using

Eqs (2) and (3) with parameters listed in Hui et al (2008) With the recorded cooling

rate viscosity was inferred from Eq (5) at the apparent equilibrium temperature The 2σ

error for viscosity inferred from this method is estimated to be 02 in terms of logη

(Zhang et al 2003)

96

In addition to the experiments in piston-cylinders at pressures below 3 GPa some

experiments at pressures above 3 GPa were also carried out in a multi-anvil device at the

University of Michigan But these experimental charges crystallized

22 PARALLEL-PLATE VISCOMETER

The parallel-plate creep viscometer in an IHPV was also used to measure

viscosity of rhyolitic melts near glass transition temperature Melt viscosity was derived

from the rate of deformation of a cylindrical sample with a diameter of 38 mm and a

height of 10 mm as a function of a constant vertically applied stress The design

operation and calibration of this viscometer are described in detail by Schulze et al

(1999) The detailed experimental procedure is explained in Behrens and Schulze (2003)

This technique can measure viscosity of the same cylinder in high viscosity range

covering three orders of magnitude from 1085 to 10115 Pasdots at pressures up to 04 GPa by

pumping in Ar (pressure media) or releasing it Effect of dehydration of the sample on the

viscosity measurements was monitored by repeated viscosity measurements at the same

P-T conditions during the whole experimental course and water content in the sample

was also checked after the experiment by infrared spectroscopy

To mitigate the effect of dehydration of the samples during measurement only the

samples with low water content was used in this method including sample EDF with

013 wt H2Ot and sample KS with 079 wt H2Ot For sample EDF viscosity was

measured at different pressures in the order of 02 04 and 02 GPa As shown in Table

42 and Fig 42 the viscosity values at the first and last 02 GPa are in good agreement

with difference within plusmn01 log units indicating that there was no significant water loss

97

or gain during viscosity measurement Temperature was corrected based on the melting

point of aluminum at 02 GPa (Lees and Williamson 1965) For sample KS dehydration

was discovered in a test run Hence only viscosity at 04 GPa was measured without

cycling back and forth to minimize the duration of the sample at high temperatures

Temperature in this measurement was corrected based on the melting point of zinc at 04

GPa (Akella et al 1973) Both samples were checked for water content by FTIR after

isobaric quench of the experimental charge Water loss or gain was negligible in both

viscosity measurement courses After experiments both samples were still in good

cylinder shapes indicating negligible temperature gradient and regular deformation

during creep experiments The reproducibility of viscosities is always within plusmn015 log

units (Behrens and Schulze 2003) However within one series of experiments the

precision is much better (within plusmn01 log units in this study)

3 EXPERIMENTAL RESULTS

Experimental results from the hydrous species reaction viscometer are

summarized in Table 43 Original IR absorbance peak heights are also reported because

there may be further improvement in the IR calibration Viscosity is plotted as a function

of 1000T at different pressures in Fig 42 Within the small temperature range of

viscosity measurements temperature dependence of viscosity of rhyolitic melts at each

pressure can be described by the Arrhenius relationship

η = η0 sdot exp Ea

RT⎛ ⎝ ⎜

⎞ ⎠ ⎟ (6)

where η0 is the pre-exponential factor and Ea is the activation energy for viscous flow

98

Table 42 Results of parallel plate creep viscometer with sample EDF at pressures of 02 and 04 GPa and sample KS at 04 GPa

EDF KS

02 GPa 04 GPa 04 GPa T logη T logη T logη K Pasdots

exp

K Pasdots exp

K Pasdots exp

103815 1142 12 102815 1119 11 84815 1151 1 104815 1128 1 103815 1103 6 85615 1135 6 104815 1121 13 103815 1101 10 86715 1114 5 106715 1083 2 105815 1078 7 88615 1060 2 106715 1074 5 108815 1025 8 90715 1030 3 108815 1052 14 111815 980 9 92515 1002 4 108715 1047 3 111815 997 4

Note means the chronological order of the measurements

99

9

95

10

105

11

115

12

125

13

EDFKS

logη

(Pasdot

s) 04 GPa

A KSGMR+2GMR+4

094 GPa

B

9

95

10

105

11

115

12

125

13

08 09 1 11 12 13 14 15

KSGMR+2GMR+4

logη

(Pasdot

s)

1000T (K)

189 GPa

C

08 09 1 11 12 13 14 15

KSGMR+2GMR+4

1000T (K)

283 GPa

D

Fig 42 Dependence of viscosities of rhyolitic melts (EDF KS GMR+2 and GMR+4) on temperature at pressures of 04 094 189 and 283 GPa All the data are from this study A is for parallel plate creep viscometer and B-D are from hydrous species reaction viscometer Straight lines are fit of the data by Arrhenius equation (ie Eq 6)

100

Table 43 Viscosity of hydrous rhyolitic melts at various pressures inferred from hydrous species reactions

Measurement P$ q Abs Abs Thickness H2Ot H2Om OH X(H2Ot) X(H2Om) X(OH) Tae logη GPa Ks 5200 4500 mm wt wt wt K Pasdots KS-1-21 094 956 00448 01608 1124 0846 0170 0677 00152 00030 00242 90603 1047 KS-1-22 094 956 00447 01604 1118 0849 0170 0679 00152 00030 00243 90711 1047 KS-1-23 094 956 00441 01610 1126 0843 0167 0677 00151 00030 00242 91123 1047 KS-1-31 094 099 00557 01717 1195 0877 0198 0678 00157 00036 00243 86261 1145 KS-1-32 094 099 00539 01689 1190 0862 0193 0669 00154 00034 00240 86308 1145 KS-1-33 094 099 00585 01748 1198 0898 0208 0690 00161 00037 00247 85979 1145 KS-1-41 094 010 00649 01883 1373 0843 0201 0642 00151 00036 00230 82961 1245 KS-1-42 094 010 00626 01857 1370 0829 0194 0634 00148 00035 00227 83131 1245 KS-1-43 094 010 00646 01883 1371 0844 0200 0643 00151 00036 00231 83140 1245 KS-1-51 094 9233 00432 01720 1163 0862 0158 0704 00154 00028 00252 95499 948 KS-1-52 094 9233 00432 01700 1150 0864 0160 0704 00155 00029 00252 95113 948 KS-1-53 094 9233 00435 01708 1164 0857 0159 0698 00153 00028 00250 94606 948 GMR+2-1-11 094 950 01720 02272 0990 1886 0747 1140 00335 00133 00405 80808 1047 GMR+2-1-12 094 950 01709 02268 0987 1886 0744 1142 00335 00132 00406 80982 1047 GMR+2-1-13 094 950 01729 02275 0991 1890 0750 1140 00336 00133 00405 80737 1047 GMR+2-1-21 094 100 01729 02048 0911 1920 0816 1104 00341 00145 00392 77482 1145 GMR+2-1-22 094 100 01750 02064 0910 1942 0827 1115 00345 00147 00396 77683 1145 GMR+2-1-23 094 100 01712 02030 0909 1905 0810 1096 00338 00144 00389 77310 1145 GMR+2-1-31 094 010 01105 01131 0502 2041 0947 1094 00362 00168 00388 74324 1245 GMR+2-1-32 094 010 01089 01118 0498 2031 0941 1090 00360 00167 00387 74289 1245 GMR+2-1-33 094 010 01097 01123 0504 2017 0937 1080 00358 00166 00383 74002 1245 GMR+4-1-21 094 968 02159 01114 0356 4116 2667 1449 00719 00466 00506 70115 1046 GMR+4-1-22 094 968 02137 01107 0351 4141 2678 1462 00723 00467 00511 70400 1046 GMR+4-1-23 094 968 02152 01107 0356 4094 2657 1437 00715 00464 00502 69869 1046 GMR+4-1-31 094 7687 01467 00859 0268 3937 2403 1534 00688 00420 00536 73394 956 GMR+4-1-32 094 7687 01540 00901 0282 3925 2397 1529 00686 00419 00534 73301 956 GMR+4-1-33 094 7687 01548 00885 0276 3989 2463 1526 00697 00430 00533 72897 956 GMR+4-1-41 094 100 01509 00789 0271 3779 2440 1339 00661 00427 00469 68409 1145

101

GMR+4-1-42 094 100 01509 00779 0267 3815 2477 1338 00668 00433 00468 68211 1145 GMR+4-1-43 094 100 01498 00792 0275 3711 2386 1325 00650 00418 00464 68296 1145 KS-2-11 189 100 00111 00396 0270 0871 0175 0696 00156 00031 00249 88340 1145 KS-2-12 189 100 00106 00397 0280 0832 0161 0671 00149 00029 00240 88552 1145 KS-2-21 189 13416 00431 01862 1201 0898 0153 0745 00161 00027 00267 98415 932 KS-2-22 189 13416 00381 01769 1192 0844 0136 0708 00151 00024 00254 98996 932 KS-2-23 189 13416 00428 01851 1202 0890 0152 0739 00159 00027 00265 97976 932 KS-2-31 189 965 00496 01892 1246 0895 0169 0726 00160 00030 00260 92376 1047 KS-2-32 189 965 00462 01842 1234 0871 0159 0712 00156 00029 00255 93137 1047 KS-2-33 189 965 00466 01848 1245 0867 0159 0707 00155 00028 00253 92731 1047 KS-2-41 189 010 00384 01244 0859 0875 0190 0685 00157 00034 00246 84743 1245 KS-2-42 189 010 00368 01219 0856 0855 0183 0672 00153 00033 00241 84746 1245 KS-2-43 189 010 00360 01203 0849 0849 0180 0668 00152 00032 00239 84782 1245 GMR+2-2-21 189 950 01595 02196 0870 2071 0789 1282 00367 00140 00455 82315 1047 GMR+2-2-22 189 950 01579 02181 0870 2052 0781 1271 00364 00139 00451 82082 1047 GMR+2-2-23 189 950 01611 02184 0860 2097 0807 1290 00372 00143 00458 82142 1047 GMR+2-2-31 189 100 02053 02498 0997 2147 0887 1259 00381 00157 00447 78631 1145 GMR+2-2-32 189 100 02008 02459 0989 2123 0875 1248 00376 00155 00443 78466 1145 GMR+2-2-33 189 100 02032 02484 0997 2129 0878 1251 00378 00156 00444 78517 1145 GMR+2-2-51 189 9072 01539 02177 0831 2142 0798 1343 00380 00142 00476 84745 949 GMR+2-2-52 189 9072 01526 02165 0825 2144 0797 1347 00380 00141 00478 84947 949 GMR+2-2-53 189 9072 01530 02180 0825 2158 0799 1359 00383 00142 00482 85415 949 GMR+4-2-31 189 100 04415 02595 0797 3997 2433 1564 00698 00425 00546 71658 1145 GMR+4-2-32 189 100 04356 02573 0796 3954 2402 1552 00691 00420 00543 71502 1145 GMR+4-2-33 189 100 04453 02581 0797 4002 2454 1548 00699 00429 00541 71181 1145 GMR+4-2-41 189 10700 02441 01593 0465 4004 2306 1698 00700 00403 00593 75759 942 GMR+4-2-42 189 10700 02370 01551 0457 3957 2277 1680 00692 00398 00587 75455 942 GMR+4-2-43 189 10700 02484 01621 0473 4005 2307 1698 00700 00403 00593 75754 942 GMR+4-2-51 189 967 03797 02294 0677 4115 2467 1648 00718 00431 00576 73632 1046 GMR+4-2-52 189 967 03914 02307 0677 4195 2545 1650 00732 00444 00576 73318 1046 GMR+4-2-53 189 967 03914 02320 0680 4188 2534 1655 00731 00442 00577 73481 1046 KS-3-11 286 100 00491 02066 1408 0847 0148 0699 00152 00027 00250 91618 1145 KS-3-12 286 100 00493 02064 1408 0847 0149 0698 00152 00027 00250 91316 1145

102

KS-3-13 286 100 00489 02064 1407 0846 0148 0698 00152 00027 00250 91667 1145 KS-3-21 283 099 00534 02252 1535 0846 0148 0698 00152 00027 00250 91666 1145 KS-3-22 283 099 00538 02256 1533 0850 0149 0701 00152 00027 00251 91589 1145 KS-3-23 283 099 00563 02289 1530 0871 0157 0714 00156 00028 00256 91206 1145 KS-3-91 283 010 00479 01785 1221 0861 0167 0694 00154 00030 00249 86565 1245 KS-3-92 283 010 00490 01803 1225 0870 0170 0700 00156 00030 00251 86401 1245 KS-3-93 283 010 00472 01765 1218 0852 0165 0687 00153 00030 00246 86242 1245 KS-3-81 283 956 00546 02581 1760 0831 0132 0699 00149 00024 00251 96821 1047 KS-3-82 283 956 00638 02732 1756 0903 0155 0748 00162 00028 00268 95734 1047 KS-3-83 283 956 00628 02723 1757 0897 0152 0744 00161 00027 00267 96032 1047 KS-3-111 283 11166 00332 01907 1389 0751 0102 0649 00135 00018 00233 102191 940 KS-3-112 283 11166 00335 01925 1395 0755 0102 0653 00135 00018 00234 102681 940 KS-3-113 283 11166 00335 01929 1395 0757 0102 0655 00136 00018 00235 102921 940 KS-3-114 283 11166 00336 01925 1392 0757 0103 0655 00136 00018 00235 102615 940 GMR+2-3-21 283 907 01210 02070 0823 1925 0632 1293 00342 00112 00459 85132 1049 GMR+2-3-22 283 907 01260 02089 0818 1977 0662 1315 00351 00118 00467 84823 1049 GMR+2-3-23 283 907 01263 02093 0823 1968 0660 1308 00349 00117 00464 84558 1049 GMR+2-3-31 283 100 01726 02538 1004 2030 0740 1290 00360 00131 00458 80291 1145 GMR+2-3-32 283 100 01740 02539 1004 2035 0746 1289 00361 00132 00458 80063 1145 GMR+2-3-33 283 100 01664 02503 1004 1983 0713 1270 00352 00127 00451 80350 1145 GMR+2-3-41 283 10430 00852 01523 0594 1944 0617 1327 00345 00110 00471 87819 943 GMR+2-3-42 283 10430 00849 01485 0572 1984 0638 1346 00352 00113 00478 87698 943 GMR+2-3-43 283 10430 00823 01449 0558 1981 0634 1347 00352 00113 00478 87944 943 GMR+4-3-41 283 100 02215 01709 0518 3540 1869 1671 00621 00328 00586 73953 1145 GMR+4-3-42 283 100 02256 01729 0516 3614 1913 1702 00633 00335 00597 74470 1145 GMR+4-3-43 283 100 02210 01673 0503 3605 1922 1683 00632 00337 00590 73843 1145 GMR+4-3-51 283 10700 01838 01477 0417 3766 1931 1835 00659 00338 00642 78153 942 GMR+4-3-52 283 10700 01812 01464 0410 3793 1938 1855 00664 00339 00649 78693 942 GMR+4-3-53 283 10700 01873 01509 0422 3803 1946 1857 00666 00341 00650 78673 942

Note A few points (two to four) were measured by IR for each experimental sample they are listed here as xxx1 2 3 or 4 $ P has been corrected based on pressure calibration q was calculated from the thermal history recorded by computer or manually

103

which depends on water content of the sample and experimental pressure Viscosity of

rhyolitic melts decreases with increasing water content systematically at a given pressure

and temperature as shown in Fig 42

Viscosities of samples EDF and KS obtained from the parallel plate creep

viscometer are listed in Table 42 including chronological order of measurements and

shown in Figs 43a and 43b Temperature dependence of viscosity of each sample at

each pressure can also be described by the Arrhenius relationship (ie Eq 6) within the

small temperature range of measurements

The pressure dependence of viscosity is more complicated For the ldquodryrdquo sample

(EDF) viscosity does not change significantly from 01 MPa to 02 GPa From 02 to 04

GPa the viscosity of sample EDF decreases by about 02 log units For hydrous samples

with 08 and 2 wt H2Ot (KS and GMR+2) viscosity increases monotonically by about

1 log unit as pressure increases from 01 MPa to 28 GPa For hydrous sample with about

4 wt H2Ot (GMR+4) viscosity first decreases as pressure increases from 01 MPa to

09 GPa and then increases from 09 to 28 GPa

At the experimental petrology laboratory of the University of Michigan a large

database has been accumulated on successful versus failed experiments in the diffusion

reaction kinetics and viscosity studies of silicate melts (Zhang et al 1997b 2000 Liu

and Zhang 2000 Zhang and Behrens 2000 Behrens and Zhang 2001 Xu and Zhang

2002 Behrens et al 2004 Liu et al 2004ab 2005 Hui et al 2008 Ni and Zhang

2008) Most of the failed experiments crystallized significantly Because these results

may be relevant to the discussion of viscosity (see Discussion) they are summarized in

Appendix D The data show

104

9

95

10

105

11

115

12

125

13

088 09 092 094 096 098

04 GPa02 GPa01 MPa (013 H2O)

logη

(Pasdot

s) A

EDF

095 1 105 11 115 12 125

283 GPa189 GPa094 GPa04 GPa01 MPa (08 H2O)

KS

B

9

95

10

105

11

115

12

125

13

11 115 12 125 13 135 14

283 GPa189 GPa094 GPa01 MPa (2 H2O)

GMR+2

logη

(Pasdot

s)

1000T (K)

C

125 13 135 14 145 15

283 GPa189 GPa094 GPa01 MPa (4 H2O)

D

GMR+4

1000T (K)

Fig 43 Comparisons of viscosities of given rhyolitic melts (EDF KS GMR+2 and GMR+4) at various pressures Data are from this study Straight lines are fit of the data by Arrhenius equation (ie Eq 6) Viscosities of various rhyolitic melts at 00001 GPa were calculated from Zhang et al (2003) as references

105

(1) It is more difficult to quench an overheated liquid into glass at high pressures than at

low pressures because of crystallization during quench at high pressures For example a

hydrous rhyolite melt containing 52 wt H2Ot quenched from 1873 K at 2 GPa (sample

239 in Appendix D) did not crystallize but a hydrous rhyolite sample containing only

09 wt H2Ot quenched from 1873 K at 4 GPa (sample 240 in Appendix D)

crystallized significantly

(2) Melts in the isothermal experiments at a temperature below the liquidus often

crystallize more easily at high pressures than at low pressures (Hui et al 2008) For

example a hydrous rhyolitic glass (09 wt H2Ot) held at 823 K and 3 GPa for 10 days

(sample 56 in Appendix D) did not crystallize significantly but a similar glass held at

the same temperature but 4 GPa for only 31 hours (sample 57 in Appendix D)

crystallized For another example a hydrous rhyolitic glass with 077 wt H2Ot held at

1123 K and 61 MPa for 72 hours (sample 172 in Appendix D) did not crystallize but

another sample with same amount of H2Ot held at 1123 K and 3 GPa for only one minute

(sample 174 in Appendix D) crystallized significantly

Fig 44 shows some more trends The findings indicate that crystallization rate

increases significantly with increasing pressure meaning crystal nucleation andor

growth rates in melts increase with increasing pressure in hydrous rhyolitic melts The

relationship with viscosity will be discussed in the next section

106

25

3

35

4

45

5

55

6

0 1 2 3 4 5

crystallizedglass

logt

(t in

s)

P (GPa)

873 plusmn 10 Κ

075-116 wt H2Ot

A

-5

-4

-3

-2

-1

0

1

2

3

0 1 2 3 4 5

crystallizedglasscritical quench 06wtcritical quench 09wtcritical quench 12wt

logq

(q in

Ks

)

P (GPa)

078-115 wt H2Ot

B

Fig 44 The effect of pressure on crystallization kinetics in the rhyolitic melt for (A) isothermal experiments and (B) controlled cooling rate experiments In (B) critical quench rates for rhyolitic melt with water contents of 06 09 and 12 wt are calculated from Eqs (8) and (9) (see text Senkov 2007) and the dashed lines are extrapolations to show the trends for 06 and 12 wt water respectively

107

4 DISCUSSION

41 PRESSURE DEPENDENCE OF VISCOSITY

Viscosities of a variety of silicate liquids in the low viscosity range have been

investigated using the falling sphere technique in high-pressure apparatus demonstrating

a complex pressure dependence of viscosities (Scarfe et al 1987 Lange 1994)

Pressure-induced viscosity change has been related to the degree of polymerization of the

melt in general (Scarfe et al 1987) Viscosities of anhydrous rhyolite melt (eg Scarfe et

al 1987) jadeite melt (eg Kushiro 1976) dacite melt (eg Tinker et al 2004)

andesite melt (eg Kushiro et al 1976) and some basalt melts (eg Scarfe et al 1987)

decrease with increasing pressure in the first several GPa whereas those of diopside melt

(eg Scarfe et al 1979) and peridotite melt (Liebske et al 2005) both highly

depolymerized increase with increasing pressure

Water dissolved in the silicate melt can depolymerize the melt by forming

hydroxyl group (Reaction 1) The negative pressure dependence of viscosity of

anhydrous melt may change to positive pressure dependence of viscosity after adding a

certain amount of water For example viscosity of anhydrous andesite melt decreases

with pressure (Kushiro et al 1976) but viscosity of andesite with 3 wt water increases

with pressure (Kushiro 1978) Also the pressure dependence of viscosity of a given melt

may change from positive to negative with further increase of pressure such as periodite

(Liebske et al 2005) or from negative to positive such as albite (Funakoshi et al

2002) In other words there may be a viscosity maximum or minimum with increasing

pressure

108

In the high viscosity range only a few studies have been conducted on the

pressure dependence of viscosity of silicate melts in a pressure range up to 04 GPa

previously Viscosity of the albite-diopside binary system shows a change in the sign of

the pressure dependence from negative for albite to positive for diopside (Schulze et al

1999 Behrens and Schulze 2003) The pressure dependence of viscosity of

haploandesite in the high viscosity range changes from negative for anhydrous melt to

positive for hydrous melt with 106 wt water or up (Liebske et al 2003) This is

consistent with pressure dependence of viscosity of andesite in the low viscosity range in

general (Kushiro et al 1976 Kushiro 1978) Moreover pressure effect on viscosity

becomes more pronounced with decreasing temperature

Due to experimental limitations viscosity of sample EDF which contained minor

amount of water was measured at pressures le 04 GPa The viscosity decreases with

increasing pressure as shown in Fig 43a in this pressure range That is it behaves as a

polymerized melt as expected But for the hydrous samples KS and GMR+2 as shown in

Figs 43b and 43c the viscosity increases with increasing pressure based on the new

data As dissolved H2O depolymerizes the melt this trend is consistent with literature

data (Kushiro et al 1976 Kushiro 1978 Liebske et al 2003) The viscosities of the

sample GMR+4 which contains about 4 wt water increase systematically from 1 GPa

to 3 GPa as shown in Fig 43d The pressure dependence of viscosity from ambient

pressure to 1 GPa is small and whether the dependence is positive or negative depends on

the temperature

109

42 MODELING THE P-T-X DEPENDENCE OF VISCOSITY

There are various models used to describe temperature dependence of viscosity of

anhydrous and hydrous natural silicate melts (eg Shaw 1972 Hui and Zhang 2007)

The pressure dependence of viscosity has been modeled for some anhydrous melts such

as peridotite liquid (Liebske et al 2005) but has not been quantified for hydrous natural

silicate melts because only limited data were available For example for hydrous

rhyolitic melt there are only two data points at pressure gt 05 GPa (one data point of

AOQ at 1173 K 1 GPa and another one at 1173 K 075 GPa Schulze et al 1996) in the

low viscosity range These new data are the first viscosity data at pressures ge 1 GPa in the

low-temperature (high viscosity) range Because data on the pressure dependence of

viscosity of rhyolitic melts in the high temperature range are limited (Schulze et al

1996) only the data in the low temperature region are considered in constructing a model

on the dependence of viscosity on temperature pressure and water content In this narrow

temperature range the Arrhenius relationship can describe the temperature dependence of

viscosity Hence parameters η0 and Ea in Eq (6) are treated as functions of water content

and pressure to construct a viscosity model The data used for the model include viscosity

data from this study and literature data in the high viscosity range (Neuville et al 1993

Stevenson et al 1995 Zhang et al 2003 Zhang and Xu 2007) Because the precision

of the parallel plate viscometer is much higher this data set was weighed 10 times more

than other data in the regression After some trials the equation below is found to fit the

data well

110

logη = a0 + aPP12

⎝ ⎜

⎠ ⎟ + b0 + bPP

12

⎝ ⎜

⎠ ⎟ 1minus exp c0 + cPP

12

⎝ ⎜

⎠ ⎟ X

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

+ d0 + dPP12

⎝ ⎜

⎠ ⎟ + e0 + ePP

12

⎝ ⎜

⎠ ⎟ 1minus exp f0 + fPP

12

⎝ ⎜

⎠ ⎟ X

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟ 1000

T

(7)

where P is pressure in GPa and X is mole fraction of total water content in the melt on a

single oxygen basis (Stolper 1982b Zhang 1999) The best-fit parameters in Eq (7)

with 2σ errors are a0 = -78470 plusmn 04972 aP = 11472 plusmn 05802 b0 = -124257 plusmn 09940

bP = 08080 plusmn 06278 c0 = -36440 plusmn 16134 cP = -101893 plusmn 17128 d0 = 213531 plusmn

05706 dP = -21722 plusmn 07371 e0 = -58335 plusmn 07198 eP = 40480 plusmn 06801 f0 = -893887

plusmn 103647 and fP = -305499 plusmn 152766 This equation can reproduce the whole database

(206 data points) with 2σ of 038 in terms of logη The dependence of viscosity as a

function of OH and molecular H2O concentrations was also examined at different

pressures but no simple relation emerged for a large range of water content Hence no

species information is included in fitting how viscosity depends on water concentration

Fig 45 shows a comparison between experimental viscosities and calculated values

using Eq (7) Although the fit is good extrapolation of the model beyond experimental

conditions is not recommended That is calculated viscosity at high pressures should be

inside the range of 109 to 1012 Pamiddots and T-P-XH2Ot conditions should be within conditions

shown in Fig 46 The calculated pressure dependence of viscosity of rhyolitic melts

with different water contents is shown in Fig 47 and it is in agreement with Figs 43b

43c and 43d

Glass transition temperature is an important rheological parameter of glass and

Eq (7) can be used to estimate glass transition temperature of rhyolitic melt under high

111

8

10

12

14

16

18

8 10 12 14 16 18

our dataliterature data11 line

measured logη

calc

ulat

ed lo

Fig 45 Comparison of measured viscosity data of rhyolitic melts with those calculated from Eq (7)

112

500

600

700

800

900

1000

1100

1200

1300

0 05 1 15 2 25 3

T (K

)

P (GPa)

0

1

2

3

4

5

6

7

8

0 05 1 15 2 25 3

H2O

t (w

t)

P (GPa)

A

B

Fig 46 P-T-XH2Ot range of all experimental data of the model ie Eq (7)

113

765

785

765755

845

815

775

794

815

845

A

9

95

10

105

11

115

12

0 005 01 015 02 025 03 035 04

logη

(Pasdot

s)

P (GPa)

750C

800C

850C

900C

750

800

850

900

469

605

575

529

577

549

512

535

502

C

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3

450C

500C

550C

600C

logη

(Pasdot

s)

P (GPa)

450

500

550

468

512483

462

441

459

428

410

477

369

D

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3

400C

450C

500C

logη

(Pasdot

s)

P (GPa)

400400

450

500

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3P (GPa)

logη

(Pasdot

s)

550C

600C

650C

700C750C

550

600

650

700

558

678

635

589

574

689

642

591

711

654

611

753

A558

678

635

589

574

689

642

591

711

654

611

753

AB575583

594

613

634

652

Fig 47 Pressure effect on viscosity at some temperatures and water concentrations The curves (with temperature indicated by large numbers) are calculated from Eq (7) with different water concentrations (A) 013 wt (B) 08 wt (C) 2 wt and (D) 4 wt Points are experimental data at indicated temperatures (small numbers) and points at 01 MPa are calculated from the viscosity model of Zhang et al (2003)

114

pressure Fig 48 shows pressure dependence of glass transition temperatures of hydrous

rhyolitic melts containing different water contents calculated from Eq (7) with a cooling

rate of 028 Ks = 168 Kmin (at η = 1012 Pamiddots) The trend of pressure dependence of the

glass transition temperature (Fig 48) is the same as that of viscosity (Fig 47)

43 AN APPARENT PARADOX OF THE PRESSURE EFFECT ON VISCOSITY

AND ON GLASS FORMATION

Appendix 4 lists the melt compositions the experimental conditions and whether

the sample charges crystallized significantly during experiments Pressure facilitates

crystallization in both isothermal experiments and cooling experiments based on the

results in Appendix 4 as summarized in the Experimental results That is as pressure

increases crystallization is more rapid in isothermal experiments and it is also more

difficult to quench the same hydrous melt into glass from liquid One might expect that

the increased easiness of crystallization at high pressures were related to increasing

diffusivity and hence decreasing viscosity with increasing pressure However new

viscosity data show that viscosity of hydrous rhyolitic melt increases rather than

decreases with increasing pressure Hence there is an apparent paradox of increasing

viscosity as well as increased easiness of crystallization with increasing pressure

Raising the pressure increases the density of the melt and changes the structure of

the melt which might facilitate crystallization More importantly increasing the pressure

raises the liquidus of the melt Hence for a supercooled metastable liquid at a given

temperature the degree of undercooling is larger at higher pressure That is the Gibbs

free energy difference between the melt and the crystals ∆Gm-c increases with pressure

115

650

700

750

800

850

900

0 05 1 15 2 25 3

08 wt2 wt4 wt

T g (K

)

P (GPa)

Fig 48 Pressure dependence of glass transition temperatures of hydrous rhyolitic melts with different water contents (08 2 and 4 wt H2O) calculated from Eq (7) when η = 1012 Pamiddots (ie cooling rate is 028 Ks)

116

The increased easiness of crystallization at isothermal conditions may be partly attributed

to greater ∆Gm-c although quantification is not available at the moment

For cooling of a liquid from a temperature above the liquidus as the pressure

increases the liquidus is crossed at a higher temperature That is crystallization starts at a

higher temperature where kinetics is more rapid Furthermore there is a larger

temperature interval (and hence a larger time interval) for crystallization Hence more

crystallization is expected For this case the glass-forming ability (that is the degree of

difficulty of crystallization) has been proposed recently using the concept of fragility

(eg Martinez and Angell 2001 Senkov 2007) If the temperature dependence of

viscosity is Arrhenian from low to high viscosity (001 to 1015 Pamiddots) the liquid is said to

be strong If the temperature dependence of viscosity deviates from Arrhenian behavior

more the liquid is said to be more fragile It is easier for strong liquids to quench to

glass Senkov (2007) defined a dimensionless glass forming ability (GFA) parameter F1

which can be expressed as follows

F1 =2(Tg minus T0 )

2(Tg minus T0 ) + (TL minus Tg ) (8)

where TL is the liquidus Tg is the temperature at which the viscosity is 1012 Pamiddots and T0

(related to fragility) is the temperature in the VFT equation of logη = A + B(T-T0)

Senkov (2007) further related the critical cooling rate required for glass formation to the

GFA parameter as follows

qc = 10(054-F1)0047 (9)

If the cooling rate is above qc the liquid would be cooled into a glass Otherwise there

would be significant crystallization In order to apply the above approach TL as a

117

function of H2Ot and P was estimated from the MELTS program (Ghiorso and Sack

1995 Asimow and Ghiorso 1998) and Tg from the viscosity model developed in this

work (ie Eq 7) For T0 at low pressures the viscosity model of Zhang et al (2003) is

used which resulted in T0 of 300plusmn30 K for H2Ot gt 06 wt For viscosities of hydrous

rhyolitic melt at high pressures there are not enough data in the low-viscosity range to

estimate T0 Hence a constant T0 of 300 K was assumed to roughly estimate F1 and qc

The critical cooling rate as a function of pressure for a few H2Ot contents is plotted in

Fig 44b It can be seen that the limited experimental data are in agreement with this

approach Hence it appears that the paradox of increased easiness of crystallization at

high pressures and increasing viscosity with pressure can be reconciled by the GFA

parameter of Senkov (2007)

5 CONCLUDING REMARKS

Viscosity of hydrous rhyolitic melts containing 08 to 4 wt water was inferred

using the hydrous species reaction viscometer at pressures up to 283 GPa This

represents the first viscosity data at low temperature (high viscosity) and pressures above

1 GPa Viscosity of rhyolitic melts with 013 wt and 08 wt water was also measured

using the parallel plate creep viscometer at pressures up to 04 GPa No experimental

method is available to determine viscosity of ldquodryrdquo melt at higher pressures Combining

the data of this study with literature data a viscosity model is constructed as a function of

temperature pressure and water content in the high viscosity range The model (ie Eq

7) can be utilized for interpolation within the range of available data (Fig 46) but is not

recommended for extrapolation

118

REFERENCES

Akella J Ganguly J Grover R and Kennedy G (1973) Melting of lead and zinc to

60 kbar J Phys Chem Solids 34 631-636

Asimow PD and Ghiorso MS (1998) Algorithmic modifications extending MELTS to

calculate subsolidus phase relations Am Mineral 83 1127-1131

Behrens H and Nowak M (2003) Quantification of H2O speciation in silicate glasses

and melts by IR spectroscopy ndash in situ versus quench techniques Phase Trans 76

45-61

Behrens H and Schulze F (2003) Pressure dependence of melt viscosity in the system

NaAlSi3O8-CaMgSi2O6 Am Mineral 88 1351-1363

Behrens H and Zhang Y (2001) Ar diffusion in hydrous rhyolitic and albitic

glassesmelts Earth Planet Sci Lett 192 363-376

Behrens H Zhang Y and Xu Z (2004) H2O diffusion in dacitic and andesitic melts

Geochim Cosmochim Acta 68 5139-5150

Behrens H Zhang Y Leschik M Wiedenbeck M Heide G and Frischat GH

(2007) Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts

Earth Planet Sci Lett 254 69-76

Dingwell D (1986) Viscosity-temperature relationships in the system Na2Si2O5-

Na4Al2O5 Geochim Cosmochim Acta 50 1261-1265

Dingwell DB (1998) Melt viscosity and diffusion under elevated pressures Rev

Mineral 37 397-422

Dingwell DB and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

119

Dorfman A Dingwell DB and Bagdassarov NS (1997) A rotating autoclave for

centrifuge studies Falling sphere viscometry Eur J Mineral 9 345-350

Dorfman A Hess K-U and Dingwell DB (1996) Centrifuge-assisted falling sphere

viscometry Eur J Mineral 8 507-514

Funakoshi K-i Suzuki A and Terasaki H (2002) In situ viscosity measurements of

albite melt under high pressure J Phys Condensed Matt 14 11343-11347

Ghiorso MS and Sack RO (1995) Chemical mass transfer in magmatic processes IV

A revised and internally consistent thermodynamic model for the interpolation and

extrapolation of liquid-solid equilibria in magmatic systems at elevated

temperatures and pressures Contrib Mineral Petrol 119 197-212

Hui H and Zhang Y (2007) Toward a general viscosity equation for natural anhydrous

and hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Hui H Zhang Y Xu Z and Behrens H (2008) Pressure dependence of the speciation

of dissolved water in rhyolitic melts Geochim Cosmochim Acta In revision

Hummel W and Arndt J (1985) Variation of viscosity with temperature and

composition in the plagioclase system Contrib Mineral Petrol 90 83-92

Ihinger PD Zhang Y and Stolper EM (1999) The speciation of dissolved water in

rhyolitic melt Geochim Cosmochim Acta 63 3567-3578

Kushiro I (1976) Changes in viscosity and structure of melt of NaAlSi2O6 composition

at high pressures J Geophys Res 81 6347-6350

Kushiro I (1978) Density and viscosity of hydrous calc-alkalic andesite magma at high

pressures Carnegie Inst Washington Year Book 77 675-677

120

Kushiro I Yoder HS Jr and Myson BO (1976) Viscosities of basalt and andesite

melts at high pressures J Geophys Res 81 6351-6356

Lange RA (1994) The effect of H2O CO2 and F on the density and viscosity of silicate

melts Rev Mineral 30 331-365

Lees J and Williamson BHJ (1965) Combined very high pressurehigh temperature

calibration of the tetrahedral anvil apparatus fusion curves of zinc aluminium

germanium and silicon to 60 kilobars Nature 208 278-279

Liebske C Behrens H Holtz F and Lange RA (2003) The influence of pressure and

composition on the viscosity of andesitic melts Geochim Cosmochim Acta 67

473-485

Liebske C Schmickler B Terasaki H Poe BT Suzuki A Funakoshi K-i Ando

R and Rubie DC (2005) Viscosity of peridotite liquid up to 13 GPa Implications

for magma ocean viscosities Earth Planet Sci Lett 240 589-604

Lillie HR (1931) Viscosity of glass between the strain point and melting temperature J

Am Ceram Soc 14 502-512

Liu Y and Zhang Y (2000) Bubble growth in rhyolitic melt Earth Planet Sci Lett

181 251-264

Liu Y Behrens H and Zhang Y (2004a) The speciation of dissolved H2O in dacitic

melt Am Mineral 89 277-284

Liu Y Zhang Y and Behrens H (2004b) H2O diffusion in dacitic melt Chem Geol

209 327-340

Liu Y Zhang Y and Behrens H (2005) Solubility of H2O in rhyolitic melts at low

pressures J Volcanol Geotherm Res 143 219-235

121

Martinez L-M and Angell CA (2001) A thermodynamic connection to the fragility of

glass-forming liquids Nature 410 663-667

Moynihan CT Easteal AJ Wilder J and Tucker J (1976) Dependence of the glass

transition temperature on heating and cooling rate J Phys Chem 78 2673-2677

Neuville DR and Richet P (1991) Viscosity and mixing in molten (Ca Mg) pyroxenes

and garnets Geochim Cosmochim Acta 55 1011-1019

Neuville DR Courtial P Dingwell DB and Richet P (1993) Thermodynamic and

rheological properties of rhyolite and andesite melts Contrib Mineral Petrol 113

572-581

Newman S Stolper EM and Epstein S (1986) Measurement of water in rhyolitic

glasses calibration of an infrared spectroscopic technique Am Mineral 71 1527-

1541

Ni H and Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high

pressure data Chem Geol Revised

Rapp RP and Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar

Implications for continental growth and crust-mantle recycling J Petrol 36 891-

931

Reid J E Suzuki A Funakoshi K Terasaki H Poe BT Rubie DC and Ohtani

E (2003) The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa Phys

Earth Planet Inter 139 45-54

Richet P Lejeune A-M Holtz F and Roux J (1996) Water and the viscosity of

andesite melts Chem Geol 128 185-197

122

Rosenhauer M Scarfe CM and Virgo D (1979) Pressure dependence of the glass

transition temperature in glasses of diopside albite and sodium trisilicate

composition Carnegie Inst Washington Year Book 78 556-559

Rust AC and Cashman KV (2007) Multiple origins of obsidian pyroclasts and

implications for changes in the dynamics of the 1300 BP eruption of Newberry

Volcano USA Bull Volcanol 69 825-845

Scarfe CM Mysen BO and Virgo D (1979) Changes in viscosity and density of

melts of sodium disilicate sodium metasilicate and diopside composition with

pressure Carnegie Inst Washington Year Book 78 547-551

ScarfeCM Mysen BO and Virgo D (1987) Pressure dependence of the viscosity of

silicate melts In Mysen BO (ed) Magmatic Processes Physicochemical

Principles Geochem Soc Spec Pub 1 59-67

Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural

relaxation J Am Ceram Soc 67 504-511

Schulze F Behrens H and Hurkuck W (1999) Determination of the influence of

pressure and dissolved water on the viscosity of highly viscous melts Application

of a new parallel-plate viscometer Am Mineral 84 1512-1520

Schulze F Behrens H Holtz F Roux J and Johannes W (1996) The influence of

H2O on the viscosity of a haplogranitic melt Am Mineral 81 1155-1165

Senkov ON (2007) Correlation between fragility and glass-forming ability of metallic

alloys Phys Rev B 76 104202 DOI 101103PhysRevB76104202

Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature

range 700deg to 900degC J Geophys Res 68 6337-6343

123

Shaw HR (1972) Viscosities of magmatic silicate liquids An empirical method of

prediction Am J Sci 272 870-893

Silver LA Ihinger PD and Stolper E (1990) The influence of bulk composition on

the speciation of water in silicate glasses Contrib Mineral Petrol 104 142-162

Stevenson RJ Dingwell DB Webb SL and Bagdassarov NS (1995) The

equivalence of enthalpy and shear stress relaxation in rhyolitic obsidians and

quantification of the liquid-glass transition in volcanic processes J Volcanol

Geotherm Res 68 297-306

Stolper EM (1982a) The speciation of water in silicate melts Geochim Cosmochim

Acta 46 2609-2620

Stolper EM (1982b) Water in silicate glasses an infrared spectroscopic study Contrib

Mineral Petrol 81 1-17

Sylvester PJ (1998) Post-collisional strongly peraluminous granites Lithos 45 29-44

Tinker D Lesher CE Baxter GM Uchida T and Wang Y (2004) High-pressure

viscometry of polymerized silicate melts and limitations of the Eyring equation

Am Mineral 89 1701-1708

Withers AC and Behrens H (1999) Temperature-induced changes in the NIR spectra

of hydrous albitic and rhyolitic glasses between 300 and 100 K Phys Chem

Minerals 27 119-132

Xu Z and Zhang Y (2002) Quench rates in air water and liquid nitrogen and

inference of temperature in volcanic eruption columns Earth Planet Sci Lett 200

315-330

124

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth

Planet Sci Lett 122 373-391

Zhang Y (1999) H2O in rhyolitic glasses and melts Measurement speciation solubility

and diffusion Rev Geophys 37 493-516

Zhang Y and Behrens H (2000) H2O diffusion in rhyolitic melts and glasses Chem

Geol 169 243-262

Zhang Y Belcher R Ihinger PD Wang L Xu Z and Newman S (1997a) New

calibration of infrared measurement of dissolved water in rhyolitic glasses

Geochim Cosmochim Acta 61 3089-3100

Zhang Y Jenkins J and Xu Z (1997b) Kinetics of the reaction H2O + O hArr 2OH in

rhyolitic glasses upon cooling Geospeedometry and comparison with glass

transition Geochim Cosmochim Acta 61 2167-2173

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

Improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

ZhangY and Xu Z (2007) A long-duration experiment on hydrous species

geospeedometer and hydrous melt viscosity Geochim Cosmochim Acta 71 5226-

5232

125

CHAPTER V

CONCLUSIONS

The goal of this dissertation is to understand viscosity of natural silicate melts A

two-pronged approach is used One is to construct a general viscosity model using

available viscosity data (mostly at pressures below 05 GPa) to predict viscosity of all

natural silicate melts in all experimental temperature range at low pressures The second

is to experimentally investigate viscosity at high pressures and in the low temperature

range (high viscosity range) because such data are lacking Concerted effort on viscosity

measurements at high pressures will allow an even more general viscosity model

accounting for the effect of composition temperature and pressure

A new empirical viscosity equation for all natural and nearly natural silicate melts

at all experimentally covered temperature conditions is presented in Chapter II using the

following formulation

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

where η is viscosity in Pamiddots T is temperature in K and A B C and D are linear functions

of mole fractions of oxide components except for H2O The formulation is first applied

successfully to fit the temperature and compositional dependence of viscosity for four

binary systems Then a simpler version of the model with eight parameters is found to fit

126

the compositional and temperature dependence of the viscosity data of anhydrous natural

silicate melts better than the best model in literature A general viscosity equation with 37

parameters using this empirical formulation can fit the entire high- and low-temperature

viscosity database (1451 data points) of all ldquonaturalrdquo anhydrous and hydrous silicate

melts

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

where η is viscosity in Pamiddots T is temperature in K Xi means mole fraction of oxide

component i and Z=(XH2O)1[1+(185797T)] Al2O3ex or (Na K)2Oex mean excess oxide after

forming (Na K)AlO2 The 2σ deviation of the fit is 061 logη units This general model

can be used to calculate viscosity for modeling magma chamber processes and volcanic

eruptions It also can be used to calculate glass transition temperature for different silicate

melts

Temperature and melt composition affect melt viscosity but pressure can also

affect the viscosity of silicate melt The pressure dependence of hydrous melt viscosity in

the high viscosity range is not known Hence the pressure dependence of rhyolitic melts

in the high viscosity range has been investigated in this dissertation (Chapters III and IV)

Hydrous species reaction viscometer in piston cylinder and parallel-plate creep

viscometer in internally heated pressure vessel were used to investigate viscosity under

127

high pressure In order to use hydrous species reaction viscometer under high pressure it

is necessary to study the speciation of dissolved water in rhyolitic melt under high

pressure first

The equilibrium of reaction between two dissolved water species (H2Om and OH)

as a function of pressure (00001 094 189 and 283 GPa) temperature (624-1027 K)

and H2O concentrations (08 to 42 wt) was investigated in this study The speciation

data with total H2O content le 22 can be described by an ideal mixing model consistent

with previous results With inclusion of speciation data at higher water contents one way

to describe the speciation data is a regular solution model A speciation model was

constructed to accommodate the dependence of H2O speciation in the rhyolitic melts on

T-P-X

( )

2 m

32

3 32 2

H O OH

1000ln 18120 03832 ( 30830+02999 +00507 )+

( 74203+50262 31271 ) (30437 54527 +30464 )

K P P PT

P P X P P X

⎛= minus + minus⎜

⎝⎞

minus minus + minus ⎟⎠

where P is pressure in GPa T is temperature in K and X is mole fraction of species H2Om

or OH This formulation can be used to predict species concentrations at P le 283 GPa

total H2O content le 42 wt and temperature of 624-1027 K Furthermore it can be used

to calculate apparent equilibrium temperature which can then be used to infer viscosity

of hydrous rhyolitic melts under high pressure The results of Chapter III provide basis

for the study of Chapter IV

With the study of the speciation of dissolved water in rhyolitic melt under high

pressure viscosity of hydrous rhyolitic melts containing 08 to 4 wt water was inferred

using the hydrous species reaction viscometer at pressures up to 283 GPa Viscosity of

128

rhyolitic melts with 013 wt and 08 wt water was also measured using the parallel

plate creep viscometer at pressures up to 04 GPa but no experiment method is available

to determine viscosity of ldquodryrdquo melt at pressures gt 05 GPa Combining the data of this

study with previous data an Arrhenian viscosity model in high viscosity range is

constructed

logη = minus78470 +11472P12

⎝ ⎜

⎠ ⎟ +

minus124257 + 08080P12

⎝ ⎜

⎠ ⎟ 1minus exp minus36440 minus101893P

12

⎝ ⎜

⎠ ⎟ x

⎝ ⎜ ⎜

⎠ ⎟ ⎟ +

213531minus 21722P12

⎝ ⎜

⎠ ⎟ +

⎝ ⎜ ⎜

minus58335 + 40480P12

⎝ ⎜

⎠ ⎟ 1minus exp minus893887 minus 305499P

12

⎝ ⎜

⎠ ⎟ x

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ⎞

⎠ ⎟ ⎟ 1000

T

where P is pressure in GPa and X is mole fraction of total water content in the melt This

model can be utilized for interpolation but is not recommended for extrapolation beyond

the range of available data (Figure 46 in Chapter IV)

129

APPENDICES

130

APPENDIX A

VISCOSITY DATA OF NATURAL SILICATE MELTS

The viscosity data on the following pages are used to fit Eqn 11 in Chapter II The reference numbers of all the viscosity data

points is the same as the ones in Table 23

Table A1 Viscosity database used to fit Eqn 11

measured calculated SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O K2O P2O5 H2O T logη logη ∆

Comp wt wt wt wt wt wt wt wt wt wt wt K Pas Pas ref

1 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 1573 041 002 -039 12 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9774 916 917 001 13 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9829 894 903 009 14 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9927 866 877 011 15 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8865 137 1368 -002 16 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8923 134 1307 -033 17 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8992 1299 1247 -052 18 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9121 1222 116 -062 19 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9136 1216 1151 -065 1

10 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9187 1183 1124 -059 111 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9242 1156 1097 -059 1

131

12 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9292 1126 1075 -051 113 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9341 1104 1055 -049 114 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9409 1075 103 -045 115 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9447 1051 1016 -035 116 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9528 1017 989 -028 117 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9582 993 972 -021 118 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9595 988 968 -02 119 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9664 957 948 -009 120 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 972 935 932 -003 121 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8458 122 119 -03 122 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8511 1195 1158 -037 123 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 856 1164 1131 -033 124 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8671 1113 1076 -037 125 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8721 1091 1053 -038 126 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8773 1066 1032 -034 127 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8878 1025 991 -034 128 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8193 1215 123 015 129 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8269 1176 1182 006 130 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8342 1135 1141 006 131 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8409 1108 1106 -002 132 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8456 1084 1084 0 133 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8516 1055 1057 002 134 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8563 1035 1037 002 135 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8615 1013 1016 003 136 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 800 1238 1259 021 137 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8032 1207 1237 03 138 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8095 1188 1198 01 139 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8141 1159 1171 012 140 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8206 1136 1136 0 141 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8253 1111 1112 001 142 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8305 1086 1088 002 143 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8359 106 1063 003 1

132

44 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 841 1039 1042 003 145 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8457 1018 1023 005 146 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 7945 1233 1262 029 147 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8051 1192 1195 003 148 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8204 1102 1114 012 149 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8284 1076 1076 0 150 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8362 1034 1043 009 151 Bn3 4357 297 1018 0 0 917 2607 759 096 0 188 7617 123 1297 067 152 Bn3 4357 297 1018 0 0 917 2607 759 096 0 188 8023 1072 1083 011 153 Bn3 4357 297 1018 0 0 917 2607 759 096 0 196 7794 1157 1175 018 154 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14139 196 294 098 155 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14635 165 239 074 156 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14975 145 203 058 157 Te2 5056 235 1403 0 0 879 15 704 301 0 002 15132 138 187 049 158 Te2 5056 235 1403 0 0 879 15 704 301 0 002 1565 113 136 023 159 Te2 5056 235 1403 0 0 879 15 704 301 0 002 16144 091 091 0 160 Te2 5056 235 1403 0 0 879 15 704 301 0 002 16662 07 047 -023 161 Te2 5056 235 1403 0 0 879 15 704 301 0 002 17186 05 004 -046 162 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9763 993 1052 059 163 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9831 971 1032 061 164 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9867 957 1021 064 165 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9921 93 1006 076 166 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9972 918 993 075 167 Te2 5056 235 1403 0 0 879 15 704 301 0 002 10081 873 964 091 168 Te2 5056 235 1403 0 0 879 15 704 301 0 002 918 1285 1294 009 169 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9307 1205 1225 02 170 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9341 1186 1209 023 171 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9464 1132 1156 024 172 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9567 1075 1117 042 173 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9606 1061 1103 042 174 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9673 1038 108 042 175 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9712 1021 1068 047 1

133

76 Te2 5056 235 1403 0 0 879 15 704 301 0 012 905 127 1272 002 177 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9156 1201 1218 017 178 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9265 1177 1169 -008 179 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9374 112 1126 006 180 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9478 1067 109 023 181 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9589 1023 1054 031 182 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9684 987 1025 038 183 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8684 1249 1238 -011 184 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8785 1197 1193 -004 185 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8898 1157 1148 -009 186 Te2 5056 235 1403 0 0 879 15 704 301 0 052 899 1099 1114 015 187 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8342 1238 1258 02 188 Te2 5056 235 1403 0 0 879 15 704 301 0 088 844 1178 1216 038 189 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8555 1158 1171 013 190 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8665 1121 113 009 191 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8761 1077 1097 02 192 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8304 1239 1262 023 193 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8416 1215 1214 -001 194 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8518 1163 1174 011 195 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8621 1143 1136 -007 196 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8695 1049 111 061 197 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8828 1041 1065 024 198 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8935 995 1032 037 199 Te2 5056 235 1403 0 0 879 15 704 301 0 092 918 892 961 069 1

100 Te2 5056 235 1403 0 0 879 15 704 301 0 136 822 1251 1179 -072 1101 Te2 5056 235 1403 0 0 879 15 704 301 0 136 832 1189 1144 -045 1102 Te2 5056 235 1403 0 0 879 15 704 301 0 136 8366 1141 1128 -013 1103 Te2 5056 235 1403 0 0 879 15 704 301 0 136 8475 1112 1091 -021 1104 Te2 5056 235 1403 0 0 879 15 704 301 0 16 8255 1131 1121 -01 1105 Te2 5056 235 1403 0 0 879 15 704 301 0 16 816 1213 1153 -06 1106 Te2 5056 235 1403 0 0 879 15 704 301 0 16 847 1091 1052 -039 1107 Te2 5056 235 1403 0 0 879 15 704 301 0 227 818 1079 1046 -033 1

134

108 Te2 5056 235 1403 0 0 879 15 704 301 0 227 7827 126 1158 -102 1109 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 18155 192 15 -042 2110 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 1766 212 176 -036 2111 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 17219 233 201 -032 2112 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 16694 257 233 -024 2113 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 16174 286 266 -02 2114 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9733 1039 1004 -035 2115 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 990 997 97 -027 2116 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10051 962 94 -022 2117 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10152 938 921 -017 2118 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10268 915 9 -015 2119 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10348 897 886 -011 2120 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10464 866 866 0 2121 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 8892 1312 1206 -106 2122 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 8982 1271 1181 -09 2123 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 911 1225 1148 -077 2124 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 920 1196 1125 -071 2125 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9322 1155 1095 -06 2126 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9415 1129 1074 -055 2127 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9523 1094 1049 -045 2128 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9625 1067 1027 -04 2129 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7308 1202 1147 -055 2130 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7406 1154 1121 -033 2131 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7501 1121 1096 -025 2132 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7617 1091 1067 -024 2133 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7823 1031 1017 -014 2134 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7303 1203 1139 -064 2135 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 741 1179 111 -069 2136 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7617 1092 1057 -035 2137 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7809 104 1011 -029 2138 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6764 1234 1201 -033 2139 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6835 1197 1179 -018 2

135

140 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6914 1167 1155 -012 2141 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7026 1139 1123 -016 2142 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7176 1089 1081 -008 2143 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7279 1053 1053 0 2144 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7381 1022 1027 005 2145 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7479 1005 1003 -002 2146 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6541 1214 1183 -031 2147 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 664 1176 1152 -024 2148 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6751 1137 1118 -019 2149 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6859 109 1086 -004 2150 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 7043 1035 1035 0 2151 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 7164 996 1003 007 2152 Ph4 5882 079 1942 0 0 187 235 931 744 0 472 587 1237 1221 -016 2153 Ph4 5882 079 1942 0 0 187 235 931 744 0 472 6013 1177 1168 -009 2154 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 18277 186 142 -044 2155 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 17765 209 173 -036 2156 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 17258 232 205 -027 2157 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 16778 256 238 -018 2158 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 16285 283 273 -01 2159 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1578 312 312 0 2160 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 15317 341 35 009 2161 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9733 1196 1243 047 2162 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9818 1167 1212 045 2163 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9942 1123 117 047 2164 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9984 1114 1156 042 2165 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9992 1109 1153 044 2166 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10146 1059 1106 047 2167 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10361 1004 1046 042 2168 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1045 982 1023 041 2169 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10572 953 993 04 2170 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10658 934 973 039 2171 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10826 899 935 036 2

136

172 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1092 881 915 034 2173 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 11031 858 892 034 2174 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 11137 837 871 034 2175 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 19287 146 086 -06 2176 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 18796 164 113 -051 2177 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9511 1277 1331 054 2178 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 8792 1216 1175 -041 2179 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 8895 1178 115 -028 2180 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9099 1114 1102 -012 2181 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9309 105 1054 004 2182 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9422 1024 1029 005 2183 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9579 985 995 01 2184 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9659 96 978 018 2185 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9793 931 951 02 2186 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9893 908 93 022 2187 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8324 122 1202 -018 2188 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8362 1208 1193 -015 2189 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8371 1199 1191 -008 2190 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8426 1183 1178 -005 2191 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8472 1173 1167 -006 2192 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8582 1142 1141 -001 2193 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8698 1104 1115 011 2194 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8793 108 1093 013 2195 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8899 1049 107 021 2196 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 7944 1221 1209 -012 2197 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 7998 1201 1195 -006 2198 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8048 1186 1183 -003 2199 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8121 1166 1165 -001 2200 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8207 1137 1144 007 2201 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8286 1115 1126 011 2202 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8393 109 1101 011 2203 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8466 1066 1084 018 2

137

204 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8548 1042 1066 024 2205 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7254 1231 1238 007 2206 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 736 1193 1207 014 2207 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7436 1157 1185 028 2208 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7491 1145 117 025 2209 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7578 1119 1146 027 2210 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 769 1086 1116 03 2211 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7806 1057 1086 029 2212 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7912 1025 106 035 2213 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 8022 1001 1033 032 2214 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 6922 1223 1254 031 2215 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 7033 1189 1218 029 2216 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 713 1148 1189 041 2217 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 7229 1121 1159 038 2218 Tr6 6445 05 1671 0 0 292 536 67 337 0 492 6211 123 13 07 2219 Tr6 6445 05 1671 0 0 292 536 67 337 0 492 6308 1189 1264 075 2220 H3 786 0 125 0 0 0 0 46 42 0 002 14532 679 736 057 3221 H3 786 0 125 0 0 0 0 46 42 0 002 11549 1102 1117 015 4222 H3 786 0 125 0 0 0 0 46 42 0 002 11782 1063 108 017 4223 H3 786 0 125 0 0 0 0 46 42 0 002 11989 1028 1048 02 4224 H3 786 0 125 0 0 0 0 46 42 0 002 1212 1016 1029 013 4225 H3 786 0 125 0 0 0 0 46 42 0 002 16702 49 548 058 4226 H3 786 0 125 0 0 0 0 46 42 0 002 17192 453 512 059 4227 H3 786 0 125 0 0 0 0 46 42 0 002 17682 415 478 063 4228 H3 786 0 125 0 0 0 0 46 42 0 002 18172 381 446 065 4229 H3 786 0 125 0 0 0 0 46 42 0 002 18672 358 416 058 4230 H3 786 0 125 0 0 0 0 46 42 0 002 19162 324 387 063 4231 H5 741 0 117 0 0 0 0 9 44 0 002 94765 974 1007 033 4232 H5 741 0 117 0 0 0 0 9 44 0 002 91965 1045 1063 018 4233 H5 741 0 117 0 0 0 0 9 44 0 002 90365 107 1097 027 4234 H5 741 0 117 0 0 0 0 9 44 0 002 88345 1135 1142 007 4235 H5 741 0 117 0 0 0 0 9 44 0 002 12132 601 639 038 4

138

236 H5 741 0 117 0 0 0 0 9 44 0 002 11432 684 716 032 4237 H5 741 0 117 0 0 0 0 9 44 0 002 10732 784 804 02 4238 H5 741 0 117 0 0 0 0 9 44 0 002 12932 533 564 031 4239 H5 741 0 117 0 0 0 0 9 44 0 002 17682 253 268 015 4240 H5 741 0 117 0 0 0 0 9 44 0 002 17192 272 29 018 4241 H5 741 0 117 0 0 0 0 9 44 0 002 16702 291 314 023 4242 H5 741 0 117 0 0 0 0 9 44 0 002 16212 314 34 026 4243 H5 741 0 117 0 0 0 0 9 44 0 002 15712 338 367 029 4244 H5 741 0 117 0 0 0 0 9 44 0 002 15222 361 396 035 4245 H5 741 0 117 0 0 0 0 9 44 0 002 14732 387 427 04 4246 H7 746 0 118 0 0 0 0 44 92 0 002 96935 1016 1086 07 4247 H7 746 0 118 0 0 0 0 44 92 0 002 94575 1065 1135 07 4248 H7 746 0 118 0 0 0 0 44 92 0 002 92725 1115 1175 06 4249 H7 746 0 118 0 0 0 0 44 92 0 002 18672 254 248 -006 4250 H7 746 0 118 0 0 0 0 44 92 0 002 18172 272 271 -001 4251 H7 746 0 118 0 0 0 0 44 92 0 002 17682 292 295 003 4252 H7 746 0 118 0 0 0 0 44 92 0 002 17192 314 32 006 4253 H7 746 0 118 0 0 0 0 44 92 0 002 16702 336 347 011 4254 H7 746 0 118 0 0 0 0 44 92 0 002 16212 357 376 019 4255 H7 746 0 118 0 0 0 0 44 92 0 002 15712 382 407 025 4256 H2 779 0 1189 0 0 0 0 453 417 0 002 12424 977 978 001 5257 H2 779 0 1189 0 0 0 0 453 417 0 002 11765 109 1076 -014 5258 H2 779 0 1189 0 0 0 0 453 417 0 002 11174 115 1173 023 5259 H2 779 0 1189 0 0 0 0 453 417 0 002 19652 298 353 055 5260 H1 7612 0 1353 0 0 0 0 465 568 0 003 16732 491 502 011 6261 H1 7612 0 1353 0 0 0 0 465 568 0 003 16732 492 502 01 6262 H1 7612 0 1353 0 0 0 0 465 568 0 105 14732 421 505 084 6263 H1 7612 0 1353 0 0 0 0 465 568 0 105 15732 377 435 058 6264 H1 7612 0 1353 0 0 0 0 465 568 0 155 14732 385 437 052 6265 H1 7612 0 1353 0 0 0 0 465 568 0 155 15732 345 371 026 6266 H1 7612 0 1353 0 0 0 0 465 568 0 155 16732 298 308 01 6267 H1 7612 0 1353 0 0 0 0 465 568 0 209 14732 361 377 016 6

139

268 H1 7612 0 1353 0 0 0 0 465 568 0 209 15732 32 313 -007 6269 H1 7612 0 1353 0 0 0 0 465 568 0 258 15732 307 272 -035 6270 H1 7612 0 1353 0 0 0 0 465 568 0 322 14732 327 288 -039 6271 H1 7612 0 1353 0 0 0 0 465 568 0 322 15732 288 232 -056 6272 H1 7612 0 1353 0 0 0 0 465 568 0 375 15732 254 208 -046 6273 H1 7612 0 1353 0 0 0 0 465 568 0 5 12732 337 332 -005 6274 H1 7612 0 1353 0 0 0 0 465 568 0 5 14232 275 246 -029 6275 H1 7612 0 1353 0 0 0 0 465 568 0 5 11732 395 398 003 6276 H1 7612 0 1353 0 0 0 0 465 568 0 59 12732 318 307 -011 6277 H1 7612 0 1353 0 0 0 0 465 568 0 59 11732 371 37 -001 6278 H1 7612 0 1353 0 0 0 0 465 568 0 59 11732 363 37 007 6279 H1 7612 0 1353 0 0 0 0 465 568 0 59 10732 425 441 016 6280 H1 7612 0 1353 0 0 0 0 465 568 0 703 10732 403 414 011 6281 H1 7612 0 1353 0 0 0 0 465 568 0 703 11732 346 346 0 6282 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 368 394 026 6283 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 367 394 027 6284 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 372 394 022 6285 H1 7612 0 1353 0 0 0 0 465 568 0 821 11732 313 33 017 6286 H1 7612 0 1353 0 0 0 0 465 568 0 821 11732 312 33 018 6287 H3 786 0 125 0 0 0 0 46 42 0 041 97675 1076 112 044 7288 H3 786 0 125 0 0 0 0 46 42 0 042 92185 118 1184 004 7289 H3 786 0 125 0 0 0 0 46 42 0 042 96045 114 1134 -006 7290 H3 786 0 125 0 0 0 0 46 42 0 095 93975 942 992 05 7291 H3 786 0 125 0 0 0 0 46 42 0 096 86685 1098 1098 0 7292 H3 786 0 125 0 0 0 0 46 42 0 096 88455 1045 1068 023 7293 H3 786 0 125 0 0 0 0 46 42 0 099 88425 1048 1062 014 7294 H3 786 0 125 0 0 0 0 46 42 0 099 92275 968 1005 037 7295 H3 786 0 125 0 0 0 0 46 42 0 128 88565 983 1004 021 7296 H3 786 0 125 0 0 0 0 46 42 0 13 89455 96 986 026 7297 H3 786 0 125 0 0 0 0 46 42 0 131 87595 988 1015 027 7298 H3 786 0 125 0 0 0 0 46 42 0 132 85605 1038 1048 01 7299 H3 786 0 125 0 0 0 0 46 42 0 133 82255 1096 1112 016 7

140

300 H3 786 0 125 0 0 0 0 46 42 0 135 80155 1139 1154 015 7301 H3 786 0 125 0 0 0 0 46 42 0 137 84055 1058 1069 011 7302 H3 786 0 125 0 0 0 0 46 42 0 18 84975 969 987 018 7303 H3 786 0 125 0 0 0 0 46 42 0 185 78015 113 1127 -003 7304 H3 786 0 125 0 0 0 0 46 42 0 188 81975 1009 1035 026 7305 H3 786 0 125 0 0 0 0 46 42 0 225 81845 962 992 03 7306 H3 786 0 125 0 0 0 0 46 42 0 229 77505 1049 1082 033 7307 H3 786 0 125 0 0 0 0 46 42 0 261 82185 912 946 034 7308 H3 786 0 125 0 0 0 0 46 42 0 335 78825 993 943 -05 7309 A4 624 055 2001 003 002 322 908 352 093 012 0 9962 1276 1295 019 8310 A4 624 055 2001 003 002 322 908 352 093 012 0 10079 1232 1243 011 8311 A4 624 055 2001 003 002 322 908 352 093 012 0 10114 1218 1229 011 8312 A4 624 055 2001 003 002 322 908 352 093 012 0 10185 1195 12 005 8313 A4 624 055 2001 003 002 322 908 352 093 012 0 10249 1174 1176 002 8314 A4 624 055 2001 003 002 322 908 352 093 012 0 10335 1141 1145 004 8315 A4 624 055 2001 003 002 322 908 352 093 012 0 10437 1109 1111 002 8316 A4 624 055 2001 003 002 322 908 352 093 012 0 10538 1076 1079 003 8317 A4 624 055 2001 003 002 322 908 352 093 012 0 10589 1057 1064 007 8318 A4 624 055 2001 003 002 322 908 352 093 012 0 10689 1033 1035 002 8319 A4 624 055 2001 003 002 322 908 352 093 012 0 1073 1019 1024 005 8320 A4 624 055 2001 003 002 322 908 352 093 012 0 10846 987 993 006 8321 A4 624 055 2001 003 002 322 908 352 093 012 0 10941 96 969 009 8322 A4 624 055 2001 003 002 322 908 352 093 012 0 11077 93 936 006 8323 A4 624 055 2001 003 002 322 908 352 093 012 0 11138 912 922 01 8324 A4 624 055 2001 003 002 322 908 352 093 012 0 11238 892 9 008 8325 A4 624 055 2001 003 002 322 908 352 093 012 0 15137 335 367 032 8326 A4 624 055 2001 003 002 322 908 352 093 012 0 15366 317 346 029 8327 A4 624 055 2001 003 002 322 908 352 093 012 0 15755 29 312 022 8328 A4 624 055 2001 003 002 322 908 352 093 012 0 16011 273 29 017 8329 A4 624 055 2001 003 002 322 908 352 093 012 0 16224 259 273 014 8330 A4 624 055 2001 003 002 322 908 352 093 012 0 16504 242 25 008 8331 A4 624 055 2001 003 002 322 908 352 093 012 0 16731 228 233 005 8

141

332 A4 624 055 2001 003 002 322 908 352 093 012 0 16986 215 214 -001 8333 A4 624 055 2001 003 002 322 908 352 093 012 0 17286 197 192 -005 8334 A4 624 055 2001 003 002 322 908 352 093 012 0 17531 185 175 -01 8335 A4 624 055 2001 003 002 322 908 352 093 012 0 17762 174 159 -015 8336 A4 624 055 2001 003 002 322 908 352 093 012 0 18017 162 142 -02 8337 A4 624 055 2001 003 002 322 908 352 093 012 0 18039 16 141 -019 8338 A4 624 055 2001 003 002 322 908 352 093 012 0 18295 148 125 -023 8339 A4 624 055 2001 003 002 322 908 352 093 012 0 18522 139 11 -029 8340 A4 624 055 2001 003 002 322 908 352 093 012 0 18746 128 097 -031 8341 A4 624 055 2001 003 002 322 908 352 093 012 0 19041 116 079 -037 8342 A4 624 055 2001 003 002 322 908 352 093 012 0 19294 105 065 -04 8343 A4 624 055 2001 003 002 322 908 352 093 012 0 1952 096 052 -044 8344 A4 624 055 2001 003 002 322 908 352 093 012 0 19779 086 038 -048 8345 A4 624 055 2001 003 002 322 908 352 093 012 027 9357 127 1279 009 8346 A4 624 055 2001 003 002 322 908 352 093 012 027 9461 1232 1242 01 8347 A4 624 055 2001 003 002 322 908 352 093 012 027 9654 1164 1178 014 8348 A4 624 055 2001 003 002 322 908 352 093 012 027 9824 1109 1125 016 8349 A4 624 055 2001 003 002 322 908 352 093 012 027 9989 1054 1077 023 8350 A4 624 055 2001 003 002 322 908 352 093 012 027 10108 1023 1045 022 8351 A4 624 055 2001 003 002 322 908 352 093 012 027 10218 993 1016 023 8352 A4 624 055 2001 003 002 322 908 352 093 012 027 10416 946 967 021 8353 A4 624 055 2001 003 002 322 908 352 093 012 027 10614 903 921 018 8354 A4 624 055 2001 003 002 322 908 352 093 012 027 10813 856 878 022 8355 A4 624 055 2001 003 002 322 908 352 093 012 1 8645 1219 118 -039 8356 A4 624 055 2001 003 002 322 908 352 093 012 1 8776 1173 1147 -026 8357 A4 624 055 2001 003 002 322 908 352 093 012 1 8984 1103 1097 -006 8358 A4 624 055 2001 003 002 322 908 352 093 012 1 9114 1062 1066 004 8359 A4 624 055 2001 003 002 322 908 352 093 012 1 9223 1033 1041 008 8360 A4 624 055 2001 003 002 322 908 352 093 012 1 9423 978 996 018 8361 A4 624 055 2001 003 002 322 908 352 093 012 1 9632 928 951 023 8362 A4 624 055 2001 003 002 322 908 352 093 012 1 9861 874 903 029 8363 A4 624 055 2001 003 002 322 908 352 093 012 2 7937 1187 1166 -021 8

142

364 A4 624 055 2001 003 002 322 908 352 093 012 2 804 1148 1139 -009 8365 A4 624 055 2001 003 002 322 908 352 093 012 2 8245 1072 1088 016 8366 A4 624 055 2001 003 002 322 908 352 093 012 2 8251 1075 1087 012 8367 A4 624 055 2001 003 002 322 908 352 093 012 2 8252 1073 1087 014 8368 A4 624 055 2001 003 002 322 908 352 093 012 2 8255 1074 1086 012 8369 A4 624 055 2001 003 002 322 908 352 093 012 2 8257 107 1085 015 8370 A4 624 055 2001 003 002 322 908 352 093 012 2 8461 1008 1038 03 8371 A4 624 055 2001 003 002 322 908 352 093 012 2 8664 949 992 043 8372 A4 624 055 2001 003 002 322 908 352 093 012 266 7215 1342 1288 -054 8373 A4 624 055 2001 003 002 322 908 352 093 012 266 7426 1266 1223 -043 8374 A4 624 055 2001 003 002 322 908 352 093 012 266 7537 122 119 -03 8375 A4 624 055 2001 003 002 322 908 352 093 012 266 7651 117 1158 -012 8376 A4 624 055 2001 003 002 322 908 352 093 012 266 7867 109 11 01 8377 A4 624 055 2001 003 002 322 908 352 093 012 266 7992 1049 1068 019 8378 A4 624 055 2001 003 002 322 908 352 093 012 266 823 975 1011 036 8379 A4 624 055 2001 003 002 322 908 352 093 012 266 8438 923 964 041 8380 A4 624 055 2001 003 002 322 908 352 093 012 266 864 875 921 046 8381 A4 624 055 2001 003 002 322 908 352 093 012 346 723 1249 1195 -054 8382 A4 624 055 2001 003 002 322 908 352 093 012 346 7331 121 1165 -045 8383 A4 624 055 2001 003 002 322 908 352 093 012 346 7445 116 1132 -028 8384 A4 624 055 2001 003 002 322 908 352 093 012 346 7552 1121 1102 -019 8385 A4 624 055 2001 003 002 322 908 352 093 012 346 7644 1078 1077 -001 8386 A4 624 055 2001 003 002 322 908 352 093 012 346 7911 995 1009 014 8387 A4 624 055 2001 003 002 322 908 352 093 012 346 7978 976 993 017 8388 A4 624 055 2001 003 002 322 908 352 093 012 346 8123 942 959 017 8389 A4 624 055 2001 003 002 322 908 352 093 012 346 8348 875 909 034 8390 R6 7379 005 1511 042 005 007 097 471 402 001 88 97315 511 469 -042 9391 R6 7379 005 1511 042 005 007 097 471 402 001 88 10732 414 392 -022 9392 R6 7379 005 1511 042 005 007 097 471 402 001 88 11732 345 327 -018 9393 R14 7692 01 1292 089 005 011 086 389 425 003 008 12212 864 885 021 10394 R14 7692 01 1292 089 005 011 086 389 425 003 008 12062 881 906 025 10395 R14 7692 01 1292 089 005 011 086 389 425 003 008 11792 92 945 025 10

143

396 R14 7692 01 1292 089 005 011 086 389 425 003 008 11512 965 987 022 10397 R14 7692 01 1292 089 005 011 086 389 425 003 008 11382 982 1007 025 10398 R15 7699 003 1302 071 01 004 048 431 431 0 149 72315 1318 1326 008 10399 R15 7699 003 1302 071 01 004 048 431 431 0 149 73715 1285 1286 001 10400 R15 7699 003 1302 071 01 004 048 431 431 0 149 74815 1245 1256 011 10401 R15 7699 003 1302 071 01 004 048 431 431 0 149 75815 1214 123 016 10402 R15 7699 003 1302 071 01 004 048 431 431 0 149 77415 1191 1189 -002 10403 R15 7699 003 1302 071 01 004 048 431 431 0 149 78415 1145 1165 02 10404 R15 7699 003 1302 071 01 004 048 431 431 0 149 79415 1155 1141 -014 10405 R15 7699 003 1302 071 01 004 048 431 431 0 149 80415 1092 1119 027 10406 R15 7699 003 1302 071 01 004 048 431 431 0 149 81415 1105 1097 -008 10407 R15 7699 003 1302 071 01 004 048 431 431 0 149 82215 106 108 02 10408 R15 7699 003 1302 071 01 004 048 431 431 0 149 83215 1058 1059 001 10409 R15 7699 003 1302 071 01 004 048 431 431 0 149 84215 1039 1039 0 10410 R15 7699 003 1302 071 01 004 048 431 431 0 149 85115 1026 1022 -004 10411 R15 7699 003 1302 071 01 004 048 431 431 0 149 86215 101 1001 -009 10412 R17 7701 003 1314 071 01 004 051 428 418 0 001 12332 964 922 -042 10413 R17 7701 003 1314 071 01 004 051 428 418 0 001 12052 993 963 -03 10414 R17 7701 003 1314 071 01 004 051 428 418 0 001 11582 1069 1038 -031 10415 R17 7701 003 1314 071 01 004 051 428 418 0 001 11352 112 1077 -043 10416 R17 7701 003 1314 071 01 004 051 428 418 0 001 11112 1127 1119 -008 10417 R17 7701 003 1314 071 01 004 051 428 418 0 001 10882 1195 1162 -033 10418 R17 7701 003 1314 071 01 004 051 428 418 0 001 10642 1238 1209 -029 10419 R19 7708 009 1244 13 002 002 036 449 42 0 004 12312 884 869 -015 10420 R19 7708 009 1244 13 002 002 036 449 42 0 004 12067 916 902 -014 10421 R19 7708 009 1244 13 002 002 036 449 42 0 004 11792 951 942 -009 10422 R19 7708 009 1244 13 002 002 036 449 42 0 004 11612 971 968 -003 10423 R19 7708 009 1244 13 002 002 036 449 42 0 004 11422 998 997 -001 10424 R21 7717 008 124 13 002 001 035 45 42 0 012 10702 1016 1064 048 10425 R21 7717 008 124 13 002 001 035 45 42 0 012 10922 1008 103 022 10426 R21 7717 008 124 13 002 001 035 45 42 0 012 11002 993 1018 025 10427 R21 7717 008 124 13 002 001 035 45 42 0 012 11292 953 976 023 10

144

428 R21 7717 008 124 13 002 001 035 45 42 0 012 11582 896 935 039 10429 R21 7717 008 124 13 002 001 035 45 42 0 012 11872 857 896 039 10430 R26 7748 017 122 13 005 017 114 39 36 0 013 11882 85 872 022 10431 R26 7748 017 122 13 005 017 114 39 36 0 013 11522 91 923 013 10432 R26 7748 017 122 13 005 017 114 39 36 0 013 11272 951 96 009 10433 R26 7748 017 122 13 005 017 114 39 36 0 013 10932 1005 1013 008 10434 R26 7748 017 122 13 005 017 114 39 36 0 013 10932 1025 1013 -012 10435 R26 7748 017 122 13 005 017 114 39 36 0 013 10612 1062 1065 003 10436 R27 7753 017 1217 13 005 017 113 389 36 0 004 11342 1007 996 -011 10437 R27 7753 017 1217 13 005 017 113 389 36 0 004 11522 981 967 -014 10438 R27 7753 017 1217 13 005 017 113 389 36 0 004 11592 962 956 -006 10439 R27 7753 017 1217 13 005 017 113 389 36 0 004 11782 934 926 -008 10440 R27 7753 017 1217 13 005 017 113 389 36 0 004 11872 909 912 003 10441 R27 7753 017 1217 13 005 017 113 389 36 0 004 11962 904 899 -005 10442 R27 7753 017 1217 13 005 017 113 389 36 0 004 12247 862 858 -004 10443 R28 7788 007 1273 076 004 006 05 393 403 001 002 11852 1012 998 -014 10444 R28 7788 007 1273 076 004 006 05 393 403 001 002 12082 979 963 -016 10445 R31 78 009 1215 054 007 006 05 408 448 002 006 12382 866 895 029 10446 R31 78 009 1215 054 007 006 05 408 448 002 006 12232 889 915 026 10447 R31 78 009 1215 054 007 006 05 408 448 002 006 12042 906 942 036 10448 R31 78 009 1215 054 007 006 05 408 448 002 006 11852 948 969 021 10449 R31 78 009 1215 054 007 006 05 408 448 002 006 11712 951 99 039 10450 R31 78 009 1215 054 007 006 05 408 448 002 006 11657 969 998 029 10451 R31 78 009 1215 054 007 006 05 408 448 002 006 11369 1004 1042 038 10452 R31 78 009 1215 054 007 006 05 408 448 002 006 11199 1029 1069 04 10453 R31 78 009 1215 054 007 006 05 408 448 002 006 10778 1089 114 051 10454 R31 78 009 1215 054 007 006 05 408 448 002 006 10403 1165 1207 042 10455 R32 78 009 1215 054 007 007 05 408 448 0 013 11712 92 95 03 10456 R32 78 009 1215 054 007 007 05 408 448 0 013 11202 999 1022 023 10457 R32 78 009 1215 054 007 007 05 408 448 0 013 10782 1049 1084 035 10458 R32 78 009 1215 054 007 007 05 408 448 0 013 10242 1154 117 016 10459 R32 78 009 1215 054 007 007 05 408 448 0 013 99215 12 1224 024 10

145

460 A3 6117 084 1729 539 0 335 583 385 139 0 002 9811 1133 1117 -016 11461 A3 6117 084 1729 539 0 335 583 385 139 0 002 9922 1083 1089 006 11462 A3 6117 084 1729 539 0 335 583 385 139 0 002 10118 1025 1042 017 11463 A3 6117 084 1729 539 0 335 583 385 139 0 002 10255 99 1012 022 11464 A3 6117 084 1729 539 0 335 583 385 139 0 002 10368 967 987 02 11465 A3 6117 084 1729 539 0 335 583 385 139 0 002 1670 219 23 011 11466 A3 6117 084 1729 539 0 335 583 385 139 0 002 1719 197 196 -001 11467 A3 6117 084 1729 539 0 335 583 385 139 0 002 1768 174 164 -01 11468 A3 6117 084 1729 539 0 335 583 385 139 0 002 1818 152 133 -019 11469 A3 6117 084 1729 539 0 335 583 385 139 0 002 1867 133 104 -029 11470 A3 6117 084 1729 539 0 335 583 385 139 0 002 9393 1266 1235 -031 11471 A3 6117 084 1729 539 0 335 583 385 139 0 002 9506 123 1201 -029 11472 A3 6117 084 1729 539 0 335 583 385 139 0 002 9617 1185 1169 -016 11473 A3 6117 084 1729 539 0 335 583 385 139 0 002 9718 1164 1141 -023 11474 R30 779 007 1205 076 0 005 052 401 406 0 0 1670 479 473 -006 11475 R30 779 007 1205 076 0 005 052 401 406 0 0 1719 441 438 -003 11476 R30 779 007 1205 076 0 005 052 401 406 0 0 1768 409 404 -005 11477 R30 779 007 1205 076 0 005 052 401 406 0 0 1817 381 373 -008 11478 R30 779 007 1205 076 0 005 052 401 406 0 0 1867 35 343 -007 11479 R30 779 007 1205 076 0 005 052 401 406 0 0 1051 121 1259 049 11480 R30 779 007 1205 076 0 005 052 401 406 0 0 10706 1192 1217 025 11481 R30 779 007 1205 076 0 005 052 401 406 0 0 10813 1181 1194 013 11482 R30 779 007 1205 076 0 005 052 401 406 0 0 11006 1134 1156 022 11483 R30 779 007 1205 076 0 005 052 401 406 0 0 10984 1127 116 033 11484 R30 779 007 1205 076 0 005 052 401 406 0 0 11111 1105 1136 031 11485 R30 779 007 1205 076 0 005 052 401 406 0 0 11269 1089 1106 017 11486 R30 779 007 1205 076 0 005 052 401 406 0 0 11272 1073 1106 033 11487 R30 779 007 1205 076 0 005 052 401 406 0 0 11674 1019 1035 016 11488 R30 779 007 1205 076 0 005 052 401 406 0 0 11935 978 992 014 11489 R30 779 007 1205 076 0 005 052 401 406 0 0 10969 1137 1163 026 11490 R30 779 007 1205 076 0 005 052 401 406 0 0 10976 1134 1162 028 11491 R30 779 007 1205 076 0 005 052 401 406 0 0 11068 1118 1144 026 11

146

492 R30 779 007 1205 076 0 005 052 401 406 0 0 11203 1092 1118 026 11493 R30 779 007 1205 076 0 005 052 401 406 0 0 11261 1081 1108 027 11494 R30 779 007 1205 076 0 005 052 401 406 0 0 11305 1077 1099 022 11495 R30 779 007 1205 076 0 005 052 401 406 0 0 11345 1066 1092 026 11496 R30 779 007 1205 076 0 005 052 401 406 0 0 11347 1063 1092 029 11497 R30 779 007 1205 076 0 005 052 401 406 0 0 11469 1042 107 028 11498 R30 779 007 1205 076 0 005 052 401 406 0 0 11551 1031 1056 025 11499 R30 779 007 1205 076 0 005 052 401 406 0 0 11563 103 1054 024 11500 R30 779 007 1205 076 0 005 052 401 406 0 0 11671 1015 1035 02 11501 R30 779 007 1205 076 0 005 052 401 406 0 0 11771 999 1018 019 11502 R30 779 007 1205 076 0 005 052 401 406 0 0 11941 973 991 018 11503 R30 779 007 1205 076 0 005 052 401 406 0 0 12133 936 961 025 11504 R30 779 007 1205 076 0 005 052 401 406 0 0 10983 1156 116 004 11505 R30 779 007 1205 076 0 005 052 401 406 0 0 11106 1137 1137 0 11506 R30 779 007 1205 076 0 005 052 401 406 0 0 11203 1121 1118 -003 11507 R30 779 007 1205 076 0 005 052 401 406 0 0 11344 1093 1092 -001 11508 R30 779 007 1205 076 0 005 052 401 406 0 0 11513 1065 1062 -003 11509 R30 779 007 1205 076 0 005 052 401 406 0 0 11661 1036 1037 001 11510 R30 779 007 1205 076 0 005 052 401 406 0 0 11757 1018 1021 003 11511 R30 779 007 1205 076 0 005 052 401 406 0 0 11902 995 997 002 11512 R30 779 007 1205 076 0 005 052 401 406 0 0 12045 974 974 0 11513 R30 779 007 1205 076 0 005 052 401 406 0 0 12191 954 952 -002 11514 R30 779 007 1205 076 0 005 052 401 406 0 0 12308 936 934 -002 11515 R30 779 007 1205 076 0 005 052 401 406 0 0 988 1377 1408 031 11516 R30 779 007 1205 076 0 005 052 401 406 0 0 1063 1249 1233 -016 11517 R30 779 007 1205 076 0 005 052 401 406 0 0 1068 1226 1222 -004 11518 R30 779 007 1205 076 0 005 052 401 406 0 0 1091 1187 1175 -012 11519 R30 779 007 1205 076 0 005 052 401 406 0 0 1094 1151 1169 018 11520 R30 779 007 1205 076 0 005 052 401 406 0 0 1128 1102 1104 002 11521 R30 779 007 1205 076 0 005 052 401 406 0 0 1129 1102 1102 0 11522 R30 779 007 1205 076 0 005 052 401 406 0 0 1131 1092 1099 007 11523 R30 779 007 1205 076 0 005 052 401 406 0 0 1135 1087 1091 004 11

147

524 R30 779 007 1205 076 0 005 052 401 406 0 0 1136 109 1089 -001 11525 R30 779 007 1205 076 0 005 052 401 406 0 0 1138 1084 1086 002 11526 R30 779 007 1205 076 0 005 052 401 406 0 0 1157 1062 1052 -01 11527 R30 779 007 1205 076 0 005 052 401 406 0 0 1186 1007 1004 -003 11528 R30 779 007 1205 076 0 005 052 401 406 0 0 1219 955 952 -003 11529 R30 779 007 1205 076 0 005 052 401 406 0 0 1221 957 949 -008 11530 R30 779 007 1205 076 0 005 052 401 406 0 0 1253 919 902 -017 11531 R30 779 007 1205 076 0 005 052 401 406 0 0 920 1508 1601 093 11532 R30 779 007 1205 076 0 005 052 401 406 0 0 1916 322 315 -007 11533 R20 7715 009 1282 056 007 007 052 411 461 001 012 12313 868 874 006 12534 R20 7715 009 1282 056 007 007 052 411 461 001 012 1219 889 89 001 12535 R20 7715 009 1282 056 007 007 052 411 461 001 012 1201 912 913 001 12536 R20 7715 009 1282 056 007 007 052 411 461 001 012 11765 947 946 -001 12537 R20 7715 009 1282 056 007 007 052 411 461 001 012 11493 991 983 -008 12538 R22 7718 009 1291 061 007 007 051 405 452 001 01 12382 866 874 008 12539 R22 7718 009 1291 061 007 007 051 405 452 001 01 12232 889 893 004 12540 R22 7718 009 1291 061 007 007 051 405 452 001 01 12042 906 919 013 12541 R22 7718 009 1291 061 007 007 051 405 452 001 01 11852 948 944 -004 12542 R22 7718 009 1291 061 007 007 051 405 452 001 01 11662 969 971 002 12543 R22 7718 009 1291 061 007 007 051 405 452 001 01 11372 1004 1012 008 12544 R29 7788 016 1203 119 005 005 106 364 388 001 011 11882 888 897 009 12545 R29 7788 016 1203 119 005 005 106 364 388 001 011 11782 913 911 -002 12546 R29 7788 016 1203 119 005 005 106 364 388 001 011 11642 931 931 0 12547 R29 7788 016 1203 119 005 005 106 364 388 001 011 11532 954 947 -007 12548 R29 7788 016 1203 119 005 005 106 364 388 001 011 11488 948 953 005 12549 R29 7788 016 1203 119 005 005 106 364 388 001 011 11412 975 965 -01 12550 R29 7788 016 1203 119 005 005 106 364 388 001 011 11212 1003 995 -008 12551 R29 7788 016 1203 119 005 005 106 364 388 001 011 11162 1021 1003 -018 12552 R29 7788 016 1203 119 005 005 106 364 388 001 011 10922 105 104 -01 12553 R29 7788 016 1203 119 005 005 106 364 388 001 011 10742 1073 107 -003 12554 R10 7638 006 1159 103 005 036 325 244 466 0 002 10482 1161 1168 007 13555 R10 7638 006 1159 103 005 036 325 244 466 0 002 10732 1101 1109 008 13

148

556 R10 7638 006 1159 103 005 036 325 244 466 0 002 10982 1048 1054 006 13557 R10 7638 006 1159 103 005 036 325 244 466 0 002 11232 1002 1003 001 13558 R10 7638 006 1159 103 005 036 325 244 466 0 002 11482 957 955 -002 13559 R10 7638 006 1159 103 005 036 325 244 466 0 002 10732 11 1109 009 13560 R10 7638 006 1159 103 005 036 325 244 466 0 002 11232 997 1003 006 13561 R10 7638 006 1159 103 005 036 325 244 466 0 002 11732 912 91 -002 13562 R10 7638 006 1159 103 005 036 325 244 466 0 002 11982 875 868 -007 13563 R11 7657 006 1165 104 007 036 323 246 462 0 017 99815 1165 1158 -007 13564 R11 7657 006 1165 104 007 036 323 246 462 0 017 10232 1091 1107 016 13565 R11 7657 006 1165 104 007 036 323 246 462 0 017 10232 1094 1107 013 13566 R11 7657 006 1165 104 007 036 323 246 462 0 017 10482 1036 1059 023 13567 R11 7657 006 1165 104 007 036 323 246 462 0 017 10732 987 1012 025 13568 R11 7657 006 1165 104 007 036 323 246 462 0 017 10982 942 968 026 13569 R11 7657 006 1165 104 007 036 323 246 462 0 017 11232 906 926 02 13570 R16 77 006 1177 1 006 036 329 248 468 0 055 94815 1146 1069 -077 13571 R16 77 006 1177 1 006 036 329 248 468 0 055 97315 1085 1029 -056 13572 R16 77 006 1177 1 006 036 329 248 468 0 055 97315 1088 1029 -059 13573 R16 77 006 1177 1 006 036 329 248 468 0 055 99815 105 99 -06 13574 R16 77 006 1177 1 006 036 329 248 468 0 055 10232 996 952 -044 13575 R16 77 006 1177 1 006 036 329 248 468 0 055 10232 994 952 -042 13576 R16 77 006 1177 1 006 036 329 248 468 0 055 10732 905 88 -025 13577 R18 7707 006 1167 099 007 035 328 242 462 0 027 97315 1154 115 -004 13578 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1128 1103 -025 13579 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1123 1103 -02 13580 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1057 1058 001 13581 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1083 1058 -025 13582 R18 7707 006 1167 099 007 035 328 242 462 0 027 10482 1002 1014 012 13583 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 957 972 015 13584 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 981 972 -009 13585 R18 7707 006 1167 099 007 035 328 242 462 0 027 10982 937 931 -006 13586 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1151 1103 -048 13587 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1083 1058 -025 13

149

588 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1089 1058 -031 13589 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 984 972 -012 13590 R23 7727 003 1175 105 005 036 331 243 473 0 058 97315 1071 102 -051 13591 R23 7727 003 1175 105 005 036 331 243 473 0 058 99815 1029 982 -047 13592 R23 7727 003 1175 105 005 036 331 243 473 0 058 10232 986 944 -042 13593 R23 7727 003 1175 105 005 036 331 243 473 0 058 10482 943 908 -035 13594 R23 7727 003 1175 105 005 036 331 243 473 0 058 10732 902 873 -029 13595 R23 7727 003 1175 105 005 036 331 243 473 0 058 10982 866 838 -028 13596 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1016 1014 -002 13597 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1042 1014 -028 13598 R24 7738 005 117 103 005 036 324 244 48 0 037 10482 969 974 005 13599 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 932 934 002 13600 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 947 934 -013 13601 R24 7738 005 117 103 005 036 324 244 48 0 037 10982 896 896 0 13602 R24 7738 005 117 103 005 036 324 244 48 0 037 11232 875 859 -016 13603 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1014 1014 0 13604 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1034 1014 -02 13605 R24 7738 005 117 103 005 036 324 244 48 0 037 10482 974 974 0 13606 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 935 934 -001 13607 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 951 934 -017 13608 R24 7738 005 117 103 005 036 324 244 48 0 037 10982 903 896 -007 13609 R24 7738 005 117 103 005 036 324 244 48 0 037 11232 879 859 -02 13610 R25 7746 005 1164 104 007 035 323 245 47 0 031 99815 1095 1082 -013 13611 R25 7746 005 1164 104 007 035 323 245 47 0 031 10232 1044 1039 -005 13612 R25 7746 005 1164 104 007 035 323 245 47 0 031 10482 997 997 0 13613 R25 7746 005 1164 104 007 035 323 245 47 0 031 10732 953 956 003 13614 R25 7746 005 1164 104 007 035 323 245 47 0 031 10982 912 916 004 13615 R25 7746 005 1164 104 007 035 323 245 47 0 031 11232 882 878 -004 13616 R25 7746 005 1164 104 007 035 323 245 47 0 031 94815 1244 1173 -071 13617 R25 7746 005 1164 104 007 035 323 245 47 0 031 97315 117 1127 -043 13618 R25 7746 005 1164 104 007 035 323 245 47 0 031 99815 1131 1082 -049 13619 R9 7603 006 1148 105 006 036 321 242 46 0 0 10732 1148 1135 -013 13

150

620 R9 7603 006 1148 105 006 036 321 242 46 0 0 10982 1086 1076 -01 13621 R9 7603 006 1148 105 006 036 321 242 46 0 0 11232 104 1022 -018 13622 R9 7603 006 1148 105 006 036 321 242 46 0 0 11482 991 972 -019 13623 R9 7603 006 1148 105 006 036 321 242 46 0 0 11732 946 926 -02 13624 R9 7603 006 1148 105 006 036 321 242 46 0 0 11982 913 882 -031 13625 R12 7659 008 1267 1 0 003 052 398 488 0 168 738 1235 1252 017 14626 R12 7659 008 1267 1 0 003 052 398 488 0 173 710 1322 1324 002 14627 R12 7659 008 1267 1 0 003 052 398 488 0 157 671 152 1476 -044 14628 R12 7659 008 1267 1 0 003 052 398 488 0 182 709 1323 1313 -01 14629 R12 7659 008 1267 1 0 003 052 398 488 0 186 731 1234 1244 01 14630 R12 7659 008 1267 1 0 003 052 398 488 0 188 755 1153 1177 024 14631 R12 7659 008 1267 1 0 003 052 398 488 0 237 729 1162 118 018 14632 R12 7659 008 1267 1 0 003 052 398 488 0 255 804 968 98 012 14633 R12 7659 008 1267 1 0 003 052 398 488 0 184 845 963 982 019 14634 R12 7659 008 1267 1 0 003 052 398 488 0 263 678 1322 1296 -026 14635 R12 7659 008 1267 1 0 003 052 398 488 0 306 682 1242 1233 -009 14636 R12 7659 008 1267 1 0 003 052 398 488 0 3 710 1171 1158 -013 14637 R12 7659 008 1267 1 0 003 052 398 488 0 142 730 1322 1317 -005 14638 R12 7659 008 1267 1 0 003 052 398 488 0 143 757 123 1241 011 14639 R12 7659 008 1267 1 0 003 052 398 488 0 142 787 1157 1168 011 14640 R12 7659 008 1267 1 0 003 052 398 488 0 093 769 1323 1305 -018 14641 R12 7659 008 1267 1 0 003 052 398 488 0 112 780 1227 1238 011 14642 R12 7659 008 1267 1 0 003 052 398 488 0 116 810 1149 116 011 14643 R12 7659 008 1267 1 0 003 052 398 488 0 239 643 152 1446 -074 14644 R12 7659 008 1267 1 0 003 052 398 488 0 051 841 1323 1253 -07 14645 R12 7659 008 1267 1 0 003 052 398 488 0 203 873 872 907 035 14646 R12 7659 008 1267 1 0 003 052 398 488 0 197 798 103 1062 032 14647 R12 7659 008 1267 1 0 003 052 398 488 0 197 773 1082 112 038 14648 R12 7659 008 1267 1 0 003 052 398 488 0 204 848 926 951 025 14649 R12 7659 008 1267 1 0 003 052 398 488 0 203 824 968 999 031 14650 R12 7659 008 1267 1 0 003 052 398 488 0 136 873 97 999 029 14651 R12 7659 008 1267 1 0 003 052 398 488 0 141 848 103 1038 008 14

151

652 R12 7659 008 1267 1 0 003 052 398 488 0 146 873 962 984 022 14653 R12 7659 008 1267 1 0 003 052 398 488 0 38 750 962 981 019 14654 R12 7659 008 1267 1 0 003 052 398 488 0 38 642 13 1281 -019 14655 R12 7659 008 1267 1 0 003 052 398 488 0 38 625 1423 1339 -084 14656 R12 7659 008 1267 1 0 003 052 398 488 0 56 707 96 95 -01 14657 R12 7659 008 1267 1 0 003 052 398 488 0 56 604 1324 1249 -075 14658 R12 7659 008 1267 1 0 003 052 398 488 0 56 648 1144 1107 -037 14659 R12 7659 008 1267 1 0 003 052 398 488 0 77 670 96 921 -039 14660 R12 7659 008 1267 1 0 003 052 398 488 0 77 573 1324 1211 -113 14661 R12 7659 008 1267 1 0 003 052 398 488 0 77 603 1145 1108 -037 14662 R12 7659 008 1267 1 0 003 052 398 488 0 078 825 1224 1207 -017 14663 R12 7659 008 1267 1 0 003 052 398 488 0 08 823 1224 1207 -017 14664 R12 7659 008 1267 1 0 003 052 398 488 0 082 820 1224 1209 -015 14665 R12 7659 008 1267 1 0 003 052 398 488 0 079 971 961 962 001 14666 R12 7659 008 1267 1 0 003 052 398 488 0 084 846 1153 115 -003 14667 R12 7659 008 1267 1 0 003 052 398 488 0 083 892 1064 1069 005 14668 R12 7659 008 1267 1 0 003 052 398 488 0 089 772 1323 1305 -018 14669 R12 7659 008 1267 1 0 003 052 398 488 0 081 804 1276 1246 -03 14670 R12 7659 008 1267 1 0 003 052 398 488 0 084 765 1371 1335 -036 14671 R12 7659 008 1267 1 0 003 052 398 488 0 084 752 142 137 -05 14672 R12 7659 008 1267 1 0 003 052 398 488 0 083 784 132 1289 -031 14673 R12 7659 008 1267 1 0 003 052 398 488 0 084 779 132 1299 -021 14674 R12 7659 008 1267 1 0 003 052 398 488 0 081 728 152 1446 -074 14675 R12 7659 008 1267 1 0 003 052 398 488 0 114 748 1322 1318 -004 14676 R12 7659 008 1267 1 0 003 052 398 488 0 117 897 948 991 043 14677 R13 766 01 127 117 0 002 031 41 46 0 43 1073 551 5 -051 15678 R13 766 01 127 117 0 002 031 41 46 0 43 1073 545 5 -045 15679 R13 766 01 127 117 0 002 031 41 46 0 43 1123 526 46 -066 15680 R13 766 01 127 117 0 002 031 41 46 0 43 1123 517 46 -057 15681 R13 766 01 127 117 0 002 031 41 46 0 43 1173 488 422 -066 15682 R13 766 01 127 117 0 002 031 41 46 0 62 973 552 52 -032 15683 R13 766 01 127 117 0 002 031 41 46 0 62 1023 505 475 -03 15

152

684 R13 766 01 127 117 0 002 031 41 46 0 62 1073 457 435 -022 15685 R13 766 01 127 117 0 002 031 41 46 0 62 1073 463 435 -028 15686 R13 766 01 127 117 0 002 031 41 46 0 62 1123 425 398 -027 15687 R1 6677 039 2015 431 001 072 364 137 217 0 002 15732 377 399 022 16688 R1 6677 039 2015 431 001 072 364 137 217 0 002 16232 329 359 03 16689 R1 6677 039 2015 431 001 072 364 137 217 0 002 16732 29 322 032 16690 R1 6677 039 2015 431 001 072 364 137 217 0 002 17232 267 287 02 16691 R1 6677 039 2015 431 001 072 364 137 217 0 002 17232 264 287 023 16692 R1 6677 039 2015 431 001 072 364 137 217 0 002 17732 235 254 019 16693 R1 6677 039 2015 431 001 072 364 137 217 0 002 18232 209 223 014 16694 R1 6677 039 2015 431 001 072 364 137 217 0 002 18732 186 193 007 16695 R2 6716 001 2165 281 001 073 265 285 182 0 002 17232 288 331 043 16696 R2 6716 001 2165 281 001 073 265 285 182 0 002 17732 26 298 038 16697 R2 6716 001 2165 281 001 073 265 285 182 0 002 18232 233 266 033 16698 R2 6716 001 2165 281 001 073 265 285 182 0 002 18732 209 237 028 16699 R3 7122 024 168 291 006 08 262 309 194 0 002 16232 392 379 -013 16700 R3 7122 024 168 291 006 08 262 309 194 0 002 16732 361 342 -019 16701 R3 7122 024 168 291 006 08 262 309 194 0 002 17232 328 307 -021 16702 R3 7122 024 168 291 006 08 262 309 194 0 002 17732 3 275 -025 16703 R3 7122 024 168 291 006 08 262 309 194 0 002 18232 273 244 -029 16704 R3 7122 024 168 291 006 08 262 309 194 0 002 18732 248 215 -033 16705 R4 7142 001 161 458 001 157 094 194 292 0 002 15732 419 423 004 16706 R4 7142 001 161 458 001 157 094 194 292 0 002 16232 387 385 -002 16707 R4 7142 001 161 458 001 157 094 194 292 0 002 16732 352 349 -003 16708 R4 7142 001 161 458 001 157 094 194 292 0 002 17232 322 316 -006 16709 R4 7142 001 161 458 001 157 094 194 292 0 002 17732 292 285 -007 16710 R4 7142 001 161 458 001 157 094 194 292 0 002 18232 265 255 -01 16711 R4 7142 001 161 458 001 157 094 194 292 0 002 18732 24 228 -012 16712 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 16732 385 357 -028 16713 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17132 359 328 -031 16714 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17532 337 301 -036 16715 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17932 31 275 -035 16

153

716 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 18332 292 25 -042 16717 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 18732 276 226 -05 16718 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 17532 319 311 -008 16719 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 17932 3 285 -015 16720 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18132 257 272 015 16721 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18332 242 259 017 16722 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18532 231 247 016 16723 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18732 222 235 013 16724 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16532 368 375 007 16725 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16732 355 36 005 16726 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16932 342 346 004 16727 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17132 326 331 005 16728 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17332 311 317 006 16729 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17532 3 304 004 16730 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17732 285 291 006 16731 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17932 275 278 003 16732 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18132 264 265 001 16733 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18332 255 252 -003 16734 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18532 242 24 -002 16735 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18732 234 228 -006 16736 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 16332 41 377 -033 16737 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 16732 371 347 -024 16738 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17132 344 319 -025 16739 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17532 318 292 -026 16740 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17932 295 266 -029 16741 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 18332 273 241 -032 16742 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 18732 259 217 -042 16743 Bl2 4781 194 1791 109 019 475 996 394 211 048 0 10202 994 956 -038 17744 Bl2 4781 194 1791 109 019 475 996 394 211 048 0 94615 1165 1134 -031 17745 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 98315 994 1008 014 17746 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 10132 869 925 056 17747 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 95315 1141 1117 -024 17

154

748 R8 7537 007 1284 157 007 004 072 419 513 0 014 99315 111 1146 036 17749 R8 7537 007 1284 157 007 004 072 419 513 0 014 10112 1078 1115 037 17750 R8 7537 007 1284 157 007 004 072 419 513 0 014 10432 1018 1062 044 17751 R8 7537 007 1284 157 007 004 072 419 513 0 014 10842 956 997 041 17752 R8 7537 007 1284 157 007 004 072 419 513 0 014 11142 915 952 037 17753 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 785 792 007 18754 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 782 792 01 18755 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 787 792 005 18756 R7 747 008 1328 165 0 0 077 43 522 0 0 13232 726 73 004 18757 R7 747 008 1328 165 0 0 077 43 522 0 0 13732 679 673 -006 18758 R7 747 008 1328 165 0 0 077 43 522 0 0 13732 677 673 -004 18759 R7 747 008 1328 165 0 0 077 43 522 0 0 14232 625 62 -005 18760 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 1744 -022 -068 -046 19761 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 17194 -016 -049 -033 19762 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16948 -009 -029 -02 19763 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16702 -002 -009 -007 19764 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16456 007 012 005 19765 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 1621 016 034 018 19766 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 97515 1026 1014 -012 19767 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 98275 981 991 01 19768 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 98315 1005 99 -015 19769 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 965 1077 1048 -029 19770 Ph1 512 067 186 61 013 25 73 375 79 04 002 18179 097 092 -005 19771 Ph1 512 067 186 61 013 25 73 375 79 04 002 17933 107 107 0 19772 Ph1 512 067 186 61 013 25 73 375 79 04 002 17687 117 121 004 19773 Ph1 512 067 186 61 013 25 73 375 79 04 002 1744 128 136 008 19774 Ph1 512 067 186 61 013 25 73 375 79 04 002 17194 138 152 014 19775 Ph1 512 067 186 61 013 25 73 375 79 04 002 16948 15 168 018 19776 Ph1 512 067 186 61 013 25 73 375 79 04 002 16702 163 184 021 19777 Ph1 512 067 186 61 013 25 73 375 79 04 002 16456 175 201 026 19778 Ph1 512 067 186 61 013 25 73 375 79 04 002 1621 188 219 031 19779 Ph1 512 067 186 61 013 25 73 375 79 04 002 97815 1066 1034 -032 19

155

780 Ph1 512 067 186 61 013 25 73 375 79 04 002 9975 1015 985 -03 19781 Ph1 512 067 186 61 013 25 73 375 79 04 002 10164 975 942 -033 19782 Ph5 597 046 1852 36 017 065 28 389 845 015 002 1744 245 23 -015 19783 Ph5 597 046 1852 36 017 065 28 389 845 015 002 17194 258 245 -013 19784 Ph5 597 046 1852 36 017 065 28 389 845 015 002 16948 272 261 -011 19785 Ph5 597 046 1852 36 017 065 28 389 845 015 002 1621 316 311 -005 19786 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15964 332 329 -003 19787 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15718 348 348 0 19788 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15472 366 367 001 19789 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15226 383 386 003 19790 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14979 402 407 005 19791 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14733 42 428 008 19792 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14487 44 45 01 19793 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14241 46 472 012 19794 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10346 103 996 -034 19795 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10477 1011 971 -04 19796 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10675 973 934 -039 19797 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10838 955 905 -05 19798 Ph5 597 046 1852 36 017 065 28 389 845 015 002 11041 911 871 -04 19799 Te1 492 083 164 72 013 51 102 27 65 072 002 18179 053 038 -015 19800 Te1 492 083 164 72 013 51 102 27 65 072 002 17933 062 052 -01 19801 Te1 492 083 164 72 013 51 102 27 65 072 002 17687 071 068 -003 19802 Te1 492 083 164 72 013 51 102 27 65 072 002 1744 081 083 002 19803 Te1 492 083 164 72 013 51 102 27 65 072 002 17194 09 099 009 19804 Te1 492 083 164 72 013 51 102 27 65 072 002 16948 101 116 015 19805 Te1 492 083 164 72 013 51 102 27 65 072 002 16702 112 133 021 19806 Te1 492 083 164 72 013 51 102 27 65 072 002 16456 124 15 026 19807 Te1 492 083 164 72 013 51 102 27 65 072 002 1621 136 169 033 19808 Te1 492 083 164 72 013 51 102 27 65 072 002 9806 1055 1041 -014 19809 Te1 492 083 164 72 013 51 102 27 65 072 002 99335 1017 997 -02 19810 Te1 492 083 164 72 013 51 102 27 65 072 002 10023 978 969 -009 19811 Te1 492 083 164 72 013 51 102 27 65 072 002 10179 951 925 -026 19

156

812 Te1 492 083 164 72 013 51 102 27 65 072 002 10294 913 895 -018 19813 Te1 492 083 164 72 013 51 102 27 65 072 002 10401 879 87 -009 19814 Te1 492 083 164 72 013 51 102 27 65 072 002 96995 1098 1084 -014 19815 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18671 214 198 -016 19816 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18425 225 211 -014 19817 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18179 237 225 -012 19818 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17933 25 239 -011 19819 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17687 263 253 -01 19820 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1744 276 268 -008 19821 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17194 291 283 -008 19822 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16948 305 299 -006 19823 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16702 32 315 -005 19824 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16456 336 331 -005 19825 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1621 352 348 -004 19826 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15964 368 366 -002 19827 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15718 385 384 -001 19828 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15472 4 403 003 19829 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15226 421 423 002 19830 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 14979 44 443 003 19831 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 14733 459 464 005 19832 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 99603 1077 1091 014 19833 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10103 1053 1062 009 19834 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10117 1041 106 019 19835 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10163 1049 1051 002 19836 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10229 1019 1038 019 19837 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10338 995 1018 023 19838 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1055 963 979 016 19839 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10797 911 937 026 19840 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17692 237 248 011 20841 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17442 249 263 014 20842 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17192 263 279 016 20843 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16952 277 294 017 20

157

844 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16702 292 31 018 20845 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16462 308 327 019 20846 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16212 324 344 02 20847 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15962 34 363 023 20848 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15722 358 381 023 20849 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15472 376 4 024 20850 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15222 394 42 026 20851 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14982 414 44 026 20852 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14732 434 462 028 20853 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14492 454 483 029 20854 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 11342 932 857 -075 20855 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 11092 984 898 -086 20856 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 10762 1044 954 -09 20857 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 10562 1083 991 -092 20858 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 83515 1112 1122 01 20859 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 84215 1094 1107 013 20860 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 85215 1075 1086 011 20861 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 86815 1044 1052 008 20862 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 86915 103 105 02 20863 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 87715 1009 1034 025 20864 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 80215 1086 1065 -021 20865 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 81915 1036 1027 -009 20866 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 82615 1014 1011 -003 20867 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 78115 1052 1048 -004 20868 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 77915 1044 1053 009 20869 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 81115 994 98 -014 20870 Tr1 6074 027 1922 337 018 028 211 528 632 006 296 73215 1076 1058 -018 20871 Tr1 6074 027 1922 337 018 028 211 528 632 006 296 74015 1027 1038 011 20872 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 69115 1128 1123 -005 20873 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 71515 1045 1057 012 20874 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 73015 988 1018 03 20875 Tr4 6388 031 171 29 013 024 182 567 682 005 002 17687 25 245 -005 20

158

876 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1744 262 259 -003 20877 Tr4 6388 031 171 29 013 024 182 567 682 005 002 17194 275 274 -001 20878 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16948 289 29 001 20879 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16702 303 306 003 20880 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16456 318 322 004 20881 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1621 333 339 006 20882 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15964 349 357 008 20883 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15718 365 375 01 20884 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15472 382 394 012 20885 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15226 397 413 016 20886 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14979 417 434 017 20887 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14733 436 454 018 20888 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14487 455 476 021 20889 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1017 1003 1046 043 20890 Tr4 6388 031 171 29 013 024 182 567 682 005 002 97925 1071 1124 053 20891 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1090 876 913 037 20892 Tr4 6388 031 171 29 013 024 182 567 682 005 002 10425 956 997 041 20893 Tr4 6388 031 171 29 013 024 182 567 682 005 002 9586 1108 1169 061 20894 Tr4 6388 031 171 29 013 024 182 567 682 005 1 83915 1064 1066 002 20895 Tr4 6388 031 171 29 013 024 182 567 682 005 1 84815 1047 1047 0 20896 Tr4 6388 031 171 29 013 024 182 567 682 005 1 86215 1022 1019 -003 20897 Tr4 6388 031 171 29 013 024 182 567 682 005 1 87015 1008 1003 -005 20898 Tr4 6388 031 171 29 013 024 182 567 682 005 139 78815 1097 1113 016 20899 Tr4 6388 031 171 29 013 024 182 567 682 005 139 81815 1031 1044 013 20900 Tr4 6388 031 171 29 013 024 182 567 682 005 139 84315 99 99 0 20901 Tr4 6388 031 171 29 013 024 182 567 682 005 241 74515 1059 1077 018 20902 Tr4 6388 031 171 29 013 024 182 567 682 005 241 78815 967 974 007 20903 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67415 1085 1118 033 20904 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67315 108 112 04 20905 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67115 1079 1126 047 20906 Tr4 6388 031 171 29 013 024 182 567 682 005 386 65815 116 1166 006 20907 A1 5856 064 1898 745 0 348 617 324 092 0 083 14732 275 259 -016 21

159

908 A1 5856 064 1898 745 0 348 617 324 092 0 083 15732 222 185 -037 21909 A1 5856 064 1898 745 0 348 617 324 092 0 083 15732 215 185 -03 21910 A1 5856 064 1898 745 0 348 617 324 092 0 083 16232 176 152 -024 21911 A1 5856 064 1898 745 0 348 617 324 092 0 072 14732 237 27 033 21912 A1 5856 064 1898 745 0 348 617 324 092 0 1 14232 25 283 033 21913 A1 5856 064 1898 745 0 348 617 324 092 0 1 14732 225 244 019 21914 A1 5856 064 1898 745 0 348 617 324 092 0 1 13732 364 326 -038 21915 A1 5856 064 1898 745 0 348 617 324 092 0 1 14732 201 244 043 21916 A1 5856 064 1898 745 0 348 617 324 092 0 46 13732 18 174 -006 21917 A1 5856 064 1898 745 0 348 617 324 092 0 46 14732 145 118 -027 21918 Bl3 4821 125 155 1064 0 908 1192 24 008 014 022 13732 286 319 033 21919 Bl3 4821 125 155 1064 0 908 1192 24 008 014 022 15232 23 174 -056 21920 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 13732 174 183 009 21921 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 15732 091 048 -043 21922 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 13732 142 183 041 21923 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 15732 08 048 -032 21924 Bl4 5354 105 1729 782 0 546 832 359 164 02 636 12732 13 177 047 21925 Bl4 5354 105 1729 782 0 546 832 359 164 02 636 15732 027 021 -006 21926 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 14732 36 339 -021 21927 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 15732 216 25 034 21928 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 14732 34 339 -001 21929 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 15732 294 25 -044 21930 R5 7323 019 136 278 0 017 169 378 411 013 21 10732 61 619 009 21931 R5 7323 019 136 278 0 017 169 378 411 013 21 13732 325 356 031 21932 R5 7323 019 136 278 0 017 169 378 411 013 3 10732 48 548 068 21933 R5 7323 019 136 278 0 017 169 378 411 013 33 14732 225 229 004 21934 R5 7323 019 136 278 0 017 169 378 411 013 52 10732 397 444 047 21935 R5 7323 019 136 278 0 017 169 378 411 013 52 14732 167 188 021 21936 R5 7323 019 136 278 0 017 169 378 411 013 123 11232 32 325 005 21937 R5 7323 019 136 278 0 017 169 378 411 013 123 12232 24 281 041 21938 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17732 22 213 -007 22939 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17482 232 226 -006 22

160

940 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17232 244 24 -004 22941 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16982 257 254 -003 22942 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16732 27 268 -002 22943 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16482 283 283 0 22944 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16232 297 298 001 22945 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15982 311 314 003 22946 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15732 326 331 005 22947 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15482 342 348 006 22948 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15232 357 365 008 22949 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14982 374 383 009 22950 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14732 391 402 011 22951 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14482 407 421 014 22952 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14232 427 441 014 22953 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 13982 446 462 016 22954 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 13732 465 484 019 22955 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 10104 899 925 026 22956 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 88785 1163 1164 001 22957 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 92395 1085 1086 001 22958 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 94585 1031 1042 011 22959 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 96475 10 1006 006 22960 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 86705 879 925 046 22961 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 80455 1033 1052 019 22962 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 79395 1059 1075 016 22963 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 78045 1105 1107 002 22964 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 82175 99 1015 025 22965 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 76375 1084 1126 042 22966 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 77495 1082 1099 017 22967 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 77845 1045 1091 046 22968 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 78565 1025 1074 049 22969 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 74215 1016 994 -022 22970 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 72835 1055 1027 -028 22971 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 75905 959 955 -004 22

161

972 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 70335 957 912 -045 22973 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 66285 11 1017 -083 22974 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 67535 105 983 -067 22975 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 16702 228 201 -027 23976 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 1621 254 235 -019 23977 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 15718 283 271 -012 23978 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 15226 315 31 -005 23979 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 14733 348 351 003 23980 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 14241 387 395 008 23981 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 13749 429 443 014 23982 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 13257 475 494 019 23983 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 9804 1066 1019 -047 23984 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 99985 102 977 -043 23985 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10295 978 917 -061 23986 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10443 958 888 -07 23987 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10783 881 828 -053 23988 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 9621 1105 1062 -043 23989 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 84825 94 967 027 23990 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 83675 971 993 022 23991 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 81535 1035 1043 008 23992 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 78315 1129 1124 -005 23993 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 79515 916 977 061 23994 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 77905 962 1017 055 23995 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 75945 1016 1067 051 23996 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 73445 11 1136 036 23997 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 73605 984 101 026 23998 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 71765 1033 106 027 23999 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 70885 1061 1085 024 23

1000 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 16702 196 203 007 231001 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 1621 225 237 012 231002 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 15718 256 274 018 231003 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 15226 291 312 021 23

162

1004 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 14733 329 354 025 231005 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 14241 372 398 026 231006 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 13749 422 446 024 231007 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 13257 477 497 02 231008 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 98165 1026 1022 -004 231009 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 9961 997 99 -007 231010 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10254 944 93 -014 231011 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10283 901 924 023 231012 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10432 898 895 -003 231013 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 96235 1068 1067 -001 231014 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 86735 917 947 03 231015 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 86005 92 963 043 231016 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 84065 984 1006 022 231017 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 81885 1032 1057 025 231018 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 80555 1064 109 026 231019 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 78955 1105 113 025 231020 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 75375 932 947 015 231021 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 74875 946 96 014 231022 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 72775 982 1015 033 231023 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 71765 1025 1042 017 231024 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 70435 1082 108 -002 231025 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 79995 89 952 062 231026 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 77855 94 1003 063 231027 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 74675 1029 1086 057 231028 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 17692 249 21 -039 231029 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 17192 274 24 -034 231030 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 16702 301 272 -029 231031 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 16212 33 305 -025 231032 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 15722 362 341 -021 231033 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 15222 396 379 -017 231034 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 14732 433 42 -013 231035 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 14242 473 463 -01 23

163

1036 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10873 845 881 036 231037 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10385 932 968 036 231038 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10097 977 1024 047 231039 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 98515 1056 1076 02 231040 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 97335 1075 1102 027 231041 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 95695 1129 114 011 231042 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 72365 99 995 005 231043 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 70935 1031 1032 001 231044 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 68885 1105 1089 -016 231045 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 79455 97 962 -008 231046 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 77665 1005 1003 -002 231047 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 76125 1065 104 -025 231048 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 74385 1097 1085 -012 231049 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 82165 955 943 -012 231050 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 79545 102 1001 -019 231051 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 77575 108 1047 -033 231052 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 76385 1104 1077 -027 231053 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 91745 904 881 -023 231054 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 88545 972 94 -032 231055 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 86505 1008 98 -028 231056 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 84985 1042 1012 -03 231057 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 81965 1124 1078 -046 231058 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 17194 279 244 -035 231059 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 16702 306 275 -031 231060 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 1621 335 309 -026 231061 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 15718 367 345 -022 231062 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 15226 402 383 -019 231063 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 14733 439 424 -015 231064 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 14241 48 468 -012 231065 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10056 1039 1039 0 231066 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10414 941 968 027 231067 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10579 906 938 032 23

164

1068 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 96708 1118 1122 004 231069 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 87285 933 949 016 231070 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 85375 974 988 014 231071 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 83085 1009 1036 027 231072 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 81415 1056 1074 018 231073 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 81125 1062 1081 019 231074 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 79915 1085 1109 024 231075 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 79465 1119 112 001 231076 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 72425 985 993 008 231077 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 71805 1005 1009 004 231078 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 69875 1052 1061 009 231079 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 69335 1095 1076 -019 231080 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 67945 1133 1116 -017 231081 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 67735 1143 1122 -021 231082 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 86275 954 981 027 231083 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 84505 1001 1018 017 231084 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 82755 1024 1056 032 231085 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 80285 1074 1113 039 231086 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 79825 1102 1124 022 231087 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 78645 1156 1153 -003 231088 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 95945 883 875 -008 231089 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 90155 988 979 -009 231090 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 85905 107 1065 -005 231091 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 84075 1135 1105 -03 231092 D2 66 036 1523 408 01 221 501 384 216 014 002 1744 209 216 007 241093 D2 66 036 1523 408 01 221 501 384 216 014 002 17194 221 231 01 241094 D2 66 036 1523 408 01 221 501 384 216 014 002 16948 234 248 014 241095 D2 66 036 1523 408 01 221 501 384 216 014 002 16702 248 264 016 241096 D2 66 036 1523 408 01 221 501 384 216 014 002 16456 262 281 019 241097 D2 66 036 1523 408 01 221 501 384 216 014 002 1621 276 299 023 241098 D2 66 036 1523 408 01 221 501 384 216 014 002 15964 292 317 025 241099 D2 66 036 1523 408 01 221 501 384 216 014 002 15718 308 336 028 24

165

1100 D2 66 036 1523 408 01 221 501 384 216 014 002 15472 325 355 03 241101 D2 66 036 1523 408 01 221 501 384 216 014 002 15226 343 376 033 241102 D2 66 036 1523 408 01 221 501 384 216 014 002 14979 361 396 035 241103 D2 66 036 1523 408 01 221 501 384 216 014 002 14733 38 418 038 241104 D2 66 036 1523 408 01 221 501 384 216 014 002 14487 4 44 04 241105 D2 66 036 1523 408 01 221 501 384 216 014 002 14241 421 463 042 241106 D2 66 036 1523 408 01 221 501 384 216 014 002 13995 444 488 044 241107 D2 66 036 1523 408 01 221 501 384 216 014 002 13749 466 513 047 241108 D2 66 036 1523 408 01 221 501 384 216 014 002 10342 105 1034 -016 241109 D2 66 036 1523 408 01 221 501 384 216 014 002 10578 985 979 -006 241110 D2 66 036 1523 408 01 221 501 384 216 014 002 10742 928 944 016 241111 D2 66 036 1523 408 01 221 501 384 216 014 002 10912 891 91 019 241112 D2 66 036 1523 408 01 221 501 384 216 014 131 86205 1056 1017 -039 241113 D2 66 036 1523 408 01 221 501 384 216 014 131 83505 1118 1076 -042 241114 D2 66 036 1523 408 01 221 501 384 216 014 164 77205 1195 1173 -022 241115 D2 66 036 1523 408 01 221 501 384 216 014 164 80795 1112 1084 -028 241116 D2 66 036 1523 408 01 221 501 384 216 014 164 80845 1093 1083 -01 241117 D2 66 036 1523 408 01 221 501 384 216 014 164 83855 986 1015 029 241118 D2 66 036 1523 408 01 221 501 384 216 014 198 80395 1048 1045 -003 241119 D2 66 036 1523 408 01 221 501 384 216 014 198 81505 999 102 021 241120 D2 66 036 1523 408 01 221 501 384 216 014 198 83355 963 979 016 241121 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 84835 116 1193 033 251122 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 87035 108 1123 043 251123 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 87505 1074 1109 035 251124 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 88475 105 1081 031 251125 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 89165 1042 1061 019 251126 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 89255 1033 1059 026 251127 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 82635 1099 112 021 251128 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 83105 1089 1106 017 251129 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 83765 1073 1087 014 251130 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 84845 1037 1057 02 251131 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 80545 112 1093 -027 25

166

1132 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 81775 1088 1059 -029 251133 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82235 1057 1046 -011 251134 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82485 1054 1039 -015 251135 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82995 1025 1026 001 251136 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 84995 975 974 -001 251137 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 79775 1016 1005 -011 251138 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 80795 977 978 001 251139 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 81805 957 952 -005 251140 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 18179 018 01 -008 251141 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17933 026 026 0 251142 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17687 034 042 008 251143 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17441 043 059 016 251144 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17395 052 062 01 251145 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 16949 062 094 032 251146 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 16703 072 112 04 251147 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 98505 1082 993 -089 251148 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 98905 107 983 -087 251149 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 10042 1023 949 -074 251150 A2 5869 001 2157 002 002 538 949 33 157 0 0 1036 1158 1151 -007 261151 A2 5869 001 2157 002 002 538 949 33 157 0 0 1054 1077 1074 -003 261152 A2 5869 001 2157 002 002 538 949 33 157 0 0 1065 1045 1034 -011 261153 A2 5869 001 2157 002 002 538 949 33 157 0 0 1075 1016 10 -016 261154 A2 5869 001 2157 002 002 538 949 33 157 0 0 1084 987 972 -015 261155 A2 5869 001 2157 002 002 538 949 33 157 0 0 1096 955 938 -017 261156 A2 5869 001 2157 002 002 538 949 33 157 0 0 1106 93 911 -019 261157 A2 5869 001 2157 002 002 538 949 33 157 0 0 1116 906 886 -02 261158 A2 5869 001 2157 002 002 538 949 33 157 0 0 1036 1132 1151 019 261159 A2 5869 001 2157 002 002 538 949 33 157 0 0 1054 1083 1074 -009 261160 A2 5869 001 2157 002 002 538 949 33 157 0 0 1062 103 1044 014 261161 A2 5869 001 2157 002 002 538 949 33 157 0 0 1065 1044 1034 -01 261162 A2 5869 001 2157 002 002 538 949 33 157 0 0 1074 1015 1003 -012 261163 A2 5869 001 2157 002 002 538 949 33 157 0 0 1083 974 975 001 26

167

1164 A2 5869 001 2157 002 002 538 949 33 157 0 0 1088 963 96 -003 261165 A2 5869 001 2157 002 002 538 949 33 157 0 0 1094 948 943 -005 261166 A2 5869 001 2157 002 002 538 949 33 157 0 0 1103 925 919 -006 261167 A2 5869 001 2157 002 002 538 949 33 157 0 0 1113 899 893 -006 261168 A2 5869 001 2157 002 002 538 949 33 157 0 0 1123 875 87 -005 261169 A2 5869 001 2157 002 002 538 949 33 157 0 0 1081 1002 981 -021 261170 A2 5869 001 2157 002 002 538 949 33 157 0 0 1091 972 952 -02 261171 A2 5869 001 2157 002 002 538 949 33 157 0 0 1100 944 927 -017 261172 A2 5869 001 2157 002 002 538 949 33 157 0 0 1110 917 901 -016 261173 A2 5869 001 2157 002 002 538 949 33 157 0 0 1120 891 877 -014 261174 A2 5869 001 2157 002 002 538 949 33 157 0 0 1130 867 854 -013 261175 A2 5869 001 2157 002 002 538 949 33 157 0 106 917 1055 1067 012 261176 A2 5869 001 2157 002 002 538 949 33 157 0 106 928 1044 1035 -009 261177 A2 5869 001 2157 002 002 538 949 33 157 0 106 937 1007 101 003 261178 A2 5869 001 2157 002 002 538 949 33 157 0 106 935 997 1016 019 261179 A2 5869 001 2157 002 002 538 949 33 157 0 106 954 954 964 01 261180 A2 5869 001 2157 002 002 538 949 33 157 0 106 976 9 908 008 261181 A2 5869 001 2157 002 002 538 949 33 157 0 106 985 874 887 013 261182 A2 5869 001 2157 002 002 538 949 33 157 0 106 996 854 861 007 261183 A2 5869 001 2157 002 002 538 949 33 157 0 106 1013 813 823 01 261184 A2 5869 001 2157 002 002 538 949 33 157 0 106 908 1103 1093 -01 261185 A2 5869 001 2157 002 002 538 949 33 157 0 106 918 1065 1064 -001 261186 A2 5869 001 2157 002 002 538 949 33 157 0 106 938 1007 1007 0 261187 A2 5869 001 2157 002 002 538 949 33 157 0 106 948 981 98 -001 261188 A2 5869 001 2157 002 002 538 949 33 157 0 106 948 978 98 002 261189 A2 5869 001 2157 002 002 538 949 33 157 0 106 957 957 956 -001 261190 A2 5869 001 2157 002 002 538 949 33 157 0 106 977 904 906 002 261191 A2 5869 001 2157 002 002 538 949 33 157 0 106 987 877 882 005 261192 A2 5869 001 2157 002 002 538 949 33 157 0 196 840 108 1057 -023 261193 A2 5869 001 2157 002 002 538 949 33 157 0 196 849 1052 1036 -016 261194 A2 5869 001 2157 002 002 538 949 33 157 0 196 851 1043 1032 -011 261195 A2 5869 001 2157 002 002 538 949 33 157 0 196 859 102 1013 -007 26

168

1196 A2 5869 001 2157 002 002 538 949 33 157 0 196 870 985 988 003 261197 A2 5869 001 2157 002 002 538 949 33 157 0 196 879 957 968 011 261198 A2 5869 001 2157 002 002 538 949 33 157 0 196 889 932 945 013 261199 A2 5869 001 2157 002 002 538 949 33 157 0 196 844 108 1048 -032 261200 A2 5869 001 2157 002 002 538 949 33 157 0 196 853 1051 1027 -024 261201 A2 5869 001 2157 002 002 538 949 33 157 0 196 863 1017 1004 -013 261202 A2 5869 001 2157 002 002 538 949 33 157 0 196 864 1015 1002 -013 261203 A2 5869 001 2157 002 002 538 949 33 157 0 196 873 986 981 -005 261204 A2 5869 001 2157 002 002 538 949 33 157 0 196 883 956 959 003 261205 A2 5869 001 2157 002 002 538 949 33 157 0 196 893 927 936 009 261206 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1006 1073 1124 051 271207 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1013 1052 103 -022 271208 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1013 1043 103 -013 271209 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1017 1025 989 -036 271210 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1018 1013 98 -033 271211 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18669 -097 -101 -004 271212 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18571 -094 -095 -001 271213 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18473 -09 -089 001 271214 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 18732 -006 -093 -086 281215 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 18232 008 -056 -064 281216 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 17732 023 -018 -04 281217 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 17232 039 023 -016 281218 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 16732 055 066 011 281219 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 16232 073 111 038 281220 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 15732 094 16 066 281221 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 15232 117 212 094 281222 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 18672 -005 -069 -063 281223 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 18182 009 -033 -042 281224 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 17692 024 004 -02 281225 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 17192 04 044 004 281226 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 16702 057 085 028 281227 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 18732 -005 -089 -084 28

169

1228 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 18232 008 -052 -06 281229 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 17732 022 -014 -035 281230 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 17232 037 027 -01 281231 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 16732 053 07 017 281232 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 16232 072 116 044 281233 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 15732 092 164 073 281234 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 15232 116 216 101 281235 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 18672 -002 -073 -071 281236 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 18182 011 -037 -049 281237 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 17692 026 0 -026 281238 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 17192 042 041 -002 281239 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 16702 059 083 024 281240 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 16212 077 127 051 281241 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 15722 098 175 077 281242 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 15222 122 226 105 281243 A5 5946 073 179 518 013 371 645 423 147 0 0 16232 222 262 04 291244 A5 5946 073 179 518 013 371 645 423 147 0 0 15232 274 344 07 291245 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 17732 009 -004 -013 291246 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 16732 035 074 039 291247 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 15232 103 211 108 291248 D1 6528 059 1705 402 008 182 47 434 129 013 002 15712 322 343 021 301249 D1 6528 059 1705 402 008 182 47 434 129 013 002 16202 291 305 014 301250 D1 6528 059 1705 402 008 182 47 434 129 013 002 16702 261 269 008 301251 D1 6528 059 1705 402 008 182 47 434 129 013 002 17192 235 235 0 301252 D1 6528 059 1705 402 008 182 47 434 129 013 002 17682 211 204 -007 301253 D1 6528 059 1705 402 008 182 47 434 129 013 002 18172 187 174 -013 301254 D1 6528 059 1705 402 008 182 47 434 129 013 002 18672 166 145 -021 301255 D1 6528 059 1705 402 008 182 47 434 129 013 002 10091 106 1099 039 301256 D1 6528 059 1705 402 008 182 47 434 129 013 002 10235 1025 1065 04 301257 D1 6528 059 1705 402 008 182 47 434 129 013 002 10377 10 1033 033 301258 D1 6528 059 1705 402 008 182 47 434 129 013 002 10571 953 991 038 301259 D1 6528 059 1705 402 008 182 47 434 129 013 002 10759 925 953 028 30

170

1260 R33 7312 019 1356 319 0 018 168 386 42 0 21 12732 385 419 034 311261 R33 7312 019 1356 319 0 018 168 386 42 0 21 13732 332 343 011 311262 R33 7312 019 1356 319 0 018 168 386 42 0 21 14732 273 275 002 311263 R33 7312 019 1356 319 0 018 168 386 42 0 52 11732 369 357 -012 311264 R33 7312 019 1356 319 0 018 168 386 42 0 52 12732 305 289 -016 311265 R33 7312 019 1356 319 0 018 168 386 42 0 52 13732 251 232 -019 311266 R33 7312 019 1356 319 0 018 168 386 42 0 52 14732 203 184 -019 311267 R33 7312 019 1356 319 0 018 168 386 42 0 56 11732 36 347 -013 311268 R33 7312 019 1356 319 0 018 168 386 42 0 56 12732 297 281 -016 311269 R33 7312 019 1356 319 0 018 168 386 42 0 56 13732 242 227 -015 311270 R33 7312 019 1356 319 0 018 168 386 42 0 56 14732 185 181 -004 311271 R33 7312 019 1356 319 0 018 168 386 42 0 88 11732 3 304 004 311272 R33 7312 019 1356 319 0 018 168 386 42 0 88 14732 147 181 034 311273 A6 6215 076 168 496 025 326 508 502 172 0 0 16232 26 277 017 321274 A6 6215 076 168 496 025 326 508 502 172 0 0 16232 252 277 025 321275 H4 736 0 156 0 0 0 21 44 38 0 21 88045 897 899 002 331276 H4 736 0 156 0 0 0 21 44 38 0 21 83595 979 98 001 331277 H4 736 0 156 0 0 0 21 44 38 0 21 79595 1085 1065 -02 331278 H4 736 0 156 0 0 0 21 44 38 0 21 79495 1099 1067 -032 331279 H4 736 0 156 0 0 0 21 44 38 0 089 95135 962 984 022 331280 H4 736 0 156 0 0 0 21 44 38 0 089 97615 915 952 037 331281 H4 736 0 156 0 0 0 21 44 38 0 089 93835 103 1002 -028 331282 H4 736 0 156 0 0 0 21 44 38 0 089 91675 1081 1034 -047 331283 R34 7389 006 1577 075 0 014 058 462 419 0 666 12282 3 321 022 341284 R34 7389 006 1577 075 0 014 058 462 419 0 666 10862 386 419 033 341285 R34 7389 006 1577 075 0 014 058 462 419 0 398 13732 31 302 -008 341286 R34 7389 006 1577 075 0 014 058 462 419 0 398 12742 378 367 -011 341287 R34 7389 006 1577 075 0 014 058 462 419 0 398 11802 445 435 -01 341288 R34 7389 006 1577 075 0 014 058 462 419 0 666 11332 358 384 027 341289 R34 7389 006 1577 075 0 014 058 462 419 0 666 11832 324 35 026 341290 R34 7389 006 1577 075 0 014 058 462 419 0 666 11282 354 388 034 341291 R34 7389 006 1577 075 0 014 058 462 419 0 666 10732 394 429 035 34

171

1292 R34 7389 006 1577 075 0 014 058 462 419 0 666 11382 354 381 027 341293 R34 7389 006 1577 075 0 014 058 462 419 0 666 11332 352 384 033 341294 H5 741 0 117 0 0 0 0 9 44 0 29 62235 1005 1014 009 351295 H5 741 0 117 0 0 0 0 9 44 0 29 66145 869 915 046 351296 H5 741 0 117 0 0 0 0 9 44 0 29 59965 1094 108 -014 351297 H5 741 0 117 0 0 0 0 9 44 0 29 64375 908 958 05 351298 H5 741 0 117 0 0 0 0 9 44 0 181 65365 1082 1073 -009 351299 H5 741 0 117 0 0 0 0 9 44 0 181 69845 944 964 02 351300 H5 741 0 117 0 0 0 0 9 44 0 181 68515 968 994 026 351301 H5 741 0 117 0 0 0 0 9 44 0 697 49345 1068 1093 025 351302 H5 741 0 117 0 0 0 0 9 44 0 697 51745 91 999 089 351303 H5 741 0 117 0 0 0 0 9 44 0 697 52495 87 972 102 351304 H5 741 0 117 0 0 0 0 9 44 0 092 74475 1003 1014 011 351305 H5 741 0 117 0 0 0 0 9 44 0 092 71685 1094 1074 -02 351306 H5 741 0 117 0 0 0 0 9 44 0 129 74535 928 944 016 351307 H5 741 0 117 0 0 0 0 9 44 0 129 70725 1038 1026 -012 351308 H5 741 0 117 0 0 0 0 9 44 0 129 68655 1062 1074 012 351309 H5 741 0 117 0 0 0 0 9 44 0 063 77645 1017 1017 0 351310 H5 741 0 117 0 0 0 0 9 44 0 063 75635 1096 1057 -039 351311 H5 741 0 117 0 0 0 0 9 44 0 063 80445 931 966 035 351312 H5 741 0 117 0 0 0 0 9 44 0 077 77405 948 988 04 351313 H5 741 0 117 0 0 0 0 9 44 0 077 74415 108 1048 -032 351314 H6 741 0 122 0 0 0 52 44 4 0 002 10323 1091 1187 096 361315 H6 741 0 122 0 0 0 52 44 4 0 002 10535 1034 113 096 361316 H6 741 0 122 0 0 0 52 44 4 0 002 1076 964 1075 111 361317 H6 741 0 122 0 0 0 52 44 4 0 002 14732 449 488 039 361318 H6 741 0 122 0 0 0 52 44 4 0 002 15222 415 443 028 361319 H6 741 0 122 0 0 0 52 44 4 0 002 15712 383 401 018 361320 H6 741 0 122 0 0 0 52 44 4 0 002 16212 352 362 01 361321 H6 741 0 122 0 0 0 52 44 4 0 002 16702 326 326 0 361322 H6 741 0 122 0 0 0 52 44 4 0 002 17192 3 292 -008 361323 H6 741 0 122 0 0 0 52 44 4 0 002 17682 277 261 -016 36

172

1324 H6 741 0 122 0 0 0 52 44 4 0 002 18172 255 231 -024 361325 H6 741 0 122 0 0 0 52 44 4 0 002 18672 233 203 -03 361326 H9 756 0 12 0 0 49 0 45 4 0 002 10788 11 1145 045 361327 H9 756 0 12 0 0 49 0 45 4 0 002 10969 1066 1085 019 361328 H9 756 0 12 0 0 49 0 45 4 0 002 11136 1014 1035 021 361329 H9 756 0 12 0 0 49 0 45 4 0 002 11301 971 99 019 361330 H9 756 0 12 0 0 49 0 45 4 0 002 15224 441 431 -01 361331 H9 756 0 12 0 0 49 0 45 4 0 002 15716 406 391 -015 361332 H9 756 0 12 0 0 49 0 45 4 0 002 16208 372 353 -019 361333 H9 756 0 12 0 0 49 0 45 4 0 002 1670 34 318 -022 361334 H9 756 0 12 0 0 49 0 45 4 0 002 17192 312 285 -027 361335 H9 756 0 12 0 0 49 0 45 4 0 002 17684 286 254 -032 361336 H9 756 0 12 0 0 49 0 45 4 0 002 18176 261 225 -036 361337 H9 756 0 12 0 0 49 0 45 4 0 002 18668 235 197 -038 361338 H11 772 0 139 0 0 0 0 45 43 0 0 11761 113 1109 -021 371339 H11 772 0 139 0 0 0 0 45 43 0 0 11981 1108 1074 -034 371340 H11 772 0 139 0 0 0 0 45 43 0 0 12172 1048 1044 -004 371341 H11 772 0 139 0 0 0 0 45 43 0 0 12344 1014 1019 005 371342 H11 772 0 139 0 0 0 0 45 43 0 0 12574 1007 986 -021 371343 H11 772 0 139 0 0 0 0 45 43 0 107 86935 11 1075 -025 371344 H11 772 0 139 0 0 0 0 45 43 0 107 90875 1055 1012 -043 371345 H11 772 0 139 0 0 0 0 45 43 0 218 81505 1064 1014 -05 371346 H11 772 0 139 0 0 0 0 45 43 0 254 76725 1058 1078 02 371347 H11 772 0 139 0 0 0 0 45 43 0 254 79455 1019 1016 -003 371348 H11 772 0 139 0 0 0 0 45 43 0 254 74705 112 1127 007 371349 H8 754 0 161 0 0 0 0 47 43 0 0 12529 1012 996 -016 371350 H8 754 0 161 0 0 0 0 47 43 0 0 12339 1035 1023 -012 371351 H8 754 0 161 0 0 0 0 47 43 0 0 12161 107 1049 -021 371352 H8 754 0 161 0 0 0 0 47 43 0 0 12679 985 976 -009 371353 H8 754 0 161 0 0 0 0 47 43 0 0 1213 1058 1053 -005 371354 H8 754 0 161 0 0 0 0 47 43 0 117 89155 1052 1022 -03 371355 H8 754 0 161 0 0 0 0 47 43 0 117 86975 1085 106 -025 37

173

1356 H8 754 0 161 0 0 0 0 47 43 0 117 85655 1112 1084 -028 371357 H8 754 0 161 0 0 0 0 47 43 0 203 81945 1042 1029 -013 371358 H8 754 0 161 0 0 0 0 47 43 0 203 83285 984 1002 018 371359 H8 754 0 161 0 0 0 0 47 43 0 203 80135 107 1068 -002 371360 H8 754 0 161 0 0 0 0 47 43 0 203 79265 108 1088 008 371361 H8 754 0 161 0 0 0 0 47 43 0 277 76475 1014 1066 052 371362 H8 754 0 161 0 0 0 0 47 43 0 277 75555 106 1088 028 371363 H8 754 0 161 0 0 0 0 47 43 0 277 79285 991 1002 011 371364 H8 754 0 161 0 0 0 0 47 43 0 277 74785 1075 1107 032 371365 H10 7688 0 1145 0 0 0 0 36 56 0 002 12772 915 898 -017 381366 H10 7688 0 1145 0 0 0 0 36 56 0 002 12435 957 943 -014 381367 H10 7688 0 1145 0 0 0 0 36 56 0 002 12107 999 989 -01 381368 H10 7688 0 1145 0 0 0 0 36 56 0 002 11559 1085 1073 -012 381369 H10 7688 0 1145 0 0 0 0 36 56 0 002 11232 1135 1127 -008 381370 H12 7814 0 1164 0 0 0 0 126 911 0 002 12612 96 941 -019 381371 H12 7814 0 1164 0 0 0 0 126 911 0 002 1244 986 965 -021 381372 H12 7814 0 1164 0 0 0 0 126 911 0 002 12161 1031 1005 -026 381373 H12 7814 0 1164 0 0 0 0 126 911 0 002 11953 1075 1036 -039 381374 H12 7814 0 1164 0 0 0 0 126 911 0 002 11232 1212 1153 -059 381375 H13 7821 0 1169 0 0 0 0 241 743 0 002 12635 972 934 -038 381376 H13 7821 0 1169 0 0 0 0 241 743 0 002 1245 992 959 -033 381377 H13 7821 0 1169 0 0 0 0 241 743 0 002 11994 1052 1025 -027 381378 H13 7821 0 1169 0 0 0 0 241 743 0 002 11965 1072 103 -042 381379 H13 7821 0 1169 0 0 0 0 241 743 0 002 11232 118 1148 -032 381380 H14 7828 0 1192 0 0 0 0 591 223 0 002 12478 902 96 058 381381 H14 7828 0 1192 0 0 0 0 591 223 0 002 12253 934 992 058 381382 H14 7828 0 1192 0 0 0 0 591 223 0 002 12048 96 1021 061 381383 H14 7828 0 1192 0 0 0 0 591 223 0 002 11838 994 1053 059 381384 H14 7828 0 1192 0 0 0 0 591 223 0 002 11732 1013 107 057 381385 H14 7828 0 1192 0 0 0 0 591 223 0 002 11232 1092 1152 06 381386 H15 786 0 1199 0 0 0 0 457 42 0 002 11549 1102 1112 01 381387 H15 786 0 1199 0 0 0 0 457 42 0 002 11782 1063 1074 011 38

174

1388 H15 786 0 1199 0 0 0 0 457 42 0 002 11989 1028 1043 015 381389 H15 786 0 1199 0 0 0 0 457 42 0 002 1212 1016 1023 007 381390 H15 786 0 1199 0 0 0 0 457 42 0 002 11232 1153 1165 012 381391 H16 8103 0 991 0 0 0 0 124 739 0 002 12668 1025 985 -04 381392 H16 8103 0 991 0 0 0 0 124 739 0 002 12567 1036 999 -037 381393 H16 8103 0 991 0 0 0 0 124 739 0 002 1236 1056 1029 -027 381394 H16 8103 0 991 0 0 0 0 124 739 0 002 12375 1063 1027 -036 381395 H16 8103 0 991 0 0 0 0 124 739 0 002 12225 1097 1049 -048 381396 H16 8103 0 991 0 0 0 0 124 739 0 002 12243 11 1046 -054 381397 H16 8103 0 991 0 0 0 0 124 739 0 002 12137 1127 1062 -065 381398 H16 8103 0 991 0 0 0 0 124 739 0 002 11232 1308 1212 -096 381399 H17 8174 0 1003 0 0 0 0 247 566 0 002 12637 997 986 -011 381400 H17 8174 0 1003 0 0 0 0 247 566 0 002 12416 1023 1017 -006 381401 H17 8174 0 1003 0 0 0 0 247 566 0 002 12173 1059 1053 -006 381402 H17 8174 0 1003 0 0 0 0 247 566 0 002 11941 11 1089 -011 381403 H17 8174 0 1003 0 0 0 0 247 566 0 002 11232 1216 1208 -008 381404 H18 8222 0 1017 0 0 0 0 366 389 0 002 12708 986 984 -002 381405 H18 8222 0 1017 0 0 0 0 366 389 0 002 12538 1015 1008 -007 381406 H18 8222 0 1017 0 0 0 0 366 389 0 002 12262 1044 1048 004 381407 H18 8222 0 1017 0 0 0 0 366 389 0 002 1197 1095 1093 -002 381408 H18 8222 0 1017 0 0 0 0 366 389 0 002 11232 1212 1217 005 381409 H19 8231 0 1016 0 0 0 0 589 07 0 002 12425 986 1004 018 381410 H19 8231 0 1016 0 0 0 0 589 07 0 002 12268 1018 1027 009 381411 H19 8231 0 1016 0 0 0 0 589 07 0 002 12033 1054 1062 008 381412 H19 8231 0 1016 0 0 0 0 589 07 0 002 11768 1091 1104 013 381413 H19 8231 0 1016 0 0 0 0 589 07 0 002 11232 1187 1196 009 381414 H20 8294 0 103 0 0 0 0 468 241 0 001 12605 973 1005 032 381415 H20 8294 0 103 0 0 0 0 468 241 0 001 12367 101 104 03 381416 H20 8294 0 103 0 0 0 0 468 241 0 001 12155 1059 1072 013 381417 H20 8294 0 103 0 0 0 0 468 241 0 001 12173 106 1069 009 381418 H20 8294 0 103 0 0 0 0 468 241 0 001 11915 1114 111 -004 381419 H20 8294 0 103 0 0 0 0 468 241 0 001 11232 1272 1227 -045 38

175

1420 H21 7349 0 1326 0 0 0 0 24 898 0 003 12463 986 908 -078 381421 H21 7349 0 1326 0 0 0 0 24 898 0 003 12213 1022 941 -081 381422 H21 7349 0 1326 0 0 0 0 24 898 0 003 12025 1049 967 -082 381423 H21 7349 0 1326 0 0 0 0 24 898 0 003 1177 1089 1004 -085 381424 H21 7349 0 1326 0 0 0 0 24 898 0 003 11232 1177 1088 -089 381425 H22 749 0 1352 0 0 0 0 364 722 0 002 12679 946 891 -055 381426 H22 749 0 1352 0 0 0 0 364 722 0 002 12403 99 927 -063 381427 H22 749 0 1352 0 0 0 0 364 722 0 002 12266 101 946 -064 381428 H22 749 0 1352 0 0 0 0 364 722 0 002 11914 106 996 -064 381429 H22 749 0 1352 0 0 0 0 364 722 0 002 11232 1176 1101 -075 381430 H23 7552 0 139 0 0 0 0 477 553 0 002 12652 936 915 -021 381431 H23 7552 0 139 0 0 0 0 477 553 0 002 12364 996 954 -042 381432 H23 7552 0 139 0 0 0 0 477 553 0 002 1223 1012 972 -04 381433 H23 7552 0 139 0 0 0 0 477 553 0 002 11884 1066 1022 -044 381434 H23 7552 0 139 0 0 0 0 477 553 0 002 11232 1192 1125 -067 381435 H24 7608 0 1389 0 0 0 0 596 384 0 002 12174 954 976 022 381436 H24 7608 0 1389 0 0 0 0 596 384 0 002 11923 1013 1013 0 381437 H24 7608 0 1389 0 0 0 0 596 384 0 002 11769 105 1036 -014 381438 H24 7608 0 1389 0 0 0 0 596 384 0 002 11513 109 1075 -015 381439 H24 7608 0 1389 0 0 0 0 596 384 0 002 11232 1159 1121 -038 381440 H25 7652 0 1405 0 0 0 0 714 219 0 002 12188 964 972 008 381441 H25 7652 0 1405 0 0 0 0 714 219 0 002 11976 999 1002 003 381442 H25 7652 0 1405 0 0 0 0 714 219 0 002 1175 1034 1036 002 381443 H25 7652 0 1405 0 0 0 0 714 219 0 002 1150 108 1074 -006 381444 H25 7652 0 1405 0 0 0 0 714 219 0 002 11232 1127 1118 -009 381445 H26 7898 0 1211 0 0 0 0 704 062 0 001 12711 915 935 02 381446 H26 7898 0 1211 0 0 0 0 704 062 0 001 12586 945 952 007 381447 H26 7898 0 1211 0 0 0 0 704 062 0 001 12394 965 979 014 381448 H26 7898 0 1211 0 0 0 0 704 062 0 001 12099 1035 1022 -013 381449 H26 7898 0 1211 0 0 0 0 704 062 0 001 11893 1074 1053 -021 381450 H26 7898 0 1211 0 0 0 0 704 062 0 001 11686 1124 1086 -038 381451 H26 7898 0 1211 0 0 0 0 704 062 0 001 11232 1224 1162 -062 38

176

APPENDIX B

FTIR SPECTRA FOR EQUILIBRIUM SPECIATION EXPERIMENTS

The FTIR spectra on the following pages are for the measurements listed in Table

33 in Chapter III All spectra were normalized to the sample thickness (mm)

Fig B1 FTIR spectra for equilibrium speciation experiments

053

058

063

068

073

40004500500055006000

KS-1-21

wavenumber (cm-1)

A (1

mm

)

049

054

059

064

069

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-22

055

06

065

07

075

40004500500055006000

KS-1-23

wavenumber (cm-1)

A (1

mm

)

025

027

029

031

033

035

037

039

041

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-31

177

022

024

026

028

03

032

034

036

038

40004500500055006000

KS-1-32

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-33

035

037

039

041

043

045

047

049

051

40004500500055006000

KS-1-41

A (1

mm

)

wavenumber (cm-1)

034

036

038

04

042

044

046

048

05

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-42

027

029

031

033

035

037

039

041

043

40004500500055006000

KS-1-43

A (1

mm

)

wavenumber (cm-1)

038

042

046

05

054

058

062

066

40004500500055006000

GMR+2-1-11

A (1

mm

)

wavenumber (cm-1)

178

034

038

042

046

05

054

058

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-12

035

039

043

047

051

055

059

063

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-13

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-21

045

05

055

06

065

07

075

08

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-22

045

05

055

06

065

07

075

08

40004500500055006000

GMR+2-1-23

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-31

179

033

038

043

048

053

058

063

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-32

033

038

043

048

053

058

063

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-33

045

05

055

06

065

07

075

08

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-R11

04

045

05

055

06

065

07

075

40004500500055006000

GMR+2-1-R12

A (1

mm

)

wavenumber (cm-1)

045

05

055

06

065

07

075

08

40004500500055006000

GMR+2-1-R13

wavenumber (cm-1)

A (1

mm

)

12

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-21

180

11

13

15

17

19

21

23

25

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-22

11

13

15

17

19

21

23

25

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-23

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-31

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-32

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-33

04

05

06

07

08

09

1

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-41

181

04

05

06

07

08

09

1

40004500500055006000

GMR+4-1-42A

(1m

m)

wavenumber (cm-1)

04

05

06

07

08

09

1

40004500500055006000

GMR+4-1-43

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

40004500500055006000

KS-2-11

wavenumber (cm-1)

A (1

mm

)

033

038

043

048

053

40004500500055006000

KS-2-12

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

40004500500055006000

KS-2-13

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

40004500500055006000

KS-2-21

wavenumber (cm-1)

A (1

mm

)

182

023

028

033

038

043

40004500500055006000

KS-2-22

A (1

mm

)

wavenumber (cm-1)

022

027

032

037

042

40004500500055006000

KS-2-23

wavenumber (cm-1)

A (1

mm

)

033

038

043

048

053

40004500500055006000

KS-2-41

wavenumber (cm-1)

A (1

mm

)

029

034

039

044

049

40004500500055006000

wavenumber (cm-1)

KS-2-42

A (1

mm

)

028

033

038

043

048

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-43

045

05

055

06

065

07

075

08

085

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-11

183

055

06

065

07

075

08

085

09

095

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-12

055

06

065

07

075

08

085

09

095

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-13

032

037

042

047

052

057

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-21

032

037

042

047

052

057

062

40004500500055006000

GMR+2-2-22

A (1

mm

)

wavenumber (cm-1)

032

037

042

047

052

057

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-23

055

06

065

07

075

08

085

09

40004500500055006000

GMR+2-2-41

A (1

mm

)

wavenumber (cm-1)

184

05

055

06

065

07

075

08

085

40004500500055006000

GMR+2-2-42

wavenumber (cm-1)

A (1

mm

)

045

05

055

06

065

07

075

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-43

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-11

08

1

12

14

16

18

40004500500055006000

GMR+4-2-12

A (1

mm

)

wavenumber (cm-1)

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-13

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-21

A (1

mm

)

wavenumber (cm-1)

185

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-22A

(1m

m)

wavenumber (cm-1)

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-23

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-31

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-32

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-33

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

40004500500055006000

KS-3-11

A (1

mm

)

wavenumber (cm-1)

186

04

045

05

055

06

40004500500055006000

KS-3-12

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

40004500500055006000

KS-3-13

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

KS-3-21

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-22

025

03

035

04

045

40004500500055006000

KS-3-23

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

KS-3-24

wavenumber (cm-1)

A (1

mm

)

187

023

025

027

029

031

033

035

037

039

40004500500055006000

KS-3-31

wavenumber (cm-1)

A (1

mm

)

023

025

027

029

031

033

035

037

039

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-32

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-3-33

A (1

mm

)

wavenumber (cm-1)

025

027

029

031

033

035

037

039

041

40004500500055006000

KS-3-41

wavenumber (cm-1)

A (1

mm

)

026

028

03

032

034

036

038

04

042

40004500500055006000

KS-3-42

A (1

mm

)

wavenumber (cm-1)

026

028

03

032

034

036

038

04

042

40004500500055006000

KS-3-43

wavenumber (cm-1)

A (1

mm

)

188

027

029

031

033

035

037

039

041

043

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-44

045

047

049

051

053

055

057

059

061

40004500500055006000

KS-3-R11

wavenumber (cm-1)

A (1

mm

)

036

038

04

042

044

046

048

05

052

40004500500055006000

KS-3-R12

wavenumber (cm-1)

A (1

mm

)

033

035

037

039

041

043

045

047

049

40004500500055006000

KS-3-R13

wavenumber (cm-1)

A (1

mm

)

032

037

042

047

052

057

062

067

40004500500055006000

GMR+2-3-11

A (1

mm

)

wavenumber (cm-1)

032

037

042

047

052

057

062

067

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-12

189

032

037

042

047

052

057

062

067

40004500500055006000

GMR+2-3-13A

(1m

m)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-3-21

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-22

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-23

wavenumber (cm-1)

A (1

mm

)

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-31

wavenumber (cm-1)

A (1

mm

)

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-32

A (1

mm

)

wavenumber (cm-1)

190

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-33

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-11

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-12

A (1

mm

)

wavenumber (cm-1)05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-13

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-31

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-32

wavenumber (cm-1)

A (1

mm

)

191

04

05

06

07

08

09

1

40004500500055006000

GMR+4-3-33A

(1m

m)

wavenumber (cm-1)

04

05

06

07

08

09

1

11

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+4-3-41

04

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-42

A (1

mm

)

wavenumber (cm-1)

04

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-43

A (1

mm

)

wavenumber (cm-1)

023

028

033

038

043

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-11

045

05

055

06

065

40004500500055006000

KS-1b-12

A (1

mm

)

wavenumber (cm-1)

192

027

032

037

042

047

40004500500055006000

KS-1b-13

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-1b-21

wavenumber (cm-1)

A (1

mm

)

021

023

025

027

029

031

033

035

037

40004500500055006000

KS-1b-22

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-1b-23

A (1

mm

)

wavenumber (cm-1)

028

031

034

037

04

043

046

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1b-31

031

034

037

04

043

046

049

40004500500055006000

KS-1b-32

A (1

mm

)

wavenumber (cm-1)

193

033

036

039

042

045

048

051

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-33

024

026

028

03

032

034

036

038

04

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-R11

027

029

031

033

035

037

039

041

043

40004500500055006000

KS-1b-R12

A (1

mm

)

wavenumber (cm-1)

031

033

035

037

039

041

043

045

047

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-R13

063

065

067

069

071

073

075

077

079

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1b-R21

054

056

058

06

062

064

066

068

07

40004500500055006000

KS-1b-R22

A (1

mm

)

wavenumber (cm-1)

194

058

06

062

064

066

068

07

072

074

40004500500055006000

KS-1b-R23

A (1

mm

)

wavenumber (cm-1)

195

APPENDIX C

FTIR SPECTRA FOR COOLING EXPERIMENTS

The FTIR spectra on the following pages are for the measurements listed in Table

43 in Chapter IV All spectra were normalized to the sample thickness (mm)

Fig C1 FTIR spectra for cooling experiments

042

044

046

048

05

052

054

056

058

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-21

036

038

04

042

044

046

048

05

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-22

05

052

054

056

058

06

062

064

40004500500055006000

KS-1-23

A (1

mm

)

wavenumber (cm-1)

048

05

052

054

056

058

06

062

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-31

196

044

046

048

05

052

054

056

058

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-32

036

038

04

042

044

046

048

05

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-33

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-41

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-42

022

024

026

028

03

032

034

036

038

40004500500055006000

KS-1-43

wavenumber (cm-1)

A (1

mm

)

028

032

036

04

044

048

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1-51

197

028

032

036

04

044

048

40004500500055006000

KS-1-52

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

40004500500055006000

KS-1-53

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-11

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-12

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-13

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-21

wavenumber (cm-1)

A (1

mm

)

198

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-22

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-23

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-31

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-32

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-33

wavenumber (cm-1)

A (1

mm

)

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-21

199

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

GMR+4-1-22

wavenumber (cm-1)

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-23

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-31

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-32

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-33

wavenumber (cm-1)

A (1

mm

)

14

16

18

2

22

24

26

28

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-41

200

14

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-42

A (1

mm

)

wavenumber (cm-1)

14

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-43

wavenumber (cm-1)

A (1

mm

)

-065

-06

-055

-05

-045

-04

40004500500055006000

KS-2-11

A (1

mm

)

wavenumber (cm-1)

-025

-02

-015

-01

-005

0

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-2-12

032

036

04

044

048

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-21

028

032

036

04

044

048

40004500500055006000

KS-2-22

A (1

mm

)

wavenumber (cm-1)

201

025

029

033

037

041

045

40004500500055006000

KS-2-23

wavenumber (cm-1)

A (1

mm

)

026

031

036

041

046

40004500500055006000

KS-2-31

wavenumber (cm-1)

A (1

mm

)

024

029

034

039

044

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-32

03

035

04

045

05

40004500500055006000

KS-2-33

wavenumber (cm-1)

A (1

mm

)

-008

-0044

-0008

0028

0064

01

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-41

-02

-0164

-0128

-0092

-0056

-002

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-2-42

202

-006

-0024

0012

0048

0084

012

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-43

03

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-21

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-22

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-23

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-31

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-32

A (1

mm

)

wavenumber (cm-1)

203

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-33

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-51

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-52

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-53

wavenumber (cm-1)

A (1

mm

)

01

02

03

04

05

06

07

08

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-31

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-32

wavenumber (cm-1)

A (1

mm

)

204

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-33

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-41

A (1

mm

)

wavenumber (cm-1)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-42

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-43

wavenumber (cm-1)

A (1

mm

)

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-51

A (1

mm

)

wavenumber (cm-1)

01

02

03

04

05

06

07

08

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-52

205

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-53A

(1m

m)

wavenumber (cm-1)

025

03

035

04

045

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-11

025

03

035

04

045

40004500500055006000

KS-3-12

A (1

mm

)

wavenumber (cm-1)

023

028

033

038

043

40004500500055006000

KS-3-13

A (1

mm

)

wavenumber (cm-1)

028

031

034

037

04

043

046

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-3-21

029

032

035

038

041

044

047

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-22

206

031

034

037

04

043

046

049

40004500500055006000wavenumber (cm-1)

A (1

mm

)KS-3-23

025

03

035

04

045

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-81

03

035

04

045

05

40004500500055006000

KS-3-82

A (1

mm

)

wavenumber (cm-1)

026

031

036

041

046

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-83

04

045

05

055

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-91

036

04

044

048

052

056

40004500500055006000

KS-3-92

A (1

mm

)

wavenumber (cm-1)

207

038

043

048

053

058

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-93

039

041

043

045

047

049

051

053

055

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-111

04

042

044

046

048

05

052

054

056

40004500500055006000

KS-3-112

A (1

mm

)

wavenumber (cm-1)

041

043

045

047

049

051

053

055

057

40004500500055006000

KS-3-113

A (1

mm

)

wavenumber (cm-1)

033

035

037

039

041

043

045

047

049

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-114

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-21

wavenumber (cm-1)

A (1

mm

)

208

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-22A

(1m

m)

wavenumber (cm-1)03

035

04

045

05

055

06

065

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-3-23

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-31

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-32

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-33

A (1

mm

)

wavenumber (cm-1)

04

045

05

055

06

065

07

075

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-41

209

04

045

05

055

06

065

07

075

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-3-42

04

045

05

055

06

065

07

075

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-43

08

1

12

14

16

18

40004500500055006000

GMR+4-3-41

A (1

mm

)

wavenumber (cm-1)

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-3-42

08

1

12

14

16

18

40004500500055006000

GMR+4-3-43

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-3-51

210

03

04

05

06

07

08

09

40004500500055006000wavenumber (cm-1)

A (1

mm

)GMR+4-3-52

03

04

05

06

07

08

09

40004500500055006000

GMR+4-3-53

wavenumber (cm-1)

A (1

mm

)

211

APPENDIX D

DATABASE FOR EASINESS OF CRYSTALLIZATION FOR DIFFERENT MELTS AT DIFFERENT P-T CONDITION

Experimental database for easiness of crystallization for different melts at

different P-T condition has been accumulated at the experimental petrology laboratory

the University of Michigan The references are listed at the end of the table

Table D1 Pressure dependence of easiness of crystallization for different melts at

different temperatures

Composition H2Ot P T t q Crystallization Refloz wt GPa K s Ks

1 rhyolite 653 05 613 7200 50 N 42 rhyolite 653 05 613 1260 50 N 43 rhyolite 46 03 623 18000 50 N 134 rhyolite 389 1 623 261360 50 N 115 rhyolite 653 05 643 300 0017 N 46 rhyolite 533 05 673 300 0017 N 47 rhyolite 389 1 673 46800 50 N 118 rhyolite 389 2 673 172800 50 N 119 rhyolite 518 2 673 720000 50 N 12

10 rhyolite 371 3 673 259200 50 N 1111 rhyolite 365 05 678 300 00017 N 412 rhyolite 365 05 678 600 59 N 413 rhyolite 364 05 703 300 0017 N 414 rhyolite 263 00001 723 600 0017 N 115 rhyolite 365 05 723 300 1 N 416 rhyolite 18 1 723 183600 50 N 1117 rhyolite 389 1 723 10800 50 N 1118 rhyolite 389 2 723 14400 50 N 1119 rhyolite 389 3 723 21600 50 N 1120 rhyolite 389 3 723 21600 50 N 1121 rhyolite 527 05 733 300 1 N 422 rhyolite 239 00001 735 600 0000177 N 1

212

23 rhyolite 653 05 743 300 50 N 424 rhyolite 1571 00001 752 600 0000177 N 125 rhyolite 306 00001 753 600 0108 N 126 rhyolite 365 05 753 600 1 N 427 rhyolite 527 05 753 240 50 N 428 rhyolite 087 05 753 1067900 30 N 329 rhyolite 389 2 753 1260 50 N 1130 rhyolite 51 2 753 172800 50 Y 1231 rhyolite 085 3 763 36000 50 Y 1132 rhyolite 149 00001 773 176220 427 N 233 rhyolite 46 03 773 300 50 N 1334 rhyolite 18 1 773 600 50 N 1135 rhyolite 389 1 773 600 50 N 1136 rhyolite 18 2 773 86400 50 N 1137 rhyolite 591 2 773 54000 50 Y 1238 rhyolite 18 3 773 172800 50 N 1139 rhyolite 389 3 773 960 50 N 1140 rhyolite 09 4 773 10800 50 Y 1141 rhyolite 09 62 773 10800 50 Y 1142 rhyolite 3 00001 783 600 055 N 143 rhyolite 365 05 793 300 52 N 444 rhyolite 177 00001 798 26820 1259 N 245 rhyolite 371 05 803 68520 30 N 346 rhyolite 0809 00001 813 600 00002 N 147 rhyolite 08 1 813 187200 54 N 1148 rhyolite 1729 00001 823 600 0017 N 149 rhyolite 1824 00001 823 600 0017 N 150 rhyolite 1681 00001 823 600 0125 N 151 rhyolite 1855 00001 823 600 013 N 152 rhyolite 1879 00001 823 600 082 N 153 rhyolite 18 1 823 600 55 N 1154 rhyolite 18 2 823 7200 55 N 1155 rhyolite 09 3 823 176400 55 N 1156 rhyolite 09 3 823 864000 55 N 1157 rhyolite 09 4 823 11100 55 Y 1158 rhyolite 18 3 823 7200 55 N 1159 rhyolite 181 00001 824 10800 59 N 260 rhyolite 0186 00001 825 3628800 20 N 1061 rhyolite 76 05 828 9065 70 N 362 rhyolite 073 05 836 236800 30 N 363 rhyolite 0839 00001 843 600 0002 N 164 rhyolite 1421 00001 843 600 0017 N 165 rhyolite 1433 00001 843 600 0141 N 166 rhyolite 0928 00001 847 600 0017 N 167 rhyolite 192 00001 848 2700 84 N 268 rhyolite 131 00001 848 16800 141 N 269 rhyolite 18 2 853 600 58 N 1170 rhyolite 142 00001 863 600 0762 N 1

213

71 rhyolite 082 081 865 252900 30 N 372 rhyolite 081 005 868 167700 30 N 373 rhyolite 0811 00001 872 600 0049 N 174 rhyolite 0839 00001 873 600 00055 N 175 rhyolite 085 00001 873 21600 65 N 1176 rhyolite 085 3 873 7200 60 Y 1177 rhyolite 087 1 873 14400 60 N 1178 rhyolite 088 3 873 2400 60 N 1179 rhyolite 09 2 873 14400 60 N 1180 rhyolite 09 4 873 10800 60 Y 1181 rhyolite 09 4 873 10800 60 Y 1182 rhyolite 1118 00001 873 600 015 N 183 rhyolite 1155 00001 873 600 0915 N 184 rhyolite 116 00001 873 5760 20 N 285 rhyolite 139 00001 873 3900 20 N 286 rhyolite 187 00001 873 1215 20 N 287 rhyolite 2 2 873 600 60 N 1188 rhyolite 2 3 873 600 60 N 1189 rhyolite 226 2 873 43200 60 N 1290 rhyolite 228 2 873 86400 60 N 1291 rhyolite 361 3 873 60 1 N 1392 rhyolite 396 2 873 14400 60 Y 1293 rhyolite 51 1 873 36000 60 N 1294 rhyolite 079 02 874 227760 30 N 395 rhyolite 0892 00001 875 600 0017 N 196 rhyolite 079 05 875 263650 30 N 397 rhyolite 077 00001 876 93160 30 N 398 rhyolite 186 05 878 144300 30 N 399 rhyolite 0802 00001 880 600 0161 N 1

100 rhyolite 085 3 883 3600 001 Y 13101 rhyolite 0831 00001 893 600 0018 N 1102 rhyolite 084 00001 893 600 0018 N 1103 rhyolite 085 3 903 3600 001 Y 13104 rhyolite 08 00001 923 600 75 N 11105 rhyolite 08 00001 923 7200 75 N 11106 rhyolite 084 00001 923 2400 75 N 11107 rhyolite 085 1 923 600 65 N 11108 rhyolite 089 2 923 600 65 N 11109 rhyolite 085 3 923 600 33 Y 13110 rhyolite 085 3 923 600 033 Y 13111 rhyolite 201 1 923 600 01 N 13112 rhyolite 382 1 923 120 1 N 13113 rhyolite 0513 00001 941 600 0017 N 1114 rhyolite 087 2 953 600 68 N 11115 rhyolite 76 05 969 720 30 N 3116 rhyolite 0124 00001 971 1450800 20 N 10117 rhyolite 137 0011 973 259200 05 N 10118 rhyolite 218 00249 973 172800 05 N 10

214

119 rhyolite 389 2 973 60 1 N 13120 rhyolite 389 3 973 60 10 N 13121 rhyolite 08 00001 973 600 50 N 11122 rhyolite 082 1 973 480 70 N 11123 rhyolite 08 1 973 300 01 N 13124 rhyolite 08 2 973 300 01 N 13125 rhyolite 085 3 973 600 70 Y 11126 rhyolite 082 3 973 300 01 Y 13127 rhyolite 09 4 973 3600 70 Y 11128 rhyolite 0836 00001 993 300 127 N 6129 rhyolite 09 4 993 600 05 Y 13130 rhyolite 0805 00001 1000 300 20 N 6131 rhyolite 0784 00001 1003 600 79 N 6132 rhyolite 088 00001 1013 60 127 N 6133 rhyolite 08 00001 1021 300 65 N 6134 rhyolite 0116 00001 1023 1292400 20 N 10135 rhyolite 068 00001 1023 300 178 N 6136 rhyolite 0766 00001 1023 300 84 N 6137 rhyolite 08 3 1023 600 0333 Y 13138 rhyolite 082 1 1023 120 1 N 13139 rhyolite 082 2 1023 120 1 N 13140 rhyolite 082 3 1023 120 10 N 13141 rhyolite 083 3 1023 120 1 N 13142 rhyolite 084 00001 1023 450 130 N 6143 rhyolite 085 3 1023 120 75 N 11144 rhyolite 085 3 1023 120 1 N 13145 rhyolite 0855 00001 1023 600 174 N 6146 rhyolite 18 2 1023 120 10 N 13147 rhyolite 18 2 1023 120 1 N 13148 rhyolite 18 3 1023 120 10 N 13149 rhyolite 18 3 1023 120 1 N 13150 rhyolite 183 1 1023 120 1 N 13151 rhyolite 389 2 1023 60 10 N 13152 rhyolite 389 3 1023 60 75 Y 13153 rhyolite 08 00001 1024 600 14 N 6154 rhyolite 07 1 1073 60 10 N 13155 rhyolite 08 1 1073 120 80 N 13156 rhyolite 08 2 1073 120 10 N 13157 rhyolite 082 02 1073 300 0167 N 4158 rhyolite 083 01 1073 600 0167 N 4159 rhyolite 085 2 1073 300 0167 N 13160 rhyolite 178 02 1073 600 80 N 4161 rhyolite 181 1 1073 60 10 N 13162 rhyolite 182 2 1073 60 80 N 13163 rhyolite 241 01 1073 600 80 N 4164 rhyolite 25 02 1073 600 80 N 4165 rhyolite 389 1 1073 60 10 N 13166 rhyolite 389 1 1073 60 80 N 13

215

167 rhyolite 389 2 1073 60 80 N 13168 rhyolite 389 3 1073 60 80 Y 13169 rhyolite 09 4 1103 300 4 Y 13170 rhyolite 0103 00001 1123 219600 20 N 10171 rhyolite 0105 00001 1123 867600 20 N 10172 rhyolite 077 00061 1123 259200 05 N 10173 rhyolite 077 2 1123 120 85 N 13174 rhyolite 077 3 1123 60 85 Y 13175 rhyolite 085 2 1123 300 85 N 13176 rhyolite 11 00112 1123 338400 05 N 10177 rhyolite 111 00114 1123 172800 05 N 10178 rhyolite 176 00253 1123 176400 05 N 10179 rhyolite 18 3 1123 120 85 Y 13180 rhyolite 241 02 1123 3600 067 N 4181 rhyolite 389 3 1123 60 85 Y 13182 rhyolite 0106 00001 1124 1134000 20 N 10183 rhyolite 76 05 1126 240 30 N 3184 rhyolite 6 025 1135 1800 2 N 3185 rhyolite 76 05 1173 0 2 N 3186 rhyolite 76 05 1173 1800 2 N 3187 rhyolite 23 05 1173 7200 167 N 5188 rhyolite 0225 05 1180 36000 30 N 3189 rhyolite 07 00061 1268 173160 05 N 10190 rhyolite 0102 00001 1272 1083600 20 N 10191 rhyolite 0099 00001 1273 691200 20 N 10192 rhyolite 012 01 1273 1800 167 N 5193 rhyolite 012 01 1273 14400 167 N 5194 rhyolite 012 03 1273 14400 167 N 5195 rhyolite 078 02 1273 300 100 N 4196 rhyolite 081 02 1273 300 67 N 4197 rhyolite 083 02 1273 300 083 N 4198 rhyolite 09 4 1273 120 100 Y 13199 rhyolite 099 00114 1275 88200 05 N 10200 rhyolite 115 05 1273 600 0017 N 4201 rhyolite 115 05 1273 600 100 N 4202 rhyolite 155 00252 1273 86400 05 N 10203 rhyolite 157 0025 1273 86400 05 N 10204 rhyolite 5 05 1273 600 100 N 5205 rhyolite 5 1 1273 600 100 N 5206 rhyolite 5 15 1273 600 100 N 5207 rhyolite 0219 05 1298 14400 30 N 3208 rhyolite 09 05 1298 14400 167 N 5209 rhyolite 024 05 1307 5400 167 N 5210 rhyolite 22 05 1307 5400 167 N 5211 rhyolite 22 05 1307 5400 167 N 5212 rhyolite 2 05 1307 5400 167 N 5213 rhyolite 078 01 1373 300 100 N 4214 rhyolite 371 2 1373 60 100 N 13

216

215 rhyolite 51 2 1373 624 100 N 12216 rhyolite 51 2 1373 613 100 N 12217 rhyolite 024 05 1375 1800 167 N 5218 rhyolite 09 05 1375 1800 167 N 5219 rhyolite 22 05 1375 1800 167 N 5220 rhyolite 38 05 1375 1800 167 N 5221 rhyolite 2 05 1375 1800 167 N 5222 rhyolite 09 05 1471 1200 167 N 5223 rhyolite 24 05 1471 1200 167 N 5224 rhyolite 41 05 1471 1200 167 N 5225 rhyolite 064 00061 1473 144000 05 N 10226 rhyolite 089 0011 1473 86400 05 N 10227 rhyolite 144 0025 1473 79200 05 N 10228 rhyolite 147 0025 1473 82800 05 N 10229 rhyolite 148 0025 1473 86400 05 N 10230 rhyolite 361 3 1473 60 100 N 13231 rhyolite 64 05 1478 900 2 N 3232 rhyolite 6 025 1488 1200 2 N 3233 rhyolite 51 1 1573 248 100 N 12234 rhyolite 397 2 1573 252 100 N 12235 rhyolite 227 2 1573 587 100 N 12236 rhyolite 09 41 1673 120 100 Y 13237 rhyolite 591 2 1773 120 100 N 12238 rhyolite 002 05 1873 7200 100 N 13239 rhyolite 517 2 1873 128 100 N 12240 rhyolite 09 4 1873 60 100 Y 13241 andesite 157 1 1523 0 100 N 7242 andesite 32 1 1573 300 100 N 7243 andesite 157 1 1573 300 100 N 7244 andesite 56 1 1573 120 100 N 7245 andesite 35 05 1673 90 100 N 7246 andesite 35 15 1673 90 100 N 7247 andesite 21 1 1773 60 100 N 7248 andesite 151 1 1773 60 100 N 7249 andesite 159 1 1813 126 100 N 7250 dacite 2517 00001 753 3000 20 N 8251 dacite 1453 00001 773 4202 20 N 8252 dacite 2513 00001 773 1800 20 N 8253 dacite 245 01 776 172200 30 N 9254 dacite 2354 00001 791 270 20 N 8255 dacite 1463 00001 792 1200 20 N 8256 dacite 1453 00001 792 2100 20 N 8257 dacite 2314 00001 810 484 20 N 8258 dacite 074 00001 824 1744680 20 N 9259 dacite 1425 00001 833 600 20 N 8260 dacite 245 01 834 689315 30 N 9261 dacite 1518 00001 845 180 20 N 8262 dacite 1525 00001 845 180 20 N 8

217

263 dacite 1411 00001 863 180 20 N 8264 dacite 245 01 878 103975 30 N 9265 dacite 145 0097 881 180900 100 N 9266 dacite 075 00975 881 413880 100 N 9267 dacite 245 014 881 40878 100 N 9268 dacite 245 013 910 19660 100 N 9269 dacite 073 0099 911 484260 100 N 9270 dacite 47 1 1423 300 100 N 7271 dacite 46 1 1473 300 100 N 7272 dacite 35 05 1573 73 100 N 7273 dacite 29 1 1573 480 100 N 7274 dacite 62 05 1673 120 100 N 7275 dacite 63 15 1673 120 100 N 7276 dacite 31 1 1773 90 100 N 7

ldquoNrdquo means no crystallization in the quenched glass and ldquoYrdquo means significant crystallization The crystallized samples were classified as failed experiments and were not discussed in the respective papers even though the samples were part of the respective study loz references 1 Zhang et al 1997b 2 Liu and Zhang 2000 3 Zhang and Behrens 2000 4 Zhang et al 2000 5 Behrens and Zhang 2001 6 Xu and Zhang 2002 7 Behrens et al 2004 8 Liu et al 2004a 9 Liu et al 2004b 10 Liu et al 2005 11 Hui et al in revision 12 Ni and Zhang revised 13 this study

Page 4: VISCOSITY OF SILICATE MELTS

iii

ACKNOWLEDGEMENTS

I would first of all like to thank my dissertation advisor Dr Youxue Zhang who

offered me this great opportunity to be a scientist and guided my academic development

with patience I have great respect and admiration of his enthusiasm in science critical

thinking and hard work I would like to thank other members in my dissertation

committee Drs Eric Essene Becky Lange Lars Stixrude and John Kieffer Special

thanks go to Dr Eric Essene for his advice and encouragements along my study I

benefited a lot from his wealth of knowledge and directness during my study here My

sincere thanks go to Dr Becky Lange I learned a lot on the melt not only in her igneous

petrology class but also in her group meeting I would like to thank Dr Lars Stixrude I

benefited a lot from his scientific thoughts and insightful comments on this dissertation

Finally I would like to thank my cognate Dr John Kieffer He provided helpful

comments and fresh perspectives from the outside of geology

I would also like to thank all other people who have contributed to my dissertation

in various ways My sincere thanks go to Zhengjiu Xu who taught me a lot of things in

the lab Dr Harald Behrens at University of Hannover who provided advice on various

aspects of the research in this disseration and his hospitality during my stay in Hannover

Perio Del Gaudio Francesco Vetere Jan Schuuml ler Otto Diedrich and other people in

Hannover who gave me a lot of help during this visit Tony Withers provided a lot of

instructions from temperature recording system of piston cylinder to salt cell

iv

Yang Liu taught me a lot to do experiments Yang Chen provided help in glass

composition analysis with EMPA Wenjun Yong and Lixing Jin helped me with XRD

Huaiwei Ni helped in pressure calibration

I would like to express my gratitude to my fellow students for their friendship and

support including Yang Liu Daming Wang Maodu Yan Kate Kenedi Zeb Page Qiong

Liu Matt Mannon Yang Chen Huaiwei Ni Wenjun Yong Xiqiao Xu Ni Sun Steven

Ownby Lixing Jin Lin Ma and Tie Sun I also would like to express my special thanks

to my friend and former landlord Bob Trees for his support and help during my hard

time at Ann Arbor

My deepest gratitude goes to my wife Xiaoqing and our families Their love and

support are critically important for me to accomplish this work

v

TABLE OF CONTENTS

DEDICATIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipii

ACKNOWLEDGMENTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipiii

LIST OF FIGUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipvii

LIST OF TABLEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipix

LIST OF APPENDICEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipx

CHAPTER

I INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip1

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip5

II TOWARD A GENERAL VISCOSITY EQUATION OF NATURAL

ANHYDROUS AND HYDROUS SILICATE MELTShelliphelliphelliphelliphelliphellip7

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip7

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip8

TEMPERATURE DEPENDENCE OF VISCOSITYhelliphelliphelliphellip10

VISCOSITY OF BINARY MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip12

VISCOSITY MODELS FOR NATURAL ANHYDROUS AND

HYDROUS SILICATE EMLTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip19

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip42

III PRESSURE DEPENDENCE OF THE SPECIATION OF DISSOLVED

WATER IN RHYOLITC MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip52

EXPERIMENTAL METHODShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip53

ANALYTICAL PROCEDUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip59

RESULTS AND DISCUSSIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip62

CONCLUSIONShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip80

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip81

vi

IV PRESSURE DEPENDENCE OF VISCOSITY OF RHYOLITIC

MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip86

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip86

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip87

EXPERIMENTAL AND ANALYTICAL METHODShelliphelliphellip90

DISCUSSIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip107

CONCLUDING REMARKShelliphelliphelliphelliphelliphelliphelliphellip117

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip118

V CONCLUSIONShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip125

APPENDICEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip129

vii

LIST OF FIGURES

Figure

21 Comparisons of fitting results using Equations 2 3 and 4a for viscosityhelliphelliphelliphellip13

22 Comparisons of experiments viscosity data with calculated valueshelliphelliphelliphelliphelliphelliphellip16

23 Viscosity as a function of composition in four binary systemshelliphelliphelliphelliphelliphelliphelliphellip18

24 Comparison of experimental viscosity data with calculated valueshelliphelliphelliphelliphelliphellip23

25 Total alkalis versus SiO2 diagramhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip29

26 Comparison of experimental viscosity values with calculated valueshelliphelliphelliphelliphelliphellip36

27 The prediction of Equation 12helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip39

31 Experimental results for temperature distribution in piston cylinderhelliphelliphelliphelliphelliphellip57

32 The temperature dependence of lnK at some pressureshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip67

33 Two sets of reversal experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip69

34 Temperature dependence of K and pressure dependence of enthalpyhelliphelliphelliphelliphelliphellip72

35 The distribution of differences between experimental and predicted temperatureshellip76

36 Pressure effect on lnK at some temperatures and water concentrationshelliphelliphelliphelliphellip77

41 Sketch of kinetics of reaction 1 during coolinghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip93

42 Temperature dependence of viscosity of rhyolitic melts at various pressureshelliphelliphellip99

43 Comparison of viscosities of given rhyolitic melts at various pressureshelliphelliphelliphellip104

44 Pressure effect on crystallization in the rhyolitic meltshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip106

viii

45 Comparison of measured viscosity data of rhyolites with calculated valueshelliphelliphellip111

46 P-T-XH2Ot range of all experimental data of the modelhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip112

47 Pressure effect on viscosity at some temperatures and water concentrationshelliphelliphellip113

48 Pressure dependence of glass transition temperature of hydrous rhyoliteshelliphelliphellip115

B1 FTIR spectra for Chapter IIIhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip176

C1 FTIR spectra for Chapter IVhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip195

ix

LIST OF TABLES

Table

21 Fitting parameters of Equation 5 in four binary systemshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip17

22 Fitting parameters for Equation 8helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip22

23 Melt composition on anhydrous basishelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip26

24 Fitting parameters for Equation 11helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip33

25 Examples of calculation using Equation 12helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip35

26 The 2 deviations and data points of sub-groups in the viscosity databasehelliphelliphelliphellip37

31 Chemical compositions of KS and GMR rhyolite on anhydrous basishelliphelliphelliphelliphellip55

32a Experimental results for pressure calibration at 1073 Khelliphelliphelliphelliphelliphelliphelliphelliphelliphellip60

32b Literature data on quartz-coesite transition pressure at 1073 Khelliphelliphelliphelliphelliphelliphelliphellip60

33 The equilibrium speciation of water in rhyolitic melts under various pressureshelliphellip63

34 Fitting parameters for Equations 3 4 and 6helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip74

41 Chemical composition of KS GMR and EDF rhyolite on anhydrous basishelliphelliphellip91

42 Viscosity of EDF under pressures 02 and 04 GPa and KS at 04 GPahelliphelliphelliphelliphellip98

43 Viscosity of hydrous rhyolitic melts under various pressureshelliphelliphelliphelliphelliphelliphelliphellip100

A1 Viscosity database used to fit Equation 11helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip130

D1 Pressure dependence of easiness of crystallization for different meltshelliphelliphelliphelliphellip211

x

LIST OF APPENDICES

Appendix

A Viscosity data of natural silicate meltshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip130

B FTIR spectra for equilibrium speciation experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip176

C FTIR spectra for cooling experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip195

D Database for easiness of crystallization for different melts at different P-T

conditionhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip211

1

CHAPTER 1

INTRODUCTION

Knowledge of viscosity of silicate melts is necessary in order to quantitatively

model volcanic and magmatic processes and in turn to provide insights into the structure

and dynamics of silicate melts A mechanistic study of xenolith dissolution may aid in

understanding the diagenesis of magmatic system (eg Morgan et al 2006 Shaw

2006) A numerical model of bubble growth may advance in predicting the mode of

volcanic eruption (eg Proussevitch and Sahagian 1998 Liu and Zhang 2000) The

success of these models in accurately predicting kinetic and dynamic processes in

igneous systems is critically dependent on the quality of viscosity data of silicate melts

Laboratory viscosity measurements are performed to better understand detailed

physicochemical behaviors and the results of these studies are then used to understand the

behavior of the melts in nature (eg Scaillet et al 1996) Because the conditions that

pertained in laboratory experiments cannot always be identical to those occurring in

nature it is also important to have means of interpolating or extrapolating laboratory

results to different (T P X) conditions In this study one of the primary aims is to

establish a general viscosity model to estimate viscosity of silicate melts at ambient

pressure Furthermore hydrous species reaction viscometer based on the kinetics of

hydrous species reaction in the rhyolitic melts at high pressure is used to infer viscosity

2

of hydrous rhyolitic melts at pressure up to 283 GPa and parallel-plate creep viscometer

in an internally-heated pressure vessel is employed to measure natural rhyolitic melts at

pressure up to 04 GPa and the pressure effect on the viscosity of rhyolitic melts is

examined

Chapter II presents a new and empirical viscosity equation of anhydrous and

hydrous natural silicate melts The compositional dependence of viscosity of silicate

melts is of fundamental importance to understand the evolution of magmatic systems

(eg Marsh 2006) However previous viscosity models can only provide viscosity

prediction of silicate melts either in a limited composition range over a large temperature

range (eg Hess and Dingwell 1996 Zhang et al 2003) or in a limited temperature

range in a large compositional range (eg Shaw 1972) This chapter provides a general

viscosity model of silicate melts which can be used to calculate viscosity of all natural

silicate melts in a large temperature range Natural and nearly natural melt compositions

covered in this model include anhydrous peridotite to rhyolite anhydrous peralkaline to

peraluminous melts hydrous basalt to rhyolite hydrous peralkaline to peraluminous

melts This model can also be used to estimate the glass transition temperatures and

cooling rate of natural silicate melts The results of this study have been published in

Geochimica et Cosmochimica Acta (Hui and Zhang 2007)

Chapter III is an experimental study of the speciation of dissolved water in

rhyolitic melts at pressure up to 283 GPa This study is prerequisite for inferring

viscosity of hydrous rhyolitic melts using the hydrous species reaction viscometer

(Dingwell and Webb 1990 Zhang et al 2003) at high pressure (Chapter IV)

Furthermore the quantification of hydrous speciation in the rhyolitic melts under high

3

pressure can be applied to model H2O diffusion and understand the structure of hydrous

melts at high pressure In addition information from this study is also useful in future

models of thermodynamic properties of hydrous silicate melts Chapter III addresses the

first systematic experimental study of H2O speciation in rhyolitic melts containing 08 ndash 4

wt water at high pressure 094 ndash 283 GPa A speciation model accommodating

temperature pressure and water content dependence of hydrous species in rhyolitic melts

is also presented in this chapter The results from this study have been submitted to

Geochimica et Cosmochimica Acta (Hui et al 2008)

Chapter IV contains the first experimental study of viscosity of any melts at

pressure up to 283 GPa in the high viscosity range It extends a newly developed method

(hydrous species reaction viscometer Zhang et al 2003) to high pressures This new

development represents the only method capable of extracting viscosity data of melts in

the high viscosity range at pressures above 1 GPa Previously high-pressure (ge 1 GPa)

viscosity data were obtained by the falling-sphere technique in high-pressure apparatus

which can be applied only in the low viscosity range Hence all previous viscosity data at

high pressure (ge 1GPa) fall in the high temperature range (ie low viscosity range) No

viscosity data in the low temperature range at high pressure ((ge 1GPa) have been

published This study is the first to infer viscosity of hydrous rhyolitic melts containing

08 ndash 4 wt water using the hydrous species reaction viscometer (Dingwell and Webb

1990 Zhang et al 2003) at high pressures The viscosity of natural rhyolitic melts

containing 013 and 08 wt water at pressures up to 04 GPa also has been measured

using a parallel plate creep viscometer A viscosity model of rhyolitic melts in the high

viscosity range accounting for the dependence on pressure temperature and water content

4

is also presented in this chapter The results from this chapter have been submitted to

Geochimica et Cosmochimica Acta (Hui et al 2008)

5

REFERENCES

Dingwell DB Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2 427-

449

Hess K-U Dingwell DB (1996) Viscosities of hydrous leucogranitic melts A non-

Arrhenian model Am Mineral 81 1297-1300

Hui H Zhang Y (2007) Toward a general viscosity equation of natural anhydrous and

hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Hui H Zhang Y Xu Z Behrens H (2008) Pressure dependence of the speciation of

dissolved water in rhyolitic melts Geochim Cosmochim Acta In revision

Hui H Zhang Y Xu Z Del Gaudio P Behrens H (2008) Pressure dependence of

viscosity of rhyolitic melts Geochim Cosmochim Acta Submitted

Liu Y Zhang Y (2000) Bubble growth in rhyolitic melt Earth Planet Sci Lett 181

251-264

Marsh BD (2006) Dynamics of magmatic systems Elements 2 287-292

Morgan Z Liang Y Hess P (2006) An experimental study of anorthosite dissolution

in lunar picritic magmas Implications for assimilation processes Geochim

Cosmochim Acta 70 3477-3491

Proussevitch AA Sahagian DL (1998) Dynamics and energetics of bubble growth in

magmas analytical formulation and numerical modeling J Geophys Res 103

18223-18251

Scaillet B Holtz F Pichavant M Schmidt M (1996) Viscosity of Himalayan

leucogranites Implications for mechanisms of granitic magma ascent J Geophys

Res 101 27691-27699

6

Shaw CSJ (2006) Effects of melt viscosity and silica activity on the rate and

mechanism of quartz dissolution in melts of the CMAS and CAS systems Contrib

Mineral Petrol 151 665-680

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

7

CHAPTER II

TOWARD A GENERAL VISCOSITY EQUATION OF NATURAL ANHYDROUS AND HYDROUS SILICATE

MELTS

ABSTRACT

A new and empirical viscosity equation for anhydrous and hydrous natural silicate

melts has been developed using the following formulation

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

where η is viscosity in Pamiddots T is temperature in K and A B C and D are linear functions

of mole fractions of oxide components except for H2O The formulation is applied

successfully to fit the temperature and compositional dependence of viscosity for some

binary systems Furthermore the new model with eight parameters fits the compositional

and temperature dependence of the viscosity data of anhydrous natural silicate melts

better than the ten-parameter model in the literature The main purpose of this work is to

fit the entire high- and low-temperature viscosity database (1451 data points) of all

ldquonaturalrdquo silicate melts using this empirical formulation The general viscosity equation

has 37 parameters and is as follows

8

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

where η is viscosity in Pamiddots T is temperature in K Xi means mole fraction of oxide

component i and Z=(XH2O)1[1+(185797T)] Al2O3ex or (Na K)2Oex mean excess oxides

after forming (Na K)AlO2 The 2σ deviation of the fit is 061 logη units This general

model is recommended for viscosity calculations in modeling magma chamber processes

and volcanic eruptions

1 INTRODUCTION

Knowledge of the viscosity of silicate melts is critical to the understanding of

igneous processes such as melt segregation and migration in source regions magma

recharge magma mixing differentiation by crystal fractionation convection in magma

chambers dynamics and style of eruptions and magma fragmentation Numerous

measurements have been made on the viscosity of various silicate melts from felsic (eg

rhyolitic melt Neuville et al 1993) to ultramafic composition (eg peridotite liquid

Dingwell et al 2004) from anhydrous (eg Neuville et al 1993) to hydrous ones (eg

Whittington et al 2000) and from high temperature to low temperature A number of

authors have made efforts to model the viscosity data for the purpose of interpolation and

extrapolation Bottinga and Weill (1972) and Shaw (1972) were pioneers in developing

9

viscosity models for natural silicate melts Because of the extreme difficulty in

calibrating a better viscosity model these models were the only ones available for over

twenty years (Lange 1994) More advanced models and relationships have been

developed for specific melt compositions such as rhyolitic melts (eg Hess and

Dingwell 1996 Zhang et al 2003) For melt compositions from rhyolite to peridotite

Persikov (1998) developed a viscosity model for anhydrous and hydrous silicate melts at

high temperatures (for viscosity below 105 Pamiddots) and Giordano and Dingwell (2003a)

developed new models for anhydrous silicate melts applicable to a larger temperature

range 700 ndash 1600ordmC

In spite of recent advances in viscosity models there is still a need for a general

model that would apply to all natural silicate melts all accessible temperature ranges and

especially including the effect of H2O content The model of Giordano and Dingwell

(2003a) is noteworthy in this connection In the modeled temperature range (700-

1600degC) for anhydrous melts it has a 2σ uncertainty of 078 in logη However the model

is limited to anhydrous melts and cannot be applied to estimate viscosity at lower

temperatures For example the model predicts logη of 169 for a phonolite at 6147degC

while the experimentally determined logη is 1163 (Giordano et al 2000) Viscosity at lt

700degC is critical for understanding magma fragmentation and welding in tuffs The

purpose of this work is to develop a practical viscosity model for natural silicate melts

that is applicable to both anhydrous and hydrous natural melts and to the entire

temperature range in which experimental data are available

10

2 TEMPERATURE DEPENDENCE OF VISCOSITY

The temperature dependence of viscosity of silicate melts has been extensively

studied from a theoretical point of view or through empirical fitting of viscosity data For

a narrow temperature range usually for viscosities between 01 to 104 Pamiddots the

dependence of viscosity on temperature is well described by the Arrhenius equation (eg

Bottinga and Weill 1972 Shaw 1972) When the temperature range is large enough

most silicate melts exhibit a non-Arrhenian relationship between viscosity and

temperature (eg Neuville et al 1993 Hess and Dingwell 1996 Whittington et al

2000) It is possible that the isostructural viscosity variation is Arrhenian (Scherer 1984)

but viscosity variation due to temperature-induced structure change is the origin of the

non-Arrhenian behavior Many equations have been proposed to explain or fit the

temperature dependence of viscosity (eg Brush 1962)

One thermodynamic description of the temperature dependence of viscosity of

silicate melts is the Adam-Gibbs equation (eg Adam and Gibbs 1965 Richet 1984)

η = Ae exp Be TSconf( )[ ] (1)

where η is viscosity Ae is the pre-exponential factor independent of temperature Be is an

energy term T is temperature in K and Sconf is the configurational entropy of the melt

For compositions corresponding to a pure stable crystalline phase (such as diopside) the

configurational entropy as a function of temperature can be determined from appropriate

heat capacity measurements of liquids and crystals and glasses down to zero K (Richet et

al 1986) However for a multicomponent melt system in which oxide concentrations are

variable the configurational entropy as a function of temperature and composition cannot

be evaluated independently The above equation becomes a fitting equation with many

11

parameters which loses its theoretical appeal Hence this model is not used often to fit

viscosity-temperature relationship of silicate melts

The most often used empirical description for the temperature dependence of

viscosity is the VFT (Vogel-Fulcher-Tammann) equation (eg Fulcher 1925 Tammann

and Hesse 1926)

logη = A +B

T minus T0 (2)

where A B and T0 are fitting parameters Another model related to the fragility of the

melt has also been used (eg Avramov 1998 Zhang et al 2003)

logη = A +BT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ α

(3)

where α is fragility parameter and depends on heat capacity For a restricted

compositional range α is found to depend linearly on chemical composition as illustrated

by data in sodium or lead silicates (Avramov 1998)

Both Eqns 2 and 3 are three-parameter equations with no explicit consideration

of melt composition which is the least number of parameters to fit the non-Arrhenian

behavior Eqns 2 and 3 were extended to multicomponent melts by allowing the three

parameters to vary with composition but no working scheme was found to fit the

viscosity data (2σ uncertainty in logη is too large gt 09 log unit) With many trials the

following empirical relation was found to be extendable to multicomponent melts

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ (4)

where A B C and D are fitting parameters and are allowed to vary linearly with mole

fraction of oxide components in melts This equation would imply that the activation

12

energy for viscous relaxation depends on temperature exponentially Ea = d(lnη)d(1T) =

2303[B + Dexp(C+DT)] consistent with the activation energy of viscous flow derived

from Eqn 1 in Richet et al (1986) It is not clear whether there is theoretical basis for

Eqn 4 but it works empirically to fit viscosity data of multicomponent silicate melts

Although the above four-parameter equation can also fit viscosity data of a single

composition not all four parameters are necessary and a three-parameter equation either

Eqn 2 or 3 would be more advisable Nonetheless letting C = 0 reduces Eqn 4 to a

three-parameter equation which may fit viscosity data of a single composition

logη = A +BT

+ exp DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ (4a)

Fig 21 compares fits of viscosity data using Eqns 2 3 and 4a on anhydrous trachyte

melt (AMS_D1 Romano et al 2003) and tephrite melt (Whittington et al 2000) As

shown in Fig 21 these three equations all fit viscosity data well for a given anhydrous

melt

The primary purpose of proposing Eqn 4 is to fit viscosity data of

multicomponent silicate melts by making the four parameters linearly dependent on

composition Below first the compositional dependence of viscosity in binary melts is

discussed then Eqn 4 is applied to fit viscosity of anhydrous natural silicate melts and

finally the entire viscosity database on ldquonaturalrdquo anhydrous and hydrous silicate melts

3 VISCOSITY OF BINARY MELTS

At low temperatures the viscosity of melts in simple binary systems often shows

minima at intermediate compositions This minimum diminishes with increasing

13

0

2

4

6

8

10

12

14

05 06 07 08 09 1 11

TephriteEqn 2Eqn 3Eqn 4a

058 06 062 064 066 068 0705

075

1

125

15

175

2

B

logη

(η in

Pasdot

s)

1000T (T in K)

2

4

6

8

10

12

AMS_D1Eqn 2Eqn 3Eqn 4a

Eqn 4a-53257A87284B19105D

099972R

Eqn 3-19571A42355B17285α

099962R

Eqn 2-3851A90912B35116T0

09997R

AA

logη

(η in

Pasdot

s)

Fig 21 Comparisons of fitting results using Eqns 2 3 and 4a for viscosity data of (a) AMS_D1 trachyte (Romano et al 2003) and (b) tephrite (Whittington et al 2000)

14

temperature and eventually disappears at high enough temperature (Neuville and Richet

1991) The minimum of viscosity data in a binary system can be explained by a

combination of the Adam-Gibbs model and mixing law of configurational entropy of two

end-members (Neuville and Richet 1991) However in this strategy many fitting

parameters are needed to account for the viscosity dependence on composition and

temperature For example Neuville and Richet (1991) used a fifteen-parameter equation

to fit the viscosity data of Ca3Al2Si3O12-Mg3Al2Si3O12 binary system Moreover

asymmetry of viscosity as a function of composition such as in the Na2Si3O7-K2Si3O7

binary system can make it even more difficult for the Adam-Gibbs model to fit the

viscosity data in the binary system (Richet 1984)

On the other hand assuming that each of the four parameters is a linear function

of composition Eqn 4 becomes an eight-parameter equation to fit the temperature and

compositional dependence of viscosity of a binary system

( ) ( ) ( ) ( )1 1 2 2 1 1 2 21 1 2 2 1 1 2 2log exp

b X b X d X d Xa X a X c X c X

T Tη

+ +⎛ ⎞= + + + + +⎜ ⎟

⎝ ⎠ (5)

where a b c and d with subscript 1 and 2 are fitting parameters X is mole fraction of two

end-members in the system Compared to the fifteen-parameter equation of Neuville and

Richet (1991) the number of fitting parameters is almost halved although the physical

meaning of each parameter is less clear in Eqn 5

Fits using Eqn 5 and all fits below are carried out using the commercially

available program MatLab or Stata which employs nonlinear least square regression to

minimize χ2 = sum(logηcalci-logηobsi)2 The fitting errors on all parameters are obtained by

the program Stata When the standard error of a parameter is larger than the absolute

15

value of the parameter the parameter is removed and a new fit with one less fitting

parameter is carried out

Figure 22 shows fits of viscosity data of four binary systems MgSiO3-CaSiO3

(Urbain et al 1982 Scarfe and Cronin 1986 Neuville and Richet 1991)

Mg3Al2Si3O12-Ca3Al2Si3O12 pyrope-grossular (Neuville and Richet 1991) NaAlSi3O8-

CaAl2Si2O8 albite-anorthite (Kozu and Kani 1944 Urbain et al 1982 Hummel and

Arndt 1985) and NS3-KS3 Na2Si3O7-K2Si3O7 (Taylor and Dear 1937 Lillie 1939

Taylor and Doran 1941 Poole 1948 Shartsis et al 1952 Bockris et al 1955

Mackenzie 1957 Taylor and Rindone 1970 Ammar et al 1977) The viscosities of

partially crystallized samples during measurement are not used in the fitting The fitting

parameters are shown in Table 21 The 2σ deviations in terms of logη for CaSiO3-

MgSiO3 garnet plagioclase and NS3-KS3 systems are 039 025 029 and 030

respectively There is a minimum viscosity at intermediate compositions in all four

binary systems at low temperatures such as CaSiO3-MgSiO3 and garnet at 1050 K (Fig

23A) plagioclase at 1123 K (Fig 23B) and NS3-KS3 at 715 K (Fig 23C)

The compositional location of viscosity minimum varies with temperature This

can be seen from the viscosity data of plagioclase (albite-anorthite) binary system

(Hummel and Arndt 1985) As shown in Fig 23B the viscosity minimum of albite-

anorthite system is located at around 40 mole of anorthite in the composition range at

1123 K but the minimum is at a greater anorthite content at higher temperatures This

variation has been explained by Richet (1984) to be due to the mixing of configurational

entropies of anorthite and albite melts which increase at considerably different rates with

increasing temperature The magnitude of the viscosity minimum diminishes with

16

Fig 22 Comparisons of experimental viscosity data with calculated values using Eqn 5 with fitting parameters in Table 21 The data sources are as follows CaSiO3-MgSiO3 (Urbain et al 1982 Scarfe and Cronin 1986 Neuville and Richet 1991) Ca3Al2Si3O12-Mg3Al2Si3O12 garnets (Neuville and Richet 1991) CaAl2Si2O8-NaAlSi3O8 plagioclases (Kozu and Kani 1944 Urbain et al 1982 Hummel and Arndt 1985) NS3-KS3 (Na2Si3O7-K2Si3O7) (Taylor and Dear 1937 Lillie 1939 Taylor and Doran 1941 Poole 1948 Shartsis et al 1952 Bockris et al 1955 Mackenzie 1957 Taylor and Rindone 1970 Ammar et al 1977)

Neuville and Richet 199111 line

garnet

-2

0

2

4

6

8

10

12

14

-2 0 2 4 6 8 10 12 14

Ktradezu and Kani 1944Hummel and Arndt 1985Urbain et al 198211 line

Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s)

plagioclase

-2 0 2 4 6 8 10 12 14

Ammar et al 1977

Bockris et al 1955

Lillie 1939

Mackenzie 1957

Poole 1948

Shartsis et al 1952

Taylor and Dear 1937

Taylor and Doran 1941

Taylor and Rindone 1970

Measured logη (η in Pasdots)

11 line

(Na K) Si O2 3 7

-2

0

2

4

6

8

10

12

14

Neuville and Richet 1991Urbain et al 1982Scarfe and Cronin 198611 line

Cal

cula

ted

logη

(η in

Pasdot

s)

(Ca Mg)SiO3

17

Table 21 Fitting parameters of Eqn 5 in the binary systems of CaSiO3-MgSiO3 garnet plagioclase and NS3-KS3

parameter CaSiO3-MgSiO3 garnet plagioclase NS3-KS3

a1 -31287 (04255)

23593 (11691)

-45179 (10170)

-32839 (05488)

a2 -94323 (04710)

-43178 (01053)

-63903 (06947)

-61410 (07446)

b1 -212604 (16359)

59402 (34463)

47706 (20814)

b2 179038 (9527)

165512 (19446)

118218 (13486)

c1 -12322 (03808)

08438 (01057)

-20844 (09118)

-11788 (09117)

c2 -59221 (09186)

-31234 (15216)

-51302 (32636)

d1 40716 (3713)

27049 (1157)

50614 (8312)

24647 (4784)

d2 74655 (8636)

28789 (88)

46909 (12991)

42955 (20116)

Note Numbers in parentheses are 2 times the standard errors (2σ) of the fitting respective parameters For CaSiO3-MgSiO3 1=CaSiO3 2=MgSiO3 for garnet 1=Ca3Al2Si3O12 (grossular) 2=Mg3Al2Si3O12 (pyrope) for plagioclase 1=CaAl2Si2O8 (anorthite) 2=NaAlSi3O8 (albite) for NS3-KS3 1=Na2Si3O7 2=K2Si3O7

18

85

95

105

115

125

135

0 02 04 06 08 1

MgSiO3-CaSiO3 (1050 K)Py-Gr (1050 K)

mole fraction (Ca-end member)

logη

(η in

Pasdot

s) A

8

9

10

11

12

0 02 04 06 08 1Ab An

logη

(η in

Pasdot

s)

T=1123K

T=1153K

T=1183K

B

0

2

4

6

8

10

12

14

0 02 04 06 08 1

logη

(η in

Pasdot

s)

KS NS3 3

T=715K

T=823K

T=1073K

T=1673K

C

Fig 23 Viscosity as a function of composition in four binary systems (A) CaSiO3-MgSiO3 and garnet (B) plagioclase and (C) NS3-KS3 (Na2Si3O7-K2Si3O7) The solid curves are calculated from Eqn 5 with fitting parameters in Table 21 The sources of viscosity data are as follows (A) interpolated from Neuville and Richet (1991) using Arrhenius relationship of viscosity and temperature (narrow temperature range) with the same compositions (B) open symbols Hummel and Arndt 1985 solid symbols interpolated data from Hummel and Arndt (1985) using Arrhenius relationship of viscosity and temperature (narrow temperature range) (C) data are from Taylor and Dear 1937 Lillie 1939 Taylor and Doran 1941 Poole 1948 Bockris et al 1955 Mackenzie 1957 Ammar et al 1977 interpolated data from Taylor and Doran (1941) Poole (1948) Shartsis et al (1952) Bockris et al (1955) and Ammar et al (1977) and Poole (1948) and Mackenzie (1957) using VFT equation for the same compositions

19

increasing temperature as inferred by Neuville and Richet (1991) As shown in Fig

23C the viscosity minimum in NS3-KS3 system is less pronounced at 1673K than the

one at 715K

4 VISCOSITY MODELS FOR NATURAL ANHYDROUS AND

HYDROUS SILICATE MELTS

The main purpose of this work is to present a working model for calculation of

the viscosity of all natural anhydrous and hydrous silicate melts covering the entire

experimental temperature range The equation used to fit the viscosity data is Eqn 4

with each of A B C and D as a linear function of the compositional parameters For

example for an N-component system the parameter A may be written as

A = ai Xii=1

Nsum (6a)

Or A = a0 + ai Xii=1

Nminus1sum (6b)

where a0 and ai are fitting parameters with i being the ith oxide in the anhydrous melts

This formulation requires many fitting parameters In order to avoid the impression that

the model works only because of many parameters first an effort to use formulation of

Eqn 4 to fit a smaller data set that has been modeled recently by Giordano and Dingwell

(2003a) is presented to show that the new model can fit the same data using a smaller

number of parameters than that of Giordano and Dingwell (2003a)

20

41 A SIMPLE MODEL FOR NATURAL ANHYDROUS MELTS

For multicomponent silicate melts the dependence of viscosity on melt

composition is complicated In the quest of seeking simpler equations with a smaller

number of fitting parameters various parameters such as NBOT (eg Giordano and

Dingwell 2003a) and SM (SM = sum (Na2O+K2O+CaO+MgO+MnO+FeOtot2))

(Giordano and Dingwell 2003a) have been used in modeling melt viscosity Various

parameters were explored to simplify the compositional dependence After a number of

trials using the sum of network formers SiO2 Al2O3 and P2O5 as one single parameter is

found to work well in the context of Eqn 6b Hence this parameter is defined as

SAP = XSiO2+ XAl2O3

+ XP2O5 (7)

where Xi is mole fraction of oxide i in the melt Based on the above considerations the

following equation to relate viscosity temperature and melt composition is used

logη = a0 + a1X( )+b0 + b1X( )

T+ exp c0 + c1X( )+

d0 + d1X( )T

⎝ ⎜

⎠ ⎟ (8)

where X = SAP a b c and d with subscript 0 or 1 are fitting parameters

Giordano and Dingwell (2003a) presented two models for the viscosity of

anhydrous silicate melts The data set contained 314 viscosity data points Their preferred

model using the parameter SM contained 10 fitting parameters Although their database

contained viscosity data below 700degC they only modeled the data in the temperature

range of 700-1600degC With 10 parameters the 2σ deviation of their preferred model is

078 logη units at 700-1600degC

The purpose of using Eqn 8 to fit viscosity data is to compare with previous fits

Hence fitting the same viscosity database of the anhydrous natural silicate melts as used

21

by Giordano and Dingwell (2003a) is the ideal solution All the viscosity data used by

them plus the data at temperatures below 700degC are used to carry out the nonlinear fit and

the new model is as follows

logη = minus213517 +127366X( )+293003minus 97574X

T

+ exp 299791minus 324047X( )+minus588688 + 650818X

T⎛ ⎝ ⎜

⎞ ⎠ ⎟ (9)

The standard errors for the fitting parameters are shown in Table 22 Applying the above

equation to viscosity data at 700-1600degC the 2σ deviation is 063 logη units (Fig 24A)

That is with a smaller number of fitting parameters (8 versus 10) the formulation of Eqn

4 is able to fit anhydrous melt viscosity data to a slightly better precision at this

temperature range than the model of Giordano and Dingwell (2003a)

Another measure of a successful model is applicability to a wide range of

conditions For example Hess and Dingwell (1996) compared their viscosity model for

hydrous rhyolite at both high and low temperatures to the model of Shaw (1972) although

his model was for all anhydrous and hydrous silicate melts but at high temperatures only

and showed that their model is superior to that of Shaw (1972) at low temperatures The

eight-parameter model is able to fit low-temperature viscosity data (ie data at le 700degC

Fig 24B) For the whole temperature range Eqn 9 reproduces the experimental data

with a 2σ standard uncertainty of 077 (Fig 24) The model of Giordano and Dingwell

(2003a) on the other hand did not include data at le 700degC in the fit and hence did not

predict the data well Although Giordano and Dingwellrsquos model is not designed for

application below 700degC the applicability of this eight-parameter model to the full

temperature range of viscosity data demonstrates its superiority Viscosity data at le700degC

are of importance in processes such as magma fragmentation and welding in tuffs

22

Table 22 Fitting parameters for Eqn 8

a b c d 0

-213517 (21976)

293003 (21590)

299791 (147288)

-588688 (271124)

1

127366 (38896)

-97574 (37088)

-324047 (168378)

650818 (302724)

Note Numbers in parentheses are 2σ errors of fitting coefficients respectively

23

-1

1

3

5

7

9

11

13

-1 1 3 5 7 9 11 13

Giordano and Dingwell (2003a)Eqn 911 line

AC

alcu

late

d lo

gη (η

in P

asdots)

9

10

11

12

13

14

15

16

17

9 10 11 12 13 14 15 16 17

Giordano and Dingwell (2003a)Eqn 911 line

Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s) B

Fig 24 Comparison of experimental viscosity data with calculated values (A) in the temperature range from 700 to 1600degC (which is the temperature range that Giordano and Dingwell (2003a) recommended for their model) and (B) below 700degC

24

In summary with a smaller number of fitting parameters the new model does a

better job than the most recent viscosity models (Giordano and Dingwell 2003a) This

verifies that Eqn 4 provides a practical way to describe the compositional and

temperature dependences of the viscosity of natural silicate melts and the success of the

model below is not purely because of the many parameters involved

42 VISCOSITY DATA

The primary motivation of this work is to develop a practical viscosity model for

natural anhydrous and hydrous silicate melts Viscosity data for the development of new

viscosity model come from literature The compositional range is limited to ldquonaturalrdquo

silicate melts (including Fe-free haplogranitic haploandesitic haplobasanitic

haplotephritic haplophonolitic and haplotrachytic melts) The compositions range from

peridotite to rhyolite from peralkaline to peraluminous silicate melts and from

anhydrous to hydrous melts Simple synthetic melts such as Li2O-SiO2 Na2O-SiO2

K2O-SiO2 CaSiO3-MgSiO3 feldspar systems are not included but synthetic melts

intended to approximate natural silicate melt are included Simple synthetic melts are

excluded from the new model because there is still more work needed in developing a

completely general compositional model for the viscosity of all silicate melts For

example including simple melts such as Na2O-SiO2 would expand the compositional

space to pure Na2O melt which may require parameters A B C and D in Eqn 4 to vary

as a nonlinear function of oxide mole fractions This limitation was also encountered in

literature when other silicate liquid properties are modeled (1) The density model of

liquids is developed only for natural silicate liquids excluding simple synthetic melts

25

(Lange and Carmichael 1987 Lange 1997) (2) The thermodynamic model of silicate

melts is also developed only for natural silicate liquids excluding simple synthetic melts

(Ghiorso et al 1983 2002)

The compositions of ldquonaturalrdquo silicate melts for which viscosity data are available

are listed in Table 23 on an anhydrous basis The references are also given in Table 23

There are 1451 viscosity measurements Natural melt compositions covered in the

database are presented in Fig 25 on an anhydrous basis The compositions covered by

the data include anhydrous peridotite to rhyolite anhydrous peralkaline to peraluminous

melts hydrous basalt to rhyolite hydrous peralkaline to peraluminous melts The FeO-

free melts include haplogranitic melts (H1-26) haploandesite (A2 and A4) haplobasanite

(Bn3) haplotephrite (Te2) haplophonolite (Ph4) and haplotrachyte (Tr6) as shown in

Table 23 Some samples with the same or similar sample names (such as two HPG8 and

one HPG08) but different chemical compositions are treated as different samples with

different chemical compositions (that is all compositions were treated to be different and

the chemical analyses were not averaged) The viscosity ranges from 01 to 1015 Pamiddots

The temperature ranges from 573 to 19779 K The H2O concentration is le123 wt for

rhyolitic melt and below 5 wt for other melts

Viscosity data from partially crystallized melt (such as andesite ME113e Richet

et al 1996) are not used Viscosity data of phonolite melt with 088 wt water in

Whittington et al (2001) are shown by these authors to be outliers and are hence not

included The viscosities of Sample A (LGB rhyolite) in Neuville et al (1993) are not

used because these authors suspected the quality of the viscosity data Data on rhyolite

shown to be outliers by Zhang et al (2003) are not included The data of

26

Table 23 Melt composition on anhydrous basis (on wt basis)

Composition SiO2 TiO2 Al2O3 FeO MnOMgOCaO Na2OK2O P2O5 total ID ref Basanite (EIF) 4115 274 1210 1011 000 1124 1566 276 304 102 9982 Bn1 19 Basanite (EIF) 4122 274 1212 1003 000 1126 1569 276 305 102 9989 Bn2 17 Basanite (NIQ) 4357 297 1018 000 000 917 2607 759 096 000 10051 Bn3 1 Peridotite 4583 018 487 863 000 3163 637 032 000 000 9783 Pr 27 Basalt (ETN) 4703 161 1628 1088 020 517 1047 375 194 059 9792 Bl1 25 Basalt (ETN) 4781 194 1791 1090 019 475 996 394 211 048 9999 Bl2 17 Basalt 4821 125 1550 1064 000 908 1192 240 008 014 9922 Bl3 21 Tephrite (Ves_G_tot) 4920 083 1640 720 013 510 1020 270 650 072 9898 Te1 19 Basalt (MTV9) 4961 427 1101 1473 000 446 1004 281 047 251 9991 Bl5 28 Basalt (Kilauea 1921) 5001 260 1256 1079 024 939 1088 233 048 000 9937 Bl7 29 Tephrite 5056 235 1403 000 000 879 1500 704 301 000 10078 Te2 1 Basalt (MTV4) 5066 395 1135 1390 000 394 960 298 051 240 9929 Bl6 28 Basalt (MTV6) 5084 426 1138 1505 000 442 1018 301 055 004 9973 Bl8 28 Basalt (MTV2) 5087 405 1136 1420 000 423 962 306 052 009 9800 Bl9 28 Phonolite (Ves_W_tot) 5120 067 1860 610 013 250 730 375 790 040 9855 Ph1 19 Phonolite (V_1631_G) 5314 059 1984 472 013 177 675 477 828 000 9999 Ph2 23 Phonolite (V_1631_W) 5352 060 1984 480 014 176 676 466 791 000 9999 Ph3 23 Basalt 5354 105 1729 782 000 546 832 359 164 020 9891 Bl4 21 Andesite 5856 064 1898 745 000 348 617 324 092 000 9944 A1 21 Andesite 5869 001 2157 002 002 538 949 330 157 000 10005 A2 26 Phonolite 5882 079 1942 000 000 187 235 931 744 000 10000 Ph4 2 Andesite (Crater Lake) 5946 073 1790 518 010 371 645 423 147 000 9926 A5 29 Phonolite (ATN) 5970 046 1852 360 017 065 280 389 845 015 9839 Ph5 19 Phonolite (Td_ph) 6046 056 1881 331 020 036 067 976 545 006 9964 Ph6 22 Trachyte (IGC) 6074 027 1922 337 018 028 211 528 632 006 9783 Tr1 20 Trachyte (AMS_D1) 6086 039 1827 388 012 090 296 412 850 000 10000 Tr2 23 Andesite 6117 084 1729 539 000 335 583 385 139 000 9911 A3 11 Trachyte (AMS_B1) 6126 038 1838 350 014 074 297 458 804 000 9999 Tr3 23 Andesite (Crater Lake) 6215 076 1680 496 025 326 508 502 172 000 10000 A6 32 Andesite 6240 055 2001 003 002 322 908 352 093 012 9988 A4 8 Trachyte (MNV) 6388 031 1710 290 013 024 182 567 682 005 9892 Tr4 20 Trachyte (PVC) 6399 045 1696 255 014 032 083 633 637 009 9803 Tr5 19 Trachyte 6445 050 1671 000 000 292 536 670 337 000 10001 Tr6 2 Dacite 6528 059 1705 402 008 182 470 434 129 013 9930 D1 30 Dacite (UNZ) 6600 036 1523 408 010 221 501 384 216 014 9913 D2 24 Granite (263-2) 6677 039 2015 431 001 072 364 137 217 000 9953 R1 16 Trachyte (570-2) 6695 087 2124 257 006 001 163 183 455 000 9971 Tr7 16 Plagioliparite (851-2) 6716 001 2165 281 001 073 265 285 182 000 9969 R2 16 Trachyte (570-3) 6871 090 1928 259 006 000 165 187 466 000 9972 Tr8 16 Trachyte (570-1) 7016 092 1718 274 006 000 170 207 488 000 9971 Tr9 16 Plagioliparite (851-1) 7122 024 1680 291 006 080 262 309 194 000 9968 R3 16 Granite (130) 7142 001 1610 458 001 157 094 194 292 000 9949 R4 16 Granite (Barlak) 7312 019 1356 319 000 018 168 386 420 000 9998 R33 31 Rhyolite 7323 019 1360 278 000 017 169 378 411 013 9968 R5 21

27

Trachyte (570-4) 7335 090 1483 238 007 000 164 187 470 000 9974 Tr1016 HPG05 7349 000 1326 000 000 000 000 240 898 000 9813 H21 38 HPG8An10 7360 000 1560 000 000 000 210 440 380 000 9950 H4 33 Rhyolite 7379 005 1511 042 005 007 097 471 402 001 9920 R6 9 Rhyolite (GB4) 7389 006 1577 075 000 014 058 462 419 000 10000 R34 34 HPG8Na5 7410 000 1170 000 000 000 000 900 440 000 9920 H5 435HPG8Ca5 (Ca5) 7410 000 1220 000 000 000 520 440 400 000 9990 H6 36 HPG8K5 7460 000 1180 000 000 000 000 440 920 000 10000 H7 4 Rhyolite (M981023) 7470 008 1328 165 000 000 077 430 522 000 10000 R7 18 HPG04 7490 000 1352 000 000 000 000 364 722 000 9928 H22 38 Rhyolite (P3RR) 7537 007 1284 157 007 004 072 419 513 000 10000 R8 17 HPG8Al5 (Al05) 7540 000 1610 000 000 000 000 470 430 000 10050 H8 37 HPG03 7552 000 1390 000 000 000 000 477 553 000 9972 H23 38 HPG8Mg5 (Mg5) 7560 000 1200 000 000 490 000 450 400 000 10100 H9 36 Rhyolite 7603 006 1148 105 006 036 321 242 460 000 9927 R9 13 HPG02 7608 000 1389 000 000 000 000 596 384 000 9977 H24 38 AOQ 7612 000 1353 000 000 000 000 465 568 000 9998 H1 6 Rhyolite 7638 006 1159 103 005 036 325 244 466 000 9982 R10 13 HPG01 7652 000 1405 000 000 000 000 714 219 000 9990 H25 38 Rhyolite 7657 006 1165 104 007 036 323 246 462 000 10006 R11 13 Rhyolite (MCR) 7659 008 1267 100 000 003 052 398 488 000 9975 R12 14 Rhyolite 7660 010 1270 117 000 002 031 410 460 000 9960 R13 15 HPG09 7688 000 1145 000 000 000 000 360 560 000 9753 H10 38 Rhyolite (LGB) 7692 010 1292 089 005 011 086 389 425 003 10002 R14 10 Rhyolite (RH) 7699 003 1302 071 010 004 048 431 431 000 9999 R15 10 Rhyolite 7700 006 1177 100 006 036 329 248 468 000 10070 R16 13 Rhyolite (RH-r) 7701 003 1314 071 010 004 051 428 418 000 10000 R17 10 Rhyolite 7707 006 1167 099 007 035 328 242 462 000 10053 R18 13 Rhyolite (SH-r) 7708 009 1244 130 002 002 036 449 420 000 10000 R19 10 Rhyolite (EDFmr) 7715 009 1282 056 007 007 052 411 461 001 10001 R20 12 Rhyolite (SH) 7717 008 1240 130 002 001 035 450 420 000 10003 R21 10 Rhyolite (EDF) 7718 009 1291 061 007 007 051 405 452 001 10002 R22 12 HPG8Al2 (Al02) 7720 000 1390 000 000 000 000 450 430 000 9990 H11 37 Rhyolite 7727 003 1175 105 005 036 331 243 473 000 10098 R23 13 Rhyolite 7738 005 1170 103 005 036 324 244 480 000 10105 R24 13 Rhyolite 7746 005 1164 104 007 035 323 245 470 000 10099 R25 13 Rhyolite (BL6) 7748 017 1220 130 005 017 114 390 360 000 10001 R26 10 Rhyolite (BL6-r) 7753 017 1217 130 005 017 113 389 360 000 10001 R27 10 Rhyolite (LGB-r) 7788 007 1273 076 004 006 050 393 403 001 10001 R28 10 Rhyolite (BL3) 7788 016 1203 119 005 005 106 364 388 001 9995 R29 12 HPG8 7790 000 1189 000 000 000 000 453 417 000 9849 H2 5 Rhyolite 7790 007 1205 076 000 005 052 401 406 000 9942 R30 11 Rhyolite (EDF-1) 7800 009 1215 054 007 006 050 408 448 002 9999 R31 10 Rhyolite (EDF-2) 7800 009 1215 054 007 007 050 408 448 000 9998 R32 10 HPG11 7814 000 1164 000 000 000 000 126 911 000 10015 H12 38 HPG10 7821 000 1169 000 000 000 000 241 743 000 9974 H13 38 HPG07 7828 000 1192 000 000 000 000 591 223 000 9834 H14 38

28

HPG8 7860 000 1250 000 000 000 000 460 420 000 9990 H3 347HPG08 7860 000 1199 000 000 000 000 457 420 000 9936 H15 38 HPG06 7898 000 1211 000 000 000 000 704 062 000 9875 H26 38 HPG16 8103 000 991 000 000 000 000 124 739 000 9957 H16 38 HPG15 8174 000 1003 000 000 000 000 247 566 000 9990 H17 38 HPG14 8222 000 1017 000 000 000 000 366 389 000 9994 H18 38 HPG12 8231 000 1016 000 000 000 000 589 070 000 9906 H19 38 HPG13 8294 000 1030 000 000 000 000 468 241 000 10033 H20 38

The melt compositions are listed according to SiO2 content References 1 Whittington et al (2000) 2 Whittington et al (2001) 3 Dorfman et al (1996) 4 Hess et al (1995) 5 Dingwell et al (1992) 6 Schulze et al (1996) 7 Dingwell et al (1996) 8 Richet et al (1996) 9 Burnham (1964) 10 Stevenson et al (1998) 11 Neuville et al (1993) 12 Stevenson et al (1996) 13 Goto et al (2005) 14 Zhang et al (2003) 15 Shaw (1963) 16 Goto et al (1997) 17 Gottsmann et al (2002) 18 Stein and Spera (1993) 19 Giordano and Dingwell (2003a) 20 Giordano et al (2004) 21 Persikov (1991) 22 Giordano et al (2000) 23 Romano et al (2003) 24 Giordano et al (2005) 25 Giordano and Dingwell (2003b) 26 Liebskie et al (2003) 27 Dingwell et al (2004) 28 Toplis et al (1994) 29 Kushiro et al (1976) 30 Alidibirov et al (1997) 31 Persikov et al (1986) 32 Dunn and Scarfe (1986) 33 Dingwell et al (2000) 34 Scaillet et al (1996) 35 Dingwell et al (1998a) 36 Hess et al (1996) 37 Dingwell et al (1998b) 38 Hess et al (2001)

29

0

3

6

9

12

15

18

40 50 60 70 80SiO (wt)2

Na

O+K

O (w

t)

22

R

O

T

OOBPc

U

U

U

Ph

SS

S

F

1

1

1

2

2

2

3

3

3

Fig 25 Total alkalis versus SiO2 diagram (Le Bas et al 1986) showing the compositions of samples modeled in this work Pc picrobasalt B basalt O1 basaltic andesite O2 andesite O3 dacite R rhyolite S1 trachybasalt S2 basaltic trachyandesite S3 trachyandesite T trachyte or trachydacite U1 basanite or tephrite U2 phonotephrite U3 tephriphonolite Ph phonolite F foidite

30

Friedman (1963) are not used due to their large uncertainty Some viscosity data of

identical composition experimental temperature and viscosity value were reported in two

or more publications and it is not clear to us whether or not they mean the same

measurements Such data are counted only once in the database and in the regression

such as viscosity data of EIF basanite (Gottsmann et al 2002 Giordano and Dingwell

2003a) All the viscosity data used in the following fit are listed in Appendix A

Most viscosity data in the database are at 1 bar and some are at pressures up to 5

kbars The pressure effect is ignored as it has been shown that the effect is negligible for

pressures up to 5 kbars (Persikov 1998 Zhang et al 2003)

43 THE PREFERRED MODEL

The eight-parameter model (Eqn 9) grouped the effects of SiO2 Al2O3 and P2O5

on viscosity The model although appealing because of its simplicity still does not

reproduce experimental viscosity data well Furthermore it does not apply to hydrous

melts In order to produce a model that can be used to calculate viscosity to better

precision more compositional parameters are necessary In the preferred model in this

section the goal is to fit the entire viscosity database on natural silicate melts as

accurately as possible Although using the least number of parameters to fit is also a goal

it is subordinate to the goal of fitting the viscosity data as accurately as possible

In the preferred model parameters A B C and D in Eqn 4 are assumed to be

linear functions of oxide mole fractions because the assumption is simple and because it

considers different effects of the different oxide components to the viscosity Fe in the

natural silicate melts has two oxidation states ferric and ferrous The two behave

31

differently in the structure of the silicate melts Although the oxidation state of Fe has

been found to affect melt viscosity significantly especially at low temperatures

(Dingwell and Virgo 1987 Liebske et al 2003) often there is not enough information to

calculate the ferric to ferrous ratio of the experimental melts at low temperatures Hence

all iron is considered as FeO

Previous studies (eg Riebling 1966 Bruckner 1983) show that aluminum-

saturated melts [NaAl (molar) = 1] have higher viscosities than either aluminum-

oversaturated (peraluminous) or aluminum-undersaturated (alkaline to peralkaline) melts

Hence NaAlO2 and KAlO2 would be reasonable end members in this multicomponent

system Al2O3 in the melt is considered to combine with alkalis to form (Na K)AlO2

After forming (Na K)AlO2 either excess alkalis or excess aluminum are left as a

component in the melts

For hydrous melts H2O content plays a major role and the effect is not linear

Viscosity decreases rapidly with the first small amount of total dissolved water and then

not so rapidly at higher H2O contents (Lange 1994 Dingwell et al 1996) Water is

present in the silicate melts as at least two species molecular H2O and hydroxyl group

(Stolper 1982) The exact role of OH and molecular H2O on affecting melt viscosity is

not known H2O content raised to some power as an additional parameter is used as

shown in Zhang et al (2003) After many trials the following parameter seems useful in

fitting viscosity data of hydrous melts

( )1

2

11+

H O( ) e TZ X= (10)

32

where e1 is constant T is temperature in K and XH2O is oxide mole fraction of total

dissolved H2O Combining Eqns 4 6a and 10 the following model is used to fit all the

viscosity data in the database

log expi i i i

i ii i i i

i i

b X d Xa X c X

T Tη

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎝ ⎠

sum sumsum sum (11)

where Xi is the mole fraction of SiO2 TiO2 Al2O3ex FeOT MnO MgO CaO (Na

K)2Oex P2O5 H2O (Na K)AlO2 plus another term related to H2O (XH2O)1[1+(e1T)]

because a simple linear term with H2O is not enough to account for the dependence of

viscosity on H2O content The values of ai bi ci di and e1 with standard errors obtained

from the fit are listed in Table 24 In the process of fitting some parameters turned out to

be unnecessary and some could be combined These simplifications were made to reduce

the number of parameters The final fit contains 37 fitting parameters As shown in Table

24 all the fitting parameters are statistically significant This model can reproduce all the

viscosity data (in the electronic annex) with a 2σ deviation of 061 logη units in the

available temperature and compositional range of natural silicate melts Fig 26 shows

comparison between measured viscosity values of all the melts in the database including

hydrous and anhydrous natural melts and those calculated from Eqn 11 Because this is

the preferred model the full equation is written down as follows

33

Table 24 Fitting parameters for Eqn 11

a b103 c d103 SiO2

-683 (047)

1814 (047)

216 (016)

TiO2

-17079 (2098)

24893 (3312)

-14305 (2657)

Al2O3ex

-1471 (432)

3261 (470)

2173 (1075)

-2210 (1127)

(Fe Mn)O

-6198 (2591)

3856 (2681)

MgO

-1801 (278)

2596 (416)

-10553 (1950)

11083 (1995)

CaO

-1976 (327)

2264 (365)

-6992 (1123)

6712 (1126)

(Na K)2Oex

3431 (960)

-6829 (796)

-8567 (5049)

5801 (4609)

P2O5

38477 (11821)

Z

-14038 (7846)

3884 (2710)

33201 (18953)

-40497 (23747)

H2O

15926 (7994)

-4855 (2976)

-43222 (20727)

51375 (26004)

(Na K)AlO2

-843 (170)

1612 (168)

-316 (083)

e1

185797 (91556)

Note Numbers in parentheses are 2σ errors of fitting coefficients respectively

34

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

(12)

where Z=(XH2O)1[1+(185797T)] and all mole fractions (including H2O) add up to 1

Examples of calculation are given in Table 25

Fig 26 compares calculated viscosity with experimental viscosity for all data in the

database and shows that there is no systematic misfit The behavior of Eqn (12) was

examined by varying temperature and various oxide concentrations The calculated

viscosity varies smoothly and monotonically with these parameters with no up and down

fluctuations Furthermore in order to investigate whether some melts are systematically

misfit or are not fit as well as other melts ∆plusmn2σ for each melt composition is listed in

Table 26 where ∆ is the average difference between the experimental logη and

calculated logη and σ is the standard deviation The value of ∆ characterizes systematic

misfit and 2σ is a measure of data scatter As shown in Table 26 all rock groups of melts

have small ∆ values but ∆ values for subgroups vary from 0 up to 030 and most

subgroups still have small ∆ values There is no correlation between the ∆ values and

compositions of the melts On 2σ values there are some variations but no group is

obviously misfit There is no correlation between the reproducibility and the degree of

polymerization

Two sets of viscosity data on hydrous leucogranite (Whittington et al 2004) and

35

Table 25 Examples of calculation using Eqn 12

composition wt composition

mole fraction T (K)

calculated logη (Pas)

SiO2 5352 SiO2 05336 75375 947 TiO2 060 TiO2 00045 74875 960 Al2O3 1984 Al2O3ex 00212 72775 1015 FeOt 480 (Fe Mn)O 00412 71765 1042 MnO 014 MgO 00262 70435 1080 MgO 176 CaO 00722 CaO 676 (Na K)2Oex 00000 Na2O 466 P2O5 00000 K2O 791 H2O 01104 P2O5 000 (Na K)AlO2 01907 H2O 332

Note The melt is hydrous phonolite from Romano et al (2003)

36

-2

2

6

10

14

18

-2 2 6 10 14 18Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s)

Fig 26 Comparison of experimental viscosity values with calculated values using Eqn 12

37

Table 26 The 2σ deviations and data points of sub-groups in the viscosity database

Composition ∆plusmn2σ

number of data points

∆plusmn2σ (rock group)

anhydrous -021plusmn056 33 basanite (Bn1-3) hydrous 001plusmn045 33

-010 plusmn055

anhydrous 023plusmn073 38 tephrite (Te1-2) hydrous 001plusmn072 33

013 plusmn075

anhydrous -004plusmn054 40 Ph1-3 hydrous 030plusmn038 25 anhydrous -015plusmn057 59

phonolite

Ph4-6 hydrous -013plusmn063 40

-005 plusmn063

anhydrous -004plusmn071 43 Tr1-3 hydrous -001plusmn039 56 anhydrous 011plusmn052 68 Tr4-6 hydroous 013plusmn043 55

Trachyte

Tr7-10 anhydrous -012plusmn041 31

004plusmn053

anhydrous -005plusmn040 27 A1-2 A5 hydrous -002plusmn037 42

anhydrous -003plusmn040 52

Andesite

A3-4 A6 hydrous 006plusmn052 45

-001 plusmn043

R1-4 anhydrous 005plusmn045 25 anhydrous 002plusmn013 7 R5-8

R33-34 hydrous 013plusmn051 40 anhydrous 004plusmn043 83

Rhyolite

R9-32 hydrous -006plusmn058 197

-000plusmn054

anhydrous 020plusmn037 32 dacite (D1-2) hydrous -009plusmn053 9

014 plusmn047

anhydrous -011plusmn105 20 Bl1-3 Bl5 hydrous 007plusmn051 21

anhydrous 006plusmn109 28

Basalt

Bl4 Bl6-9 hydrous 003plusmn074 6

001 plusmn092

periodite (Pr) anhydrous -007plusmn055 8 -007plusmn055 anhydrous -001plusmn078 161 haplogranitic melt

(H1-26) hydrous 009plusmn061 94 003 plusmn072

leucogranite hydrous -015plusmn051 14 HPG8An10 anhydrous -002plusmn022 8

the melt used to test the model

38

anhydrous HPG8An10 (Dingwell et al 2000) are not included in the fit but are chosen

to test whether this preferred model can predict data not included in the fit Because water

content in the ldquoanhydrousrdquo melt of Whittington et al (2004) is not determined the

viscosity data of anhydrous melt are not used due to large effect of a small amount of

water on viscosity (Lange 1994 Zhang et al 2003) As shown in Fig 27 this new

model has the capability to predict the viscosity at low temperature with a 2σ deviation of

061

There are many viscosity models for specific compositions and many of them

have better accuracy than the 37-parameter general model For example the viscosity

model for hydrous and anhydrous rhyolitic melt by Zhang et al (2003) has a 2σ

uncertainty of 036 logη units specific models for five individual anhydrous and hydrous

melt compositions by Giordano et al (2005) have very low 2σ uncertainties Therefore

although the use of this grand model is recommended some specific models have better

accuracy and should be used when appropriate

One unattractive feature of the preferred model is the large number of parameters

used This means the fitting parameters themselves are not well resolved However it

does not affect the accuracy of the calculation of viscosities as long as no extrapolation is

attempted That is the model should not be extrapolated to binary systems nor to

viscosities above 1015 Pamiddots nor to temperature below 573 K nor to H2O content above 5

wt for melts other than rhyolite (For rhyolite the highest H2O content in the viscosity

database is 123 wt) As mentioned earlier Eqn 12 predicts smooth and monotonic

variations of logη with mole fraction of oxides or temperature Although it is desirable to

develop a model with a smaller number of fitting parameters the drawback of many

39

2

4

6

8

10

12

14

2 4 6 8 10 12 14

Cal

cula

ted

logη

(η in

Pasdot

s)

Measured logη (η in Pasdots)

Fig 27 The predictions of Eqn 12 Data sources filled symbols Whittington et al (2004) open symbols Dingwell et al (2000)

40

fitting parameters should not prevent the use of Eqn 12 in calculating viscosity of natural

silicate melts in a wide range of applications such as volcanic eruption dynamics as well

as other magmatic processes For example the viscosity model of Bottinga and Weill

(1972) has 285 fitting parameters for anhydrous melts at high temperatures and it was

widely applied Eqn 12 is easy to include in a software program or in a spreadsheet

program Using it to calculate viscosities of all natural silicate melts is recommended

Other applications of the viscosity model include (1) estimation of glass transition

temperature of any natural silicate melt given cooling rate (Dingwell and Webb 1990

Dingwell et al 2004 Giordano et al 2005) and (2) estimation of cooling rate of any

natural hydrous silicate glass based on apparent equilibrium temperature from H2O

speciation (Dingwell and Webb 1990 Zhang 1994 Zhang et al 2000 2003)

Even though this viscosity model can reproduce the entire viscosity database to a

better accuracy and for a greater range of compositions than previous models the

uncertainty in reproducing the viscosity data is still larger than the experimental data

uncertainty which is usually 01 logη units or less Hence there is still much room for

improvement The most important improvement might come from the development of a

better functional equation to describe viscosity dependence on temperature pressure and

composition For example new models adopted a different functional form of viscosity

A second improvement might derive from consideration of the effect of ferric and ferrous

iron which requires knowledge of experimental conditions under which the glasses were

prepared for the low-temperature viscosity measurements A third improvement might

arise from improved quantification of the effect of H2O on viscosity both in terms of

accurate determination of H2O for reported viscosity data and in terms of the functional

41

form used to handle the dependence of viscosity on H2O content Specifically in the

future every viscosity data should be accompanied by H2O content and other

concentrations simply describing a melt as dry is not good enough A fourth

improvement might originate from the incorporation of the effect of CO2 and other

volatile components in the melt So far the effect of CO2 on the viscosity of silicate melts

has only been carried out in several synthetic melts (Lange 1994 Bourgue and Richet

2001) A fifth improvement might stem from the incorporation of the pressure effect

(Persikov 1998) New experimental viscosity data are needed especially at high

pressures at low temperatures for melts with well-characterized ferricferrous ratios and

for melts with various and well-characterized volatile (H2O and CO2) concentrations

42

REFERENCES

Adam G and Gibbs JH (1965) On the temperature dependence of cooperative relaxation

properties in glass-forming liquids J Chem Phys 43 139-146

Alidibirov M Dingwell DB Stevenson RJ Hess K-U Webb SL and Zinke J

(1997) Physical properties of the 1980 Mount St Helens cryptodome magma Bull

Volcanol 59 103-111

Ammar MM El-Badry Kh and Gharib S (1977) Viscous properties of some alkali

silicate glasses in the annealing range Egypt J Phys 8 1-8

Avramov I (1998) Viscosity of glassforming melts Glastech Ber 71C 198-203

Bockris J OrsquoM Mackenzie JD and Kitchener JA (1955) Viscous flow in silica and

binary liquid silicates Trans Faraday Soc 51 1734-1748

Bottinga Y and Weill DF (1972) The viscosity of magmatic silicate liquids a model for

calculation Am J Sci 272 438-475

Bourgue E and Richet P (2001) The effects of dissolved CO2 on the density and

viscosity of silicate melts a preliminary study Earth Planet Sci Lett 193 57-68

Bruckner R (1983) Structure and properties of silicate melts Bull Mineacuteral 106 9-22

Brush SG (1962) Theories of liquid viscosity Chem Rev 62 513-548

Burnham CW (1964) Viscosity of a H2O rich pegmatite melt at high pressure (abstract)

Geol Soc Am Special Paper 76 26

Dingwell DB and Virgo D (1987) The effect of oxidation state on the viscosity of melts

in the system Na2O-FeO-Fe2O3-SiO2 Geochim Cosmochim Acta 51 195-205

Dingwell D B and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

43

Dingwell DB Courtial P Giordano D and Nichols ARL (2004) Viscosity of

peridotite liquid Earth Planet Sci Lett 226 127-138

Dingwell DB Hess K-U and Romano C (1998a) Extremely fluid behavior of hydrous

peralkaline rhyolites Earth Planet Sci Lett 158 31-38

Dingwell DB Hess K-U and Romano C (1998b) Viscosity data for hydrous

peraluminous granitic melts Comparison with a metaluminous model Am

Mineral 83 236-239

Dinwell DB Hess K-U and Romano C (2000) Viscosities of granitic (sensu lato)

melts Influence of the anorthite component Am Mineral 85 1342-1348

Dingwell DB Knoche R and Webb SL (1992) The effect of B2O3 on the viscosity of

haplogranitic liquids Am Mineral 77 457-461

Dingwell DB Romano C and Hess K-U (1996) The effect of water on the viscosity of

a haplogranitic melt under P-T-X conditions relevant to volcanism Contrib

Mineral Petrol 124 19-28

Dorfman A Hess K-U and Dingwell D (1996) Centrifuge-assisted falling-sphere

viscometry Eur J Mineral 8 507-514

Dunn T and Scarfe CM (1986) Variation of the chemical diffusivity of oxygen and

viscosity of an andesite melt with pressure at constant temperature Chem Geol 54

203-215

Friedman I Long W and Smith RL (1963) Viscosity and water content of rhyolitic

glass J Geophys Res 68 6523-6535

Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses J Am

Ceram Soc 8 339-355

44

Ghiorso MS Carmichael ISE Rivers ML and Sack RO (1983) The Gibbs free

energy of mixing of natural silicate liquids an expanded regular solution

approximation for the calculation of magmatic intensive variables Contrib

Mineral Petrol 84 107-145

Ghiorso MS Hirschmann MM Reiners PW and Kress VC III (2002) The pMELTS

A revision of MELTS for improved calculation of phase relations and major

element partitioning related to partial melting of the mantle to 3 GPa Geochem

Geophys Geosys 3 1010292001GC000217

Giordano D and Dingwell DB (2003a) Non-Arrhenian multicomponent melt viscosity

a model Earth Planet Sci Lett 208 337-349

Giordano D and Dingwell DB (2003b) Viscosity of hydrous Etna basalt implications

for Plinian-style basaltic eruptions Bull Volcanol 65 8-14

Giordano D Dingwell DB and Romano C (2000) Viscosity of a Teide phonolite in the

welding interval J Volcanol Geotherm Res 103 239-245

Giordano D Nichols ARL and Dingwell DB (2005) Glass transition temperatures of

natural hydrous melts a relationship with shear viscosity and implications for the

welding process J Volcanol Geotherm Res 142 105-118

Giordano D Romano C Papale P and Dingwell DB (2004) The viscosity of trachytes

and comparison with basalts phonolites and rhyolites Chem Geol 213 49-61

Goto A Oshima H and Nishida Y (1997) Empirical method of calculating the viscosity

of peraluminous silicate melts at high temperatures J Volcanol Geotherm Res 76

319-327

45

Goto A Taniguchi H and Kitakaze A (2005) Viscosity measurements of hydrous

rhyolitic melts using the fiber elongation method Bull Volcanol 67 590-596

Gottsmann J Giordano D and Dingwell DB (2002) Predicting shear viscosity during

volcanic processes at the glass transition a calorimetric calibration Earth Planet

Sci Lett 198 417-427

Hess K-U and Dingwell DB (1996) Viscosities of hydrous leucogranitic melts A non-

Arrhenian model Am Mineral 81 1297-1300

Hess K-U Dingwell DB Gennaro C and Mincione V (2001) Viscosity-temperature

behavior of dry melts in the Qz-Ab-Or system Chem Geol 174 133-142

Hess K-U Dingwell DB and Webb SL (1995) The influence of excess alkalis on the

viscosity of a haplogranitic melt Am Mineral 80 297-304

Hess KU Dingwell DB and Webb SL (1996) The influence of alkaline-earth oxides

(BeO MgO CaO SrO BaO) on the viscosity of a haplogranitic melt systematics

of non-Arrhenian behaviour Eur J Mineral 8 371-381

Hummel W and Arndt J (1985) Variation of viscosity with temperature and composition

in the plagioclase system Contrib Mineral Petrol 90 83-92

Kozu S and Kani K (1944) Viscosity measurements of the ternary system diopside-

albite-anorthite at high temperatures Bull Am Ceram Soc 23 377-378

Kushiro I Yoder HSJr and Mysen BO (1976) Viscosities of basalt and andesite melts

at high pressures J Geophys Res 81 6351-6356

Lange RA (1994) The effect of H2O CO2 and F on the density and viscosity of silicate

melts Rev Mineral 30 331-360

46

Lange RA (1997) A revised model for the density and thermal expansivity of K2O-

Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K extension to crustal

magmatic temperatures Contrib Mineral Petrol 130 1-11

Lange RA and Carmichael ISE (1987) Densities of Na2O-K2O-CaO-MgO-FeO-

Fe2O3-Al2O3-TiO2-SiO2 liquids new measurements and derived partial molar

properties Geochim Cosmochim Acta 53 2195-2204

Le Bas MJ Le Maitre RW Streckeisen A and Zanettin B (1986) A chemical

classification of volcanic rocks based on the total alkali-silica diagram J Petrol

27 745-750

Liebske C Behrens H Holtz F and Lange RA (2003) The influence of pressure and

composition on the viscosity of andesitic melts Geochim Cosmochim Acta 67

473-485

Lillie HR (1939) High-temperature viscosities of soda-silica glasses J Am Ceram Soc

22 367-374

Mackenzie JD (1957) The discrete ion theory and viscous flow in liquid silicates Trans

Faraday Soc 53 1488-1493

Neuville DR and Richet P (1991) Viscosity and mixing in molten (Ca Mg) pyroxenes

and garnets Geochim Cosmochim Acta 55 1011-1019

Neuville DR Courtial P Dingwell DB and Richet P (1993) Thermodynamic and

rheological properties of rhyolite and andesite melts Contrib Mineral Petrol 113

572-581

Persikov ES Epelrsquobaum MB and Bukhtiyarov PG (1986) The viscosity of a granite

magma interacting with an aqueous chloride fluid Geochem Intern 23 21-30

47

Persikov ES (1991) The viscosity of magmatic liquids Experiment generalized

patterns a model for calculation and prediction application Adv Phys Geochem

9 1-40

Persikov ES (1998) Viscosities of model and magmatic melts at the pressures and

temperatures of the Earthrsquos crust and upper mantle Russian Geol Geophys 39

1780-1792

Poole JP (1948) Viscositeacute a basse tempeacuterature des verres alcalino-silicateacutes Verres

Reacutefract 2 222-228

Richet P (1984) Viscosity and configurational entropy of silicate melts Geochim

Cosmochim Acta 48 471-483

Richet P Lejeune A-M Holtz F and Roux J (1996) Water and the viscosity of

andesite melts Chem Geol 128 185-197

Richet P Robie RA and Hemingway BS (1986) Low-temperature heat capacity of

diopside glass (CaMgSi2O6) a calorimetric test of the configurational-entropy

theory applied to the viscosity of liquid silicates Geochim Cosmochim Acta 50

1521-1533

Riebling EF (1966) Structure of sodium aluminosilicate melts containing at least 50

mole SiO2 at 1500 ˚C J Chem Phys 44 2857-2865

Romano C Giordano D Papale P Mincione V Dingwell DB and Rosi M (2003)

The dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean

Fields Chem Geol 202 23-38

48

Scaillet B Holtz F Pichavant M and Schmidt M (1996) Viscosity of Himalayan

leucogranites Implication for mechanisms of granitic magma ascent J Geophys

Res 101 27691-27699

Scarfe CM and Cronin DJ (1986) Viscosity-temperature relationships at 1 atm in the

system diopside-albite Am Mineral 71 767-771

Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural

relaxation J Am Ceram Soc 67 504-511

Schulze F Behrens H Holtz F Roux J and Johannes W (1996) The influence of H2O

on the viscosity of a haplogranitic melt Am Mineral 81 1155-1165

Shartsis L Spinner S and Capps W (1952) Density expansivity and viscosity of

molten alkali silicates J Am Ceram Soc 35 155-160

Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature

range 700deg to 900degC J Geophys Res 68 1512-1520

Shaw HR (1972) Viscosities of magmatic silicate liquids an empirical method of

prediction Am J Sci 272 870-893

Stein DJ and Spera FJ (1993) Experimental rheometry of melts and supercolled liquids

in the system NaAlSiO4-SiO2 Implications for structure and dynamics Am

Mineral 78 710-723

Stein DJ and Spera FJ (2002) Shear viscosity of rhyolite-vaporemulsions at magmatic

temperatures by concentric cylinder rheometry J Volcanol Geotherm Res 113

243-258

Stevenson RJ Bagdassarov NS and Dingwell DB (1998) The influence of trace

amounts of water on the viscosity of rhyolites Bull Volcanol 60 89-97

49

Stevenson RJ Dingwell DB Webb SL and Sharp TG (1996) Viscosity of microlite-

bearing rhyolitic obsidians an experimental study Bull Volcanol 58 298-309

Stolper E (1982) The speciation of water in silicate melts Geochim Cosmochim Acta

46 2609-2620

Tammann G and Hesse W (1926) Die abhaumlngigkeit der viscositaumlt von der temperatur bei

unterkuumlhlten fluumlssigkeiten Z Anorg Allg Chem 156 245-257

Taylor NW and Dear PS (1937) Elastic and viscous properties of several soda-silica

glasses in the annealing range of temperature J Am Ceram Soc 20 296-304

Taylor NW and Doran RF (1941) Elastic and viscous properties of several potash-

silica glasses in the annealing range of temperature J Am Ceram Soc 24 103-

109

Taylor TD and Rindone GE (1970) Properties of soda aluminosilicate glasses V low-

temperature viscosities J Am Ceram Soc 53 692-695

Toplis MJ Dingwell DB and Libourel G (1994) The effect of phosphorus on the iron

redox ratio viscosity and density of an envolved ferro-basalt Contrib Mineral

Petrol 117 293-304

Urbain G Bottinga Y and Richet P (1982) Viscosity of liquid silica silicates and

alumino-silicates Geochim Cosmochim Acta 46 1061-1072

Whittington A Richet P and Holtz F (2000) Water and the viscosity of depolymerized

aluminosilicate melts Geochim Cosmochim Acta 64 3725-3736

Whittington A Richet P and Holtz F (2001) The viscosity of hydrous phonolites and

trachytes Chem Geol 174 209-223

50

Whittington A Richet P Behrens H Holtz F and Scaillet B (2004) Experimental

temperature-X(H2O)-viscosity relationship for leucogranites and comparison with

synthetic silicic liquids Tran Royal Soc Edinburgh Earth Sci 95 59-71

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth Planet

Sci Lett 122 373-391

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

51

CHAPTER III

PRESSURE DEPENDENCE OF THE SPECIATION OF DISSOLVED WATER IN RHYOLITIC MELTS

ABSTRACT

Water speciation in rhyolitic melts with dissolved water ranging from 08 to 4

wt under high pressure was investigated Samples were heated in a piston-cylinder

apparatus at 624-1027 K and 094-283 GPa for sufficient time to equilibrate hydrous

species (molecular H2O and hydroxyl group H2Om + O = 2OH) in the melts and then

quenched roughly isobarically Concentrations of two hydrous species in the quenched

glasses were measured with Fourier transform infrared (FTIR) spectroscopy For samples

with total water content less than 27 wt the equilibrium constant is independent of

total H2O concentration Incorporating samples with higher water contents the

equilibrium constant depends on total H2O content and a regular solution model is used

to describe the dependence The equilibrium constant changes nonlinearly with pressure

for samples with a given water content at a given temperature The equilibrium constant

does not change much from ambient pressure to 1 GPa but it increases significantly from

1 to 3 GPa In other words more molecular H2O reacts to form hydroxyl groups as

pressure increases from 1 GPa which is consistent with breakage of tetrahedral

aluminosilicate units due to compression of the melt induced by high pressure The effect

52

of 19 GPa (from 094 to 283 GPa) on the equilibrium constant at 873 K is equivalent to

a temperature effect of 51 K (from 873 K to 924 K) at 094 GPa The results can be used

to evaluate the role of speciation in water diffusion to estimate the apparent equilibrium

temperature and to infer the viscosity of hydrous rhyolitic melts under high pressure

1 INTRODUCTION

The nature of dissolved water in silicate melt has received considerable attention

(eg Goranson 1938 Wasserburg 1957 Shaw 1964 Burnham 1975 Stolper 1982ab

McMillan 1994 Zhang 1999 Zhang et al 2007) As the most abundant volatile

component dissolved in terrestrial silicate melts dissolved water in melts plays an

important role in igneous processes Water can alter the structure of silicate melts hence

significantly change their physical and chemical properties such as solidusliquidus

temperatures (eg Tuttle and Bowen 1958) viscosity (eg Shaw 1972 Hui and Zhang

2007) crystal nucleation rates (eg Davis et al 1997) chemical diffusion (eg Watson

1991 Behrens and Zhang 2001) and oxygen ldquoselfrdquo diffusion (eg Zhang et al 1991a

Behrens et al 2007) Some of these effects are related to the speciation reaction below

(Stolper 1982ab)

H2Om + O = 2OH (1)

where H2Om denotes dissolved H2O molecules O denotes anhydrous oxygen and OH

denotes hydroxyl groups in silicate melts Total H2O content will be denoted as H2Ot

The equilibrium and kinetics of the above speciation reaction in rhyolitic melt has been

extensively studied (Stolper 1982a b Zhang et al 1991a 1995 1997b 2003 Ihinger et

al 1999 Nowak and Behrens 2001) Two debates have occurred about speciation

53

studies (see reviews by Zhang 1999 Behrens and Nowak 2003 Zhang et al 2007) The

early debate on whether species concentrations can be quenched from high temperature

(such as 1100 K) has been settled and the conclusion is that species concentrations will

be altered during quench if the initial temperature is above the glass transition

temperature for the given quench rate (Dingwell and Webb 1990) The later debate on

quenched versus in situ speciation studies has also been resolved and the conclusion is

that species concentrations can be preserved by rapid quench from intermediate

experimental temperatures (such as 800 K depending on H2Ot and quench rate) below

the glass transition temperature for the given quench rate (Withers et al 1999 Nowak

and Behrens 2001) The speciation data not only provide an understanding of the

detailed dissolution mechanism of H2O in melts but also can be applied to understand

H2O solubility and diffusivity in silicate melts and to infer viscosity of hydrous melts

Previous experimental studies mostly investigated H2O speciation at pressures

below 1 GPa This paper extends the experimental range to higher pressures The new

data reported here span 094-283 GPa 624-1027 K and 08-40 wt H2Ot Combining

these data with previous results (Ihinger et al 1999) a regular solution model is

developed to fit H2O speciation data from low to high pressures

2 EXPERIMENTAL METHODS

In this study hydrous rhyolitic glasses were held under a constant temperature

(623-1023 K nominal temperature) and pressure (1-3 GPa nominal pressure) in a piston

cylinder apparatus for sufficient duration (96 s to 3 days) for the two hydrous species in

the melt to reach equilibrium but short enough to avoid significant crystallization The

54

samples were then quenched to room temperature roughly isobarically Species

concentrations were measured by Fourier transform infrared (FTIR) spectroscopy at

ambient environment on the quenched glasses Based on various assessments (see

Introduction and Discussion) the quenched species concentrations reflect those at high

temperature and pressure

Starting materials include both natural hydrous rhyolitic glass (KS) and synthetic

hydrous rhyolitic glass prepared by hydration of natural rhyolitic glasses Sample KS is

from Mono Crater California Samples GMR+2 and GMR+4 were synthesized by adding

water to obsidian from Glass Mountain California The chemical compositions of these

two natural rhyolitic obsidians are listed in Table 31 Hydration of rhyolitic glasses was

implemented at 05 GPa by re-melting glass powders with added H2O at University of

Hannover Germany The obsidian glass powder and water were sealed in Au-Pd

capsules The capsules were placed in an internally heated pressure vessel (IHPV) and

heated to 1473 K at 05 GPa for overnight Sample assemblages were under H2O-

undersaturated running conditions during heating so that the loaded water was completely

dissolved in the melts Samples were then quenched isobarically The hydrated glasses

were crystal-free and bubble-free

The equilibrium experiments were performed in a piston cylinder apparatus at the

University of Michigan Glass fragments were prepared into cylinders with diameters of

about 2 mm and heights of about 2 mm Then a glass cylinder was placed into a graphite

capsule which was enclosed in crushable MgO as the inner pressure medium with

graphite heater outside and then BaCO3 cell as outer pressure medium The lid of the

graphite capsule was thin (about 05 mm thickness) to minimize the distance between the

55

Table 31 Chemical compositions (oxide wt) of KS and GMR rhyolite on an anhydrous basis

KS GMR SiO2 7594 7322 TiO2 009 031 Al2O3 1298 1408 FeO 098 145 MnO 005 005 MgO 003 026 CaO 056 131 Na2O 401 406 K2O 471 432 P2O5 029 007 H2Ot

076-090

189-223 in GMR+2338-417 in GMR+4

Total 9963 9913 Glass analyses were carried out with a CAMECA 5X-100 electron microprobe using a defocused beam (10 microm) with 1 nA current at the University of Michigan The oxide wt on an anhydrous basis is calculated by dividing the electron microprobe measured oxide concentration by 1-C where C is weight percent of H2Ot obtained by infrared spectroscopy

56

thermocouple tip and the sample The glass cylinder was placed in the center of the

graphite heater The running temperature was measured with a type-S thermocouple

(Pt90Rh10-Pt) or type-D thermocouple (Re3W97-Re25W75) The distance between

thermocouple tip and the center of the sample was typically about 13 mm after

experiments

A ldquopiston-outrdquo procedure was used to bring the assemblage to the final pressure at

373 K or 473 K The sample assemblage was relaxed at this temperature and at the

desired experimental pressure for at least 2 hours to close the gaps in the sample

assemblage After relaxation of the sample assemblage under pressure temperature was

increased at a rate of 200 K per minute to the designated temperature The sample stayed

at the desired temperature for sufficient time to ensure equilibrium for the interconversion

reaction between the two hydrous species in the sample but not too long enough for

appreciable crystallization No temperature overshoot occurred and temperature

fluctuation was le 2 K The sample was quenched roughly isobarically by turning off the

power and manually pumping to keep up the pressure The cooling rate is estimated to be

~ 100 Ks (Zhang et al 2000)

The thermal gradient in the piston cylinder was calibrated using water speciation

in rhyolitic glass (Zhang et al 1997a Ihinger et al 1999) Five experiments at 05 GPa

were carried out to calibrate the temperature distribution along the central axis of the

graphite heater The temperature distribution along the distance from the center of the

charge is shown in Fig 31 The equation for the temperature correction is

∆T asymp 221(T600)x2 (2)

where x is the distance between the thermocouple tip and the center of the charge in mm

57

0

10

20

30

40

50

0 1 2 3 4 5 6

sup2T (K

)

Distance from center (mm)

Fit by sup2 T=ax2

a=154 226 228 241 258

Temperature gradient in piston cylinder

T - 600degCTemperature correction

sup2 T = (T600)middotax2

where a = 221

Fig 31 Experimental results for temperature distribution in piston cylinder 2 at the University of Michigan laboratory calibrated using hydrous species equilibrium in rhyolite based on the speciation model of Zhang et al (1997a) Curves are best fittings of the different set of experimental data with different a values shown in the figure using Eqn 2

58

T is the temperature reading of the thermocouple in ˚C ∆T is the temperature difference

between the center and the thermocouple tip in ˚C and the constant 221 is the average of

5 experiments Therefore T+∆T is the temperature at the center of sample Depending on

the IR measurement position on the glass chip a correction of up to 6˚C was added to the

nominal temperature recorded by the thermocouple The pressure effect on emf of

different thermocouples results only in a small effect on temperature at le 3 GPa (Li et al

2003) and is ignored Overall the temperature uncertainty (2σ) for the series of

experiments in this study is estimated to be about 6 K

Pressure calibration of the piston-cylinder apparatus (Piston-cylinder 2 in the

laboratory) was conducted using two types of experiments the melting point of gold

(Akella and Kennedy 1971) at le 10 GPa and the quartz-coesite transition (eg Boyd

and England 1960 Kitahara and Kennedy 1964 Akella 1979 Mirwald and Massonne

1980 Bohlen and Boettcher 1982 Bose and Ganguly 1995) at 1073 K In the

calibration using gold melting temperature a gold wire connected the two legs of a type-

D thermocouple in a piston-cylinder At a well-maintained nominal pressure the

assemblage was gradually heated until melting of the Au wire (at which the thermocouple

signal was lost) The experiments show that the actual pressure is similar to the nominal

pressure within several percent Quartz-coesite reversal experiments at 1073 K were also

carried out with a starting material of a mixture of quartz (50 wt) and coesite (50 wt)

powder moistened to accelerate the reaction and sealed in Au capsule Here the

experimental procedure of Bose and Ganguly (1995) was followed The run product of

each experiment consists of only one pure crystalline phase as verified by X-ray

diffraction The experimental results are listed in Table 32a The calculated quartz-

59

coesite phase transition pressures at 1073 K from the literature are given in Table 32b

The literature data vary by 024 GPa reflecting difficulties in the experimental

calibrations Because these results do not completely agree with each other the most

recent experimental calibration (Bose and Ganguly 1995) was adopted to correct the

pressure in the piston cylinder apparatus by -6 (ie dividing the nominal pressure by

106) Some experiments were carried out using another piston cylinder for which the

correction is 5 based on another series of experiments to be reported in Ni and Zhang

(2008)

In order to further extend the pressure range some speciation experiments at 4-6

GPa were carried out in a multi-anvil apparatus at the University of Michigan However

except for one these charges crystallized extensively Because of the extreme difficulty

in quenching liquid to glass equilibrium speciation experiments were not continued at 4-

6 GPa

3 ANALYTICAL PROCEDURES

After quench each charge was embedded in epoxy resin Then it was polished on

both sides into a thin section along the cylindrical axis The thickness of the layer

polished away on each side of the charge was at least twice of the water diffusion

distance estimated using the diffusivity of Zhang and Behrens (2000) All run products

were analyzed for concentrations of H2Om and OH expressed in terms of H2O using an

FTIR Perkin-Elmer GX spectrometer at the University of Michigan An aperture of 01

mm in diameter was used to delimit the infrared beam size This aperture size allows

acquisition of high-quality IR spectra and evaluation of sample heterogeneity The

60

Table 32a Experimental results for pressure calibration using quartz-coesite transition at 1073 K

Nominal P (GPa)

t (h) Result

2896 72 quartz

2965 70 quartz

3034 70 quartz

3103 66 quartz

3137 70 coesite

3172 67 coesite

3378 66 coesite

Table 32b Literature data on quartz-coesite transition pressure at 1073 K

P (GPa) Reference

2846 Boyd amp England (1960)

2908 Kitahara amp Kennedy (1964)

3030 Akella (1979)

2920 Akella (1979)

2862 Mirwald amp Massonne (1980)

2792 Bohlen amp Boettcher (1982)

2935 Bose amp Ganguly (1995)

61

intensities (peak heights) of the absorption bands at 5230 cm-1 (A523) and 4520 cm-1

(A452) were measured The baseline was fit by flexicurve as shown in Zhang et al

(1997a)

Species (OH and H2Om) concentrations in terms of H2O were obtained from IR

band intensities according to Beerrsquos law Extensive effort has been made to calibrate the

IR method on hydrous rhyolitic glasses (eg Newman et al 1986 Zhang et al 1997a

Withers and Behrens 1999) The calibrations of Newman et al (1986) and Withers and

Behrens (1999) assumed constant molar absorptivities whereas Zhang et al (1997a)

considered the variability of the molar absorptivities With the calibration of Zhang et al

(1997a) the H2Ot content is highly reproducible for the same sample but with different

cooling rates but less so with other calibrations Furthermore the calibration of Zhang et

al (1997a) results in concentration-independent equilibrium constants of reaction (1) at

H2Ot le 27 wt However the calibration of Zhang et al (1997a) becomes increasingly

less accurate as H2Ot increases with error of 017 wt at 38 wt 039 wt at 56 wt

and 11 wt at 77 wt (Zhang and Behrens 2000) Because H2Ot in this work is less

than 42 wt and for consistency with the low-pressure speciation data of Ihinger et al

(1999) the molar absorptivities of Zhang et al (1997a) were adopted If a different

calibration is used there would be significant and systematic differences in species

concentrations and K Nonetheless the trends of how K depends on temperature and

pressure stay the same Furthermore as long as self-consistency is maintained the

equilibrium temperature (or the apparent equilibrium temperature) can be retrieved from

species concentrations accurately

62

Whether or not equilibrium is reached for reaction (1) in a particular experiment

the parameter

Q equiv(XOH

glass)2

XH2Om

glass XOglass

is used to monitor the change of proportions of OH and H2Om in a sample where Xiglass is

the measured mole fraction of species i in the quenched glass on a single oxygen basis

(Stolper 1982a b) and O denotes an anhydrous oxygen When the reaction duration is

long enough for the interconversion of these two hydrous species in the melt to reach

equilibrium and furthermore if this equilibrium state is retained in the quench process Q

will be equal to the equilibrium constant K

4 RESULTS AND DISCUSSION

41 SPECIES CONCENTRATIONS AND EQUILIBRIUM CONSTANTS

The concentrations of H2Om and OH in all quenched glasses calculated using the

calibration of Zhang et al (1997a) are listed in Table 33 The actual IR absorbance data

are also reported because there may be further improvement in the IR calibration The

equilibrium constants are listed in Table 33 and plotted as a function of 1000T in Fig

32

The uncertainty in each IR band intensity is about 1 relative leading to an error

of 0022 in lnK not accounting for systematic uncertainty of the calibration The

uncertainty in thickness measurement is about 2 microm which results in a negligible

increase in the overall uncertainty of lnK For high-pressure data there are additional

63

Table 33 The equilibrium speciation of water in rhyolitic melts under various pressures

Measurement T$ P$ Time Abs Abs Thickness H2Ot H2Om OH X(H2Ot) X(H2Om) X(OH) 1000T lnK K GPa s 5200 4500 mm wt wt wt K-1 KS-1-21 927 094 600 00270 01034 0717 0844 0160 0684 00151 00029 00245 107873 -1538 KS-1-22 926 094 600 00278 01028 0713 0849 0166 0683 00152 00030 00245 108043 -1573 KS-1-23 926 094 600 00255 00998 0708 0819 0153 0666 00147 00027 00239 107938 -1545 KS-1-31 879 094 14400 00593 01999 1415 0845 0178 0666 00151 00032 00239 113736 -1695 KS-1-32 877 094 14400 00589 01989 1407 0845 0178 0667 00151 00032 00239 114041 -1693 KS-1-33 878 094 14400 00627 02065 1431 0869 0186 0683 00156 00033 00245 113925 -1691 KS-1-41 819 094 187200 00676 01833 1321 0868 0218 0650 00155 00039 00233 122117 -1945 KS-1-42 817 094 187200 00673 01805 1311 0863 0218 0644 00155 00039 00231 122410 -1966 KS-1-43 818 094 187200 00694 01857 1326 0880 0223 0657 00158 00040 00235 122228 -1946 GMR+2-1-11 828 094 600 01862 02472 1038 1964 0772 1192 00349 00137 00423 120769 -1977 GMR+2-1-12 827 094 600 01892 02480 1041 1974 0782 1192 00350 00139 00423 120907 -1991 GMR+2-1-13 826 094 600 01808 02449 1033 1940 0753 1187 00344 00134 00422 121022 -1960 GMR+2-1-21 777 094 600 02150 02467 1063 2014 0870 1144 00357 00154 00406 128775 -2180 GMR+2-1-22 778 094 600 02114 02467 1059 2010 0859 1151 00357 00152 00408 128497 -2155 GMR+2-1-23 778 094 600 02099 02451 1058 1997 0854 1143 00354 00152 00406 128515 -2163 GMR+2-1-31 725 094 183600 01824 01848 0885 1886 0886 1000 00335 00157 00355 137978 -2469 GMR+2-1-32 727 094 183600 01841 01873 0888 1904 0891 1012 00338 00158 00360 137634 -2452 GMR+2-1-33 726 094 183600 01868 01892 0888 1929 0905 1024 00343 00161 00364 137800 -2443 GMR+2-1-R11 776 094 720 01756 01913 0782 2180 0968 1212 00386 00172 00430 128916 -2166 GMR+2-1-R12 775 094 720 01742 01870 0773 2167 0972 1195 00384 00172 00424 129036 -2199 GMR+2-1-R13 776 094 720 01746 01903 0789 2146 0954 1193 00381 00169 00423 128916 -2186 GMR+4-1-21 726 094 10800 01375 00780 0243 4010 2485 1525 00701 00434 00533 137751 -2626 GMR+4-1-22 725 094 10800 01396 00807 0256 3893 2392 1501 00681 00418 00525 137846 -2621 GMR+4-1-23 725 094 10800 01315 00745 0236 3944 2447 1497 00689 00428 00523 137928 -2648 GMR+4-1-31 676 094 46800 02577 01364 0490 3575 2300 1276 00627 00403 00447 147921 -2914 GMR+4-1-32 675 094 46800 02586 01344 0482 3621 2348 1273 00635 00411 00446 148152 -2938 GMR+4-1-33 676 094 46800 02581 01368 0499 3515 2261 1255 00617 00397 00440 147982 -2931 GMR+4-1-41 626 094 261360 03017 01423 0573 3394 2298 1096 00596 00404 00385 159840 -3224 GMR+4-1-42 624 094 261360 03013 01414 0574 3375 2291 1084 00593 00402 00381 160157 -3242

64

GMR+4-1-43 625 094 261360 03012 01408 0568 3406 2315 1091 00598 00406 00383 159905 -3240 KS-2-11 926 189 600 00476 01838 1209 0894 0168 0727 00160 00030 00260 107938 -1459 KS-2-12 926 189 600 00475 01828 1208 0891 0167 0723 00159 00030 00259 108049 -1469 KS-2-13 926 189 600 00463 01806 1203 0880 0164 0716 00158 00029 00257 107968 -1466 KS-2-21 877 189 14400 00699 02340 1561 0904 0191 0713 00162 00034 00255 114018 -1625 KS-2-22 876 189 14400 00653 02264 1562 0864 0178 0687 00155 00032 00246 114156 -1633 KS-2-23 876 189 14400 00649 02264 1560 0865 0177 0688 00155 00032 00246 114176 -1625 KS-2-41 960 189 600 00419 01795 1189 0872 0150 0722 00156 00027 00259 104195 -1360 KS-2-42 959 189 600 00419 01795 1196 0866 0149 0717 00155 00027 00257 104320 -1368 KS-2-43 962 189 600 00415 01795 1198 0863 0147 0716 00155 00026 00256 103982 -1362 GMR+2-2-11 825 189 7200 01032 01397 0538 2153 0827 1325 00382 00147 00470 121199 -1829 GMR+2-2-12 826 189 7200 00992 01378 0536 2109 0797 1312 00374 00141 00465 121006 -1814 GMR+2-2-13 825 189 7200 00962 01329 0524 2080 0790 1289 00369 00140 00457 121179 -1841 GMR+2-2-21 777 189 86400 01633 02049 0850 2032 0827 1205 00361 00147 00428 128756 -2023 GMR+2-2-22 776 189 86400 01618 02020 0852 1998 0817 1181 00355 00145 00419 128904 -2053 GMR+2-2-23 776 189 86400 01607 02027 0852 1998 0812 1187 00355 00144 00421 128904 -2036 GMR+2-2-41 856 189 600 01450 02017 0757 2196 0826 1370 00389 00146 00486 116794 -1760 GMR+2-2-42 856 189 600 01461 02051 0759 2225 0830 1395 00394 00147 00494 116807 -1729 GMR+2-2-43 855 189 600 01468 02042 0759 2221 0834 1387 00394 00148 00491 116954 -1746 GMR+4-2-11 757 189 1260 02299 01444 0414 4165 2444 1721 00727 00426 00601 132182 -2361 GMR+4-2-12 756 189 1260 02228 01393 0403 4132 2432 1701 00721 00424 00594 132305 -2381 GMR+4-2-13 756 189 1260 02359 01500 0432 4117 2401 1716 00719 00419 00599 132297 -2351 GMR+4-2-21 726 189 14400 02950 01847 0575 3809 2249 1560 00667 00394 00546 137766 -2482 GMR+4-2-22 725 189 14400 02949 01838 0574 3804 2253 1552 00666 00394 00543 137956 -2494 GMR+4-2-23 726 189 14400 02918 01833 0578 3749 2212 1537 00656 00387 00538 137788 -2496 GMR+4-2-31 676 189 172800 04221 02261 0741 3920 2500 1420 00685 00437 00496 148015 -2778 GMR+4-2-32 675 189 172800 04178 02246 0737 3907 2488 1419 00683 00435 00496 148155 -2773 GMR+4-2-33 675 189 172800 04296 02279 0745 3953 2532 1421 00691 00443 00497 148070 -2788 KS-3-11 876 286 7200 00622 02310 1566 0870 0169 0701 00156 00030 00251 114211 -1539 KS-3-12 875 286 7200 00614 02297 1568 0863 0166 0696 00154 00030 00249 114288 -1540 KS-3-13 875 286 7200 00631 02318 1564 0877 0172 0705 00157 00031 00253 114248 -1543 KS-3-R11 877 283 14400 00349 01493 1117 0760 0133 0627 00136 00024 00225 114045 -1524 KS-3-R12 878 283 14400 00353 01499 1121 0762 0134 0628 00137 00024 00225 113841 -1532

65

KS-3-R13 877 283 14400 00357 01501 1118 0766 0136 0630 00137 00024 00226 114035 -1536 KS-3-21 977 286 600 00352 01785 1248 0799 0120 0680 00143 00021 00244 102327 -1259 KS-3-22 977 286 600 00355 01788 1248 0802 0121 0681 00144 00022 00244 102372 -1264 KS-3-23 977 286 600 00355 01785 1248 0800 0121 0679 00143 00022 00244 102347 -1269 KS-3-24 975 286 600 00348 01761 1251 0786 0118 0667 00141 00021 00239 102525 -1283 KS-3-31 926 286 600 00435 01998 1438 0785 0128 0657 00141 00023 00235 108042 -1399 KS-3-32 927 286 600 00431 01987 1439 0779 0127 0652 00140 00023 00234 107927 -1404 KS-3-33 926 286 600 00435 02005 1439 0787 0128 0659 00141 00023 00236 107982 -1391 KS-3-41 1027 286 96 00372 02101 1489 0776 0106 0670 00139 00019 00240 097390 -1168 KS-3-42 1026 286 96 00376 02105 1489 0779 0107 0671 00140 00019 00241 097456 -1174 KS-3-43 1026 286 96 00369 02093 1489 0772 0105 0667 00138 00019 00239 097456 -1168 KS-3-44 1026 286 96 00365 02082 1489 0767 0104 0663 00138 00019 00238 097490 -1170 GMR+2-3-11 876 283 600 01364 02250 0837 2102 0702 1400 00373 00124 00497 114103 -1554 GMR+2-3-12 875 283 600 01377 02250 0836 2111 0709 1402 00374 00126 00497 114243 -1563 GMR+2-3-13 876 283 600 01326 02220 0831 2078 0687 1391 00369 00122 00493 114191 -1547 GMR+2-3-21 825 283 7200 01509 02250 0845 2145 0769 1376 00380 00136 00488 121184 -1682 GMR+2-3-22 825 283 7200 02077 03063 1159 2134 0772 1362 00378 00137 00483 121149 -1706 GMR+2-3-23 825 283 7200 02067 03075 1162 2131 0766 1365 00378 00136 00484 121149 -1694 GMR+2-3-31 777 283 172800 02163 02836 1081 2202 0863 1339 00390 00153 00475 128707 -1851 GMR+2-3-32 777 283 172800 02174 02826 1082 2197 0866 1331 00389 00153 00472 128745 -1867 GMR+2-3-33 775 283 172800 02199 02841 1080 2220 0878 1342 00393 00156 00476 128972 -1864 GMR+4-3-11 776 283 960 02616 02005 0563 3871 2039 1833 00677 00357 00641 128814 -2055 GMR+4-3-12 775 283 960 02644 02014 0564 3894 2057 1837 00681 00360 00643 129041 -2059 GMR+4-3-13 776 283 960 02598 01991 0561 3857 2031 1825 00675 00355 00639 128818 -2060 GMR+4-3-31 726 283 21600 02769 01951 0580 3777 2092 1685 00661 00366 00590 137668 -2253 GMR+4-3-32 726 283 21600 02748 01930 0579 3745 2079 1666 00656 00364 00583 137835 -2271 GMR+4-3-33 726 283 21600 02763 01959 0589 3718 2054 1664 00651 00360 00583 137770 -2261 GMR+4-3-41 676 283 259200 03326 01961 0601 3999 2431 1568 00699 00425 00548 147929 -2547 GMR+4-3-42 675 283 259200 03337 01972 0602 4012 2435 1577 00701 00426 00551 148109 -2538 GMR+4-3-43 675 283 259200 03297 01955 0598 3995 2422 1574 00698 00423 00550 148041 -2536 KS-1b-11 973 00001 600 00191 00907 0611 0842 0133 0709 00151 00024 00254 102759 -1276 KS-1b-12 973 00001 600 00194 00907 0608 0849 0136 0713 00152 00024 00256 102759 -1287 KS-1b-13 973 00001 600 00190 00898 0606 0841 0134 0708 00151 00024 00253 102759 -1286

66

KS-1b-21 923 00001 600 00214 00959 0691 0787 0131 0655 00141 00024 00235 108325 -1425 KS-1b-22 923 00001 600 00206 00938 0685 0774 0128 0646 00139 00023 00231 108325 -1430 KS-1b-23 923 00001 600 00219 00966 0688 0800 0135 0664 00143 00024 00238 108325 -1427 KS-1b-R11 923 00001 7200 00402 01796 1292 0789 0132 0657 00141 00024 00235 108325 -1426 KS-1b-R12 923 00001 7200 00400 01794 1291 0788 0132 0657 00141 00024 00235 108325 -1423 KS-1b-R13 923 00001 7200 00402 01797 1292 0789 0132 0657 00141 00024 00236 108325 -1424 KS-1b-R21 923 00001 2400 00685 02875 1975 0839 0147 0692 00150 00026 00248 108325 -1430 KS-1b-R22 923 00001 2400 00685 02870 1976 0838 0147 0690 00150 00026 00247 108325 -1435 KS-1b-R23 923 00001 2400 00675 02846 1973 0830 0145 0685 00149 00026 00245 108325 -1438 KS-1b-31 873 00001 21600 00501 01763 1231 0851 0173 0678 00152 00031 00243 114528 -1632 KS-1b-32 873 00001 21600 00501 01766 1231 0852 0173 0679 00153 00031 00243 114528 -1628 KS-1b-33 873 00001 21600 00498 01757 1230 0848 0172 0676 00152 00031 00242 114528 -1633

Note $ T has been corrected using Eqn (2) P has been corrected based on pressure calibration Three or four points were measured by IR for each experimental sample they are listed as xxx1 2 3 or 4 These experiments are reversal runs (Fig 33)

67

-26

-24

-22

-2

-18

-16

-14

-12

-1

09 1 11 12 13 14 15

KSGMR+2GMR+4

00001 GPa

283 GPa

1000T

lnK

A

-28

-26

-24

-22

-2

-18

-16

-14

-12

1 11 12 13 14 15

KSGMR+2GMR+4

189 GPa

00001 GPa

1000T

lnK

B

-35

-3

-25

-2

-15

1 11 12 13 14 15 16 17

KSGMR+2GMR+4

lnK

1000T

00001 GPa

094 GPa

C

-28

-26

-24

-22

-2

-18

-16

-14

-12

1 11 12 13 14 15

KSIhinger et al 99

lnK

1000T

00001 GPaD

Fig 32 The temperature dependence of lnK at some pressures Water concentrations for samples KS (076-090 wt) and GMR+2 (189-223 wt) are less than 27 wt and speciation data on them overlap indicating that K is independent of H2Ot when water content is less than 27 wt The dashed reference line is the ideal mixing model for water content less than 27 wt at ambient pressure from Ihinger et al (1999) The solid lines are the best-fit linear regression results for the data showing that ideal solution model (Eqn 3) works well for lt 27 wt H2Ot (KS and GMR+2) The regression for GMR+4 was separated from that for other compositions and is different

68

errors in estimating the species concentrations such as density variation with pressure

Hence the uncertainty from the IR measurement in lnK is estimated to be003

42 ATTAINMENT AND RETENTION OF EQUILIBRIUM

In this section the attainment of equilibrium at the experimental temperature and

the retention during quench are examined In either of the following two scenarios the

measured species concentrations would not reflect those at equilibrium in other words Q

ne K (1) the duration for the reaction at the experimental temperature is not long enough

for it to reach equilibrium (attainment of equilibrium) or (2) species concentrations in the

melt are changed during isobarically quenching to room temperature (retention of

equilibrium)

To demonstrate the attainment of equilibrium reversal experiments have been

carried out under two sets of conditions (a GMR+2-1-R1 776 K 094 GPa and 216

wt H2Ot b KS-3-R1 877 K 283 GPa and 076 wt H2Ot Table 33) One

experiment in each reversal pair was first relaxed at a temperature above the reversal

experimental temperature and one below to obtain different Q values Hence each set of

the reversal experiments approached the same final value of Q from initially higher or

lower Q values (Fig 33) This final Q value is the equilibrium constant K These

experiments are informative for constraining the duration required for a sample to reach

equilibrium at this set of conditions Durations for all other experiments were estimated

from these experiments and from kinetic experiments under ambient pressure (Zhang et

al 1995 1997b 2000) the actual experimental duration was longer than that estimated

for reaching equilibrium at specific running condition

69

-2

-19

-18

-17

-16

-15

-14

0 5000 1 104 15 104

lnQ

time (s)

876 K 283 GPa

A

-24

-23

-22

-21

-2

-19

0 100 200 300 400 500 600 700 800time (s)

lnQ

777 K 094 GPa

B

Fig 33 Two sets of reversal experiments to examine the duration required to reach equilibrium Solid curves are schematic illustrations of Q evolution in different experiments (A) KS sample (B) GMR+2 sample The relaxation might be much faster than illustrated by the curves

70

The issue of whether or not the equilibrium state can be retained during quench

has received considerable attention during the last two decades (eg Dingwell and Webb

1990 Zhang et al 1991b 1995 Ihinger et al 1999 Withers et al 1999 Zhang 1999

Nowak and Behrens 2001 Xu and Zhang 2002 Behrens and Nowak 2003) As

reviewed in the Introduction the different sides have worked together and resolved the

debates the consensus is that species concentrations can be retained by quench if the

experimental temperature is not too high (such as le850 K depending on H2Ot see Table

33) so that it is below the glass transition temperature for the given quench rate and

pressure (Withers et al 1999 Behrens and Nowak 2003)

In summary for attainment of equilibrium the experimental temperature must be

high enough (such as 673 K depending on H2Ot and pressure see Table 33) For

retention of equilibrium species concentrations through quench the experimental

temperature must be low enough In other words the experimental temperature must

satisfy the conditions that for the time scale of the isothermal experiments the sample is

in the liquid state whereas for the time scale of quenching the sample is in the glass

state Hence there is a limited temperature window for a given H2Ot and pressure at

which equilibrium speciation can be obtained from quench experiments

43 EQUILIBRIUM CONSTANT AS A FUNCTION OF TEMPERATURE H2Ot

AND PRESSURE

Equilibrium speciation data are listed in Table 33 and results are plotted in Fig

32 as lnK versus 1000T As shown in Figs 32a 32b and 32c K is independent of

water content when H2Ot in the sample is less than 27 wt consistent with Zhang et al

71

(1997a) Some new experimental data at ambient pressure are also reported here to

extend the temperature coverage of Ihinger et al (1999) Other speciation data have been

obtained on rhyolitic or quasi-rhyolitic melts (eg Sowerby and Keppler 1999 Nowak

and Behrens 2001 Behrens and Nowak 2003) but they are based on different IR

calibrations (different molar absorptivities) and cannot be directly compared with the new

data The new 1-bar data are consistent with those of Ihinger et al (1999) as shown in

Fig 32d A simple ideal solution model (Eqn 3) can be used to describe speciation in the

rhyolitic melts with low water content (up to 27 wt H2O) at any given pressure

lnK = A +1000

TB (3)

where A and B are fitting parameters independent of chemical composition The fitting

results are shown in Figs 32 and 34a and fitting parameters at each pressure are listed in

Table 34 The high-pressure experiments show an increase of lnK with increasing

pressure systematically As shown in Fig 34a the effect of 189 GPa (from 094 to 283

GPa) on the equilibrium constant of the speciation reaction at 773 K is equivalent to that

of 67 K (from 773 K to 840 K) on the equilibrium constant at 094 GPa The enthalpy of

reaction (1) at a given pressure can be inferred from the slopes of the best-fitting lines in

Fig 34a ie from fitting parameter B As shown in Fig 34b enthalpy of reaction (1)

decreases nonlinearly with pressure from 2702 kJmol under ambient pressure to 1853

kJmol at 283 GPa (Fig 34b)

Although K for reaction (1) does not depend on H2Ot concentration for water

content less than 27 wt at higher water content (here ~ 4 wt H2Ot) it depends on

H2Ot content This result indicates either mixing between H2Om OH and O in reaction

72

18

20

22

24

26

28

0 05 1 15 2 25 3

∆H (K

Jm

ol)

P (GPa)

∆H=26975-07704P-07773P2

B

-25

-2

-15

-1

09 1 11 12 13 14 15

00001 GPa094 GPa189 GPa283 GPa

A

lnK

1000T (T in K)

7001100 1000 900 800

T (K)

change in ln K due to change in P

change in T

change in ln K due to change in T

Fig 34 (A) The dependence of K on temperature for samples with H2Ot lt27 wt at various pressures Data for 00001 GPa are from Ihinger et al (1999) and this work The curves are the best-fit linear regression results using Eqn 3 The arrow lines indicate changes in lnK and T respectively (B) The pressure dependence of enthalpy of reaction (1) for samples with H2Ot lt27 wt The solid line is the best-fit regression result with equation shown in the figure

73

(1) is non-ideal or the already complicated calibration of Zhang et al (1997a) to convert

IR band intensities to species concentrations is imperfect (Ihinger et al 1999)

In the absence of an unambiguous calibration of the molar absorptivities of two

hydrous species in high-water-content samples the simplest approximation beyond ideal

mixing of H2Om OH and O in hydrous silicate melt is a regular solution model Silver

and Stolper (1989) illustrated a way to extend the simple ideal mixing model to a regular

solution model adapted also by Silver et al (1990) Zhang et al (1991b) and Ihinger et

al (1999) The same formulation is adapted here

lnK = ln XOH2

XH2OmXO

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = A+1000

TB+C XH2Om

+ D XOH( ) (4)

where A B C and D are fitting parameters independent of H2Ot and their physical

meanings are shown in Silver and Stolper (1989) Values of these fitting parameters at

each pressure are listed in Table 34 The maximum differences for these equations to

reproduce experimental equilibrium temperature are also listed in Table 34 and they are

within 10 K at high pressures

Eqn 4 could be expanded to accommodate the dependence of K on temperature

pressure and water content if the fitting parameters A B C and D in Eqn 4 are assumed

to be functions of pressure As discussed above the dependence on pressure is not linear

After some trials the following formulation is found to fit all speciation data in rhyolitic

melt well

lnK = A0 +AP P( )+1000

T(B0 +BP P + B

P3

2P

32 ) +

⎝ ⎜

(C0 +CP P +CP

32P

32 )XH2Om

+ (D0 +DP P + DP

32P

32 )XOH

⎠ ⎟

(5)

74

Table 34 Fitting parameters for Eqns 3 4 and 6

lnK lnKrsquo

ideal mixing regular solution model regular solution model

A B A B C D ∆T (K) $ A B C D ∆T (K) $

00001 GPa 20616 -32495 18120 -30830 -74203 30437 183 27524 -28404 -12945 189

094 GPa 17636 -30599 13264 -26529 -53362 01706 79 22910 -24292 01720 -17996 77

189 GPa 14995 -27503 10359 -23199 -71853 09728 73 18976 -20068 -16630 86

283 GPa 10053 -22285 07611 -20211 -75335 18349 90 16609 -17348 -15492 102

Note Water content is less than 22 wt

$ Maximum temperature difference between experimental temperature and model predicted temperature New data reported here and literature data from Ihinger et al (1999) which include some speciation data at P le 100 MPa

75

where P is pressure in GPa T is temperature in K and X is mole fraction of species H2Om

or OH This formulation could reproduce all experimental data with a 2σ uncertainty of

0058 in lnK The best-fit parameters in Eqn 5 with 2σ errors are A0 = 18120 plusmn 01044

AP = -03832 plusmn 00418 B0 = -30830 plusmn 00796 BP = 02999 plusmn 00638 BP32 = 00507 plusmn

00386 C0 = -74203 plusmn 14953 CP = 50262 plusmn 14040 CP32 = -31271 plusmn 09076 D0 =

30437 plusmn 13731 DP = -54527 plusmn 19763 DP32 = 30464 plusmn 12441 The reproducibility of

experimental equilibrium temperature by Eqn 5 is shown in a histogram (Fig 35) which

is approximately a Gaussian distribution Fig 36 further shows how well K at some

water contents can be reproduced

44 RELATING ABSORBANCES DIRECTLY TO TEMPERATURE AND

PRESSURE

Estimating the apparent equilibrium temperature of hydrous rhyolite of a given

cooling rate for inferring viscosity is one of the most important applications of this work

(Zhang et al 2003 Zhang and Xu 2007) Owing to possible future improvement of

molar absorptivities of two hydrous species it is useful to recast speciation data directly

in terms of IR band intensities (Ihinger et al 1999 Liu et al 2004a) so that equilibrium

temperature or the apparent equilibrium temperature can be directly estimated from

infrared data Following Zhang et al (2000) K is defined below

K = A452( )2A523

where A is absorbance per mm sample thickness By analogy with the regular solution

model (Eqn 4) the following equation is used to relate K and A

76

0

10

20

30

40

50

60

-20 -10 0 10 20∆T (K)

Num

ber o

f mea

sure

men

ts

Fig 35 Histogram showing the distribution of differences between the experimental equilibrium temperature and predicted temperature by Eqn 5 Sources of data include Ihinger et al (1999) and this work

77

-24

-22

-2

-18

-16

-14

-12

773K873K973K923K823K

lnK

973 K

873 K

773 K

Š27 wt H2OtA

-32

-3

-28

-26

-24

-22

-2

-18

-16

0 05 1 15 2 25 3

lnK

P (GPa)

39 wt H2Ot

673 K

773 K

873 K

B

Fig 36 Pressure effect on lnK at some temperatures and water concentrations The curves are calculated from Eqn 5 Points are experimental data In (A) three curves are calculated at each temperature for H2Ot of 07 17 and 27 wt from top to bottom at each temperature In (B) the dashed curve means temperature is above the experimental temperature

78

lnK = lnA452( )2

A523= A +1000

TB +C A523 + D A452( ) (6)

The best-fit parameters for four different pressures are listed in Table 34 The differences

between experimental and predicted temperatures using Eqn 6 are also listed in Table

34 which are not much different from the regular solution model using species

concentrations (Eqn 4) A model was developed to directly relate K A T and P

analogous to Eqn 5 as follows

lnK = A0+APP( )+1000

T(B0+BPP + B

P3

2P

32 ) +

⎝ ⎜

(C0+CPP +CP

32P

32 )A523 + (D0+DPP + D

P3

2P

32 )A452

⎠ ⎟

(7)

where P is pressure in GPa T is temperature in K and A is absorbance per mm sample

thickness for species H2Om or OH This formulation reproduces all of the data with a 2σ

uncertainty of 0059 in lnK The best-fit parameters in Eqn 7 with 2σ errors are A0 =

27524 plusmn 00944 AP = -03890 plusmn 00395 B0 = -28404 plusmn 00809 BP = 03053 plusmn 00697

BP32 = 00531 plusmn 00433 CP = 03768 plusmn 01301 CP32 = -02261 plusmn 00836 D0 = -12945

plusmn 00893 DP = -09499 plusmn 04076 DP32 = 05121 plusmn 02573 Because Eqn 7 is

independent of molar absorptivity future improvement in molar absorptivities of these

bands will not affect the reproducibility of Eqn 7 It can reproduce experimental

temperature with a 2σ uncertainty of 13 K (similar to the reproducibility of Eqn 5 shown

in Fig 35) directly from measured absorbances

79

45 APPLICATIONS

Speciation plays an important role in H2O solubility (eg Silver et al 1990

Blank et al 1993 Zhang 1999) as well as diffusion (eg Zhang et al 1991ab Zhang

and Behrens 2000 Liu et al 2004b Zhang et al 2007) and crystal nucleation (eg

Davis et al 1997) Several models (Eqns 3-5) are provided to determine H2Om and OH

concentrations as functions of pressure temperature and H2Ot in rhyolitic melts Hence

the new results can be applied to model H2O diffusion quantify the dependence of

molecular H2O diffusivity on pressure and quantitatively understand the effect of

dissolved H2Ot on the nucleation and crystal growth in hydrous melts under high

pressure Furthermore information from this work may be useful in future models of

thermodynamic properties of hydrous silicate melts

Another application of the new results is to predict apparent equilibrium

temperature Tae (Zhang 1994) As discussed by Zhang (1994) Tae is one of the well-

defined parameters in measurements for any given cooling history and can be a good

indicator of cooling rate Because of negligible dependence of K on pressure when the

pressure is lt 1 GPa and because natural rhyolitic glasses general cool at nearly surface

pressures for naturally cooled hydrous rhyolitic glasses the equation at ambient pressure

(eg Eqn 7 in Ihinger et al 1999) is applicable to calculate apparent equilibrium

temperature For experimental glasses cooled at high pressures such as 2 GPa the

pressure effect must be considered Knowledge of Tae is critical to inferring viscosity

based on kinetic experiments of the hydrous species reaction (Zhang et al 2003 Zhang

and Xu 2007) since it is assumed that the viscosity at the apparent equilibrium

temperature is inversely proportional to the cooling rate (Dingwell and Webb 1990

80

Zhang et al 2003) Hence by conducting a controlled cooling rate experiment of a

hydrous rhyolitic melt under pressure after calculating Tae the viscosity at this

temperature (and pressure) can be estimated At present this is the only method to

estimate viscosity at P gt 1 GPa in the viscosity range of 109-1014 Pamiddots The application

for inferring viscosity is the main motivation for us to conduct this research Results from

this work are applied to infer viscosity at high pressure in Chapter IV

5 CONCLUSIONS

The equilibrium of the interconversion reaction between two dissolved water

species (H2Om and OH) was experimentally investigated as a function of pressure

(00001 094 189 and 283 GPa) temperature (624-1027 K) and H2O concentrations

(08 to 42 wt) The speciation data at total H2O content le 27 can be described by

an ideal mixing model consistent with previous results With inclusion of speciation data

at higher water contents one way to describe the speciation data is a regular solution

model The general speciation model (Eqn 5) constructed to accommodate the

dependence of H2O speciation in the rhyolitic melts on T-P-X can be used to predict

species concentrations at P le 283 GPa total H2O content le 42 wt and temperature of

624-1027 K Furthermore it can be used to calculate apparent equilibrium temperature

which can then be used to infer viscosity of hydrous rhyolitic melts under high pressure

81

REFERENCES

Akella J (1979) Quartz hArr coesite transition and the comparative friction measurements

in piston-cylinder apparatus using talc-alsimag-glass (TAG) and NaCl high-

pressure cells N Jb Miner Mh H5 217-224

Akella J and Kennedy GC (1971) Melting of gold silver and copper ndash proposal for a

new high-pressure calibration scale J Geophys Res 76 4969-4977

Behrens H and Nowak M (2003) Quantification of H2O speciation in silicate glasses

and melts by IR spectroscopy ndash in situ versus quench techniques Phase Trans 76

45-61

Behrens H and Zhang Y (2001) Ar diffusion in hydrous silicic melts implications for

volatile diffusion mechanisms and fractionation Earth Planet Sci Lett 192 363-

376

Behrens H Zhang Y Leschik M Wiedenbeck M Heide G and Frischat GH (2007)

Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts Earth

Planet Sci Lett 254 69-76

Blank JG Stolper EM and Carroll MR (1993) Solubilities of carbon dioxide and

water in rhyolitic melt at 850 ordmC and 750 bars Earth Planet Sci Lett 119 27-36

Bohlen SR and Boettcher AL (1982) The quartz hArr coesite transformation a precise

determination and the effects of other components J Geophys Res 87 7073-7078

Bose K and Ganguly J (1995) Quartz-coesite transition revisited reversed experimental

determination at 500-1200 ˚C and retrieved thermochemical properties Am

Mineral 80 231-238

82

Boyd FR and England JL (1960) The quartz-coesite transition J Geophys Res 65

749-756

Burnham CW (1975) Water and magmas a mixing model Geochim Cosmochim Acta

39 1077-1084

Davis MJ Ihinger PD and Lasaga AC (1997) The influence of water on nucleation

kinetics in silicate melt J Non-Cryst Solids 219 62-69

Dingwell DB and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

Goranson RW (1938) Silicate-water systems phase equilibria in the NaAlSi3O8-H2O

and KAlSi3O8-H2O systems at high temperatures and pressures Am J Sci 35-A

71-91

Hui H and Zhang Y (2007) Toward a general viscosity equation for natural anhydrous

and hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Ihinger PD Zhang Y and Stolper EM (1999) The speciation of dissolved water in

rhyolitic melt Geochim Cosmochim Acta 63 3567-3578

Kitahara S and Kennedy GC (1964) The quartz-coesite transition J Geophys Res 69

5395-5400

Li J Hadidiacos C Mao H Fei Y and Hemley RJ (2003) Behavior of thermocouples

under high pressure in a multi-anvil apparatus High Pressure Res 23 389-401

Liu Y Behrens H and Zhang Y (2004a) The speciation of dissolved H2O in dacitic

melt Am Mineral 89 277-284

Liu Y Zhang Y and Behrens H (2004b) H2O diffusion in dacitic melts Chem Geol

209 327-340

83

McMillan PF (1994) Water solubility and speciation models Rev Mineral 30 131-156

Mirwald PW and Massonne H-J (1980) The low-high quartz and quartz-coesite

transition to 40 kbar between 600˚ and 1600˚C and some reconnaissance data on the

effect of NaAlO2 compoenent on the low quartz-coesite transition J Geophys Res

85 6983-6990

Newman S Stolper EM and Epstein S (1986) Measurement of water in rhyolitic

glasses calibration of an infrared spectroscopic technique Am Mineral 71 1527-

1541

Ni H and Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high

pressure data Chem Geol Revised

Nowak M and Behrens H (2001) Water in rhyolitic magmas getting a grip on a slippery

problem Earth Planet Sci Lett 184 515-522

Shaw HR (1964) Theoretical solubility of H2O in silicate melts quasi-crystalline

models J Geol 72 601-617

Shaw HR (1972) Viscosities of magmatic silicate liquids an empirical method of

prediction Am J Sci 272 870-893

Silver LA and Stolper E (1989) Water in albitic glasses J Petrol 30 667-709

Silver LA Ihinger PD and Stolper E (1990) The influence of bulk composition on the

speciation of water in silicate glasses Contrib Mineral Petrol 104 142-162

Sowerby JR and Keppler H (1999) Water speciation in rhyolitic melt determined by in

situ infrared spectroscopy Am Mineral 84 1843-1849

Stolper EM (1982a) The speciation of water in silicate melts Geochim Cosmochim

Acta 46 2609-2620

Stolper EM (1982b) Water in silicate glasses an infrared spectroscopic study Contrib

Mineral Petrol 81 1-17

84

Tuttle OF and Bowen NL (1958) Origin of granite in the light of experimental studies

in the system NaAlSi3O8- KAlSi3O8- SiO2-H2O Geol Soc Am Memoir 74 1-153

Wasserburg GJ (1957) The effects of H2O in silicate systems J Geol 65 15-23

Watson EB (1991) Diffusion of dissolved CO2 and Cl in hydrous silicic to intermediate

magmas Geochim Cosmochim Acta 55 1897-1902

Withers AC and Behrens H (1999) Temperature-induced changes in the NIR spectra of

hydrous albitic and rhyolitic glasses between 300 and 100 K Phys Chem Minerals

27 119-132

Withers AC Zhang Y and Behrens H (1999) Reconciliation of experimental results on

H2O speciation in rhyolitic glass using in situ and quenching techniques Earth

Planet Sci Lett 173 343-349

Xu Z and Zhang Y (2002) Quench rates in air water and liquid nitrogen and inference

of temperature in volcanic eruption columns Earth Planet Sci Lett 200 315-330

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth Planet

Sci Lett 122 373-391

Zhang Y (1999) H2O in rhyolitic glasses and melts measurement speciation solubility

and diffusion Rev Geophys 37 493-516

Zhang Y and Behrens H (2000) H2O diffusion in rhyolitic melts and glasses Chem

Geol 169 243-262

Zhang Y Belcher R Ihinger PD Wang L Xu Z and Newman S (1997a) New

calibration of infrared measurement of dissolved water in rhyolitic glasses

Geochim Cosmochim Acta 61 3089-3100

85

Zhang Y Jenkins J and Xu Z (1997b) Kinetics of the reaction H2O + O = 2OH in

rhyolitic glasses upon cooling geospeedometry and comparison with glass

transition Geochim Cosmochim Acta 61 2167-2173

Zhang Y Solper EM and Ihinger PD (1995) Kinetics of reaction H2O + O = 2OH in

rhyolitic glasses preliminary results Am Mineral 80 593-612

Zhang Y Stolper EM and Wasserburg GJ (1991a) Diffusion of a multi-species

component and its role in oxygen and water transport in silicates Earth Planet Sci

Lett 103 228-240

Zhang Y Stolper EM and Wasserburg GJ (1991b) Diffusion of water in rhyolitic

glasses Geochim Cosmochim Acta 55 441-456

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

Improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

Zhang Y Xu Z Zhu M and Wang H (2007) Silicate melt properties and volcanic

eruptions Rev Geophys doi1010292006RG000216

86

CHAPTER IV

PRESSURE DEPENDENCE OF VISCOSITY OF RHYOLITIC MELTS

ABSTRACT

Viscosity of silicate melts is a critical property for understanding volcanic and

igneous processes in the Earth Two methods were used to study the pressure effect on

the viscosity of rhyolitic melts hydrous species reaction viscometer in a piston cylinder

and parallel plate creep viscometer in an internally-heated pressure vessel (IHPV) With

the hydrous species reaction viscometer viscosities of hydrous rhyolitic melts were

inferred based on the kinetics of hydrous species reaction in the melt upon cooling (ie

the equivalence of rheologically defined glass transition temperature and chemically

defined apparent equilibrium temperature) The cooling experiments were carried out in a

piston cylinder apparatus using hydrous rhyolitic samples with 08 to 4 wt water at

pressures up to 283 GPa Cooling rates of the experiments varied from 01 Ks to 100

Ks hence the range of viscosity inferred from this method is 3 orders of magnitude The

data from this method show that viscosity increases with increasing pressure from 1 GPa

to 3 GPa for hydrous rhyolitic melts with water content ge 08 wt Viscosity of rhyolitic

melt with 013 wt water was also measured using parallel plate viscometer at pressures

87

02 and 04 GPa in an IHPV The data show that viscosity of rhyolitic melt with 013

wt water decreaseswith increasing pressure Combining new data with literature data a

viscosity model of rhyolitic melts in the high viscosity range as a function of temperature

pressure and water content is developed

1 INTRODUCTION

Viscosity of silicate melts is a property of fundamental importance in Earth

sciences Viscosities of silicate melts under ambient pressure have been studied

extensively (eg Shaw 1972 Hui and Zhang 2007) Several experimental techniques

are available to measure viscosity directly (1) in the low viscosity range (01 to 105 Pamiddots)

concentric cylinder viscometer (eg Dingwell 1986) and falling sphere technique (eg

Shaw 1963) (2) in the high viscosity range (108 to 1014 Pamiddots) micropenetration method

(eg Hummel and Arndt 1985) parallel plate creep viscometer (eg Neuville and

Richet 1991) and fiber elongation method (eg Lillie 1931) Few viscosity data are in

the intermediate viscosity range of 105 to 108 Pamiddots (Dorfman et al 1996 1997) because

(1) the methods applicable to low viscosity cannot be used because rotation rate or falling

rate would be too slow (2) the methods applicable to high viscosities cannot be used

because the melt would flow too easily and (3) many silicate melts crystallize rapidly in

this viscosity range In most cases geologists interpolated viscosity from models

constructed using experimental data in the high and low viscosity ranges (eg Rust and

Cashman 2007)

Some of these viscometers have been adapted to high-pressure apparatus

(Dingwell 1998) In the low viscosity range viscosity data at high pressure (ge 1 GPa) are

88

obtainable with the falling sphere technique (eg Kushiro et al 1976 Liebske et al

2005) For example in situ falling sphere technique in the high-pressure apparatus such

as multi-anvil with assistance of synchrotron can reach pressures up to 13 GPa (eg

Reid et al 2003 Liebske et al 2005) On the other hand in the high viscosity range no

viscosity data exist at pressures ge 1 GPa The practical reason is the limit of the current

experimental methods For example the maximum pressure that traditional viscometers

could reach is 04 GPa (eg Behrens and Schulze 2003) Based on the equivalence of

enthalpy relaxation and viscous relaxation Rosenhauer et al (1979) used high-pressure

differential thermal analysis experiments in an internally-heated pressure vessel (IHPV)

to infer viscosities of diopside albite and trisilicate at glass transition temperatures at

elevated pressures up to 07 GPa

Many geologic processes related to silicate melts deal with elevated pressures

The pressure scales of these processes may vary from 0-200 MPa for volcanic eruptions

to a couple of GPa for crustal anatexis and mantle melting to hundreds of GPa for core-

mantle segregation This extreme range of magnitudes requires the experimental

approach of studying melt viscosities to explore a very broad spectrum of measurement

principles and technologies In this report the hydrous species viscometer is developed

for high-pressure viscosity determination

Rosenhauer et al (1979) assumed the equivalence of enthalpy relaxation and

viscous relaxation to infer viscosity Dingwell and Webb (1990) assumed the equivalence

between viscous relaxation and hydrous species equilibration (see below) Dingwell

(1998) discussed the inference of viscosity at high pressures from glass transition based

on volume relaxation enthalpy relaxation spectroscopic measurements (applied in this

89

study) and called them as ldquoone of the most important breakthroughs for the prospect of

obtaining high pressure viscosity datardquo Zhang et al (2003) and Zhang and Xu (2007)

applied the hydrous species viscometer (see section 21) to infer viscosity of hydrous

silicate melts at the glass transition temperature range This method has several

advantages and disadvantages The most important advantage here is that this method can

be adapted to high-pressure apparatus such as piston cylinder as far as glass can be

obtained by quench Because the method relies on the measurement of hydrous species

concentrations it is only applicable to hydrous silicate melts with ge 05 wt total H2O

but not to melts with less H2O With this method viscosity is inferred but not obtained

from direct measurement

In this study the hydrous species reaction viscometer was applied in a piston

cylinder to investigate viscosity of hydrous rhyolitic melts with water content from 08 to

4 wt at pressures up to 283 GPa This pressure range is aimed to cover rhyolitic

(granitic) melt generated at depth from field observations (eg Sylvester 1999) and

experimental studies (eg Rapp and Watson 1995) Furthermore as will be shown later

increasing pressure seems to have a significant effect on crystallization rate in rhyolitic

melts which seems to indicate that viscosity decreases significantly with increasing

pressure The large pressure coverage allows the evaluation of whether this is true

In addition to this new method the parallel-plate viscometer in an IHPV was also

used to directly measure viscosity of natural rhyolite from 02 GPa to 04 GPa

Combining the literature data at pressure le05 GPa a viscosity model is developed

accommodating the dependence of viscosity of rhyolitic melts on temperature pressure

and water content in the high viscosity range

90

2 EXPERIMENTAL AND ANALYTICAL METHODS

The pressure effect on melt viscosity was studied on rhyolitic melts with different

water content The concentrations of total water and hydrous species in the samples were

determined by FTIR (Fourier transform infrared spectroscopy) at the University of

Michigan following the procedure shown in Zhang et al (1997a) There are a few other

calibration methods in the literature (eg Newman et al 1986 Withers and Behrens

1999) The reason to use the calibration of Zhang et al (1997a) here is to be consistent

with the speciation study in Hui et al (2008) because their study is used to calculate the

apparent equilibrium temperature from concentrations of hydrous species retained in the

quenched glass

Starting materials include both natural rhyolitic glasses (EDF and KS) and

synthetic hydrous rhyolitic glasses prepared by hydration of natural rhyolitic glass

(GMR) Sample EDF is from Erevan Dry Fountain Armenia Sample KS is from Mono

Crater California Samples GMR+2 and GMR+4 were synthesized by adding water to a

natural obsidian (GMR) from Glass Mountain California The chemical compositions of

the samples are listed in Table 41 Hydration of rhyolitic glasses was implemented at

1473 K 05 GPa by re-melting glass powder with added H2O at University of Hannover

(Hui et al 2008) The hydrated glasses are crystal free and bubble free

21 HYDROUS SPECIES REACTION VISCOMETER

It is well known that water is present in the silicate melts as at least two species

molecular H2O (H2Om) and hydroxyl group (OH) (Stolper 1982ab) The species

reaction in the melts is

91

Table 41 Chemical compositions (oxide wt) of KS GMR and EDF rhyolite on anhydrous basis

KS GMR EDF SiO2 7594 7322 7678 TiO2 009 031 010 Al2O3 1298 1408 1277 FeO 098 145 052 MnO 005 005 009 MgO 003 026 007 CaO 056 131 056 Na2O 401 406 408 K2O 471 432 455 P2O5 029 007 - Total 9963 9913 9967

H2O 075-090

189-216 in GMR+2 354-420 in GMR+4 013

ref 1 2 1 Hui et al 2008 2 Behrens et al 2007

92

H2Om + O = 2OH (1)

where O is anhydrous bridging oxygen in the melt Total H2O content is denoted as H2Ot

The equilibrium constant K of Reaction (1) is defined as

K =XOH

2

XH2OmXO

(2)

where X means activity approximated by mole fraction The relationship between

equilibrium constant K and temperature (equilibrium line in Fig 41) can be expressed by

a regular solution model as (Silver et al 1990 Ihinger et al 1999)

lnK = A +1000

TB + CXH2Om

+ DXOH( ) (3)

where T is temperature in K and A B C and D are fitting parameters Hui et al (2008)

estimated these parameters for rhyolitic melts at high pressures During cooling at a

certain low temperature the concentrations of these two hydrous species in the melt start

to deviate from the equilibrium state In Fig 41 this is shown as curves off the straight

line (the equilibrium line) When temperature becomes too low to change species

concentrations water speciation is frozen in the melt as indicated by the horizontal

segments in Fig 41 The intersection of each horizontal line which is calculated from

the hydrous species concentrations retained in the quenched glass with the equilibrium

line defines the apparent equilibrium temperature (Zhang 1994) An equilibrated melt at

this temperature has the same water speciation as observed in the quenched glass at room

temperature This apparent equilibrium temperature depends on the cooling rate shown in

Fig 41 A higher apparent equilibrium temperature indicates a faster cooling rate

Glass transition temperature is defined rheologically as the temperature at which

viscosity is equal to 1012 Pasdots for a cooling rate of the order 10 Kmin As the cooling rate

93

ln

K

1T (K)TTT ae2ae1 e

equilibrium

rapid quench

slow quench

isothermal run rapid quench

Fig 41 Sketch of kinetics of Reaction (1) during cooling (Behrens and Nowak 2003) Tae is apparent equilibrium temperature which depends on the cooling rate Te is equilibrium temperature

94

varies the glass transition temperature also changes Based on theoretical considerations

and experimental results Moynihan et al (1976) showed the formula of dependence of

the glass transition temperature on the cooling rate

d logqd(1Tg)

= minus∆HR

(4)

where q is quench rate in Ks Tg is glass transition temperature in K R is the gas

constant and ∆H is the activation enthalpy for the relaxation times controlling the

structural enthalpy or volume relaxation which is also equal to the activation enthalpy of

the shear viscosity within experimental error Scherer (1984) generalized that viscosity is

reciprocal to the quench rate at the glass transition temperature Dingwell and Webb

(1990) advanced it further to infer viscosity from kinetics of hydrous species reaction

(ie Reaction 1) in the rhyolitic melt assuming the equivalence of the apparent

equilibrium temperature and glass transition temperature (ie time scale of Reaction 1 in

rhyolitic melt is the same as the structural relaxation time scale of rhyolitic melt because

both involve bridging oxygen in the melt structure of rhyolite) By comparing kinetic

data on Reaction (1) and viscosity data obtained by other methods (including from bubble

growth data of Liu et al 2000) Zhang et al (2003) formulated the equation below to

infer viscosity at the glass transition temperature (ie apparent equilibrium temperature)

for hydrous rhyolitic melts

logηTg= logηTae

=1145 minus logq (5)

where η is viscosity in Pasdots q is quench rate in Ks and 1145 is a constant Other

experimental studies have verified the equivalence of relaxation at the glass transition

temperature on viscosity volume and heat capacity (eg Sipp et al 1999 Toplis et al

95

2000) So the key in this method is to calculate the apparent equilibrium temperature for

a cooling experiment with known quench rate whereas viscosity at this temperature is

calculated from Eq (5)

All the cooling experiments were conducted in a piston cylinder A glass cylinder

with a diameter of about 2 mm and a height of about 2 mm was placed into a graphite

capsule which was enclosed in crushable MgO as the inner pressure medium with

graphite heater outside and then BaCO3 cell as outer pressure medium The charge was

heated to a high temperature for melt relaxation and for hydrous species in the melt to

reach equilibrium Then the sample was isobarically cooled at a desired cooling rate to

room temperature The temperature was measured with a type-S (Pt90Rh10-Pt) or type-D

(W97Re3-W75Re25) thermocouple The temperature history was recorded either by

computer or manually Pressure in the piston cylinder was calibrated using quartz-coesite

phase transition and melting of a gold wire (Hui et al 2008) The pressure of cooling

experiments ranges from 094 GPa (nominal pressure of 1 GPa) to 283 GPa (nominal

pressure of 3 GPa) Infrared spectra of the quenched glass were obtained using a Perkin-

Elmer FTIR spectrometer The baseline of IR spectra was fit by a flexicurve (Newman et

al 1986) The concentrations of hydrous species and total water content were obtained

using the calibration of Zhang et al (1997a) The apparent equilibrium temperature was

calculated from the hydrous species concentrations measured in the quenched glass using

Eqs (2) and (3) with parameters listed in Hui et al (2008) With the recorded cooling

rate viscosity was inferred from Eq (5) at the apparent equilibrium temperature The 2σ

error for viscosity inferred from this method is estimated to be 02 in terms of logη

(Zhang et al 2003)

96

In addition to the experiments in piston-cylinders at pressures below 3 GPa some

experiments at pressures above 3 GPa were also carried out in a multi-anvil device at the

University of Michigan But these experimental charges crystallized

22 PARALLEL-PLATE VISCOMETER

The parallel-plate creep viscometer in an IHPV was also used to measure

viscosity of rhyolitic melts near glass transition temperature Melt viscosity was derived

from the rate of deformation of a cylindrical sample with a diameter of 38 mm and a

height of 10 mm as a function of a constant vertically applied stress The design

operation and calibration of this viscometer are described in detail by Schulze et al

(1999) The detailed experimental procedure is explained in Behrens and Schulze (2003)

This technique can measure viscosity of the same cylinder in high viscosity range

covering three orders of magnitude from 1085 to 10115 Pasdots at pressures up to 04 GPa by

pumping in Ar (pressure media) or releasing it Effect of dehydration of the sample on the

viscosity measurements was monitored by repeated viscosity measurements at the same

P-T conditions during the whole experimental course and water content in the sample

was also checked after the experiment by infrared spectroscopy

To mitigate the effect of dehydration of the samples during measurement only the

samples with low water content was used in this method including sample EDF with

013 wt H2Ot and sample KS with 079 wt H2Ot For sample EDF viscosity was

measured at different pressures in the order of 02 04 and 02 GPa As shown in Table

42 and Fig 42 the viscosity values at the first and last 02 GPa are in good agreement

with difference within plusmn01 log units indicating that there was no significant water loss

97

or gain during viscosity measurement Temperature was corrected based on the melting

point of aluminum at 02 GPa (Lees and Williamson 1965) For sample KS dehydration

was discovered in a test run Hence only viscosity at 04 GPa was measured without

cycling back and forth to minimize the duration of the sample at high temperatures

Temperature in this measurement was corrected based on the melting point of zinc at 04

GPa (Akella et al 1973) Both samples were checked for water content by FTIR after

isobaric quench of the experimental charge Water loss or gain was negligible in both

viscosity measurement courses After experiments both samples were still in good

cylinder shapes indicating negligible temperature gradient and regular deformation

during creep experiments The reproducibility of viscosities is always within plusmn015 log

units (Behrens and Schulze 2003) However within one series of experiments the

precision is much better (within plusmn01 log units in this study)

3 EXPERIMENTAL RESULTS

Experimental results from the hydrous species reaction viscometer are

summarized in Table 43 Original IR absorbance peak heights are also reported because

there may be further improvement in the IR calibration Viscosity is plotted as a function

of 1000T at different pressures in Fig 42 Within the small temperature range of

viscosity measurements temperature dependence of viscosity of rhyolitic melts at each

pressure can be described by the Arrhenius relationship

η = η0 sdot exp Ea

RT⎛ ⎝ ⎜

⎞ ⎠ ⎟ (6)

where η0 is the pre-exponential factor and Ea is the activation energy for viscous flow

98

Table 42 Results of parallel plate creep viscometer with sample EDF at pressures of 02 and 04 GPa and sample KS at 04 GPa

EDF KS

02 GPa 04 GPa 04 GPa T logη T logη T logη K Pasdots

exp

K Pasdots exp

K Pasdots exp

103815 1142 12 102815 1119 11 84815 1151 1 104815 1128 1 103815 1103 6 85615 1135 6 104815 1121 13 103815 1101 10 86715 1114 5 106715 1083 2 105815 1078 7 88615 1060 2 106715 1074 5 108815 1025 8 90715 1030 3 108815 1052 14 111815 980 9 92515 1002 4 108715 1047 3 111815 997 4

Note means the chronological order of the measurements

99

9

95

10

105

11

115

12

125

13

EDFKS

logη

(Pasdot

s) 04 GPa

A KSGMR+2GMR+4

094 GPa

B

9

95

10

105

11

115

12

125

13

08 09 1 11 12 13 14 15

KSGMR+2GMR+4

logη

(Pasdot

s)

1000T (K)

189 GPa

C

08 09 1 11 12 13 14 15

KSGMR+2GMR+4

1000T (K)

283 GPa

D

Fig 42 Dependence of viscosities of rhyolitic melts (EDF KS GMR+2 and GMR+4) on temperature at pressures of 04 094 189 and 283 GPa All the data are from this study A is for parallel plate creep viscometer and B-D are from hydrous species reaction viscometer Straight lines are fit of the data by Arrhenius equation (ie Eq 6)

100

Table 43 Viscosity of hydrous rhyolitic melts at various pressures inferred from hydrous species reactions

Measurement P$ q Abs Abs Thickness H2Ot H2Om OH X(H2Ot) X(H2Om) X(OH) Tae logη GPa Ks 5200 4500 mm wt wt wt K Pasdots KS-1-21 094 956 00448 01608 1124 0846 0170 0677 00152 00030 00242 90603 1047 KS-1-22 094 956 00447 01604 1118 0849 0170 0679 00152 00030 00243 90711 1047 KS-1-23 094 956 00441 01610 1126 0843 0167 0677 00151 00030 00242 91123 1047 KS-1-31 094 099 00557 01717 1195 0877 0198 0678 00157 00036 00243 86261 1145 KS-1-32 094 099 00539 01689 1190 0862 0193 0669 00154 00034 00240 86308 1145 KS-1-33 094 099 00585 01748 1198 0898 0208 0690 00161 00037 00247 85979 1145 KS-1-41 094 010 00649 01883 1373 0843 0201 0642 00151 00036 00230 82961 1245 KS-1-42 094 010 00626 01857 1370 0829 0194 0634 00148 00035 00227 83131 1245 KS-1-43 094 010 00646 01883 1371 0844 0200 0643 00151 00036 00231 83140 1245 KS-1-51 094 9233 00432 01720 1163 0862 0158 0704 00154 00028 00252 95499 948 KS-1-52 094 9233 00432 01700 1150 0864 0160 0704 00155 00029 00252 95113 948 KS-1-53 094 9233 00435 01708 1164 0857 0159 0698 00153 00028 00250 94606 948 GMR+2-1-11 094 950 01720 02272 0990 1886 0747 1140 00335 00133 00405 80808 1047 GMR+2-1-12 094 950 01709 02268 0987 1886 0744 1142 00335 00132 00406 80982 1047 GMR+2-1-13 094 950 01729 02275 0991 1890 0750 1140 00336 00133 00405 80737 1047 GMR+2-1-21 094 100 01729 02048 0911 1920 0816 1104 00341 00145 00392 77482 1145 GMR+2-1-22 094 100 01750 02064 0910 1942 0827 1115 00345 00147 00396 77683 1145 GMR+2-1-23 094 100 01712 02030 0909 1905 0810 1096 00338 00144 00389 77310 1145 GMR+2-1-31 094 010 01105 01131 0502 2041 0947 1094 00362 00168 00388 74324 1245 GMR+2-1-32 094 010 01089 01118 0498 2031 0941 1090 00360 00167 00387 74289 1245 GMR+2-1-33 094 010 01097 01123 0504 2017 0937 1080 00358 00166 00383 74002 1245 GMR+4-1-21 094 968 02159 01114 0356 4116 2667 1449 00719 00466 00506 70115 1046 GMR+4-1-22 094 968 02137 01107 0351 4141 2678 1462 00723 00467 00511 70400 1046 GMR+4-1-23 094 968 02152 01107 0356 4094 2657 1437 00715 00464 00502 69869 1046 GMR+4-1-31 094 7687 01467 00859 0268 3937 2403 1534 00688 00420 00536 73394 956 GMR+4-1-32 094 7687 01540 00901 0282 3925 2397 1529 00686 00419 00534 73301 956 GMR+4-1-33 094 7687 01548 00885 0276 3989 2463 1526 00697 00430 00533 72897 956 GMR+4-1-41 094 100 01509 00789 0271 3779 2440 1339 00661 00427 00469 68409 1145

101

GMR+4-1-42 094 100 01509 00779 0267 3815 2477 1338 00668 00433 00468 68211 1145 GMR+4-1-43 094 100 01498 00792 0275 3711 2386 1325 00650 00418 00464 68296 1145 KS-2-11 189 100 00111 00396 0270 0871 0175 0696 00156 00031 00249 88340 1145 KS-2-12 189 100 00106 00397 0280 0832 0161 0671 00149 00029 00240 88552 1145 KS-2-21 189 13416 00431 01862 1201 0898 0153 0745 00161 00027 00267 98415 932 KS-2-22 189 13416 00381 01769 1192 0844 0136 0708 00151 00024 00254 98996 932 KS-2-23 189 13416 00428 01851 1202 0890 0152 0739 00159 00027 00265 97976 932 KS-2-31 189 965 00496 01892 1246 0895 0169 0726 00160 00030 00260 92376 1047 KS-2-32 189 965 00462 01842 1234 0871 0159 0712 00156 00029 00255 93137 1047 KS-2-33 189 965 00466 01848 1245 0867 0159 0707 00155 00028 00253 92731 1047 KS-2-41 189 010 00384 01244 0859 0875 0190 0685 00157 00034 00246 84743 1245 KS-2-42 189 010 00368 01219 0856 0855 0183 0672 00153 00033 00241 84746 1245 KS-2-43 189 010 00360 01203 0849 0849 0180 0668 00152 00032 00239 84782 1245 GMR+2-2-21 189 950 01595 02196 0870 2071 0789 1282 00367 00140 00455 82315 1047 GMR+2-2-22 189 950 01579 02181 0870 2052 0781 1271 00364 00139 00451 82082 1047 GMR+2-2-23 189 950 01611 02184 0860 2097 0807 1290 00372 00143 00458 82142 1047 GMR+2-2-31 189 100 02053 02498 0997 2147 0887 1259 00381 00157 00447 78631 1145 GMR+2-2-32 189 100 02008 02459 0989 2123 0875 1248 00376 00155 00443 78466 1145 GMR+2-2-33 189 100 02032 02484 0997 2129 0878 1251 00378 00156 00444 78517 1145 GMR+2-2-51 189 9072 01539 02177 0831 2142 0798 1343 00380 00142 00476 84745 949 GMR+2-2-52 189 9072 01526 02165 0825 2144 0797 1347 00380 00141 00478 84947 949 GMR+2-2-53 189 9072 01530 02180 0825 2158 0799 1359 00383 00142 00482 85415 949 GMR+4-2-31 189 100 04415 02595 0797 3997 2433 1564 00698 00425 00546 71658 1145 GMR+4-2-32 189 100 04356 02573 0796 3954 2402 1552 00691 00420 00543 71502 1145 GMR+4-2-33 189 100 04453 02581 0797 4002 2454 1548 00699 00429 00541 71181 1145 GMR+4-2-41 189 10700 02441 01593 0465 4004 2306 1698 00700 00403 00593 75759 942 GMR+4-2-42 189 10700 02370 01551 0457 3957 2277 1680 00692 00398 00587 75455 942 GMR+4-2-43 189 10700 02484 01621 0473 4005 2307 1698 00700 00403 00593 75754 942 GMR+4-2-51 189 967 03797 02294 0677 4115 2467 1648 00718 00431 00576 73632 1046 GMR+4-2-52 189 967 03914 02307 0677 4195 2545 1650 00732 00444 00576 73318 1046 GMR+4-2-53 189 967 03914 02320 0680 4188 2534 1655 00731 00442 00577 73481 1046 KS-3-11 286 100 00491 02066 1408 0847 0148 0699 00152 00027 00250 91618 1145 KS-3-12 286 100 00493 02064 1408 0847 0149 0698 00152 00027 00250 91316 1145

102

KS-3-13 286 100 00489 02064 1407 0846 0148 0698 00152 00027 00250 91667 1145 KS-3-21 283 099 00534 02252 1535 0846 0148 0698 00152 00027 00250 91666 1145 KS-3-22 283 099 00538 02256 1533 0850 0149 0701 00152 00027 00251 91589 1145 KS-3-23 283 099 00563 02289 1530 0871 0157 0714 00156 00028 00256 91206 1145 KS-3-91 283 010 00479 01785 1221 0861 0167 0694 00154 00030 00249 86565 1245 KS-3-92 283 010 00490 01803 1225 0870 0170 0700 00156 00030 00251 86401 1245 KS-3-93 283 010 00472 01765 1218 0852 0165 0687 00153 00030 00246 86242 1245 KS-3-81 283 956 00546 02581 1760 0831 0132 0699 00149 00024 00251 96821 1047 KS-3-82 283 956 00638 02732 1756 0903 0155 0748 00162 00028 00268 95734 1047 KS-3-83 283 956 00628 02723 1757 0897 0152 0744 00161 00027 00267 96032 1047 KS-3-111 283 11166 00332 01907 1389 0751 0102 0649 00135 00018 00233 102191 940 KS-3-112 283 11166 00335 01925 1395 0755 0102 0653 00135 00018 00234 102681 940 KS-3-113 283 11166 00335 01929 1395 0757 0102 0655 00136 00018 00235 102921 940 KS-3-114 283 11166 00336 01925 1392 0757 0103 0655 00136 00018 00235 102615 940 GMR+2-3-21 283 907 01210 02070 0823 1925 0632 1293 00342 00112 00459 85132 1049 GMR+2-3-22 283 907 01260 02089 0818 1977 0662 1315 00351 00118 00467 84823 1049 GMR+2-3-23 283 907 01263 02093 0823 1968 0660 1308 00349 00117 00464 84558 1049 GMR+2-3-31 283 100 01726 02538 1004 2030 0740 1290 00360 00131 00458 80291 1145 GMR+2-3-32 283 100 01740 02539 1004 2035 0746 1289 00361 00132 00458 80063 1145 GMR+2-3-33 283 100 01664 02503 1004 1983 0713 1270 00352 00127 00451 80350 1145 GMR+2-3-41 283 10430 00852 01523 0594 1944 0617 1327 00345 00110 00471 87819 943 GMR+2-3-42 283 10430 00849 01485 0572 1984 0638 1346 00352 00113 00478 87698 943 GMR+2-3-43 283 10430 00823 01449 0558 1981 0634 1347 00352 00113 00478 87944 943 GMR+4-3-41 283 100 02215 01709 0518 3540 1869 1671 00621 00328 00586 73953 1145 GMR+4-3-42 283 100 02256 01729 0516 3614 1913 1702 00633 00335 00597 74470 1145 GMR+4-3-43 283 100 02210 01673 0503 3605 1922 1683 00632 00337 00590 73843 1145 GMR+4-3-51 283 10700 01838 01477 0417 3766 1931 1835 00659 00338 00642 78153 942 GMR+4-3-52 283 10700 01812 01464 0410 3793 1938 1855 00664 00339 00649 78693 942 GMR+4-3-53 283 10700 01873 01509 0422 3803 1946 1857 00666 00341 00650 78673 942

Note A few points (two to four) were measured by IR for each experimental sample they are listed here as xxx1 2 3 or 4 $ P has been corrected based on pressure calibration q was calculated from the thermal history recorded by computer or manually

103

which depends on water content of the sample and experimental pressure Viscosity of

rhyolitic melts decreases with increasing water content systematically at a given pressure

and temperature as shown in Fig 42

Viscosities of samples EDF and KS obtained from the parallel plate creep

viscometer are listed in Table 42 including chronological order of measurements and

shown in Figs 43a and 43b Temperature dependence of viscosity of each sample at

each pressure can also be described by the Arrhenius relationship (ie Eq 6) within the

small temperature range of measurements

The pressure dependence of viscosity is more complicated For the ldquodryrdquo sample

(EDF) viscosity does not change significantly from 01 MPa to 02 GPa From 02 to 04

GPa the viscosity of sample EDF decreases by about 02 log units For hydrous samples

with 08 and 2 wt H2Ot (KS and GMR+2) viscosity increases monotonically by about

1 log unit as pressure increases from 01 MPa to 28 GPa For hydrous sample with about

4 wt H2Ot (GMR+4) viscosity first decreases as pressure increases from 01 MPa to

09 GPa and then increases from 09 to 28 GPa

At the experimental petrology laboratory of the University of Michigan a large

database has been accumulated on successful versus failed experiments in the diffusion

reaction kinetics and viscosity studies of silicate melts (Zhang et al 1997b 2000 Liu

and Zhang 2000 Zhang and Behrens 2000 Behrens and Zhang 2001 Xu and Zhang

2002 Behrens et al 2004 Liu et al 2004ab 2005 Hui et al 2008 Ni and Zhang

2008) Most of the failed experiments crystallized significantly Because these results

may be relevant to the discussion of viscosity (see Discussion) they are summarized in

Appendix D The data show

104

9

95

10

105

11

115

12

125

13

088 09 092 094 096 098

04 GPa02 GPa01 MPa (013 H2O)

logη

(Pasdot

s) A

EDF

095 1 105 11 115 12 125

283 GPa189 GPa094 GPa04 GPa01 MPa (08 H2O)

KS

B

9

95

10

105

11

115

12

125

13

11 115 12 125 13 135 14

283 GPa189 GPa094 GPa01 MPa (2 H2O)

GMR+2

logη

(Pasdot

s)

1000T (K)

C

125 13 135 14 145 15

283 GPa189 GPa094 GPa01 MPa (4 H2O)

D

GMR+4

1000T (K)

Fig 43 Comparisons of viscosities of given rhyolitic melts (EDF KS GMR+2 and GMR+4) at various pressures Data are from this study Straight lines are fit of the data by Arrhenius equation (ie Eq 6) Viscosities of various rhyolitic melts at 00001 GPa were calculated from Zhang et al (2003) as references

105

(1) It is more difficult to quench an overheated liquid into glass at high pressures than at

low pressures because of crystallization during quench at high pressures For example a

hydrous rhyolite melt containing 52 wt H2Ot quenched from 1873 K at 2 GPa (sample

239 in Appendix D) did not crystallize but a hydrous rhyolite sample containing only

09 wt H2Ot quenched from 1873 K at 4 GPa (sample 240 in Appendix D)

crystallized significantly

(2) Melts in the isothermal experiments at a temperature below the liquidus often

crystallize more easily at high pressures than at low pressures (Hui et al 2008) For

example a hydrous rhyolitic glass (09 wt H2Ot) held at 823 K and 3 GPa for 10 days

(sample 56 in Appendix D) did not crystallize significantly but a similar glass held at

the same temperature but 4 GPa for only 31 hours (sample 57 in Appendix D)

crystallized For another example a hydrous rhyolitic glass with 077 wt H2Ot held at

1123 K and 61 MPa for 72 hours (sample 172 in Appendix D) did not crystallize but

another sample with same amount of H2Ot held at 1123 K and 3 GPa for only one minute

(sample 174 in Appendix D) crystallized significantly

Fig 44 shows some more trends The findings indicate that crystallization rate

increases significantly with increasing pressure meaning crystal nucleation andor

growth rates in melts increase with increasing pressure in hydrous rhyolitic melts The

relationship with viscosity will be discussed in the next section

106

25

3

35

4

45

5

55

6

0 1 2 3 4 5

crystallizedglass

logt

(t in

s)

P (GPa)

873 plusmn 10 Κ

075-116 wt H2Ot

A

-5

-4

-3

-2

-1

0

1

2

3

0 1 2 3 4 5

crystallizedglasscritical quench 06wtcritical quench 09wtcritical quench 12wt

logq

(q in

Ks

)

P (GPa)

078-115 wt H2Ot

B

Fig 44 The effect of pressure on crystallization kinetics in the rhyolitic melt for (A) isothermal experiments and (B) controlled cooling rate experiments In (B) critical quench rates for rhyolitic melt with water contents of 06 09 and 12 wt are calculated from Eqs (8) and (9) (see text Senkov 2007) and the dashed lines are extrapolations to show the trends for 06 and 12 wt water respectively

107

4 DISCUSSION

41 PRESSURE DEPENDENCE OF VISCOSITY

Viscosities of a variety of silicate liquids in the low viscosity range have been

investigated using the falling sphere technique in high-pressure apparatus demonstrating

a complex pressure dependence of viscosities (Scarfe et al 1987 Lange 1994)

Pressure-induced viscosity change has been related to the degree of polymerization of the

melt in general (Scarfe et al 1987) Viscosities of anhydrous rhyolite melt (eg Scarfe et

al 1987) jadeite melt (eg Kushiro 1976) dacite melt (eg Tinker et al 2004)

andesite melt (eg Kushiro et al 1976) and some basalt melts (eg Scarfe et al 1987)

decrease with increasing pressure in the first several GPa whereas those of diopside melt

(eg Scarfe et al 1979) and peridotite melt (Liebske et al 2005) both highly

depolymerized increase with increasing pressure

Water dissolved in the silicate melt can depolymerize the melt by forming

hydroxyl group (Reaction 1) The negative pressure dependence of viscosity of

anhydrous melt may change to positive pressure dependence of viscosity after adding a

certain amount of water For example viscosity of anhydrous andesite melt decreases

with pressure (Kushiro et al 1976) but viscosity of andesite with 3 wt water increases

with pressure (Kushiro 1978) Also the pressure dependence of viscosity of a given melt

may change from positive to negative with further increase of pressure such as periodite

(Liebske et al 2005) or from negative to positive such as albite (Funakoshi et al

2002) In other words there may be a viscosity maximum or minimum with increasing

pressure

108

In the high viscosity range only a few studies have been conducted on the

pressure dependence of viscosity of silicate melts in a pressure range up to 04 GPa

previously Viscosity of the albite-diopside binary system shows a change in the sign of

the pressure dependence from negative for albite to positive for diopside (Schulze et al

1999 Behrens and Schulze 2003) The pressure dependence of viscosity of

haploandesite in the high viscosity range changes from negative for anhydrous melt to

positive for hydrous melt with 106 wt water or up (Liebske et al 2003) This is

consistent with pressure dependence of viscosity of andesite in the low viscosity range in

general (Kushiro et al 1976 Kushiro 1978) Moreover pressure effect on viscosity

becomes more pronounced with decreasing temperature

Due to experimental limitations viscosity of sample EDF which contained minor

amount of water was measured at pressures le 04 GPa The viscosity decreases with

increasing pressure as shown in Fig 43a in this pressure range That is it behaves as a

polymerized melt as expected But for the hydrous samples KS and GMR+2 as shown in

Figs 43b and 43c the viscosity increases with increasing pressure based on the new

data As dissolved H2O depolymerizes the melt this trend is consistent with literature

data (Kushiro et al 1976 Kushiro 1978 Liebske et al 2003) The viscosities of the

sample GMR+4 which contains about 4 wt water increase systematically from 1 GPa

to 3 GPa as shown in Fig 43d The pressure dependence of viscosity from ambient

pressure to 1 GPa is small and whether the dependence is positive or negative depends on

the temperature

109

42 MODELING THE P-T-X DEPENDENCE OF VISCOSITY

There are various models used to describe temperature dependence of viscosity of

anhydrous and hydrous natural silicate melts (eg Shaw 1972 Hui and Zhang 2007)

The pressure dependence of viscosity has been modeled for some anhydrous melts such

as peridotite liquid (Liebske et al 2005) but has not been quantified for hydrous natural

silicate melts because only limited data were available For example for hydrous

rhyolitic melt there are only two data points at pressure gt 05 GPa (one data point of

AOQ at 1173 K 1 GPa and another one at 1173 K 075 GPa Schulze et al 1996) in the

low viscosity range These new data are the first viscosity data at pressures ge 1 GPa in the

low-temperature (high viscosity) range Because data on the pressure dependence of

viscosity of rhyolitic melts in the high temperature range are limited (Schulze et al

1996) only the data in the low temperature region are considered in constructing a model

on the dependence of viscosity on temperature pressure and water content In this narrow

temperature range the Arrhenius relationship can describe the temperature dependence of

viscosity Hence parameters η0 and Ea in Eq (6) are treated as functions of water content

and pressure to construct a viscosity model The data used for the model include viscosity

data from this study and literature data in the high viscosity range (Neuville et al 1993

Stevenson et al 1995 Zhang et al 2003 Zhang and Xu 2007) Because the precision

of the parallel plate viscometer is much higher this data set was weighed 10 times more

than other data in the regression After some trials the equation below is found to fit the

data well

110

logη = a0 + aPP12

⎝ ⎜

⎠ ⎟ + b0 + bPP

12

⎝ ⎜

⎠ ⎟ 1minus exp c0 + cPP

12

⎝ ⎜

⎠ ⎟ X

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

+ d0 + dPP12

⎝ ⎜

⎠ ⎟ + e0 + ePP

12

⎝ ⎜

⎠ ⎟ 1minus exp f0 + fPP

12

⎝ ⎜

⎠ ⎟ X

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟ 1000

T

(7)

where P is pressure in GPa and X is mole fraction of total water content in the melt on a

single oxygen basis (Stolper 1982b Zhang 1999) The best-fit parameters in Eq (7)

with 2σ errors are a0 = -78470 plusmn 04972 aP = 11472 plusmn 05802 b0 = -124257 plusmn 09940

bP = 08080 plusmn 06278 c0 = -36440 plusmn 16134 cP = -101893 plusmn 17128 d0 = 213531 plusmn

05706 dP = -21722 plusmn 07371 e0 = -58335 plusmn 07198 eP = 40480 plusmn 06801 f0 = -893887

plusmn 103647 and fP = -305499 plusmn 152766 This equation can reproduce the whole database

(206 data points) with 2σ of 038 in terms of logη The dependence of viscosity as a

function of OH and molecular H2O concentrations was also examined at different

pressures but no simple relation emerged for a large range of water content Hence no

species information is included in fitting how viscosity depends on water concentration

Fig 45 shows a comparison between experimental viscosities and calculated values

using Eq (7) Although the fit is good extrapolation of the model beyond experimental

conditions is not recommended That is calculated viscosity at high pressures should be

inside the range of 109 to 1012 Pamiddots and T-P-XH2Ot conditions should be within conditions

shown in Fig 46 The calculated pressure dependence of viscosity of rhyolitic melts

with different water contents is shown in Fig 47 and it is in agreement with Figs 43b

43c and 43d

Glass transition temperature is an important rheological parameter of glass and

Eq (7) can be used to estimate glass transition temperature of rhyolitic melt under high

111

8

10

12

14

16

18

8 10 12 14 16 18

our dataliterature data11 line

measured logη

calc

ulat

ed lo

Fig 45 Comparison of measured viscosity data of rhyolitic melts with those calculated from Eq (7)

112

500

600

700

800

900

1000

1100

1200

1300

0 05 1 15 2 25 3

T (K

)

P (GPa)

0

1

2

3

4

5

6

7

8

0 05 1 15 2 25 3

H2O

t (w

t)

P (GPa)

A

B

Fig 46 P-T-XH2Ot range of all experimental data of the model ie Eq (7)

113

765

785

765755

845

815

775

794

815

845

A

9

95

10

105

11

115

12

0 005 01 015 02 025 03 035 04

logη

(Pasdot

s)

P (GPa)

750C

800C

850C

900C

750

800

850

900

469

605

575

529

577

549

512

535

502

C

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3

450C

500C

550C

600C

logη

(Pasdot

s)

P (GPa)

450

500

550

468

512483

462

441

459

428

410

477

369

D

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3

400C

450C

500C

logη

(Pasdot

s)

P (GPa)

400400

450

500

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3P (GPa)

logη

(Pasdot

s)

550C

600C

650C

700C750C

550

600

650

700

558

678

635

589

574

689

642

591

711

654

611

753

A558

678

635

589

574

689

642

591

711

654

611

753

AB575583

594

613

634

652

Fig 47 Pressure effect on viscosity at some temperatures and water concentrations The curves (with temperature indicated by large numbers) are calculated from Eq (7) with different water concentrations (A) 013 wt (B) 08 wt (C) 2 wt and (D) 4 wt Points are experimental data at indicated temperatures (small numbers) and points at 01 MPa are calculated from the viscosity model of Zhang et al (2003)

114

pressure Fig 48 shows pressure dependence of glass transition temperatures of hydrous

rhyolitic melts containing different water contents calculated from Eq (7) with a cooling

rate of 028 Ks = 168 Kmin (at η = 1012 Pamiddots) The trend of pressure dependence of the

glass transition temperature (Fig 48) is the same as that of viscosity (Fig 47)

43 AN APPARENT PARADOX OF THE PRESSURE EFFECT ON VISCOSITY

AND ON GLASS FORMATION

Appendix 4 lists the melt compositions the experimental conditions and whether

the sample charges crystallized significantly during experiments Pressure facilitates

crystallization in both isothermal experiments and cooling experiments based on the

results in Appendix 4 as summarized in the Experimental results That is as pressure

increases crystallization is more rapid in isothermal experiments and it is also more

difficult to quench the same hydrous melt into glass from liquid One might expect that

the increased easiness of crystallization at high pressures were related to increasing

diffusivity and hence decreasing viscosity with increasing pressure However new

viscosity data show that viscosity of hydrous rhyolitic melt increases rather than

decreases with increasing pressure Hence there is an apparent paradox of increasing

viscosity as well as increased easiness of crystallization with increasing pressure

Raising the pressure increases the density of the melt and changes the structure of

the melt which might facilitate crystallization More importantly increasing the pressure

raises the liquidus of the melt Hence for a supercooled metastable liquid at a given

temperature the degree of undercooling is larger at higher pressure That is the Gibbs

free energy difference between the melt and the crystals ∆Gm-c increases with pressure

115

650

700

750

800

850

900

0 05 1 15 2 25 3

08 wt2 wt4 wt

T g (K

)

P (GPa)

Fig 48 Pressure dependence of glass transition temperatures of hydrous rhyolitic melts with different water contents (08 2 and 4 wt H2O) calculated from Eq (7) when η = 1012 Pamiddots (ie cooling rate is 028 Ks)

116

The increased easiness of crystallization at isothermal conditions may be partly attributed

to greater ∆Gm-c although quantification is not available at the moment

For cooling of a liquid from a temperature above the liquidus as the pressure

increases the liquidus is crossed at a higher temperature That is crystallization starts at a

higher temperature where kinetics is more rapid Furthermore there is a larger

temperature interval (and hence a larger time interval) for crystallization Hence more

crystallization is expected For this case the glass-forming ability (that is the degree of

difficulty of crystallization) has been proposed recently using the concept of fragility

(eg Martinez and Angell 2001 Senkov 2007) If the temperature dependence of

viscosity is Arrhenian from low to high viscosity (001 to 1015 Pamiddots) the liquid is said to

be strong If the temperature dependence of viscosity deviates from Arrhenian behavior

more the liquid is said to be more fragile It is easier for strong liquids to quench to

glass Senkov (2007) defined a dimensionless glass forming ability (GFA) parameter F1

which can be expressed as follows

F1 =2(Tg minus T0 )

2(Tg minus T0 ) + (TL minus Tg ) (8)

where TL is the liquidus Tg is the temperature at which the viscosity is 1012 Pamiddots and T0

(related to fragility) is the temperature in the VFT equation of logη = A + B(T-T0)

Senkov (2007) further related the critical cooling rate required for glass formation to the

GFA parameter as follows

qc = 10(054-F1)0047 (9)

If the cooling rate is above qc the liquid would be cooled into a glass Otherwise there

would be significant crystallization In order to apply the above approach TL as a

117

function of H2Ot and P was estimated from the MELTS program (Ghiorso and Sack

1995 Asimow and Ghiorso 1998) and Tg from the viscosity model developed in this

work (ie Eq 7) For T0 at low pressures the viscosity model of Zhang et al (2003) is

used which resulted in T0 of 300plusmn30 K for H2Ot gt 06 wt For viscosities of hydrous

rhyolitic melt at high pressures there are not enough data in the low-viscosity range to

estimate T0 Hence a constant T0 of 300 K was assumed to roughly estimate F1 and qc

The critical cooling rate as a function of pressure for a few H2Ot contents is plotted in

Fig 44b It can be seen that the limited experimental data are in agreement with this

approach Hence it appears that the paradox of increased easiness of crystallization at

high pressures and increasing viscosity with pressure can be reconciled by the GFA

parameter of Senkov (2007)

5 CONCLUDING REMARKS

Viscosity of hydrous rhyolitic melts containing 08 to 4 wt water was inferred

using the hydrous species reaction viscometer at pressures up to 283 GPa This

represents the first viscosity data at low temperature (high viscosity) and pressures above

1 GPa Viscosity of rhyolitic melts with 013 wt and 08 wt water was also measured

using the parallel plate creep viscometer at pressures up to 04 GPa No experimental

method is available to determine viscosity of ldquodryrdquo melt at higher pressures Combining

the data of this study with literature data a viscosity model is constructed as a function of

temperature pressure and water content in the high viscosity range The model (ie Eq

7) can be utilized for interpolation within the range of available data (Fig 46) but is not

recommended for extrapolation

118

REFERENCES

Akella J Ganguly J Grover R and Kennedy G (1973) Melting of lead and zinc to

60 kbar J Phys Chem Solids 34 631-636

Asimow PD and Ghiorso MS (1998) Algorithmic modifications extending MELTS to

calculate subsolidus phase relations Am Mineral 83 1127-1131

Behrens H and Nowak M (2003) Quantification of H2O speciation in silicate glasses

and melts by IR spectroscopy ndash in situ versus quench techniques Phase Trans 76

45-61

Behrens H and Schulze F (2003) Pressure dependence of melt viscosity in the system

NaAlSi3O8-CaMgSi2O6 Am Mineral 88 1351-1363

Behrens H and Zhang Y (2001) Ar diffusion in hydrous rhyolitic and albitic

glassesmelts Earth Planet Sci Lett 192 363-376

Behrens H Zhang Y and Xu Z (2004) H2O diffusion in dacitic and andesitic melts

Geochim Cosmochim Acta 68 5139-5150

Behrens H Zhang Y Leschik M Wiedenbeck M Heide G and Frischat GH

(2007) Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts

Earth Planet Sci Lett 254 69-76

Dingwell D (1986) Viscosity-temperature relationships in the system Na2Si2O5-

Na4Al2O5 Geochim Cosmochim Acta 50 1261-1265

Dingwell DB (1998) Melt viscosity and diffusion under elevated pressures Rev

Mineral 37 397-422

Dingwell DB and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

119

Dorfman A Dingwell DB and Bagdassarov NS (1997) A rotating autoclave for

centrifuge studies Falling sphere viscometry Eur J Mineral 9 345-350

Dorfman A Hess K-U and Dingwell DB (1996) Centrifuge-assisted falling sphere

viscometry Eur J Mineral 8 507-514

Funakoshi K-i Suzuki A and Terasaki H (2002) In situ viscosity measurements of

albite melt under high pressure J Phys Condensed Matt 14 11343-11347

Ghiorso MS and Sack RO (1995) Chemical mass transfer in magmatic processes IV

A revised and internally consistent thermodynamic model for the interpolation and

extrapolation of liquid-solid equilibria in magmatic systems at elevated

temperatures and pressures Contrib Mineral Petrol 119 197-212

Hui H and Zhang Y (2007) Toward a general viscosity equation for natural anhydrous

and hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Hui H Zhang Y Xu Z and Behrens H (2008) Pressure dependence of the speciation

of dissolved water in rhyolitic melts Geochim Cosmochim Acta In revision

Hummel W and Arndt J (1985) Variation of viscosity with temperature and

composition in the plagioclase system Contrib Mineral Petrol 90 83-92

Ihinger PD Zhang Y and Stolper EM (1999) The speciation of dissolved water in

rhyolitic melt Geochim Cosmochim Acta 63 3567-3578

Kushiro I (1976) Changes in viscosity and structure of melt of NaAlSi2O6 composition

at high pressures J Geophys Res 81 6347-6350

Kushiro I (1978) Density and viscosity of hydrous calc-alkalic andesite magma at high

pressures Carnegie Inst Washington Year Book 77 675-677

120

Kushiro I Yoder HS Jr and Myson BO (1976) Viscosities of basalt and andesite

melts at high pressures J Geophys Res 81 6351-6356

Lange RA (1994) The effect of H2O CO2 and F on the density and viscosity of silicate

melts Rev Mineral 30 331-365

Lees J and Williamson BHJ (1965) Combined very high pressurehigh temperature

calibration of the tetrahedral anvil apparatus fusion curves of zinc aluminium

germanium and silicon to 60 kilobars Nature 208 278-279

Liebske C Behrens H Holtz F and Lange RA (2003) The influence of pressure and

composition on the viscosity of andesitic melts Geochim Cosmochim Acta 67

473-485

Liebske C Schmickler B Terasaki H Poe BT Suzuki A Funakoshi K-i Ando

R and Rubie DC (2005) Viscosity of peridotite liquid up to 13 GPa Implications

for magma ocean viscosities Earth Planet Sci Lett 240 589-604

Lillie HR (1931) Viscosity of glass between the strain point and melting temperature J

Am Ceram Soc 14 502-512

Liu Y and Zhang Y (2000) Bubble growth in rhyolitic melt Earth Planet Sci Lett

181 251-264

Liu Y Behrens H and Zhang Y (2004a) The speciation of dissolved H2O in dacitic

melt Am Mineral 89 277-284

Liu Y Zhang Y and Behrens H (2004b) H2O diffusion in dacitic melt Chem Geol

209 327-340

Liu Y Zhang Y and Behrens H (2005) Solubility of H2O in rhyolitic melts at low

pressures J Volcanol Geotherm Res 143 219-235

121

Martinez L-M and Angell CA (2001) A thermodynamic connection to the fragility of

glass-forming liquids Nature 410 663-667

Moynihan CT Easteal AJ Wilder J and Tucker J (1976) Dependence of the glass

transition temperature on heating and cooling rate J Phys Chem 78 2673-2677

Neuville DR and Richet P (1991) Viscosity and mixing in molten (Ca Mg) pyroxenes

and garnets Geochim Cosmochim Acta 55 1011-1019

Neuville DR Courtial P Dingwell DB and Richet P (1993) Thermodynamic and

rheological properties of rhyolite and andesite melts Contrib Mineral Petrol 113

572-581

Newman S Stolper EM and Epstein S (1986) Measurement of water in rhyolitic

glasses calibration of an infrared spectroscopic technique Am Mineral 71 1527-

1541

Ni H and Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high

pressure data Chem Geol Revised

Rapp RP and Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar

Implications for continental growth and crust-mantle recycling J Petrol 36 891-

931

Reid J E Suzuki A Funakoshi K Terasaki H Poe BT Rubie DC and Ohtani

E (2003) The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa Phys

Earth Planet Inter 139 45-54

Richet P Lejeune A-M Holtz F and Roux J (1996) Water and the viscosity of

andesite melts Chem Geol 128 185-197

122

Rosenhauer M Scarfe CM and Virgo D (1979) Pressure dependence of the glass

transition temperature in glasses of diopside albite and sodium trisilicate

composition Carnegie Inst Washington Year Book 78 556-559

Rust AC and Cashman KV (2007) Multiple origins of obsidian pyroclasts and

implications for changes in the dynamics of the 1300 BP eruption of Newberry

Volcano USA Bull Volcanol 69 825-845

Scarfe CM Mysen BO and Virgo D (1979) Changes in viscosity and density of

melts of sodium disilicate sodium metasilicate and diopside composition with

pressure Carnegie Inst Washington Year Book 78 547-551

ScarfeCM Mysen BO and Virgo D (1987) Pressure dependence of the viscosity of

silicate melts In Mysen BO (ed) Magmatic Processes Physicochemical

Principles Geochem Soc Spec Pub 1 59-67

Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural

relaxation J Am Ceram Soc 67 504-511

Schulze F Behrens H and Hurkuck W (1999) Determination of the influence of

pressure and dissolved water on the viscosity of highly viscous melts Application

of a new parallel-plate viscometer Am Mineral 84 1512-1520

Schulze F Behrens H Holtz F Roux J and Johannes W (1996) The influence of

H2O on the viscosity of a haplogranitic melt Am Mineral 81 1155-1165

Senkov ON (2007) Correlation between fragility and glass-forming ability of metallic

alloys Phys Rev B 76 104202 DOI 101103PhysRevB76104202

Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature

range 700deg to 900degC J Geophys Res 68 6337-6343

123

Shaw HR (1972) Viscosities of magmatic silicate liquids An empirical method of

prediction Am J Sci 272 870-893

Silver LA Ihinger PD and Stolper E (1990) The influence of bulk composition on

the speciation of water in silicate glasses Contrib Mineral Petrol 104 142-162

Stevenson RJ Dingwell DB Webb SL and Bagdassarov NS (1995) The

equivalence of enthalpy and shear stress relaxation in rhyolitic obsidians and

quantification of the liquid-glass transition in volcanic processes J Volcanol

Geotherm Res 68 297-306

Stolper EM (1982a) The speciation of water in silicate melts Geochim Cosmochim

Acta 46 2609-2620

Stolper EM (1982b) Water in silicate glasses an infrared spectroscopic study Contrib

Mineral Petrol 81 1-17

Sylvester PJ (1998) Post-collisional strongly peraluminous granites Lithos 45 29-44

Tinker D Lesher CE Baxter GM Uchida T and Wang Y (2004) High-pressure

viscometry of polymerized silicate melts and limitations of the Eyring equation

Am Mineral 89 1701-1708

Withers AC and Behrens H (1999) Temperature-induced changes in the NIR spectra

of hydrous albitic and rhyolitic glasses between 300 and 100 K Phys Chem

Minerals 27 119-132

Xu Z and Zhang Y (2002) Quench rates in air water and liquid nitrogen and

inference of temperature in volcanic eruption columns Earth Planet Sci Lett 200

315-330

124

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth

Planet Sci Lett 122 373-391

Zhang Y (1999) H2O in rhyolitic glasses and melts Measurement speciation solubility

and diffusion Rev Geophys 37 493-516

Zhang Y and Behrens H (2000) H2O diffusion in rhyolitic melts and glasses Chem

Geol 169 243-262

Zhang Y Belcher R Ihinger PD Wang L Xu Z and Newman S (1997a) New

calibration of infrared measurement of dissolved water in rhyolitic glasses

Geochim Cosmochim Acta 61 3089-3100

Zhang Y Jenkins J and Xu Z (1997b) Kinetics of the reaction H2O + O hArr 2OH in

rhyolitic glasses upon cooling Geospeedometry and comparison with glass

transition Geochim Cosmochim Acta 61 2167-2173

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

Improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

ZhangY and Xu Z (2007) A long-duration experiment on hydrous species

geospeedometer and hydrous melt viscosity Geochim Cosmochim Acta 71 5226-

5232

125

CHAPTER V

CONCLUSIONS

The goal of this dissertation is to understand viscosity of natural silicate melts A

two-pronged approach is used One is to construct a general viscosity model using

available viscosity data (mostly at pressures below 05 GPa) to predict viscosity of all

natural silicate melts in all experimental temperature range at low pressures The second

is to experimentally investigate viscosity at high pressures and in the low temperature

range (high viscosity range) because such data are lacking Concerted effort on viscosity

measurements at high pressures will allow an even more general viscosity model

accounting for the effect of composition temperature and pressure

A new empirical viscosity equation for all natural and nearly natural silicate melts

at all experimentally covered temperature conditions is presented in Chapter II using the

following formulation

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

where η is viscosity in Pamiddots T is temperature in K and A B C and D are linear functions

of mole fractions of oxide components except for H2O The formulation is first applied

successfully to fit the temperature and compositional dependence of viscosity for four

binary systems Then a simpler version of the model with eight parameters is found to fit

126

the compositional and temperature dependence of the viscosity data of anhydrous natural

silicate melts better than the best model in literature A general viscosity equation with 37

parameters using this empirical formulation can fit the entire high- and low-temperature

viscosity database (1451 data points) of all ldquonaturalrdquo anhydrous and hydrous silicate

melts

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

where η is viscosity in Pamiddots T is temperature in K Xi means mole fraction of oxide

component i and Z=(XH2O)1[1+(185797T)] Al2O3ex or (Na K)2Oex mean excess oxide after

forming (Na K)AlO2 The 2σ deviation of the fit is 061 logη units This general model

can be used to calculate viscosity for modeling magma chamber processes and volcanic

eruptions It also can be used to calculate glass transition temperature for different silicate

melts

Temperature and melt composition affect melt viscosity but pressure can also

affect the viscosity of silicate melt The pressure dependence of hydrous melt viscosity in

the high viscosity range is not known Hence the pressure dependence of rhyolitic melts

in the high viscosity range has been investigated in this dissertation (Chapters III and IV)

Hydrous species reaction viscometer in piston cylinder and parallel-plate creep

viscometer in internally heated pressure vessel were used to investigate viscosity under

127

high pressure In order to use hydrous species reaction viscometer under high pressure it

is necessary to study the speciation of dissolved water in rhyolitic melt under high

pressure first

The equilibrium of reaction between two dissolved water species (H2Om and OH)

as a function of pressure (00001 094 189 and 283 GPa) temperature (624-1027 K)

and H2O concentrations (08 to 42 wt) was investigated in this study The speciation

data with total H2O content le 22 can be described by an ideal mixing model consistent

with previous results With inclusion of speciation data at higher water contents one way

to describe the speciation data is a regular solution model A speciation model was

constructed to accommodate the dependence of H2O speciation in the rhyolitic melts on

T-P-X

( )

2 m

32

3 32 2

H O OH

1000ln 18120 03832 ( 30830+02999 +00507 )+

( 74203+50262 31271 ) (30437 54527 +30464 )

K P P PT

P P X P P X

⎛= minus + minus⎜

⎝⎞

minus minus + minus ⎟⎠

where P is pressure in GPa T is temperature in K and X is mole fraction of species H2Om

or OH This formulation can be used to predict species concentrations at P le 283 GPa

total H2O content le 42 wt and temperature of 624-1027 K Furthermore it can be used

to calculate apparent equilibrium temperature which can then be used to infer viscosity

of hydrous rhyolitic melts under high pressure The results of Chapter III provide basis

for the study of Chapter IV

With the study of the speciation of dissolved water in rhyolitic melt under high

pressure viscosity of hydrous rhyolitic melts containing 08 to 4 wt water was inferred

using the hydrous species reaction viscometer at pressures up to 283 GPa Viscosity of

128

rhyolitic melts with 013 wt and 08 wt water was also measured using the parallel

plate creep viscometer at pressures up to 04 GPa but no experiment method is available

to determine viscosity of ldquodryrdquo melt at pressures gt 05 GPa Combining the data of this

study with previous data an Arrhenian viscosity model in high viscosity range is

constructed

logη = minus78470 +11472P12

⎝ ⎜

⎠ ⎟ +

minus124257 + 08080P12

⎝ ⎜

⎠ ⎟ 1minus exp minus36440 minus101893P

12

⎝ ⎜

⎠ ⎟ x

⎝ ⎜ ⎜

⎠ ⎟ ⎟ +

213531minus 21722P12

⎝ ⎜

⎠ ⎟ +

⎝ ⎜ ⎜

minus58335 + 40480P12

⎝ ⎜

⎠ ⎟ 1minus exp minus893887 minus 305499P

12

⎝ ⎜

⎠ ⎟ x

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ⎞

⎠ ⎟ ⎟ 1000

T

where P is pressure in GPa and X is mole fraction of total water content in the melt This

model can be utilized for interpolation but is not recommended for extrapolation beyond

the range of available data (Figure 46 in Chapter IV)

129

APPENDICES

130

APPENDIX A

VISCOSITY DATA OF NATURAL SILICATE MELTS

The viscosity data on the following pages are used to fit Eqn 11 in Chapter II The reference numbers of all the viscosity data

points is the same as the ones in Table 23

Table A1 Viscosity database used to fit Eqn 11

measured calculated SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O K2O P2O5 H2O T logη logη ∆

Comp wt wt wt wt wt wt wt wt wt wt wt K Pas Pas ref

1 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 1573 041 002 -039 12 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9774 916 917 001 13 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9829 894 903 009 14 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9927 866 877 011 15 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8865 137 1368 -002 16 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8923 134 1307 -033 17 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8992 1299 1247 -052 18 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9121 1222 116 -062 19 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9136 1216 1151 -065 1

10 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9187 1183 1124 -059 111 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9242 1156 1097 -059 1

131

12 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9292 1126 1075 -051 113 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9341 1104 1055 -049 114 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9409 1075 103 -045 115 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9447 1051 1016 -035 116 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9528 1017 989 -028 117 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9582 993 972 -021 118 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9595 988 968 -02 119 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9664 957 948 -009 120 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 972 935 932 -003 121 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8458 122 119 -03 122 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8511 1195 1158 -037 123 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 856 1164 1131 -033 124 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8671 1113 1076 -037 125 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8721 1091 1053 -038 126 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8773 1066 1032 -034 127 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8878 1025 991 -034 128 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8193 1215 123 015 129 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8269 1176 1182 006 130 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8342 1135 1141 006 131 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8409 1108 1106 -002 132 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8456 1084 1084 0 133 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8516 1055 1057 002 134 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8563 1035 1037 002 135 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8615 1013 1016 003 136 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 800 1238 1259 021 137 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8032 1207 1237 03 138 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8095 1188 1198 01 139 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8141 1159 1171 012 140 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8206 1136 1136 0 141 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8253 1111 1112 001 142 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8305 1086 1088 002 143 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8359 106 1063 003 1

132

44 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 841 1039 1042 003 145 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8457 1018 1023 005 146 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 7945 1233 1262 029 147 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8051 1192 1195 003 148 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8204 1102 1114 012 149 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8284 1076 1076 0 150 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8362 1034 1043 009 151 Bn3 4357 297 1018 0 0 917 2607 759 096 0 188 7617 123 1297 067 152 Bn3 4357 297 1018 0 0 917 2607 759 096 0 188 8023 1072 1083 011 153 Bn3 4357 297 1018 0 0 917 2607 759 096 0 196 7794 1157 1175 018 154 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14139 196 294 098 155 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14635 165 239 074 156 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14975 145 203 058 157 Te2 5056 235 1403 0 0 879 15 704 301 0 002 15132 138 187 049 158 Te2 5056 235 1403 0 0 879 15 704 301 0 002 1565 113 136 023 159 Te2 5056 235 1403 0 0 879 15 704 301 0 002 16144 091 091 0 160 Te2 5056 235 1403 0 0 879 15 704 301 0 002 16662 07 047 -023 161 Te2 5056 235 1403 0 0 879 15 704 301 0 002 17186 05 004 -046 162 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9763 993 1052 059 163 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9831 971 1032 061 164 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9867 957 1021 064 165 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9921 93 1006 076 166 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9972 918 993 075 167 Te2 5056 235 1403 0 0 879 15 704 301 0 002 10081 873 964 091 168 Te2 5056 235 1403 0 0 879 15 704 301 0 002 918 1285 1294 009 169 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9307 1205 1225 02 170 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9341 1186 1209 023 171 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9464 1132 1156 024 172 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9567 1075 1117 042 173 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9606 1061 1103 042 174 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9673 1038 108 042 175 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9712 1021 1068 047 1

133

76 Te2 5056 235 1403 0 0 879 15 704 301 0 012 905 127 1272 002 177 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9156 1201 1218 017 178 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9265 1177 1169 -008 179 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9374 112 1126 006 180 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9478 1067 109 023 181 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9589 1023 1054 031 182 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9684 987 1025 038 183 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8684 1249 1238 -011 184 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8785 1197 1193 -004 185 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8898 1157 1148 -009 186 Te2 5056 235 1403 0 0 879 15 704 301 0 052 899 1099 1114 015 187 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8342 1238 1258 02 188 Te2 5056 235 1403 0 0 879 15 704 301 0 088 844 1178 1216 038 189 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8555 1158 1171 013 190 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8665 1121 113 009 191 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8761 1077 1097 02 192 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8304 1239 1262 023 193 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8416 1215 1214 -001 194 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8518 1163 1174 011 195 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8621 1143 1136 -007 196 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8695 1049 111 061 197 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8828 1041 1065 024 198 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8935 995 1032 037 199 Te2 5056 235 1403 0 0 879 15 704 301 0 092 918 892 961 069 1

100 Te2 5056 235 1403 0 0 879 15 704 301 0 136 822 1251 1179 -072 1101 Te2 5056 235 1403 0 0 879 15 704 301 0 136 832 1189 1144 -045 1102 Te2 5056 235 1403 0 0 879 15 704 301 0 136 8366 1141 1128 -013 1103 Te2 5056 235 1403 0 0 879 15 704 301 0 136 8475 1112 1091 -021 1104 Te2 5056 235 1403 0 0 879 15 704 301 0 16 8255 1131 1121 -01 1105 Te2 5056 235 1403 0 0 879 15 704 301 0 16 816 1213 1153 -06 1106 Te2 5056 235 1403 0 0 879 15 704 301 0 16 847 1091 1052 -039 1107 Te2 5056 235 1403 0 0 879 15 704 301 0 227 818 1079 1046 -033 1

134

108 Te2 5056 235 1403 0 0 879 15 704 301 0 227 7827 126 1158 -102 1109 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 18155 192 15 -042 2110 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 1766 212 176 -036 2111 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 17219 233 201 -032 2112 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 16694 257 233 -024 2113 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 16174 286 266 -02 2114 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9733 1039 1004 -035 2115 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 990 997 97 -027 2116 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10051 962 94 -022 2117 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10152 938 921 -017 2118 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10268 915 9 -015 2119 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10348 897 886 -011 2120 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10464 866 866 0 2121 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 8892 1312 1206 -106 2122 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 8982 1271 1181 -09 2123 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 911 1225 1148 -077 2124 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 920 1196 1125 -071 2125 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9322 1155 1095 -06 2126 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9415 1129 1074 -055 2127 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9523 1094 1049 -045 2128 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9625 1067 1027 -04 2129 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7308 1202 1147 -055 2130 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7406 1154 1121 -033 2131 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7501 1121 1096 -025 2132 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7617 1091 1067 -024 2133 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7823 1031 1017 -014 2134 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7303 1203 1139 -064 2135 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 741 1179 111 -069 2136 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7617 1092 1057 -035 2137 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7809 104 1011 -029 2138 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6764 1234 1201 -033 2139 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6835 1197 1179 -018 2

135

140 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6914 1167 1155 -012 2141 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7026 1139 1123 -016 2142 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7176 1089 1081 -008 2143 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7279 1053 1053 0 2144 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7381 1022 1027 005 2145 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7479 1005 1003 -002 2146 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6541 1214 1183 -031 2147 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 664 1176 1152 -024 2148 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6751 1137 1118 -019 2149 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6859 109 1086 -004 2150 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 7043 1035 1035 0 2151 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 7164 996 1003 007 2152 Ph4 5882 079 1942 0 0 187 235 931 744 0 472 587 1237 1221 -016 2153 Ph4 5882 079 1942 0 0 187 235 931 744 0 472 6013 1177 1168 -009 2154 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 18277 186 142 -044 2155 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 17765 209 173 -036 2156 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 17258 232 205 -027 2157 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 16778 256 238 -018 2158 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 16285 283 273 -01 2159 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1578 312 312 0 2160 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 15317 341 35 009 2161 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9733 1196 1243 047 2162 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9818 1167 1212 045 2163 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9942 1123 117 047 2164 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9984 1114 1156 042 2165 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9992 1109 1153 044 2166 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10146 1059 1106 047 2167 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10361 1004 1046 042 2168 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1045 982 1023 041 2169 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10572 953 993 04 2170 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10658 934 973 039 2171 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10826 899 935 036 2

136

172 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1092 881 915 034 2173 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 11031 858 892 034 2174 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 11137 837 871 034 2175 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 19287 146 086 -06 2176 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 18796 164 113 -051 2177 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9511 1277 1331 054 2178 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 8792 1216 1175 -041 2179 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 8895 1178 115 -028 2180 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9099 1114 1102 -012 2181 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9309 105 1054 004 2182 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9422 1024 1029 005 2183 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9579 985 995 01 2184 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9659 96 978 018 2185 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9793 931 951 02 2186 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9893 908 93 022 2187 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8324 122 1202 -018 2188 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8362 1208 1193 -015 2189 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8371 1199 1191 -008 2190 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8426 1183 1178 -005 2191 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8472 1173 1167 -006 2192 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8582 1142 1141 -001 2193 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8698 1104 1115 011 2194 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8793 108 1093 013 2195 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8899 1049 107 021 2196 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 7944 1221 1209 -012 2197 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 7998 1201 1195 -006 2198 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8048 1186 1183 -003 2199 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8121 1166 1165 -001 2200 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8207 1137 1144 007 2201 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8286 1115 1126 011 2202 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8393 109 1101 011 2203 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8466 1066 1084 018 2

137

204 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8548 1042 1066 024 2205 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7254 1231 1238 007 2206 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 736 1193 1207 014 2207 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7436 1157 1185 028 2208 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7491 1145 117 025 2209 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7578 1119 1146 027 2210 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 769 1086 1116 03 2211 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7806 1057 1086 029 2212 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7912 1025 106 035 2213 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 8022 1001 1033 032 2214 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 6922 1223 1254 031 2215 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 7033 1189 1218 029 2216 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 713 1148 1189 041 2217 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 7229 1121 1159 038 2218 Tr6 6445 05 1671 0 0 292 536 67 337 0 492 6211 123 13 07 2219 Tr6 6445 05 1671 0 0 292 536 67 337 0 492 6308 1189 1264 075 2220 H3 786 0 125 0 0 0 0 46 42 0 002 14532 679 736 057 3221 H3 786 0 125 0 0 0 0 46 42 0 002 11549 1102 1117 015 4222 H3 786 0 125 0 0 0 0 46 42 0 002 11782 1063 108 017 4223 H3 786 0 125 0 0 0 0 46 42 0 002 11989 1028 1048 02 4224 H3 786 0 125 0 0 0 0 46 42 0 002 1212 1016 1029 013 4225 H3 786 0 125 0 0 0 0 46 42 0 002 16702 49 548 058 4226 H3 786 0 125 0 0 0 0 46 42 0 002 17192 453 512 059 4227 H3 786 0 125 0 0 0 0 46 42 0 002 17682 415 478 063 4228 H3 786 0 125 0 0 0 0 46 42 0 002 18172 381 446 065 4229 H3 786 0 125 0 0 0 0 46 42 0 002 18672 358 416 058 4230 H3 786 0 125 0 0 0 0 46 42 0 002 19162 324 387 063 4231 H5 741 0 117 0 0 0 0 9 44 0 002 94765 974 1007 033 4232 H5 741 0 117 0 0 0 0 9 44 0 002 91965 1045 1063 018 4233 H5 741 0 117 0 0 0 0 9 44 0 002 90365 107 1097 027 4234 H5 741 0 117 0 0 0 0 9 44 0 002 88345 1135 1142 007 4235 H5 741 0 117 0 0 0 0 9 44 0 002 12132 601 639 038 4

138

236 H5 741 0 117 0 0 0 0 9 44 0 002 11432 684 716 032 4237 H5 741 0 117 0 0 0 0 9 44 0 002 10732 784 804 02 4238 H5 741 0 117 0 0 0 0 9 44 0 002 12932 533 564 031 4239 H5 741 0 117 0 0 0 0 9 44 0 002 17682 253 268 015 4240 H5 741 0 117 0 0 0 0 9 44 0 002 17192 272 29 018 4241 H5 741 0 117 0 0 0 0 9 44 0 002 16702 291 314 023 4242 H5 741 0 117 0 0 0 0 9 44 0 002 16212 314 34 026 4243 H5 741 0 117 0 0 0 0 9 44 0 002 15712 338 367 029 4244 H5 741 0 117 0 0 0 0 9 44 0 002 15222 361 396 035 4245 H5 741 0 117 0 0 0 0 9 44 0 002 14732 387 427 04 4246 H7 746 0 118 0 0 0 0 44 92 0 002 96935 1016 1086 07 4247 H7 746 0 118 0 0 0 0 44 92 0 002 94575 1065 1135 07 4248 H7 746 0 118 0 0 0 0 44 92 0 002 92725 1115 1175 06 4249 H7 746 0 118 0 0 0 0 44 92 0 002 18672 254 248 -006 4250 H7 746 0 118 0 0 0 0 44 92 0 002 18172 272 271 -001 4251 H7 746 0 118 0 0 0 0 44 92 0 002 17682 292 295 003 4252 H7 746 0 118 0 0 0 0 44 92 0 002 17192 314 32 006 4253 H7 746 0 118 0 0 0 0 44 92 0 002 16702 336 347 011 4254 H7 746 0 118 0 0 0 0 44 92 0 002 16212 357 376 019 4255 H7 746 0 118 0 0 0 0 44 92 0 002 15712 382 407 025 4256 H2 779 0 1189 0 0 0 0 453 417 0 002 12424 977 978 001 5257 H2 779 0 1189 0 0 0 0 453 417 0 002 11765 109 1076 -014 5258 H2 779 0 1189 0 0 0 0 453 417 0 002 11174 115 1173 023 5259 H2 779 0 1189 0 0 0 0 453 417 0 002 19652 298 353 055 5260 H1 7612 0 1353 0 0 0 0 465 568 0 003 16732 491 502 011 6261 H1 7612 0 1353 0 0 0 0 465 568 0 003 16732 492 502 01 6262 H1 7612 0 1353 0 0 0 0 465 568 0 105 14732 421 505 084 6263 H1 7612 0 1353 0 0 0 0 465 568 0 105 15732 377 435 058 6264 H1 7612 0 1353 0 0 0 0 465 568 0 155 14732 385 437 052 6265 H1 7612 0 1353 0 0 0 0 465 568 0 155 15732 345 371 026 6266 H1 7612 0 1353 0 0 0 0 465 568 0 155 16732 298 308 01 6267 H1 7612 0 1353 0 0 0 0 465 568 0 209 14732 361 377 016 6

139

268 H1 7612 0 1353 0 0 0 0 465 568 0 209 15732 32 313 -007 6269 H1 7612 0 1353 0 0 0 0 465 568 0 258 15732 307 272 -035 6270 H1 7612 0 1353 0 0 0 0 465 568 0 322 14732 327 288 -039 6271 H1 7612 0 1353 0 0 0 0 465 568 0 322 15732 288 232 -056 6272 H1 7612 0 1353 0 0 0 0 465 568 0 375 15732 254 208 -046 6273 H1 7612 0 1353 0 0 0 0 465 568 0 5 12732 337 332 -005 6274 H1 7612 0 1353 0 0 0 0 465 568 0 5 14232 275 246 -029 6275 H1 7612 0 1353 0 0 0 0 465 568 0 5 11732 395 398 003 6276 H1 7612 0 1353 0 0 0 0 465 568 0 59 12732 318 307 -011 6277 H1 7612 0 1353 0 0 0 0 465 568 0 59 11732 371 37 -001 6278 H1 7612 0 1353 0 0 0 0 465 568 0 59 11732 363 37 007 6279 H1 7612 0 1353 0 0 0 0 465 568 0 59 10732 425 441 016 6280 H1 7612 0 1353 0 0 0 0 465 568 0 703 10732 403 414 011 6281 H1 7612 0 1353 0 0 0 0 465 568 0 703 11732 346 346 0 6282 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 368 394 026 6283 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 367 394 027 6284 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 372 394 022 6285 H1 7612 0 1353 0 0 0 0 465 568 0 821 11732 313 33 017 6286 H1 7612 0 1353 0 0 0 0 465 568 0 821 11732 312 33 018 6287 H3 786 0 125 0 0 0 0 46 42 0 041 97675 1076 112 044 7288 H3 786 0 125 0 0 0 0 46 42 0 042 92185 118 1184 004 7289 H3 786 0 125 0 0 0 0 46 42 0 042 96045 114 1134 -006 7290 H3 786 0 125 0 0 0 0 46 42 0 095 93975 942 992 05 7291 H3 786 0 125 0 0 0 0 46 42 0 096 86685 1098 1098 0 7292 H3 786 0 125 0 0 0 0 46 42 0 096 88455 1045 1068 023 7293 H3 786 0 125 0 0 0 0 46 42 0 099 88425 1048 1062 014 7294 H3 786 0 125 0 0 0 0 46 42 0 099 92275 968 1005 037 7295 H3 786 0 125 0 0 0 0 46 42 0 128 88565 983 1004 021 7296 H3 786 0 125 0 0 0 0 46 42 0 13 89455 96 986 026 7297 H3 786 0 125 0 0 0 0 46 42 0 131 87595 988 1015 027 7298 H3 786 0 125 0 0 0 0 46 42 0 132 85605 1038 1048 01 7299 H3 786 0 125 0 0 0 0 46 42 0 133 82255 1096 1112 016 7

140

300 H3 786 0 125 0 0 0 0 46 42 0 135 80155 1139 1154 015 7301 H3 786 0 125 0 0 0 0 46 42 0 137 84055 1058 1069 011 7302 H3 786 0 125 0 0 0 0 46 42 0 18 84975 969 987 018 7303 H3 786 0 125 0 0 0 0 46 42 0 185 78015 113 1127 -003 7304 H3 786 0 125 0 0 0 0 46 42 0 188 81975 1009 1035 026 7305 H3 786 0 125 0 0 0 0 46 42 0 225 81845 962 992 03 7306 H3 786 0 125 0 0 0 0 46 42 0 229 77505 1049 1082 033 7307 H3 786 0 125 0 0 0 0 46 42 0 261 82185 912 946 034 7308 H3 786 0 125 0 0 0 0 46 42 0 335 78825 993 943 -05 7309 A4 624 055 2001 003 002 322 908 352 093 012 0 9962 1276 1295 019 8310 A4 624 055 2001 003 002 322 908 352 093 012 0 10079 1232 1243 011 8311 A4 624 055 2001 003 002 322 908 352 093 012 0 10114 1218 1229 011 8312 A4 624 055 2001 003 002 322 908 352 093 012 0 10185 1195 12 005 8313 A4 624 055 2001 003 002 322 908 352 093 012 0 10249 1174 1176 002 8314 A4 624 055 2001 003 002 322 908 352 093 012 0 10335 1141 1145 004 8315 A4 624 055 2001 003 002 322 908 352 093 012 0 10437 1109 1111 002 8316 A4 624 055 2001 003 002 322 908 352 093 012 0 10538 1076 1079 003 8317 A4 624 055 2001 003 002 322 908 352 093 012 0 10589 1057 1064 007 8318 A4 624 055 2001 003 002 322 908 352 093 012 0 10689 1033 1035 002 8319 A4 624 055 2001 003 002 322 908 352 093 012 0 1073 1019 1024 005 8320 A4 624 055 2001 003 002 322 908 352 093 012 0 10846 987 993 006 8321 A4 624 055 2001 003 002 322 908 352 093 012 0 10941 96 969 009 8322 A4 624 055 2001 003 002 322 908 352 093 012 0 11077 93 936 006 8323 A4 624 055 2001 003 002 322 908 352 093 012 0 11138 912 922 01 8324 A4 624 055 2001 003 002 322 908 352 093 012 0 11238 892 9 008 8325 A4 624 055 2001 003 002 322 908 352 093 012 0 15137 335 367 032 8326 A4 624 055 2001 003 002 322 908 352 093 012 0 15366 317 346 029 8327 A4 624 055 2001 003 002 322 908 352 093 012 0 15755 29 312 022 8328 A4 624 055 2001 003 002 322 908 352 093 012 0 16011 273 29 017 8329 A4 624 055 2001 003 002 322 908 352 093 012 0 16224 259 273 014 8330 A4 624 055 2001 003 002 322 908 352 093 012 0 16504 242 25 008 8331 A4 624 055 2001 003 002 322 908 352 093 012 0 16731 228 233 005 8

141

332 A4 624 055 2001 003 002 322 908 352 093 012 0 16986 215 214 -001 8333 A4 624 055 2001 003 002 322 908 352 093 012 0 17286 197 192 -005 8334 A4 624 055 2001 003 002 322 908 352 093 012 0 17531 185 175 -01 8335 A4 624 055 2001 003 002 322 908 352 093 012 0 17762 174 159 -015 8336 A4 624 055 2001 003 002 322 908 352 093 012 0 18017 162 142 -02 8337 A4 624 055 2001 003 002 322 908 352 093 012 0 18039 16 141 -019 8338 A4 624 055 2001 003 002 322 908 352 093 012 0 18295 148 125 -023 8339 A4 624 055 2001 003 002 322 908 352 093 012 0 18522 139 11 -029 8340 A4 624 055 2001 003 002 322 908 352 093 012 0 18746 128 097 -031 8341 A4 624 055 2001 003 002 322 908 352 093 012 0 19041 116 079 -037 8342 A4 624 055 2001 003 002 322 908 352 093 012 0 19294 105 065 -04 8343 A4 624 055 2001 003 002 322 908 352 093 012 0 1952 096 052 -044 8344 A4 624 055 2001 003 002 322 908 352 093 012 0 19779 086 038 -048 8345 A4 624 055 2001 003 002 322 908 352 093 012 027 9357 127 1279 009 8346 A4 624 055 2001 003 002 322 908 352 093 012 027 9461 1232 1242 01 8347 A4 624 055 2001 003 002 322 908 352 093 012 027 9654 1164 1178 014 8348 A4 624 055 2001 003 002 322 908 352 093 012 027 9824 1109 1125 016 8349 A4 624 055 2001 003 002 322 908 352 093 012 027 9989 1054 1077 023 8350 A4 624 055 2001 003 002 322 908 352 093 012 027 10108 1023 1045 022 8351 A4 624 055 2001 003 002 322 908 352 093 012 027 10218 993 1016 023 8352 A4 624 055 2001 003 002 322 908 352 093 012 027 10416 946 967 021 8353 A4 624 055 2001 003 002 322 908 352 093 012 027 10614 903 921 018 8354 A4 624 055 2001 003 002 322 908 352 093 012 027 10813 856 878 022 8355 A4 624 055 2001 003 002 322 908 352 093 012 1 8645 1219 118 -039 8356 A4 624 055 2001 003 002 322 908 352 093 012 1 8776 1173 1147 -026 8357 A4 624 055 2001 003 002 322 908 352 093 012 1 8984 1103 1097 -006 8358 A4 624 055 2001 003 002 322 908 352 093 012 1 9114 1062 1066 004 8359 A4 624 055 2001 003 002 322 908 352 093 012 1 9223 1033 1041 008 8360 A4 624 055 2001 003 002 322 908 352 093 012 1 9423 978 996 018 8361 A4 624 055 2001 003 002 322 908 352 093 012 1 9632 928 951 023 8362 A4 624 055 2001 003 002 322 908 352 093 012 1 9861 874 903 029 8363 A4 624 055 2001 003 002 322 908 352 093 012 2 7937 1187 1166 -021 8

142

364 A4 624 055 2001 003 002 322 908 352 093 012 2 804 1148 1139 -009 8365 A4 624 055 2001 003 002 322 908 352 093 012 2 8245 1072 1088 016 8366 A4 624 055 2001 003 002 322 908 352 093 012 2 8251 1075 1087 012 8367 A4 624 055 2001 003 002 322 908 352 093 012 2 8252 1073 1087 014 8368 A4 624 055 2001 003 002 322 908 352 093 012 2 8255 1074 1086 012 8369 A4 624 055 2001 003 002 322 908 352 093 012 2 8257 107 1085 015 8370 A4 624 055 2001 003 002 322 908 352 093 012 2 8461 1008 1038 03 8371 A4 624 055 2001 003 002 322 908 352 093 012 2 8664 949 992 043 8372 A4 624 055 2001 003 002 322 908 352 093 012 266 7215 1342 1288 -054 8373 A4 624 055 2001 003 002 322 908 352 093 012 266 7426 1266 1223 -043 8374 A4 624 055 2001 003 002 322 908 352 093 012 266 7537 122 119 -03 8375 A4 624 055 2001 003 002 322 908 352 093 012 266 7651 117 1158 -012 8376 A4 624 055 2001 003 002 322 908 352 093 012 266 7867 109 11 01 8377 A4 624 055 2001 003 002 322 908 352 093 012 266 7992 1049 1068 019 8378 A4 624 055 2001 003 002 322 908 352 093 012 266 823 975 1011 036 8379 A4 624 055 2001 003 002 322 908 352 093 012 266 8438 923 964 041 8380 A4 624 055 2001 003 002 322 908 352 093 012 266 864 875 921 046 8381 A4 624 055 2001 003 002 322 908 352 093 012 346 723 1249 1195 -054 8382 A4 624 055 2001 003 002 322 908 352 093 012 346 7331 121 1165 -045 8383 A4 624 055 2001 003 002 322 908 352 093 012 346 7445 116 1132 -028 8384 A4 624 055 2001 003 002 322 908 352 093 012 346 7552 1121 1102 -019 8385 A4 624 055 2001 003 002 322 908 352 093 012 346 7644 1078 1077 -001 8386 A4 624 055 2001 003 002 322 908 352 093 012 346 7911 995 1009 014 8387 A4 624 055 2001 003 002 322 908 352 093 012 346 7978 976 993 017 8388 A4 624 055 2001 003 002 322 908 352 093 012 346 8123 942 959 017 8389 A4 624 055 2001 003 002 322 908 352 093 012 346 8348 875 909 034 8390 R6 7379 005 1511 042 005 007 097 471 402 001 88 97315 511 469 -042 9391 R6 7379 005 1511 042 005 007 097 471 402 001 88 10732 414 392 -022 9392 R6 7379 005 1511 042 005 007 097 471 402 001 88 11732 345 327 -018 9393 R14 7692 01 1292 089 005 011 086 389 425 003 008 12212 864 885 021 10394 R14 7692 01 1292 089 005 011 086 389 425 003 008 12062 881 906 025 10395 R14 7692 01 1292 089 005 011 086 389 425 003 008 11792 92 945 025 10

143

396 R14 7692 01 1292 089 005 011 086 389 425 003 008 11512 965 987 022 10397 R14 7692 01 1292 089 005 011 086 389 425 003 008 11382 982 1007 025 10398 R15 7699 003 1302 071 01 004 048 431 431 0 149 72315 1318 1326 008 10399 R15 7699 003 1302 071 01 004 048 431 431 0 149 73715 1285 1286 001 10400 R15 7699 003 1302 071 01 004 048 431 431 0 149 74815 1245 1256 011 10401 R15 7699 003 1302 071 01 004 048 431 431 0 149 75815 1214 123 016 10402 R15 7699 003 1302 071 01 004 048 431 431 0 149 77415 1191 1189 -002 10403 R15 7699 003 1302 071 01 004 048 431 431 0 149 78415 1145 1165 02 10404 R15 7699 003 1302 071 01 004 048 431 431 0 149 79415 1155 1141 -014 10405 R15 7699 003 1302 071 01 004 048 431 431 0 149 80415 1092 1119 027 10406 R15 7699 003 1302 071 01 004 048 431 431 0 149 81415 1105 1097 -008 10407 R15 7699 003 1302 071 01 004 048 431 431 0 149 82215 106 108 02 10408 R15 7699 003 1302 071 01 004 048 431 431 0 149 83215 1058 1059 001 10409 R15 7699 003 1302 071 01 004 048 431 431 0 149 84215 1039 1039 0 10410 R15 7699 003 1302 071 01 004 048 431 431 0 149 85115 1026 1022 -004 10411 R15 7699 003 1302 071 01 004 048 431 431 0 149 86215 101 1001 -009 10412 R17 7701 003 1314 071 01 004 051 428 418 0 001 12332 964 922 -042 10413 R17 7701 003 1314 071 01 004 051 428 418 0 001 12052 993 963 -03 10414 R17 7701 003 1314 071 01 004 051 428 418 0 001 11582 1069 1038 -031 10415 R17 7701 003 1314 071 01 004 051 428 418 0 001 11352 112 1077 -043 10416 R17 7701 003 1314 071 01 004 051 428 418 0 001 11112 1127 1119 -008 10417 R17 7701 003 1314 071 01 004 051 428 418 0 001 10882 1195 1162 -033 10418 R17 7701 003 1314 071 01 004 051 428 418 0 001 10642 1238 1209 -029 10419 R19 7708 009 1244 13 002 002 036 449 42 0 004 12312 884 869 -015 10420 R19 7708 009 1244 13 002 002 036 449 42 0 004 12067 916 902 -014 10421 R19 7708 009 1244 13 002 002 036 449 42 0 004 11792 951 942 -009 10422 R19 7708 009 1244 13 002 002 036 449 42 0 004 11612 971 968 -003 10423 R19 7708 009 1244 13 002 002 036 449 42 0 004 11422 998 997 -001 10424 R21 7717 008 124 13 002 001 035 45 42 0 012 10702 1016 1064 048 10425 R21 7717 008 124 13 002 001 035 45 42 0 012 10922 1008 103 022 10426 R21 7717 008 124 13 002 001 035 45 42 0 012 11002 993 1018 025 10427 R21 7717 008 124 13 002 001 035 45 42 0 012 11292 953 976 023 10

144

428 R21 7717 008 124 13 002 001 035 45 42 0 012 11582 896 935 039 10429 R21 7717 008 124 13 002 001 035 45 42 0 012 11872 857 896 039 10430 R26 7748 017 122 13 005 017 114 39 36 0 013 11882 85 872 022 10431 R26 7748 017 122 13 005 017 114 39 36 0 013 11522 91 923 013 10432 R26 7748 017 122 13 005 017 114 39 36 0 013 11272 951 96 009 10433 R26 7748 017 122 13 005 017 114 39 36 0 013 10932 1005 1013 008 10434 R26 7748 017 122 13 005 017 114 39 36 0 013 10932 1025 1013 -012 10435 R26 7748 017 122 13 005 017 114 39 36 0 013 10612 1062 1065 003 10436 R27 7753 017 1217 13 005 017 113 389 36 0 004 11342 1007 996 -011 10437 R27 7753 017 1217 13 005 017 113 389 36 0 004 11522 981 967 -014 10438 R27 7753 017 1217 13 005 017 113 389 36 0 004 11592 962 956 -006 10439 R27 7753 017 1217 13 005 017 113 389 36 0 004 11782 934 926 -008 10440 R27 7753 017 1217 13 005 017 113 389 36 0 004 11872 909 912 003 10441 R27 7753 017 1217 13 005 017 113 389 36 0 004 11962 904 899 -005 10442 R27 7753 017 1217 13 005 017 113 389 36 0 004 12247 862 858 -004 10443 R28 7788 007 1273 076 004 006 05 393 403 001 002 11852 1012 998 -014 10444 R28 7788 007 1273 076 004 006 05 393 403 001 002 12082 979 963 -016 10445 R31 78 009 1215 054 007 006 05 408 448 002 006 12382 866 895 029 10446 R31 78 009 1215 054 007 006 05 408 448 002 006 12232 889 915 026 10447 R31 78 009 1215 054 007 006 05 408 448 002 006 12042 906 942 036 10448 R31 78 009 1215 054 007 006 05 408 448 002 006 11852 948 969 021 10449 R31 78 009 1215 054 007 006 05 408 448 002 006 11712 951 99 039 10450 R31 78 009 1215 054 007 006 05 408 448 002 006 11657 969 998 029 10451 R31 78 009 1215 054 007 006 05 408 448 002 006 11369 1004 1042 038 10452 R31 78 009 1215 054 007 006 05 408 448 002 006 11199 1029 1069 04 10453 R31 78 009 1215 054 007 006 05 408 448 002 006 10778 1089 114 051 10454 R31 78 009 1215 054 007 006 05 408 448 002 006 10403 1165 1207 042 10455 R32 78 009 1215 054 007 007 05 408 448 0 013 11712 92 95 03 10456 R32 78 009 1215 054 007 007 05 408 448 0 013 11202 999 1022 023 10457 R32 78 009 1215 054 007 007 05 408 448 0 013 10782 1049 1084 035 10458 R32 78 009 1215 054 007 007 05 408 448 0 013 10242 1154 117 016 10459 R32 78 009 1215 054 007 007 05 408 448 0 013 99215 12 1224 024 10

145

460 A3 6117 084 1729 539 0 335 583 385 139 0 002 9811 1133 1117 -016 11461 A3 6117 084 1729 539 0 335 583 385 139 0 002 9922 1083 1089 006 11462 A3 6117 084 1729 539 0 335 583 385 139 0 002 10118 1025 1042 017 11463 A3 6117 084 1729 539 0 335 583 385 139 0 002 10255 99 1012 022 11464 A3 6117 084 1729 539 0 335 583 385 139 0 002 10368 967 987 02 11465 A3 6117 084 1729 539 0 335 583 385 139 0 002 1670 219 23 011 11466 A3 6117 084 1729 539 0 335 583 385 139 0 002 1719 197 196 -001 11467 A3 6117 084 1729 539 0 335 583 385 139 0 002 1768 174 164 -01 11468 A3 6117 084 1729 539 0 335 583 385 139 0 002 1818 152 133 -019 11469 A3 6117 084 1729 539 0 335 583 385 139 0 002 1867 133 104 -029 11470 A3 6117 084 1729 539 0 335 583 385 139 0 002 9393 1266 1235 -031 11471 A3 6117 084 1729 539 0 335 583 385 139 0 002 9506 123 1201 -029 11472 A3 6117 084 1729 539 0 335 583 385 139 0 002 9617 1185 1169 -016 11473 A3 6117 084 1729 539 0 335 583 385 139 0 002 9718 1164 1141 -023 11474 R30 779 007 1205 076 0 005 052 401 406 0 0 1670 479 473 -006 11475 R30 779 007 1205 076 0 005 052 401 406 0 0 1719 441 438 -003 11476 R30 779 007 1205 076 0 005 052 401 406 0 0 1768 409 404 -005 11477 R30 779 007 1205 076 0 005 052 401 406 0 0 1817 381 373 -008 11478 R30 779 007 1205 076 0 005 052 401 406 0 0 1867 35 343 -007 11479 R30 779 007 1205 076 0 005 052 401 406 0 0 1051 121 1259 049 11480 R30 779 007 1205 076 0 005 052 401 406 0 0 10706 1192 1217 025 11481 R30 779 007 1205 076 0 005 052 401 406 0 0 10813 1181 1194 013 11482 R30 779 007 1205 076 0 005 052 401 406 0 0 11006 1134 1156 022 11483 R30 779 007 1205 076 0 005 052 401 406 0 0 10984 1127 116 033 11484 R30 779 007 1205 076 0 005 052 401 406 0 0 11111 1105 1136 031 11485 R30 779 007 1205 076 0 005 052 401 406 0 0 11269 1089 1106 017 11486 R30 779 007 1205 076 0 005 052 401 406 0 0 11272 1073 1106 033 11487 R30 779 007 1205 076 0 005 052 401 406 0 0 11674 1019 1035 016 11488 R30 779 007 1205 076 0 005 052 401 406 0 0 11935 978 992 014 11489 R30 779 007 1205 076 0 005 052 401 406 0 0 10969 1137 1163 026 11490 R30 779 007 1205 076 0 005 052 401 406 0 0 10976 1134 1162 028 11491 R30 779 007 1205 076 0 005 052 401 406 0 0 11068 1118 1144 026 11

146

492 R30 779 007 1205 076 0 005 052 401 406 0 0 11203 1092 1118 026 11493 R30 779 007 1205 076 0 005 052 401 406 0 0 11261 1081 1108 027 11494 R30 779 007 1205 076 0 005 052 401 406 0 0 11305 1077 1099 022 11495 R30 779 007 1205 076 0 005 052 401 406 0 0 11345 1066 1092 026 11496 R30 779 007 1205 076 0 005 052 401 406 0 0 11347 1063 1092 029 11497 R30 779 007 1205 076 0 005 052 401 406 0 0 11469 1042 107 028 11498 R30 779 007 1205 076 0 005 052 401 406 0 0 11551 1031 1056 025 11499 R30 779 007 1205 076 0 005 052 401 406 0 0 11563 103 1054 024 11500 R30 779 007 1205 076 0 005 052 401 406 0 0 11671 1015 1035 02 11501 R30 779 007 1205 076 0 005 052 401 406 0 0 11771 999 1018 019 11502 R30 779 007 1205 076 0 005 052 401 406 0 0 11941 973 991 018 11503 R30 779 007 1205 076 0 005 052 401 406 0 0 12133 936 961 025 11504 R30 779 007 1205 076 0 005 052 401 406 0 0 10983 1156 116 004 11505 R30 779 007 1205 076 0 005 052 401 406 0 0 11106 1137 1137 0 11506 R30 779 007 1205 076 0 005 052 401 406 0 0 11203 1121 1118 -003 11507 R30 779 007 1205 076 0 005 052 401 406 0 0 11344 1093 1092 -001 11508 R30 779 007 1205 076 0 005 052 401 406 0 0 11513 1065 1062 -003 11509 R30 779 007 1205 076 0 005 052 401 406 0 0 11661 1036 1037 001 11510 R30 779 007 1205 076 0 005 052 401 406 0 0 11757 1018 1021 003 11511 R30 779 007 1205 076 0 005 052 401 406 0 0 11902 995 997 002 11512 R30 779 007 1205 076 0 005 052 401 406 0 0 12045 974 974 0 11513 R30 779 007 1205 076 0 005 052 401 406 0 0 12191 954 952 -002 11514 R30 779 007 1205 076 0 005 052 401 406 0 0 12308 936 934 -002 11515 R30 779 007 1205 076 0 005 052 401 406 0 0 988 1377 1408 031 11516 R30 779 007 1205 076 0 005 052 401 406 0 0 1063 1249 1233 -016 11517 R30 779 007 1205 076 0 005 052 401 406 0 0 1068 1226 1222 -004 11518 R30 779 007 1205 076 0 005 052 401 406 0 0 1091 1187 1175 -012 11519 R30 779 007 1205 076 0 005 052 401 406 0 0 1094 1151 1169 018 11520 R30 779 007 1205 076 0 005 052 401 406 0 0 1128 1102 1104 002 11521 R30 779 007 1205 076 0 005 052 401 406 0 0 1129 1102 1102 0 11522 R30 779 007 1205 076 0 005 052 401 406 0 0 1131 1092 1099 007 11523 R30 779 007 1205 076 0 005 052 401 406 0 0 1135 1087 1091 004 11

147

524 R30 779 007 1205 076 0 005 052 401 406 0 0 1136 109 1089 -001 11525 R30 779 007 1205 076 0 005 052 401 406 0 0 1138 1084 1086 002 11526 R30 779 007 1205 076 0 005 052 401 406 0 0 1157 1062 1052 -01 11527 R30 779 007 1205 076 0 005 052 401 406 0 0 1186 1007 1004 -003 11528 R30 779 007 1205 076 0 005 052 401 406 0 0 1219 955 952 -003 11529 R30 779 007 1205 076 0 005 052 401 406 0 0 1221 957 949 -008 11530 R30 779 007 1205 076 0 005 052 401 406 0 0 1253 919 902 -017 11531 R30 779 007 1205 076 0 005 052 401 406 0 0 920 1508 1601 093 11532 R30 779 007 1205 076 0 005 052 401 406 0 0 1916 322 315 -007 11533 R20 7715 009 1282 056 007 007 052 411 461 001 012 12313 868 874 006 12534 R20 7715 009 1282 056 007 007 052 411 461 001 012 1219 889 89 001 12535 R20 7715 009 1282 056 007 007 052 411 461 001 012 1201 912 913 001 12536 R20 7715 009 1282 056 007 007 052 411 461 001 012 11765 947 946 -001 12537 R20 7715 009 1282 056 007 007 052 411 461 001 012 11493 991 983 -008 12538 R22 7718 009 1291 061 007 007 051 405 452 001 01 12382 866 874 008 12539 R22 7718 009 1291 061 007 007 051 405 452 001 01 12232 889 893 004 12540 R22 7718 009 1291 061 007 007 051 405 452 001 01 12042 906 919 013 12541 R22 7718 009 1291 061 007 007 051 405 452 001 01 11852 948 944 -004 12542 R22 7718 009 1291 061 007 007 051 405 452 001 01 11662 969 971 002 12543 R22 7718 009 1291 061 007 007 051 405 452 001 01 11372 1004 1012 008 12544 R29 7788 016 1203 119 005 005 106 364 388 001 011 11882 888 897 009 12545 R29 7788 016 1203 119 005 005 106 364 388 001 011 11782 913 911 -002 12546 R29 7788 016 1203 119 005 005 106 364 388 001 011 11642 931 931 0 12547 R29 7788 016 1203 119 005 005 106 364 388 001 011 11532 954 947 -007 12548 R29 7788 016 1203 119 005 005 106 364 388 001 011 11488 948 953 005 12549 R29 7788 016 1203 119 005 005 106 364 388 001 011 11412 975 965 -01 12550 R29 7788 016 1203 119 005 005 106 364 388 001 011 11212 1003 995 -008 12551 R29 7788 016 1203 119 005 005 106 364 388 001 011 11162 1021 1003 -018 12552 R29 7788 016 1203 119 005 005 106 364 388 001 011 10922 105 104 -01 12553 R29 7788 016 1203 119 005 005 106 364 388 001 011 10742 1073 107 -003 12554 R10 7638 006 1159 103 005 036 325 244 466 0 002 10482 1161 1168 007 13555 R10 7638 006 1159 103 005 036 325 244 466 0 002 10732 1101 1109 008 13

148

556 R10 7638 006 1159 103 005 036 325 244 466 0 002 10982 1048 1054 006 13557 R10 7638 006 1159 103 005 036 325 244 466 0 002 11232 1002 1003 001 13558 R10 7638 006 1159 103 005 036 325 244 466 0 002 11482 957 955 -002 13559 R10 7638 006 1159 103 005 036 325 244 466 0 002 10732 11 1109 009 13560 R10 7638 006 1159 103 005 036 325 244 466 0 002 11232 997 1003 006 13561 R10 7638 006 1159 103 005 036 325 244 466 0 002 11732 912 91 -002 13562 R10 7638 006 1159 103 005 036 325 244 466 0 002 11982 875 868 -007 13563 R11 7657 006 1165 104 007 036 323 246 462 0 017 99815 1165 1158 -007 13564 R11 7657 006 1165 104 007 036 323 246 462 0 017 10232 1091 1107 016 13565 R11 7657 006 1165 104 007 036 323 246 462 0 017 10232 1094 1107 013 13566 R11 7657 006 1165 104 007 036 323 246 462 0 017 10482 1036 1059 023 13567 R11 7657 006 1165 104 007 036 323 246 462 0 017 10732 987 1012 025 13568 R11 7657 006 1165 104 007 036 323 246 462 0 017 10982 942 968 026 13569 R11 7657 006 1165 104 007 036 323 246 462 0 017 11232 906 926 02 13570 R16 77 006 1177 1 006 036 329 248 468 0 055 94815 1146 1069 -077 13571 R16 77 006 1177 1 006 036 329 248 468 0 055 97315 1085 1029 -056 13572 R16 77 006 1177 1 006 036 329 248 468 0 055 97315 1088 1029 -059 13573 R16 77 006 1177 1 006 036 329 248 468 0 055 99815 105 99 -06 13574 R16 77 006 1177 1 006 036 329 248 468 0 055 10232 996 952 -044 13575 R16 77 006 1177 1 006 036 329 248 468 0 055 10232 994 952 -042 13576 R16 77 006 1177 1 006 036 329 248 468 0 055 10732 905 88 -025 13577 R18 7707 006 1167 099 007 035 328 242 462 0 027 97315 1154 115 -004 13578 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1128 1103 -025 13579 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1123 1103 -02 13580 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1057 1058 001 13581 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1083 1058 -025 13582 R18 7707 006 1167 099 007 035 328 242 462 0 027 10482 1002 1014 012 13583 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 957 972 015 13584 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 981 972 -009 13585 R18 7707 006 1167 099 007 035 328 242 462 0 027 10982 937 931 -006 13586 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1151 1103 -048 13587 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1083 1058 -025 13

149

588 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1089 1058 -031 13589 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 984 972 -012 13590 R23 7727 003 1175 105 005 036 331 243 473 0 058 97315 1071 102 -051 13591 R23 7727 003 1175 105 005 036 331 243 473 0 058 99815 1029 982 -047 13592 R23 7727 003 1175 105 005 036 331 243 473 0 058 10232 986 944 -042 13593 R23 7727 003 1175 105 005 036 331 243 473 0 058 10482 943 908 -035 13594 R23 7727 003 1175 105 005 036 331 243 473 0 058 10732 902 873 -029 13595 R23 7727 003 1175 105 005 036 331 243 473 0 058 10982 866 838 -028 13596 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1016 1014 -002 13597 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1042 1014 -028 13598 R24 7738 005 117 103 005 036 324 244 48 0 037 10482 969 974 005 13599 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 932 934 002 13600 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 947 934 -013 13601 R24 7738 005 117 103 005 036 324 244 48 0 037 10982 896 896 0 13602 R24 7738 005 117 103 005 036 324 244 48 0 037 11232 875 859 -016 13603 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1014 1014 0 13604 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1034 1014 -02 13605 R24 7738 005 117 103 005 036 324 244 48 0 037 10482 974 974 0 13606 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 935 934 -001 13607 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 951 934 -017 13608 R24 7738 005 117 103 005 036 324 244 48 0 037 10982 903 896 -007 13609 R24 7738 005 117 103 005 036 324 244 48 0 037 11232 879 859 -02 13610 R25 7746 005 1164 104 007 035 323 245 47 0 031 99815 1095 1082 -013 13611 R25 7746 005 1164 104 007 035 323 245 47 0 031 10232 1044 1039 -005 13612 R25 7746 005 1164 104 007 035 323 245 47 0 031 10482 997 997 0 13613 R25 7746 005 1164 104 007 035 323 245 47 0 031 10732 953 956 003 13614 R25 7746 005 1164 104 007 035 323 245 47 0 031 10982 912 916 004 13615 R25 7746 005 1164 104 007 035 323 245 47 0 031 11232 882 878 -004 13616 R25 7746 005 1164 104 007 035 323 245 47 0 031 94815 1244 1173 -071 13617 R25 7746 005 1164 104 007 035 323 245 47 0 031 97315 117 1127 -043 13618 R25 7746 005 1164 104 007 035 323 245 47 0 031 99815 1131 1082 -049 13619 R9 7603 006 1148 105 006 036 321 242 46 0 0 10732 1148 1135 -013 13

150

620 R9 7603 006 1148 105 006 036 321 242 46 0 0 10982 1086 1076 -01 13621 R9 7603 006 1148 105 006 036 321 242 46 0 0 11232 104 1022 -018 13622 R9 7603 006 1148 105 006 036 321 242 46 0 0 11482 991 972 -019 13623 R9 7603 006 1148 105 006 036 321 242 46 0 0 11732 946 926 -02 13624 R9 7603 006 1148 105 006 036 321 242 46 0 0 11982 913 882 -031 13625 R12 7659 008 1267 1 0 003 052 398 488 0 168 738 1235 1252 017 14626 R12 7659 008 1267 1 0 003 052 398 488 0 173 710 1322 1324 002 14627 R12 7659 008 1267 1 0 003 052 398 488 0 157 671 152 1476 -044 14628 R12 7659 008 1267 1 0 003 052 398 488 0 182 709 1323 1313 -01 14629 R12 7659 008 1267 1 0 003 052 398 488 0 186 731 1234 1244 01 14630 R12 7659 008 1267 1 0 003 052 398 488 0 188 755 1153 1177 024 14631 R12 7659 008 1267 1 0 003 052 398 488 0 237 729 1162 118 018 14632 R12 7659 008 1267 1 0 003 052 398 488 0 255 804 968 98 012 14633 R12 7659 008 1267 1 0 003 052 398 488 0 184 845 963 982 019 14634 R12 7659 008 1267 1 0 003 052 398 488 0 263 678 1322 1296 -026 14635 R12 7659 008 1267 1 0 003 052 398 488 0 306 682 1242 1233 -009 14636 R12 7659 008 1267 1 0 003 052 398 488 0 3 710 1171 1158 -013 14637 R12 7659 008 1267 1 0 003 052 398 488 0 142 730 1322 1317 -005 14638 R12 7659 008 1267 1 0 003 052 398 488 0 143 757 123 1241 011 14639 R12 7659 008 1267 1 0 003 052 398 488 0 142 787 1157 1168 011 14640 R12 7659 008 1267 1 0 003 052 398 488 0 093 769 1323 1305 -018 14641 R12 7659 008 1267 1 0 003 052 398 488 0 112 780 1227 1238 011 14642 R12 7659 008 1267 1 0 003 052 398 488 0 116 810 1149 116 011 14643 R12 7659 008 1267 1 0 003 052 398 488 0 239 643 152 1446 -074 14644 R12 7659 008 1267 1 0 003 052 398 488 0 051 841 1323 1253 -07 14645 R12 7659 008 1267 1 0 003 052 398 488 0 203 873 872 907 035 14646 R12 7659 008 1267 1 0 003 052 398 488 0 197 798 103 1062 032 14647 R12 7659 008 1267 1 0 003 052 398 488 0 197 773 1082 112 038 14648 R12 7659 008 1267 1 0 003 052 398 488 0 204 848 926 951 025 14649 R12 7659 008 1267 1 0 003 052 398 488 0 203 824 968 999 031 14650 R12 7659 008 1267 1 0 003 052 398 488 0 136 873 97 999 029 14651 R12 7659 008 1267 1 0 003 052 398 488 0 141 848 103 1038 008 14

151

652 R12 7659 008 1267 1 0 003 052 398 488 0 146 873 962 984 022 14653 R12 7659 008 1267 1 0 003 052 398 488 0 38 750 962 981 019 14654 R12 7659 008 1267 1 0 003 052 398 488 0 38 642 13 1281 -019 14655 R12 7659 008 1267 1 0 003 052 398 488 0 38 625 1423 1339 -084 14656 R12 7659 008 1267 1 0 003 052 398 488 0 56 707 96 95 -01 14657 R12 7659 008 1267 1 0 003 052 398 488 0 56 604 1324 1249 -075 14658 R12 7659 008 1267 1 0 003 052 398 488 0 56 648 1144 1107 -037 14659 R12 7659 008 1267 1 0 003 052 398 488 0 77 670 96 921 -039 14660 R12 7659 008 1267 1 0 003 052 398 488 0 77 573 1324 1211 -113 14661 R12 7659 008 1267 1 0 003 052 398 488 0 77 603 1145 1108 -037 14662 R12 7659 008 1267 1 0 003 052 398 488 0 078 825 1224 1207 -017 14663 R12 7659 008 1267 1 0 003 052 398 488 0 08 823 1224 1207 -017 14664 R12 7659 008 1267 1 0 003 052 398 488 0 082 820 1224 1209 -015 14665 R12 7659 008 1267 1 0 003 052 398 488 0 079 971 961 962 001 14666 R12 7659 008 1267 1 0 003 052 398 488 0 084 846 1153 115 -003 14667 R12 7659 008 1267 1 0 003 052 398 488 0 083 892 1064 1069 005 14668 R12 7659 008 1267 1 0 003 052 398 488 0 089 772 1323 1305 -018 14669 R12 7659 008 1267 1 0 003 052 398 488 0 081 804 1276 1246 -03 14670 R12 7659 008 1267 1 0 003 052 398 488 0 084 765 1371 1335 -036 14671 R12 7659 008 1267 1 0 003 052 398 488 0 084 752 142 137 -05 14672 R12 7659 008 1267 1 0 003 052 398 488 0 083 784 132 1289 -031 14673 R12 7659 008 1267 1 0 003 052 398 488 0 084 779 132 1299 -021 14674 R12 7659 008 1267 1 0 003 052 398 488 0 081 728 152 1446 -074 14675 R12 7659 008 1267 1 0 003 052 398 488 0 114 748 1322 1318 -004 14676 R12 7659 008 1267 1 0 003 052 398 488 0 117 897 948 991 043 14677 R13 766 01 127 117 0 002 031 41 46 0 43 1073 551 5 -051 15678 R13 766 01 127 117 0 002 031 41 46 0 43 1073 545 5 -045 15679 R13 766 01 127 117 0 002 031 41 46 0 43 1123 526 46 -066 15680 R13 766 01 127 117 0 002 031 41 46 0 43 1123 517 46 -057 15681 R13 766 01 127 117 0 002 031 41 46 0 43 1173 488 422 -066 15682 R13 766 01 127 117 0 002 031 41 46 0 62 973 552 52 -032 15683 R13 766 01 127 117 0 002 031 41 46 0 62 1023 505 475 -03 15

152

684 R13 766 01 127 117 0 002 031 41 46 0 62 1073 457 435 -022 15685 R13 766 01 127 117 0 002 031 41 46 0 62 1073 463 435 -028 15686 R13 766 01 127 117 0 002 031 41 46 0 62 1123 425 398 -027 15687 R1 6677 039 2015 431 001 072 364 137 217 0 002 15732 377 399 022 16688 R1 6677 039 2015 431 001 072 364 137 217 0 002 16232 329 359 03 16689 R1 6677 039 2015 431 001 072 364 137 217 0 002 16732 29 322 032 16690 R1 6677 039 2015 431 001 072 364 137 217 0 002 17232 267 287 02 16691 R1 6677 039 2015 431 001 072 364 137 217 0 002 17232 264 287 023 16692 R1 6677 039 2015 431 001 072 364 137 217 0 002 17732 235 254 019 16693 R1 6677 039 2015 431 001 072 364 137 217 0 002 18232 209 223 014 16694 R1 6677 039 2015 431 001 072 364 137 217 0 002 18732 186 193 007 16695 R2 6716 001 2165 281 001 073 265 285 182 0 002 17232 288 331 043 16696 R2 6716 001 2165 281 001 073 265 285 182 0 002 17732 26 298 038 16697 R2 6716 001 2165 281 001 073 265 285 182 0 002 18232 233 266 033 16698 R2 6716 001 2165 281 001 073 265 285 182 0 002 18732 209 237 028 16699 R3 7122 024 168 291 006 08 262 309 194 0 002 16232 392 379 -013 16700 R3 7122 024 168 291 006 08 262 309 194 0 002 16732 361 342 -019 16701 R3 7122 024 168 291 006 08 262 309 194 0 002 17232 328 307 -021 16702 R3 7122 024 168 291 006 08 262 309 194 0 002 17732 3 275 -025 16703 R3 7122 024 168 291 006 08 262 309 194 0 002 18232 273 244 -029 16704 R3 7122 024 168 291 006 08 262 309 194 0 002 18732 248 215 -033 16705 R4 7142 001 161 458 001 157 094 194 292 0 002 15732 419 423 004 16706 R4 7142 001 161 458 001 157 094 194 292 0 002 16232 387 385 -002 16707 R4 7142 001 161 458 001 157 094 194 292 0 002 16732 352 349 -003 16708 R4 7142 001 161 458 001 157 094 194 292 0 002 17232 322 316 -006 16709 R4 7142 001 161 458 001 157 094 194 292 0 002 17732 292 285 -007 16710 R4 7142 001 161 458 001 157 094 194 292 0 002 18232 265 255 -01 16711 R4 7142 001 161 458 001 157 094 194 292 0 002 18732 24 228 -012 16712 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 16732 385 357 -028 16713 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17132 359 328 -031 16714 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17532 337 301 -036 16715 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17932 31 275 -035 16

153

716 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 18332 292 25 -042 16717 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 18732 276 226 -05 16718 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 17532 319 311 -008 16719 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 17932 3 285 -015 16720 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18132 257 272 015 16721 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18332 242 259 017 16722 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18532 231 247 016 16723 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18732 222 235 013 16724 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16532 368 375 007 16725 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16732 355 36 005 16726 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16932 342 346 004 16727 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17132 326 331 005 16728 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17332 311 317 006 16729 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17532 3 304 004 16730 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17732 285 291 006 16731 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17932 275 278 003 16732 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18132 264 265 001 16733 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18332 255 252 -003 16734 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18532 242 24 -002 16735 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18732 234 228 -006 16736 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 16332 41 377 -033 16737 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 16732 371 347 -024 16738 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17132 344 319 -025 16739 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17532 318 292 -026 16740 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17932 295 266 -029 16741 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 18332 273 241 -032 16742 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 18732 259 217 -042 16743 Bl2 4781 194 1791 109 019 475 996 394 211 048 0 10202 994 956 -038 17744 Bl2 4781 194 1791 109 019 475 996 394 211 048 0 94615 1165 1134 -031 17745 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 98315 994 1008 014 17746 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 10132 869 925 056 17747 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 95315 1141 1117 -024 17

154

748 R8 7537 007 1284 157 007 004 072 419 513 0 014 99315 111 1146 036 17749 R8 7537 007 1284 157 007 004 072 419 513 0 014 10112 1078 1115 037 17750 R8 7537 007 1284 157 007 004 072 419 513 0 014 10432 1018 1062 044 17751 R8 7537 007 1284 157 007 004 072 419 513 0 014 10842 956 997 041 17752 R8 7537 007 1284 157 007 004 072 419 513 0 014 11142 915 952 037 17753 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 785 792 007 18754 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 782 792 01 18755 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 787 792 005 18756 R7 747 008 1328 165 0 0 077 43 522 0 0 13232 726 73 004 18757 R7 747 008 1328 165 0 0 077 43 522 0 0 13732 679 673 -006 18758 R7 747 008 1328 165 0 0 077 43 522 0 0 13732 677 673 -004 18759 R7 747 008 1328 165 0 0 077 43 522 0 0 14232 625 62 -005 18760 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 1744 -022 -068 -046 19761 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 17194 -016 -049 -033 19762 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16948 -009 -029 -02 19763 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16702 -002 -009 -007 19764 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16456 007 012 005 19765 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 1621 016 034 018 19766 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 97515 1026 1014 -012 19767 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 98275 981 991 01 19768 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 98315 1005 99 -015 19769 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 965 1077 1048 -029 19770 Ph1 512 067 186 61 013 25 73 375 79 04 002 18179 097 092 -005 19771 Ph1 512 067 186 61 013 25 73 375 79 04 002 17933 107 107 0 19772 Ph1 512 067 186 61 013 25 73 375 79 04 002 17687 117 121 004 19773 Ph1 512 067 186 61 013 25 73 375 79 04 002 1744 128 136 008 19774 Ph1 512 067 186 61 013 25 73 375 79 04 002 17194 138 152 014 19775 Ph1 512 067 186 61 013 25 73 375 79 04 002 16948 15 168 018 19776 Ph1 512 067 186 61 013 25 73 375 79 04 002 16702 163 184 021 19777 Ph1 512 067 186 61 013 25 73 375 79 04 002 16456 175 201 026 19778 Ph1 512 067 186 61 013 25 73 375 79 04 002 1621 188 219 031 19779 Ph1 512 067 186 61 013 25 73 375 79 04 002 97815 1066 1034 -032 19

155

780 Ph1 512 067 186 61 013 25 73 375 79 04 002 9975 1015 985 -03 19781 Ph1 512 067 186 61 013 25 73 375 79 04 002 10164 975 942 -033 19782 Ph5 597 046 1852 36 017 065 28 389 845 015 002 1744 245 23 -015 19783 Ph5 597 046 1852 36 017 065 28 389 845 015 002 17194 258 245 -013 19784 Ph5 597 046 1852 36 017 065 28 389 845 015 002 16948 272 261 -011 19785 Ph5 597 046 1852 36 017 065 28 389 845 015 002 1621 316 311 -005 19786 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15964 332 329 -003 19787 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15718 348 348 0 19788 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15472 366 367 001 19789 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15226 383 386 003 19790 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14979 402 407 005 19791 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14733 42 428 008 19792 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14487 44 45 01 19793 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14241 46 472 012 19794 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10346 103 996 -034 19795 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10477 1011 971 -04 19796 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10675 973 934 -039 19797 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10838 955 905 -05 19798 Ph5 597 046 1852 36 017 065 28 389 845 015 002 11041 911 871 -04 19799 Te1 492 083 164 72 013 51 102 27 65 072 002 18179 053 038 -015 19800 Te1 492 083 164 72 013 51 102 27 65 072 002 17933 062 052 -01 19801 Te1 492 083 164 72 013 51 102 27 65 072 002 17687 071 068 -003 19802 Te1 492 083 164 72 013 51 102 27 65 072 002 1744 081 083 002 19803 Te1 492 083 164 72 013 51 102 27 65 072 002 17194 09 099 009 19804 Te1 492 083 164 72 013 51 102 27 65 072 002 16948 101 116 015 19805 Te1 492 083 164 72 013 51 102 27 65 072 002 16702 112 133 021 19806 Te1 492 083 164 72 013 51 102 27 65 072 002 16456 124 15 026 19807 Te1 492 083 164 72 013 51 102 27 65 072 002 1621 136 169 033 19808 Te1 492 083 164 72 013 51 102 27 65 072 002 9806 1055 1041 -014 19809 Te1 492 083 164 72 013 51 102 27 65 072 002 99335 1017 997 -02 19810 Te1 492 083 164 72 013 51 102 27 65 072 002 10023 978 969 -009 19811 Te1 492 083 164 72 013 51 102 27 65 072 002 10179 951 925 -026 19

156

812 Te1 492 083 164 72 013 51 102 27 65 072 002 10294 913 895 -018 19813 Te1 492 083 164 72 013 51 102 27 65 072 002 10401 879 87 -009 19814 Te1 492 083 164 72 013 51 102 27 65 072 002 96995 1098 1084 -014 19815 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18671 214 198 -016 19816 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18425 225 211 -014 19817 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18179 237 225 -012 19818 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17933 25 239 -011 19819 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17687 263 253 -01 19820 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1744 276 268 -008 19821 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17194 291 283 -008 19822 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16948 305 299 -006 19823 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16702 32 315 -005 19824 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16456 336 331 -005 19825 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1621 352 348 -004 19826 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15964 368 366 -002 19827 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15718 385 384 -001 19828 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15472 4 403 003 19829 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15226 421 423 002 19830 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 14979 44 443 003 19831 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 14733 459 464 005 19832 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 99603 1077 1091 014 19833 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10103 1053 1062 009 19834 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10117 1041 106 019 19835 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10163 1049 1051 002 19836 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10229 1019 1038 019 19837 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10338 995 1018 023 19838 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1055 963 979 016 19839 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10797 911 937 026 19840 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17692 237 248 011 20841 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17442 249 263 014 20842 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17192 263 279 016 20843 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16952 277 294 017 20

157

844 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16702 292 31 018 20845 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16462 308 327 019 20846 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16212 324 344 02 20847 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15962 34 363 023 20848 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15722 358 381 023 20849 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15472 376 4 024 20850 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15222 394 42 026 20851 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14982 414 44 026 20852 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14732 434 462 028 20853 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14492 454 483 029 20854 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 11342 932 857 -075 20855 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 11092 984 898 -086 20856 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 10762 1044 954 -09 20857 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 10562 1083 991 -092 20858 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 83515 1112 1122 01 20859 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 84215 1094 1107 013 20860 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 85215 1075 1086 011 20861 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 86815 1044 1052 008 20862 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 86915 103 105 02 20863 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 87715 1009 1034 025 20864 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 80215 1086 1065 -021 20865 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 81915 1036 1027 -009 20866 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 82615 1014 1011 -003 20867 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 78115 1052 1048 -004 20868 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 77915 1044 1053 009 20869 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 81115 994 98 -014 20870 Tr1 6074 027 1922 337 018 028 211 528 632 006 296 73215 1076 1058 -018 20871 Tr1 6074 027 1922 337 018 028 211 528 632 006 296 74015 1027 1038 011 20872 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 69115 1128 1123 -005 20873 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 71515 1045 1057 012 20874 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 73015 988 1018 03 20875 Tr4 6388 031 171 29 013 024 182 567 682 005 002 17687 25 245 -005 20

158

876 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1744 262 259 -003 20877 Tr4 6388 031 171 29 013 024 182 567 682 005 002 17194 275 274 -001 20878 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16948 289 29 001 20879 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16702 303 306 003 20880 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16456 318 322 004 20881 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1621 333 339 006 20882 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15964 349 357 008 20883 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15718 365 375 01 20884 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15472 382 394 012 20885 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15226 397 413 016 20886 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14979 417 434 017 20887 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14733 436 454 018 20888 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14487 455 476 021 20889 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1017 1003 1046 043 20890 Tr4 6388 031 171 29 013 024 182 567 682 005 002 97925 1071 1124 053 20891 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1090 876 913 037 20892 Tr4 6388 031 171 29 013 024 182 567 682 005 002 10425 956 997 041 20893 Tr4 6388 031 171 29 013 024 182 567 682 005 002 9586 1108 1169 061 20894 Tr4 6388 031 171 29 013 024 182 567 682 005 1 83915 1064 1066 002 20895 Tr4 6388 031 171 29 013 024 182 567 682 005 1 84815 1047 1047 0 20896 Tr4 6388 031 171 29 013 024 182 567 682 005 1 86215 1022 1019 -003 20897 Tr4 6388 031 171 29 013 024 182 567 682 005 1 87015 1008 1003 -005 20898 Tr4 6388 031 171 29 013 024 182 567 682 005 139 78815 1097 1113 016 20899 Tr4 6388 031 171 29 013 024 182 567 682 005 139 81815 1031 1044 013 20900 Tr4 6388 031 171 29 013 024 182 567 682 005 139 84315 99 99 0 20901 Tr4 6388 031 171 29 013 024 182 567 682 005 241 74515 1059 1077 018 20902 Tr4 6388 031 171 29 013 024 182 567 682 005 241 78815 967 974 007 20903 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67415 1085 1118 033 20904 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67315 108 112 04 20905 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67115 1079 1126 047 20906 Tr4 6388 031 171 29 013 024 182 567 682 005 386 65815 116 1166 006 20907 A1 5856 064 1898 745 0 348 617 324 092 0 083 14732 275 259 -016 21

159

908 A1 5856 064 1898 745 0 348 617 324 092 0 083 15732 222 185 -037 21909 A1 5856 064 1898 745 0 348 617 324 092 0 083 15732 215 185 -03 21910 A1 5856 064 1898 745 0 348 617 324 092 0 083 16232 176 152 -024 21911 A1 5856 064 1898 745 0 348 617 324 092 0 072 14732 237 27 033 21912 A1 5856 064 1898 745 0 348 617 324 092 0 1 14232 25 283 033 21913 A1 5856 064 1898 745 0 348 617 324 092 0 1 14732 225 244 019 21914 A1 5856 064 1898 745 0 348 617 324 092 0 1 13732 364 326 -038 21915 A1 5856 064 1898 745 0 348 617 324 092 0 1 14732 201 244 043 21916 A1 5856 064 1898 745 0 348 617 324 092 0 46 13732 18 174 -006 21917 A1 5856 064 1898 745 0 348 617 324 092 0 46 14732 145 118 -027 21918 Bl3 4821 125 155 1064 0 908 1192 24 008 014 022 13732 286 319 033 21919 Bl3 4821 125 155 1064 0 908 1192 24 008 014 022 15232 23 174 -056 21920 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 13732 174 183 009 21921 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 15732 091 048 -043 21922 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 13732 142 183 041 21923 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 15732 08 048 -032 21924 Bl4 5354 105 1729 782 0 546 832 359 164 02 636 12732 13 177 047 21925 Bl4 5354 105 1729 782 0 546 832 359 164 02 636 15732 027 021 -006 21926 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 14732 36 339 -021 21927 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 15732 216 25 034 21928 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 14732 34 339 -001 21929 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 15732 294 25 -044 21930 R5 7323 019 136 278 0 017 169 378 411 013 21 10732 61 619 009 21931 R5 7323 019 136 278 0 017 169 378 411 013 21 13732 325 356 031 21932 R5 7323 019 136 278 0 017 169 378 411 013 3 10732 48 548 068 21933 R5 7323 019 136 278 0 017 169 378 411 013 33 14732 225 229 004 21934 R5 7323 019 136 278 0 017 169 378 411 013 52 10732 397 444 047 21935 R5 7323 019 136 278 0 017 169 378 411 013 52 14732 167 188 021 21936 R5 7323 019 136 278 0 017 169 378 411 013 123 11232 32 325 005 21937 R5 7323 019 136 278 0 017 169 378 411 013 123 12232 24 281 041 21938 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17732 22 213 -007 22939 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17482 232 226 -006 22

160

940 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17232 244 24 -004 22941 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16982 257 254 -003 22942 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16732 27 268 -002 22943 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16482 283 283 0 22944 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16232 297 298 001 22945 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15982 311 314 003 22946 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15732 326 331 005 22947 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15482 342 348 006 22948 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15232 357 365 008 22949 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14982 374 383 009 22950 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14732 391 402 011 22951 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14482 407 421 014 22952 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14232 427 441 014 22953 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 13982 446 462 016 22954 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 13732 465 484 019 22955 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 10104 899 925 026 22956 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 88785 1163 1164 001 22957 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 92395 1085 1086 001 22958 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 94585 1031 1042 011 22959 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 96475 10 1006 006 22960 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 86705 879 925 046 22961 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 80455 1033 1052 019 22962 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 79395 1059 1075 016 22963 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 78045 1105 1107 002 22964 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 82175 99 1015 025 22965 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 76375 1084 1126 042 22966 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 77495 1082 1099 017 22967 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 77845 1045 1091 046 22968 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 78565 1025 1074 049 22969 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 74215 1016 994 -022 22970 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 72835 1055 1027 -028 22971 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 75905 959 955 -004 22

161

972 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 70335 957 912 -045 22973 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 66285 11 1017 -083 22974 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 67535 105 983 -067 22975 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 16702 228 201 -027 23976 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 1621 254 235 -019 23977 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 15718 283 271 -012 23978 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 15226 315 31 -005 23979 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 14733 348 351 003 23980 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 14241 387 395 008 23981 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 13749 429 443 014 23982 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 13257 475 494 019 23983 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 9804 1066 1019 -047 23984 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 99985 102 977 -043 23985 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10295 978 917 -061 23986 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10443 958 888 -07 23987 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10783 881 828 -053 23988 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 9621 1105 1062 -043 23989 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 84825 94 967 027 23990 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 83675 971 993 022 23991 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 81535 1035 1043 008 23992 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 78315 1129 1124 -005 23993 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 79515 916 977 061 23994 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 77905 962 1017 055 23995 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 75945 1016 1067 051 23996 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 73445 11 1136 036 23997 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 73605 984 101 026 23998 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 71765 1033 106 027 23999 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 70885 1061 1085 024 23

1000 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 16702 196 203 007 231001 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 1621 225 237 012 231002 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 15718 256 274 018 231003 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 15226 291 312 021 23

162

1004 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 14733 329 354 025 231005 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 14241 372 398 026 231006 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 13749 422 446 024 231007 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 13257 477 497 02 231008 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 98165 1026 1022 -004 231009 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 9961 997 99 -007 231010 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10254 944 93 -014 231011 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10283 901 924 023 231012 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10432 898 895 -003 231013 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 96235 1068 1067 -001 231014 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 86735 917 947 03 231015 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 86005 92 963 043 231016 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 84065 984 1006 022 231017 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 81885 1032 1057 025 231018 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 80555 1064 109 026 231019 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 78955 1105 113 025 231020 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 75375 932 947 015 231021 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 74875 946 96 014 231022 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 72775 982 1015 033 231023 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 71765 1025 1042 017 231024 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 70435 1082 108 -002 231025 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 79995 89 952 062 231026 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 77855 94 1003 063 231027 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 74675 1029 1086 057 231028 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 17692 249 21 -039 231029 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 17192 274 24 -034 231030 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 16702 301 272 -029 231031 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 16212 33 305 -025 231032 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 15722 362 341 -021 231033 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 15222 396 379 -017 231034 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 14732 433 42 -013 231035 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 14242 473 463 -01 23

163

1036 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10873 845 881 036 231037 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10385 932 968 036 231038 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10097 977 1024 047 231039 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 98515 1056 1076 02 231040 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 97335 1075 1102 027 231041 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 95695 1129 114 011 231042 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 72365 99 995 005 231043 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 70935 1031 1032 001 231044 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 68885 1105 1089 -016 231045 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 79455 97 962 -008 231046 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 77665 1005 1003 -002 231047 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 76125 1065 104 -025 231048 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 74385 1097 1085 -012 231049 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 82165 955 943 -012 231050 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 79545 102 1001 -019 231051 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 77575 108 1047 -033 231052 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 76385 1104 1077 -027 231053 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 91745 904 881 -023 231054 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 88545 972 94 -032 231055 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 86505 1008 98 -028 231056 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 84985 1042 1012 -03 231057 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 81965 1124 1078 -046 231058 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 17194 279 244 -035 231059 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 16702 306 275 -031 231060 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 1621 335 309 -026 231061 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 15718 367 345 -022 231062 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 15226 402 383 -019 231063 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 14733 439 424 -015 231064 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 14241 48 468 -012 231065 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10056 1039 1039 0 231066 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10414 941 968 027 231067 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10579 906 938 032 23

164

1068 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 96708 1118 1122 004 231069 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 87285 933 949 016 231070 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 85375 974 988 014 231071 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 83085 1009 1036 027 231072 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 81415 1056 1074 018 231073 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 81125 1062 1081 019 231074 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 79915 1085 1109 024 231075 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 79465 1119 112 001 231076 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 72425 985 993 008 231077 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 71805 1005 1009 004 231078 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 69875 1052 1061 009 231079 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 69335 1095 1076 -019 231080 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 67945 1133 1116 -017 231081 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 67735 1143 1122 -021 231082 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 86275 954 981 027 231083 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 84505 1001 1018 017 231084 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 82755 1024 1056 032 231085 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 80285 1074 1113 039 231086 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 79825 1102 1124 022 231087 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 78645 1156 1153 -003 231088 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 95945 883 875 -008 231089 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 90155 988 979 -009 231090 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 85905 107 1065 -005 231091 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 84075 1135 1105 -03 231092 D2 66 036 1523 408 01 221 501 384 216 014 002 1744 209 216 007 241093 D2 66 036 1523 408 01 221 501 384 216 014 002 17194 221 231 01 241094 D2 66 036 1523 408 01 221 501 384 216 014 002 16948 234 248 014 241095 D2 66 036 1523 408 01 221 501 384 216 014 002 16702 248 264 016 241096 D2 66 036 1523 408 01 221 501 384 216 014 002 16456 262 281 019 241097 D2 66 036 1523 408 01 221 501 384 216 014 002 1621 276 299 023 241098 D2 66 036 1523 408 01 221 501 384 216 014 002 15964 292 317 025 241099 D2 66 036 1523 408 01 221 501 384 216 014 002 15718 308 336 028 24

165

1100 D2 66 036 1523 408 01 221 501 384 216 014 002 15472 325 355 03 241101 D2 66 036 1523 408 01 221 501 384 216 014 002 15226 343 376 033 241102 D2 66 036 1523 408 01 221 501 384 216 014 002 14979 361 396 035 241103 D2 66 036 1523 408 01 221 501 384 216 014 002 14733 38 418 038 241104 D2 66 036 1523 408 01 221 501 384 216 014 002 14487 4 44 04 241105 D2 66 036 1523 408 01 221 501 384 216 014 002 14241 421 463 042 241106 D2 66 036 1523 408 01 221 501 384 216 014 002 13995 444 488 044 241107 D2 66 036 1523 408 01 221 501 384 216 014 002 13749 466 513 047 241108 D2 66 036 1523 408 01 221 501 384 216 014 002 10342 105 1034 -016 241109 D2 66 036 1523 408 01 221 501 384 216 014 002 10578 985 979 -006 241110 D2 66 036 1523 408 01 221 501 384 216 014 002 10742 928 944 016 241111 D2 66 036 1523 408 01 221 501 384 216 014 002 10912 891 91 019 241112 D2 66 036 1523 408 01 221 501 384 216 014 131 86205 1056 1017 -039 241113 D2 66 036 1523 408 01 221 501 384 216 014 131 83505 1118 1076 -042 241114 D2 66 036 1523 408 01 221 501 384 216 014 164 77205 1195 1173 -022 241115 D2 66 036 1523 408 01 221 501 384 216 014 164 80795 1112 1084 -028 241116 D2 66 036 1523 408 01 221 501 384 216 014 164 80845 1093 1083 -01 241117 D2 66 036 1523 408 01 221 501 384 216 014 164 83855 986 1015 029 241118 D2 66 036 1523 408 01 221 501 384 216 014 198 80395 1048 1045 -003 241119 D2 66 036 1523 408 01 221 501 384 216 014 198 81505 999 102 021 241120 D2 66 036 1523 408 01 221 501 384 216 014 198 83355 963 979 016 241121 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 84835 116 1193 033 251122 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 87035 108 1123 043 251123 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 87505 1074 1109 035 251124 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 88475 105 1081 031 251125 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 89165 1042 1061 019 251126 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 89255 1033 1059 026 251127 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 82635 1099 112 021 251128 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 83105 1089 1106 017 251129 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 83765 1073 1087 014 251130 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 84845 1037 1057 02 251131 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 80545 112 1093 -027 25

166

1132 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 81775 1088 1059 -029 251133 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82235 1057 1046 -011 251134 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82485 1054 1039 -015 251135 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82995 1025 1026 001 251136 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 84995 975 974 -001 251137 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 79775 1016 1005 -011 251138 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 80795 977 978 001 251139 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 81805 957 952 -005 251140 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 18179 018 01 -008 251141 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17933 026 026 0 251142 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17687 034 042 008 251143 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17441 043 059 016 251144 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17395 052 062 01 251145 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 16949 062 094 032 251146 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 16703 072 112 04 251147 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 98505 1082 993 -089 251148 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 98905 107 983 -087 251149 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 10042 1023 949 -074 251150 A2 5869 001 2157 002 002 538 949 33 157 0 0 1036 1158 1151 -007 261151 A2 5869 001 2157 002 002 538 949 33 157 0 0 1054 1077 1074 -003 261152 A2 5869 001 2157 002 002 538 949 33 157 0 0 1065 1045 1034 -011 261153 A2 5869 001 2157 002 002 538 949 33 157 0 0 1075 1016 10 -016 261154 A2 5869 001 2157 002 002 538 949 33 157 0 0 1084 987 972 -015 261155 A2 5869 001 2157 002 002 538 949 33 157 0 0 1096 955 938 -017 261156 A2 5869 001 2157 002 002 538 949 33 157 0 0 1106 93 911 -019 261157 A2 5869 001 2157 002 002 538 949 33 157 0 0 1116 906 886 -02 261158 A2 5869 001 2157 002 002 538 949 33 157 0 0 1036 1132 1151 019 261159 A2 5869 001 2157 002 002 538 949 33 157 0 0 1054 1083 1074 -009 261160 A2 5869 001 2157 002 002 538 949 33 157 0 0 1062 103 1044 014 261161 A2 5869 001 2157 002 002 538 949 33 157 0 0 1065 1044 1034 -01 261162 A2 5869 001 2157 002 002 538 949 33 157 0 0 1074 1015 1003 -012 261163 A2 5869 001 2157 002 002 538 949 33 157 0 0 1083 974 975 001 26

167

1164 A2 5869 001 2157 002 002 538 949 33 157 0 0 1088 963 96 -003 261165 A2 5869 001 2157 002 002 538 949 33 157 0 0 1094 948 943 -005 261166 A2 5869 001 2157 002 002 538 949 33 157 0 0 1103 925 919 -006 261167 A2 5869 001 2157 002 002 538 949 33 157 0 0 1113 899 893 -006 261168 A2 5869 001 2157 002 002 538 949 33 157 0 0 1123 875 87 -005 261169 A2 5869 001 2157 002 002 538 949 33 157 0 0 1081 1002 981 -021 261170 A2 5869 001 2157 002 002 538 949 33 157 0 0 1091 972 952 -02 261171 A2 5869 001 2157 002 002 538 949 33 157 0 0 1100 944 927 -017 261172 A2 5869 001 2157 002 002 538 949 33 157 0 0 1110 917 901 -016 261173 A2 5869 001 2157 002 002 538 949 33 157 0 0 1120 891 877 -014 261174 A2 5869 001 2157 002 002 538 949 33 157 0 0 1130 867 854 -013 261175 A2 5869 001 2157 002 002 538 949 33 157 0 106 917 1055 1067 012 261176 A2 5869 001 2157 002 002 538 949 33 157 0 106 928 1044 1035 -009 261177 A2 5869 001 2157 002 002 538 949 33 157 0 106 937 1007 101 003 261178 A2 5869 001 2157 002 002 538 949 33 157 0 106 935 997 1016 019 261179 A2 5869 001 2157 002 002 538 949 33 157 0 106 954 954 964 01 261180 A2 5869 001 2157 002 002 538 949 33 157 0 106 976 9 908 008 261181 A2 5869 001 2157 002 002 538 949 33 157 0 106 985 874 887 013 261182 A2 5869 001 2157 002 002 538 949 33 157 0 106 996 854 861 007 261183 A2 5869 001 2157 002 002 538 949 33 157 0 106 1013 813 823 01 261184 A2 5869 001 2157 002 002 538 949 33 157 0 106 908 1103 1093 -01 261185 A2 5869 001 2157 002 002 538 949 33 157 0 106 918 1065 1064 -001 261186 A2 5869 001 2157 002 002 538 949 33 157 0 106 938 1007 1007 0 261187 A2 5869 001 2157 002 002 538 949 33 157 0 106 948 981 98 -001 261188 A2 5869 001 2157 002 002 538 949 33 157 0 106 948 978 98 002 261189 A2 5869 001 2157 002 002 538 949 33 157 0 106 957 957 956 -001 261190 A2 5869 001 2157 002 002 538 949 33 157 0 106 977 904 906 002 261191 A2 5869 001 2157 002 002 538 949 33 157 0 106 987 877 882 005 261192 A2 5869 001 2157 002 002 538 949 33 157 0 196 840 108 1057 -023 261193 A2 5869 001 2157 002 002 538 949 33 157 0 196 849 1052 1036 -016 261194 A2 5869 001 2157 002 002 538 949 33 157 0 196 851 1043 1032 -011 261195 A2 5869 001 2157 002 002 538 949 33 157 0 196 859 102 1013 -007 26

168

1196 A2 5869 001 2157 002 002 538 949 33 157 0 196 870 985 988 003 261197 A2 5869 001 2157 002 002 538 949 33 157 0 196 879 957 968 011 261198 A2 5869 001 2157 002 002 538 949 33 157 0 196 889 932 945 013 261199 A2 5869 001 2157 002 002 538 949 33 157 0 196 844 108 1048 -032 261200 A2 5869 001 2157 002 002 538 949 33 157 0 196 853 1051 1027 -024 261201 A2 5869 001 2157 002 002 538 949 33 157 0 196 863 1017 1004 -013 261202 A2 5869 001 2157 002 002 538 949 33 157 0 196 864 1015 1002 -013 261203 A2 5869 001 2157 002 002 538 949 33 157 0 196 873 986 981 -005 261204 A2 5869 001 2157 002 002 538 949 33 157 0 196 883 956 959 003 261205 A2 5869 001 2157 002 002 538 949 33 157 0 196 893 927 936 009 261206 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1006 1073 1124 051 271207 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1013 1052 103 -022 271208 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1013 1043 103 -013 271209 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1017 1025 989 -036 271210 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1018 1013 98 -033 271211 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18669 -097 -101 -004 271212 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18571 -094 -095 -001 271213 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18473 -09 -089 001 271214 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 18732 -006 -093 -086 281215 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 18232 008 -056 -064 281216 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 17732 023 -018 -04 281217 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 17232 039 023 -016 281218 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 16732 055 066 011 281219 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 16232 073 111 038 281220 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 15732 094 16 066 281221 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 15232 117 212 094 281222 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 18672 -005 -069 -063 281223 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 18182 009 -033 -042 281224 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 17692 024 004 -02 281225 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 17192 04 044 004 281226 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 16702 057 085 028 281227 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 18732 -005 -089 -084 28

169

1228 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 18232 008 -052 -06 281229 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 17732 022 -014 -035 281230 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 17232 037 027 -01 281231 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 16732 053 07 017 281232 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 16232 072 116 044 281233 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 15732 092 164 073 281234 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 15232 116 216 101 281235 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 18672 -002 -073 -071 281236 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 18182 011 -037 -049 281237 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 17692 026 0 -026 281238 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 17192 042 041 -002 281239 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 16702 059 083 024 281240 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 16212 077 127 051 281241 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 15722 098 175 077 281242 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 15222 122 226 105 281243 A5 5946 073 179 518 013 371 645 423 147 0 0 16232 222 262 04 291244 A5 5946 073 179 518 013 371 645 423 147 0 0 15232 274 344 07 291245 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 17732 009 -004 -013 291246 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 16732 035 074 039 291247 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 15232 103 211 108 291248 D1 6528 059 1705 402 008 182 47 434 129 013 002 15712 322 343 021 301249 D1 6528 059 1705 402 008 182 47 434 129 013 002 16202 291 305 014 301250 D1 6528 059 1705 402 008 182 47 434 129 013 002 16702 261 269 008 301251 D1 6528 059 1705 402 008 182 47 434 129 013 002 17192 235 235 0 301252 D1 6528 059 1705 402 008 182 47 434 129 013 002 17682 211 204 -007 301253 D1 6528 059 1705 402 008 182 47 434 129 013 002 18172 187 174 -013 301254 D1 6528 059 1705 402 008 182 47 434 129 013 002 18672 166 145 -021 301255 D1 6528 059 1705 402 008 182 47 434 129 013 002 10091 106 1099 039 301256 D1 6528 059 1705 402 008 182 47 434 129 013 002 10235 1025 1065 04 301257 D1 6528 059 1705 402 008 182 47 434 129 013 002 10377 10 1033 033 301258 D1 6528 059 1705 402 008 182 47 434 129 013 002 10571 953 991 038 301259 D1 6528 059 1705 402 008 182 47 434 129 013 002 10759 925 953 028 30

170

1260 R33 7312 019 1356 319 0 018 168 386 42 0 21 12732 385 419 034 311261 R33 7312 019 1356 319 0 018 168 386 42 0 21 13732 332 343 011 311262 R33 7312 019 1356 319 0 018 168 386 42 0 21 14732 273 275 002 311263 R33 7312 019 1356 319 0 018 168 386 42 0 52 11732 369 357 -012 311264 R33 7312 019 1356 319 0 018 168 386 42 0 52 12732 305 289 -016 311265 R33 7312 019 1356 319 0 018 168 386 42 0 52 13732 251 232 -019 311266 R33 7312 019 1356 319 0 018 168 386 42 0 52 14732 203 184 -019 311267 R33 7312 019 1356 319 0 018 168 386 42 0 56 11732 36 347 -013 311268 R33 7312 019 1356 319 0 018 168 386 42 0 56 12732 297 281 -016 311269 R33 7312 019 1356 319 0 018 168 386 42 0 56 13732 242 227 -015 311270 R33 7312 019 1356 319 0 018 168 386 42 0 56 14732 185 181 -004 311271 R33 7312 019 1356 319 0 018 168 386 42 0 88 11732 3 304 004 311272 R33 7312 019 1356 319 0 018 168 386 42 0 88 14732 147 181 034 311273 A6 6215 076 168 496 025 326 508 502 172 0 0 16232 26 277 017 321274 A6 6215 076 168 496 025 326 508 502 172 0 0 16232 252 277 025 321275 H4 736 0 156 0 0 0 21 44 38 0 21 88045 897 899 002 331276 H4 736 0 156 0 0 0 21 44 38 0 21 83595 979 98 001 331277 H4 736 0 156 0 0 0 21 44 38 0 21 79595 1085 1065 -02 331278 H4 736 0 156 0 0 0 21 44 38 0 21 79495 1099 1067 -032 331279 H4 736 0 156 0 0 0 21 44 38 0 089 95135 962 984 022 331280 H4 736 0 156 0 0 0 21 44 38 0 089 97615 915 952 037 331281 H4 736 0 156 0 0 0 21 44 38 0 089 93835 103 1002 -028 331282 H4 736 0 156 0 0 0 21 44 38 0 089 91675 1081 1034 -047 331283 R34 7389 006 1577 075 0 014 058 462 419 0 666 12282 3 321 022 341284 R34 7389 006 1577 075 0 014 058 462 419 0 666 10862 386 419 033 341285 R34 7389 006 1577 075 0 014 058 462 419 0 398 13732 31 302 -008 341286 R34 7389 006 1577 075 0 014 058 462 419 0 398 12742 378 367 -011 341287 R34 7389 006 1577 075 0 014 058 462 419 0 398 11802 445 435 -01 341288 R34 7389 006 1577 075 0 014 058 462 419 0 666 11332 358 384 027 341289 R34 7389 006 1577 075 0 014 058 462 419 0 666 11832 324 35 026 341290 R34 7389 006 1577 075 0 014 058 462 419 0 666 11282 354 388 034 341291 R34 7389 006 1577 075 0 014 058 462 419 0 666 10732 394 429 035 34

171

1292 R34 7389 006 1577 075 0 014 058 462 419 0 666 11382 354 381 027 341293 R34 7389 006 1577 075 0 014 058 462 419 0 666 11332 352 384 033 341294 H5 741 0 117 0 0 0 0 9 44 0 29 62235 1005 1014 009 351295 H5 741 0 117 0 0 0 0 9 44 0 29 66145 869 915 046 351296 H5 741 0 117 0 0 0 0 9 44 0 29 59965 1094 108 -014 351297 H5 741 0 117 0 0 0 0 9 44 0 29 64375 908 958 05 351298 H5 741 0 117 0 0 0 0 9 44 0 181 65365 1082 1073 -009 351299 H5 741 0 117 0 0 0 0 9 44 0 181 69845 944 964 02 351300 H5 741 0 117 0 0 0 0 9 44 0 181 68515 968 994 026 351301 H5 741 0 117 0 0 0 0 9 44 0 697 49345 1068 1093 025 351302 H5 741 0 117 0 0 0 0 9 44 0 697 51745 91 999 089 351303 H5 741 0 117 0 0 0 0 9 44 0 697 52495 87 972 102 351304 H5 741 0 117 0 0 0 0 9 44 0 092 74475 1003 1014 011 351305 H5 741 0 117 0 0 0 0 9 44 0 092 71685 1094 1074 -02 351306 H5 741 0 117 0 0 0 0 9 44 0 129 74535 928 944 016 351307 H5 741 0 117 0 0 0 0 9 44 0 129 70725 1038 1026 -012 351308 H5 741 0 117 0 0 0 0 9 44 0 129 68655 1062 1074 012 351309 H5 741 0 117 0 0 0 0 9 44 0 063 77645 1017 1017 0 351310 H5 741 0 117 0 0 0 0 9 44 0 063 75635 1096 1057 -039 351311 H5 741 0 117 0 0 0 0 9 44 0 063 80445 931 966 035 351312 H5 741 0 117 0 0 0 0 9 44 0 077 77405 948 988 04 351313 H5 741 0 117 0 0 0 0 9 44 0 077 74415 108 1048 -032 351314 H6 741 0 122 0 0 0 52 44 4 0 002 10323 1091 1187 096 361315 H6 741 0 122 0 0 0 52 44 4 0 002 10535 1034 113 096 361316 H6 741 0 122 0 0 0 52 44 4 0 002 1076 964 1075 111 361317 H6 741 0 122 0 0 0 52 44 4 0 002 14732 449 488 039 361318 H6 741 0 122 0 0 0 52 44 4 0 002 15222 415 443 028 361319 H6 741 0 122 0 0 0 52 44 4 0 002 15712 383 401 018 361320 H6 741 0 122 0 0 0 52 44 4 0 002 16212 352 362 01 361321 H6 741 0 122 0 0 0 52 44 4 0 002 16702 326 326 0 361322 H6 741 0 122 0 0 0 52 44 4 0 002 17192 3 292 -008 361323 H6 741 0 122 0 0 0 52 44 4 0 002 17682 277 261 -016 36

172

1324 H6 741 0 122 0 0 0 52 44 4 0 002 18172 255 231 -024 361325 H6 741 0 122 0 0 0 52 44 4 0 002 18672 233 203 -03 361326 H9 756 0 12 0 0 49 0 45 4 0 002 10788 11 1145 045 361327 H9 756 0 12 0 0 49 0 45 4 0 002 10969 1066 1085 019 361328 H9 756 0 12 0 0 49 0 45 4 0 002 11136 1014 1035 021 361329 H9 756 0 12 0 0 49 0 45 4 0 002 11301 971 99 019 361330 H9 756 0 12 0 0 49 0 45 4 0 002 15224 441 431 -01 361331 H9 756 0 12 0 0 49 0 45 4 0 002 15716 406 391 -015 361332 H9 756 0 12 0 0 49 0 45 4 0 002 16208 372 353 -019 361333 H9 756 0 12 0 0 49 0 45 4 0 002 1670 34 318 -022 361334 H9 756 0 12 0 0 49 0 45 4 0 002 17192 312 285 -027 361335 H9 756 0 12 0 0 49 0 45 4 0 002 17684 286 254 -032 361336 H9 756 0 12 0 0 49 0 45 4 0 002 18176 261 225 -036 361337 H9 756 0 12 0 0 49 0 45 4 0 002 18668 235 197 -038 361338 H11 772 0 139 0 0 0 0 45 43 0 0 11761 113 1109 -021 371339 H11 772 0 139 0 0 0 0 45 43 0 0 11981 1108 1074 -034 371340 H11 772 0 139 0 0 0 0 45 43 0 0 12172 1048 1044 -004 371341 H11 772 0 139 0 0 0 0 45 43 0 0 12344 1014 1019 005 371342 H11 772 0 139 0 0 0 0 45 43 0 0 12574 1007 986 -021 371343 H11 772 0 139 0 0 0 0 45 43 0 107 86935 11 1075 -025 371344 H11 772 0 139 0 0 0 0 45 43 0 107 90875 1055 1012 -043 371345 H11 772 0 139 0 0 0 0 45 43 0 218 81505 1064 1014 -05 371346 H11 772 0 139 0 0 0 0 45 43 0 254 76725 1058 1078 02 371347 H11 772 0 139 0 0 0 0 45 43 0 254 79455 1019 1016 -003 371348 H11 772 0 139 0 0 0 0 45 43 0 254 74705 112 1127 007 371349 H8 754 0 161 0 0 0 0 47 43 0 0 12529 1012 996 -016 371350 H8 754 0 161 0 0 0 0 47 43 0 0 12339 1035 1023 -012 371351 H8 754 0 161 0 0 0 0 47 43 0 0 12161 107 1049 -021 371352 H8 754 0 161 0 0 0 0 47 43 0 0 12679 985 976 -009 371353 H8 754 0 161 0 0 0 0 47 43 0 0 1213 1058 1053 -005 371354 H8 754 0 161 0 0 0 0 47 43 0 117 89155 1052 1022 -03 371355 H8 754 0 161 0 0 0 0 47 43 0 117 86975 1085 106 -025 37

173

1356 H8 754 0 161 0 0 0 0 47 43 0 117 85655 1112 1084 -028 371357 H8 754 0 161 0 0 0 0 47 43 0 203 81945 1042 1029 -013 371358 H8 754 0 161 0 0 0 0 47 43 0 203 83285 984 1002 018 371359 H8 754 0 161 0 0 0 0 47 43 0 203 80135 107 1068 -002 371360 H8 754 0 161 0 0 0 0 47 43 0 203 79265 108 1088 008 371361 H8 754 0 161 0 0 0 0 47 43 0 277 76475 1014 1066 052 371362 H8 754 0 161 0 0 0 0 47 43 0 277 75555 106 1088 028 371363 H8 754 0 161 0 0 0 0 47 43 0 277 79285 991 1002 011 371364 H8 754 0 161 0 0 0 0 47 43 0 277 74785 1075 1107 032 371365 H10 7688 0 1145 0 0 0 0 36 56 0 002 12772 915 898 -017 381366 H10 7688 0 1145 0 0 0 0 36 56 0 002 12435 957 943 -014 381367 H10 7688 0 1145 0 0 0 0 36 56 0 002 12107 999 989 -01 381368 H10 7688 0 1145 0 0 0 0 36 56 0 002 11559 1085 1073 -012 381369 H10 7688 0 1145 0 0 0 0 36 56 0 002 11232 1135 1127 -008 381370 H12 7814 0 1164 0 0 0 0 126 911 0 002 12612 96 941 -019 381371 H12 7814 0 1164 0 0 0 0 126 911 0 002 1244 986 965 -021 381372 H12 7814 0 1164 0 0 0 0 126 911 0 002 12161 1031 1005 -026 381373 H12 7814 0 1164 0 0 0 0 126 911 0 002 11953 1075 1036 -039 381374 H12 7814 0 1164 0 0 0 0 126 911 0 002 11232 1212 1153 -059 381375 H13 7821 0 1169 0 0 0 0 241 743 0 002 12635 972 934 -038 381376 H13 7821 0 1169 0 0 0 0 241 743 0 002 1245 992 959 -033 381377 H13 7821 0 1169 0 0 0 0 241 743 0 002 11994 1052 1025 -027 381378 H13 7821 0 1169 0 0 0 0 241 743 0 002 11965 1072 103 -042 381379 H13 7821 0 1169 0 0 0 0 241 743 0 002 11232 118 1148 -032 381380 H14 7828 0 1192 0 0 0 0 591 223 0 002 12478 902 96 058 381381 H14 7828 0 1192 0 0 0 0 591 223 0 002 12253 934 992 058 381382 H14 7828 0 1192 0 0 0 0 591 223 0 002 12048 96 1021 061 381383 H14 7828 0 1192 0 0 0 0 591 223 0 002 11838 994 1053 059 381384 H14 7828 0 1192 0 0 0 0 591 223 0 002 11732 1013 107 057 381385 H14 7828 0 1192 0 0 0 0 591 223 0 002 11232 1092 1152 06 381386 H15 786 0 1199 0 0 0 0 457 42 0 002 11549 1102 1112 01 381387 H15 786 0 1199 0 0 0 0 457 42 0 002 11782 1063 1074 011 38

174

1388 H15 786 0 1199 0 0 0 0 457 42 0 002 11989 1028 1043 015 381389 H15 786 0 1199 0 0 0 0 457 42 0 002 1212 1016 1023 007 381390 H15 786 0 1199 0 0 0 0 457 42 0 002 11232 1153 1165 012 381391 H16 8103 0 991 0 0 0 0 124 739 0 002 12668 1025 985 -04 381392 H16 8103 0 991 0 0 0 0 124 739 0 002 12567 1036 999 -037 381393 H16 8103 0 991 0 0 0 0 124 739 0 002 1236 1056 1029 -027 381394 H16 8103 0 991 0 0 0 0 124 739 0 002 12375 1063 1027 -036 381395 H16 8103 0 991 0 0 0 0 124 739 0 002 12225 1097 1049 -048 381396 H16 8103 0 991 0 0 0 0 124 739 0 002 12243 11 1046 -054 381397 H16 8103 0 991 0 0 0 0 124 739 0 002 12137 1127 1062 -065 381398 H16 8103 0 991 0 0 0 0 124 739 0 002 11232 1308 1212 -096 381399 H17 8174 0 1003 0 0 0 0 247 566 0 002 12637 997 986 -011 381400 H17 8174 0 1003 0 0 0 0 247 566 0 002 12416 1023 1017 -006 381401 H17 8174 0 1003 0 0 0 0 247 566 0 002 12173 1059 1053 -006 381402 H17 8174 0 1003 0 0 0 0 247 566 0 002 11941 11 1089 -011 381403 H17 8174 0 1003 0 0 0 0 247 566 0 002 11232 1216 1208 -008 381404 H18 8222 0 1017 0 0 0 0 366 389 0 002 12708 986 984 -002 381405 H18 8222 0 1017 0 0 0 0 366 389 0 002 12538 1015 1008 -007 381406 H18 8222 0 1017 0 0 0 0 366 389 0 002 12262 1044 1048 004 381407 H18 8222 0 1017 0 0 0 0 366 389 0 002 1197 1095 1093 -002 381408 H18 8222 0 1017 0 0 0 0 366 389 0 002 11232 1212 1217 005 381409 H19 8231 0 1016 0 0 0 0 589 07 0 002 12425 986 1004 018 381410 H19 8231 0 1016 0 0 0 0 589 07 0 002 12268 1018 1027 009 381411 H19 8231 0 1016 0 0 0 0 589 07 0 002 12033 1054 1062 008 381412 H19 8231 0 1016 0 0 0 0 589 07 0 002 11768 1091 1104 013 381413 H19 8231 0 1016 0 0 0 0 589 07 0 002 11232 1187 1196 009 381414 H20 8294 0 103 0 0 0 0 468 241 0 001 12605 973 1005 032 381415 H20 8294 0 103 0 0 0 0 468 241 0 001 12367 101 104 03 381416 H20 8294 0 103 0 0 0 0 468 241 0 001 12155 1059 1072 013 381417 H20 8294 0 103 0 0 0 0 468 241 0 001 12173 106 1069 009 381418 H20 8294 0 103 0 0 0 0 468 241 0 001 11915 1114 111 -004 381419 H20 8294 0 103 0 0 0 0 468 241 0 001 11232 1272 1227 -045 38

175

1420 H21 7349 0 1326 0 0 0 0 24 898 0 003 12463 986 908 -078 381421 H21 7349 0 1326 0 0 0 0 24 898 0 003 12213 1022 941 -081 381422 H21 7349 0 1326 0 0 0 0 24 898 0 003 12025 1049 967 -082 381423 H21 7349 0 1326 0 0 0 0 24 898 0 003 1177 1089 1004 -085 381424 H21 7349 0 1326 0 0 0 0 24 898 0 003 11232 1177 1088 -089 381425 H22 749 0 1352 0 0 0 0 364 722 0 002 12679 946 891 -055 381426 H22 749 0 1352 0 0 0 0 364 722 0 002 12403 99 927 -063 381427 H22 749 0 1352 0 0 0 0 364 722 0 002 12266 101 946 -064 381428 H22 749 0 1352 0 0 0 0 364 722 0 002 11914 106 996 -064 381429 H22 749 0 1352 0 0 0 0 364 722 0 002 11232 1176 1101 -075 381430 H23 7552 0 139 0 0 0 0 477 553 0 002 12652 936 915 -021 381431 H23 7552 0 139 0 0 0 0 477 553 0 002 12364 996 954 -042 381432 H23 7552 0 139 0 0 0 0 477 553 0 002 1223 1012 972 -04 381433 H23 7552 0 139 0 0 0 0 477 553 0 002 11884 1066 1022 -044 381434 H23 7552 0 139 0 0 0 0 477 553 0 002 11232 1192 1125 -067 381435 H24 7608 0 1389 0 0 0 0 596 384 0 002 12174 954 976 022 381436 H24 7608 0 1389 0 0 0 0 596 384 0 002 11923 1013 1013 0 381437 H24 7608 0 1389 0 0 0 0 596 384 0 002 11769 105 1036 -014 381438 H24 7608 0 1389 0 0 0 0 596 384 0 002 11513 109 1075 -015 381439 H24 7608 0 1389 0 0 0 0 596 384 0 002 11232 1159 1121 -038 381440 H25 7652 0 1405 0 0 0 0 714 219 0 002 12188 964 972 008 381441 H25 7652 0 1405 0 0 0 0 714 219 0 002 11976 999 1002 003 381442 H25 7652 0 1405 0 0 0 0 714 219 0 002 1175 1034 1036 002 381443 H25 7652 0 1405 0 0 0 0 714 219 0 002 1150 108 1074 -006 381444 H25 7652 0 1405 0 0 0 0 714 219 0 002 11232 1127 1118 -009 381445 H26 7898 0 1211 0 0 0 0 704 062 0 001 12711 915 935 02 381446 H26 7898 0 1211 0 0 0 0 704 062 0 001 12586 945 952 007 381447 H26 7898 0 1211 0 0 0 0 704 062 0 001 12394 965 979 014 381448 H26 7898 0 1211 0 0 0 0 704 062 0 001 12099 1035 1022 -013 381449 H26 7898 0 1211 0 0 0 0 704 062 0 001 11893 1074 1053 -021 381450 H26 7898 0 1211 0 0 0 0 704 062 0 001 11686 1124 1086 -038 381451 H26 7898 0 1211 0 0 0 0 704 062 0 001 11232 1224 1162 -062 38

176

APPENDIX B

FTIR SPECTRA FOR EQUILIBRIUM SPECIATION EXPERIMENTS

The FTIR spectra on the following pages are for the measurements listed in Table

33 in Chapter III All spectra were normalized to the sample thickness (mm)

Fig B1 FTIR spectra for equilibrium speciation experiments

053

058

063

068

073

40004500500055006000

KS-1-21

wavenumber (cm-1)

A (1

mm

)

049

054

059

064

069

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-22

055

06

065

07

075

40004500500055006000

KS-1-23

wavenumber (cm-1)

A (1

mm

)

025

027

029

031

033

035

037

039

041

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-31

177

022

024

026

028

03

032

034

036

038

40004500500055006000

KS-1-32

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-33

035

037

039

041

043

045

047

049

051

40004500500055006000

KS-1-41

A (1

mm

)

wavenumber (cm-1)

034

036

038

04

042

044

046

048

05

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-42

027

029

031

033

035

037

039

041

043

40004500500055006000

KS-1-43

A (1

mm

)

wavenumber (cm-1)

038

042

046

05

054

058

062

066

40004500500055006000

GMR+2-1-11

A (1

mm

)

wavenumber (cm-1)

178

034

038

042

046

05

054

058

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-12

035

039

043

047

051

055

059

063

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-13

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-21

045

05

055

06

065

07

075

08

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-22

045

05

055

06

065

07

075

08

40004500500055006000

GMR+2-1-23

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-31

179

033

038

043

048

053

058

063

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-32

033

038

043

048

053

058

063

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-33

045

05

055

06

065

07

075

08

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-R11

04

045

05

055

06

065

07

075

40004500500055006000

GMR+2-1-R12

A (1

mm

)

wavenumber (cm-1)

045

05

055

06

065

07

075

08

40004500500055006000

GMR+2-1-R13

wavenumber (cm-1)

A (1

mm

)

12

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-21

180

11

13

15

17

19

21

23

25

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-22

11

13

15

17

19

21

23

25

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-23

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-31

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-32

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-33

04

05

06

07

08

09

1

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-41

181

04

05

06

07

08

09

1

40004500500055006000

GMR+4-1-42A

(1m

m)

wavenumber (cm-1)

04

05

06

07

08

09

1

40004500500055006000

GMR+4-1-43

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

40004500500055006000

KS-2-11

wavenumber (cm-1)

A (1

mm

)

033

038

043

048

053

40004500500055006000

KS-2-12

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

40004500500055006000

KS-2-13

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

40004500500055006000

KS-2-21

wavenumber (cm-1)

A (1

mm

)

182

023

028

033

038

043

40004500500055006000

KS-2-22

A (1

mm

)

wavenumber (cm-1)

022

027

032

037

042

40004500500055006000

KS-2-23

wavenumber (cm-1)

A (1

mm

)

033

038

043

048

053

40004500500055006000

KS-2-41

wavenumber (cm-1)

A (1

mm

)

029

034

039

044

049

40004500500055006000

wavenumber (cm-1)

KS-2-42

A (1

mm

)

028

033

038

043

048

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-43

045

05

055

06

065

07

075

08

085

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-11

183

055

06

065

07

075

08

085

09

095

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-12

055

06

065

07

075

08

085

09

095

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-13

032

037

042

047

052

057

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-21

032

037

042

047

052

057

062

40004500500055006000

GMR+2-2-22

A (1

mm

)

wavenumber (cm-1)

032

037

042

047

052

057

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-23

055

06

065

07

075

08

085

09

40004500500055006000

GMR+2-2-41

A (1

mm

)

wavenumber (cm-1)

184

05

055

06

065

07

075

08

085

40004500500055006000

GMR+2-2-42

wavenumber (cm-1)

A (1

mm

)

045

05

055

06

065

07

075

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-43

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-11

08

1

12

14

16

18

40004500500055006000

GMR+4-2-12

A (1

mm

)

wavenumber (cm-1)

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-13

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-21

A (1

mm

)

wavenumber (cm-1)

185

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-22A

(1m

m)

wavenumber (cm-1)

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-23

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-31

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-32

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-33

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

40004500500055006000

KS-3-11

A (1

mm

)

wavenumber (cm-1)

186

04

045

05

055

06

40004500500055006000

KS-3-12

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

40004500500055006000

KS-3-13

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

KS-3-21

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-22

025

03

035

04

045

40004500500055006000

KS-3-23

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

KS-3-24

wavenumber (cm-1)

A (1

mm

)

187

023

025

027

029

031

033

035

037

039

40004500500055006000

KS-3-31

wavenumber (cm-1)

A (1

mm

)

023

025

027

029

031

033

035

037

039

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-32

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-3-33

A (1

mm

)

wavenumber (cm-1)

025

027

029

031

033

035

037

039

041

40004500500055006000

KS-3-41

wavenumber (cm-1)

A (1

mm

)

026

028

03

032

034

036

038

04

042

40004500500055006000

KS-3-42

A (1

mm

)

wavenumber (cm-1)

026

028

03

032

034

036

038

04

042

40004500500055006000

KS-3-43

wavenumber (cm-1)

A (1

mm

)

188

027

029

031

033

035

037

039

041

043

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-44

045

047

049

051

053

055

057

059

061

40004500500055006000

KS-3-R11

wavenumber (cm-1)

A (1

mm

)

036

038

04

042

044

046

048

05

052

40004500500055006000

KS-3-R12

wavenumber (cm-1)

A (1

mm

)

033

035

037

039

041

043

045

047

049

40004500500055006000

KS-3-R13

wavenumber (cm-1)

A (1

mm

)

032

037

042

047

052

057

062

067

40004500500055006000

GMR+2-3-11

A (1

mm

)

wavenumber (cm-1)

032

037

042

047

052

057

062

067

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-12

189

032

037

042

047

052

057

062

067

40004500500055006000

GMR+2-3-13A

(1m

m)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-3-21

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-22

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-23

wavenumber (cm-1)

A (1

mm

)

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-31

wavenumber (cm-1)

A (1

mm

)

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-32

A (1

mm

)

wavenumber (cm-1)

190

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-33

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-11

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-12

A (1

mm

)

wavenumber (cm-1)05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-13

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-31

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-32

wavenumber (cm-1)

A (1

mm

)

191

04

05

06

07

08

09

1

40004500500055006000

GMR+4-3-33A

(1m

m)

wavenumber (cm-1)

04

05

06

07

08

09

1

11

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+4-3-41

04

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-42

A (1

mm

)

wavenumber (cm-1)

04

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-43

A (1

mm

)

wavenumber (cm-1)

023

028

033

038

043

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-11

045

05

055

06

065

40004500500055006000

KS-1b-12

A (1

mm

)

wavenumber (cm-1)

192

027

032

037

042

047

40004500500055006000

KS-1b-13

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-1b-21

wavenumber (cm-1)

A (1

mm

)

021

023

025

027

029

031

033

035

037

40004500500055006000

KS-1b-22

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-1b-23

A (1

mm

)

wavenumber (cm-1)

028

031

034

037

04

043

046

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1b-31

031

034

037

04

043

046

049

40004500500055006000

KS-1b-32

A (1

mm

)

wavenumber (cm-1)

193

033

036

039

042

045

048

051

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-33

024

026

028

03

032

034

036

038

04

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-R11

027

029

031

033

035

037

039

041

043

40004500500055006000

KS-1b-R12

A (1

mm

)

wavenumber (cm-1)

031

033

035

037

039

041

043

045

047

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-R13

063

065

067

069

071

073

075

077

079

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1b-R21

054

056

058

06

062

064

066

068

07

40004500500055006000

KS-1b-R22

A (1

mm

)

wavenumber (cm-1)

194

058

06

062

064

066

068

07

072

074

40004500500055006000

KS-1b-R23

A (1

mm

)

wavenumber (cm-1)

195

APPENDIX C

FTIR SPECTRA FOR COOLING EXPERIMENTS

The FTIR spectra on the following pages are for the measurements listed in Table

43 in Chapter IV All spectra were normalized to the sample thickness (mm)

Fig C1 FTIR spectra for cooling experiments

042

044

046

048

05

052

054

056

058

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-21

036

038

04

042

044

046

048

05

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-22

05

052

054

056

058

06

062

064

40004500500055006000

KS-1-23

A (1

mm

)

wavenumber (cm-1)

048

05

052

054

056

058

06

062

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-31

196

044

046

048

05

052

054

056

058

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-32

036

038

04

042

044

046

048

05

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-33

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-41

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-42

022

024

026

028

03

032

034

036

038

40004500500055006000

KS-1-43

wavenumber (cm-1)

A (1

mm

)

028

032

036

04

044

048

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1-51

197

028

032

036

04

044

048

40004500500055006000

KS-1-52

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

40004500500055006000

KS-1-53

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-11

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-12

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-13

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-21

wavenumber (cm-1)

A (1

mm

)

198

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-22

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-23

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-31

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-32

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-33

wavenumber (cm-1)

A (1

mm

)

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-21

199

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

GMR+4-1-22

wavenumber (cm-1)

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-23

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-31

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-32

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-33

wavenumber (cm-1)

A (1

mm

)

14

16

18

2

22

24

26

28

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-41

200

14

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-42

A (1

mm

)

wavenumber (cm-1)

14

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-43

wavenumber (cm-1)

A (1

mm

)

-065

-06

-055

-05

-045

-04

40004500500055006000

KS-2-11

A (1

mm

)

wavenumber (cm-1)

-025

-02

-015

-01

-005

0

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-2-12

032

036

04

044

048

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-21

028

032

036

04

044

048

40004500500055006000

KS-2-22

A (1

mm

)

wavenumber (cm-1)

201

025

029

033

037

041

045

40004500500055006000

KS-2-23

wavenumber (cm-1)

A (1

mm

)

026

031

036

041

046

40004500500055006000

KS-2-31

wavenumber (cm-1)

A (1

mm

)

024

029

034

039

044

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-32

03

035

04

045

05

40004500500055006000

KS-2-33

wavenumber (cm-1)

A (1

mm

)

-008

-0044

-0008

0028

0064

01

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-41

-02

-0164

-0128

-0092

-0056

-002

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-2-42

202

-006

-0024

0012

0048

0084

012

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-43

03

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-21

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-22

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-23

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-31

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-32

A (1

mm

)

wavenumber (cm-1)

203

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-33

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-51

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-52

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-53

wavenumber (cm-1)

A (1

mm

)

01

02

03

04

05

06

07

08

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-31

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-32

wavenumber (cm-1)

A (1

mm

)

204

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-33

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-41

A (1

mm

)

wavenumber (cm-1)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-42

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-43

wavenumber (cm-1)

A (1

mm

)

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-51

A (1

mm

)

wavenumber (cm-1)

01

02

03

04

05

06

07

08

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-52

205

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-53A

(1m

m)

wavenumber (cm-1)

025

03

035

04

045

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-11

025

03

035

04

045

40004500500055006000

KS-3-12

A (1

mm

)

wavenumber (cm-1)

023

028

033

038

043

40004500500055006000

KS-3-13

A (1

mm

)

wavenumber (cm-1)

028

031

034

037

04

043

046

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-3-21

029

032

035

038

041

044

047

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-22

206

031

034

037

04

043

046

049

40004500500055006000wavenumber (cm-1)

A (1

mm

)KS-3-23

025

03

035

04

045

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-81

03

035

04

045

05

40004500500055006000

KS-3-82

A (1

mm

)

wavenumber (cm-1)

026

031

036

041

046

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-83

04

045

05

055

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-91

036

04

044

048

052

056

40004500500055006000

KS-3-92

A (1

mm

)

wavenumber (cm-1)

207

038

043

048

053

058

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-93

039

041

043

045

047

049

051

053

055

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-111

04

042

044

046

048

05

052

054

056

40004500500055006000

KS-3-112

A (1

mm

)

wavenumber (cm-1)

041

043

045

047

049

051

053

055

057

40004500500055006000

KS-3-113

A (1

mm

)

wavenumber (cm-1)

033

035

037

039

041

043

045

047

049

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-114

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-21

wavenumber (cm-1)

A (1

mm

)

208

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-22A

(1m

m)

wavenumber (cm-1)03

035

04

045

05

055

06

065

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-3-23

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-31

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-32

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-33

A (1

mm

)

wavenumber (cm-1)

04

045

05

055

06

065

07

075

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-41

209

04

045

05

055

06

065

07

075

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-3-42

04

045

05

055

06

065

07

075

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-43

08

1

12

14

16

18

40004500500055006000

GMR+4-3-41

A (1

mm

)

wavenumber (cm-1)

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-3-42

08

1

12

14

16

18

40004500500055006000

GMR+4-3-43

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-3-51

210

03

04

05

06

07

08

09

40004500500055006000wavenumber (cm-1)

A (1

mm

)GMR+4-3-52

03

04

05

06

07

08

09

40004500500055006000

GMR+4-3-53

wavenumber (cm-1)

A (1

mm

)

211

APPENDIX D

DATABASE FOR EASINESS OF CRYSTALLIZATION FOR DIFFERENT MELTS AT DIFFERENT P-T CONDITION

Experimental database for easiness of crystallization for different melts at

different P-T condition has been accumulated at the experimental petrology laboratory

the University of Michigan The references are listed at the end of the table

Table D1 Pressure dependence of easiness of crystallization for different melts at

different temperatures

Composition H2Ot P T t q Crystallization Refloz wt GPa K s Ks

1 rhyolite 653 05 613 7200 50 N 42 rhyolite 653 05 613 1260 50 N 43 rhyolite 46 03 623 18000 50 N 134 rhyolite 389 1 623 261360 50 N 115 rhyolite 653 05 643 300 0017 N 46 rhyolite 533 05 673 300 0017 N 47 rhyolite 389 1 673 46800 50 N 118 rhyolite 389 2 673 172800 50 N 119 rhyolite 518 2 673 720000 50 N 12

10 rhyolite 371 3 673 259200 50 N 1111 rhyolite 365 05 678 300 00017 N 412 rhyolite 365 05 678 600 59 N 413 rhyolite 364 05 703 300 0017 N 414 rhyolite 263 00001 723 600 0017 N 115 rhyolite 365 05 723 300 1 N 416 rhyolite 18 1 723 183600 50 N 1117 rhyolite 389 1 723 10800 50 N 1118 rhyolite 389 2 723 14400 50 N 1119 rhyolite 389 3 723 21600 50 N 1120 rhyolite 389 3 723 21600 50 N 1121 rhyolite 527 05 733 300 1 N 422 rhyolite 239 00001 735 600 0000177 N 1

212

23 rhyolite 653 05 743 300 50 N 424 rhyolite 1571 00001 752 600 0000177 N 125 rhyolite 306 00001 753 600 0108 N 126 rhyolite 365 05 753 600 1 N 427 rhyolite 527 05 753 240 50 N 428 rhyolite 087 05 753 1067900 30 N 329 rhyolite 389 2 753 1260 50 N 1130 rhyolite 51 2 753 172800 50 Y 1231 rhyolite 085 3 763 36000 50 Y 1132 rhyolite 149 00001 773 176220 427 N 233 rhyolite 46 03 773 300 50 N 1334 rhyolite 18 1 773 600 50 N 1135 rhyolite 389 1 773 600 50 N 1136 rhyolite 18 2 773 86400 50 N 1137 rhyolite 591 2 773 54000 50 Y 1238 rhyolite 18 3 773 172800 50 N 1139 rhyolite 389 3 773 960 50 N 1140 rhyolite 09 4 773 10800 50 Y 1141 rhyolite 09 62 773 10800 50 Y 1142 rhyolite 3 00001 783 600 055 N 143 rhyolite 365 05 793 300 52 N 444 rhyolite 177 00001 798 26820 1259 N 245 rhyolite 371 05 803 68520 30 N 346 rhyolite 0809 00001 813 600 00002 N 147 rhyolite 08 1 813 187200 54 N 1148 rhyolite 1729 00001 823 600 0017 N 149 rhyolite 1824 00001 823 600 0017 N 150 rhyolite 1681 00001 823 600 0125 N 151 rhyolite 1855 00001 823 600 013 N 152 rhyolite 1879 00001 823 600 082 N 153 rhyolite 18 1 823 600 55 N 1154 rhyolite 18 2 823 7200 55 N 1155 rhyolite 09 3 823 176400 55 N 1156 rhyolite 09 3 823 864000 55 N 1157 rhyolite 09 4 823 11100 55 Y 1158 rhyolite 18 3 823 7200 55 N 1159 rhyolite 181 00001 824 10800 59 N 260 rhyolite 0186 00001 825 3628800 20 N 1061 rhyolite 76 05 828 9065 70 N 362 rhyolite 073 05 836 236800 30 N 363 rhyolite 0839 00001 843 600 0002 N 164 rhyolite 1421 00001 843 600 0017 N 165 rhyolite 1433 00001 843 600 0141 N 166 rhyolite 0928 00001 847 600 0017 N 167 rhyolite 192 00001 848 2700 84 N 268 rhyolite 131 00001 848 16800 141 N 269 rhyolite 18 2 853 600 58 N 1170 rhyolite 142 00001 863 600 0762 N 1

213

71 rhyolite 082 081 865 252900 30 N 372 rhyolite 081 005 868 167700 30 N 373 rhyolite 0811 00001 872 600 0049 N 174 rhyolite 0839 00001 873 600 00055 N 175 rhyolite 085 00001 873 21600 65 N 1176 rhyolite 085 3 873 7200 60 Y 1177 rhyolite 087 1 873 14400 60 N 1178 rhyolite 088 3 873 2400 60 N 1179 rhyolite 09 2 873 14400 60 N 1180 rhyolite 09 4 873 10800 60 Y 1181 rhyolite 09 4 873 10800 60 Y 1182 rhyolite 1118 00001 873 600 015 N 183 rhyolite 1155 00001 873 600 0915 N 184 rhyolite 116 00001 873 5760 20 N 285 rhyolite 139 00001 873 3900 20 N 286 rhyolite 187 00001 873 1215 20 N 287 rhyolite 2 2 873 600 60 N 1188 rhyolite 2 3 873 600 60 N 1189 rhyolite 226 2 873 43200 60 N 1290 rhyolite 228 2 873 86400 60 N 1291 rhyolite 361 3 873 60 1 N 1392 rhyolite 396 2 873 14400 60 Y 1293 rhyolite 51 1 873 36000 60 N 1294 rhyolite 079 02 874 227760 30 N 395 rhyolite 0892 00001 875 600 0017 N 196 rhyolite 079 05 875 263650 30 N 397 rhyolite 077 00001 876 93160 30 N 398 rhyolite 186 05 878 144300 30 N 399 rhyolite 0802 00001 880 600 0161 N 1

100 rhyolite 085 3 883 3600 001 Y 13101 rhyolite 0831 00001 893 600 0018 N 1102 rhyolite 084 00001 893 600 0018 N 1103 rhyolite 085 3 903 3600 001 Y 13104 rhyolite 08 00001 923 600 75 N 11105 rhyolite 08 00001 923 7200 75 N 11106 rhyolite 084 00001 923 2400 75 N 11107 rhyolite 085 1 923 600 65 N 11108 rhyolite 089 2 923 600 65 N 11109 rhyolite 085 3 923 600 33 Y 13110 rhyolite 085 3 923 600 033 Y 13111 rhyolite 201 1 923 600 01 N 13112 rhyolite 382 1 923 120 1 N 13113 rhyolite 0513 00001 941 600 0017 N 1114 rhyolite 087 2 953 600 68 N 11115 rhyolite 76 05 969 720 30 N 3116 rhyolite 0124 00001 971 1450800 20 N 10117 rhyolite 137 0011 973 259200 05 N 10118 rhyolite 218 00249 973 172800 05 N 10

214

119 rhyolite 389 2 973 60 1 N 13120 rhyolite 389 3 973 60 10 N 13121 rhyolite 08 00001 973 600 50 N 11122 rhyolite 082 1 973 480 70 N 11123 rhyolite 08 1 973 300 01 N 13124 rhyolite 08 2 973 300 01 N 13125 rhyolite 085 3 973 600 70 Y 11126 rhyolite 082 3 973 300 01 Y 13127 rhyolite 09 4 973 3600 70 Y 11128 rhyolite 0836 00001 993 300 127 N 6129 rhyolite 09 4 993 600 05 Y 13130 rhyolite 0805 00001 1000 300 20 N 6131 rhyolite 0784 00001 1003 600 79 N 6132 rhyolite 088 00001 1013 60 127 N 6133 rhyolite 08 00001 1021 300 65 N 6134 rhyolite 0116 00001 1023 1292400 20 N 10135 rhyolite 068 00001 1023 300 178 N 6136 rhyolite 0766 00001 1023 300 84 N 6137 rhyolite 08 3 1023 600 0333 Y 13138 rhyolite 082 1 1023 120 1 N 13139 rhyolite 082 2 1023 120 1 N 13140 rhyolite 082 3 1023 120 10 N 13141 rhyolite 083 3 1023 120 1 N 13142 rhyolite 084 00001 1023 450 130 N 6143 rhyolite 085 3 1023 120 75 N 11144 rhyolite 085 3 1023 120 1 N 13145 rhyolite 0855 00001 1023 600 174 N 6146 rhyolite 18 2 1023 120 10 N 13147 rhyolite 18 2 1023 120 1 N 13148 rhyolite 18 3 1023 120 10 N 13149 rhyolite 18 3 1023 120 1 N 13150 rhyolite 183 1 1023 120 1 N 13151 rhyolite 389 2 1023 60 10 N 13152 rhyolite 389 3 1023 60 75 Y 13153 rhyolite 08 00001 1024 600 14 N 6154 rhyolite 07 1 1073 60 10 N 13155 rhyolite 08 1 1073 120 80 N 13156 rhyolite 08 2 1073 120 10 N 13157 rhyolite 082 02 1073 300 0167 N 4158 rhyolite 083 01 1073 600 0167 N 4159 rhyolite 085 2 1073 300 0167 N 13160 rhyolite 178 02 1073 600 80 N 4161 rhyolite 181 1 1073 60 10 N 13162 rhyolite 182 2 1073 60 80 N 13163 rhyolite 241 01 1073 600 80 N 4164 rhyolite 25 02 1073 600 80 N 4165 rhyolite 389 1 1073 60 10 N 13166 rhyolite 389 1 1073 60 80 N 13

215

167 rhyolite 389 2 1073 60 80 N 13168 rhyolite 389 3 1073 60 80 Y 13169 rhyolite 09 4 1103 300 4 Y 13170 rhyolite 0103 00001 1123 219600 20 N 10171 rhyolite 0105 00001 1123 867600 20 N 10172 rhyolite 077 00061 1123 259200 05 N 10173 rhyolite 077 2 1123 120 85 N 13174 rhyolite 077 3 1123 60 85 Y 13175 rhyolite 085 2 1123 300 85 N 13176 rhyolite 11 00112 1123 338400 05 N 10177 rhyolite 111 00114 1123 172800 05 N 10178 rhyolite 176 00253 1123 176400 05 N 10179 rhyolite 18 3 1123 120 85 Y 13180 rhyolite 241 02 1123 3600 067 N 4181 rhyolite 389 3 1123 60 85 Y 13182 rhyolite 0106 00001 1124 1134000 20 N 10183 rhyolite 76 05 1126 240 30 N 3184 rhyolite 6 025 1135 1800 2 N 3185 rhyolite 76 05 1173 0 2 N 3186 rhyolite 76 05 1173 1800 2 N 3187 rhyolite 23 05 1173 7200 167 N 5188 rhyolite 0225 05 1180 36000 30 N 3189 rhyolite 07 00061 1268 173160 05 N 10190 rhyolite 0102 00001 1272 1083600 20 N 10191 rhyolite 0099 00001 1273 691200 20 N 10192 rhyolite 012 01 1273 1800 167 N 5193 rhyolite 012 01 1273 14400 167 N 5194 rhyolite 012 03 1273 14400 167 N 5195 rhyolite 078 02 1273 300 100 N 4196 rhyolite 081 02 1273 300 67 N 4197 rhyolite 083 02 1273 300 083 N 4198 rhyolite 09 4 1273 120 100 Y 13199 rhyolite 099 00114 1275 88200 05 N 10200 rhyolite 115 05 1273 600 0017 N 4201 rhyolite 115 05 1273 600 100 N 4202 rhyolite 155 00252 1273 86400 05 N 10203 rhyolite 157 0025 1273 86400 05 N 10204 rhyolite 5 05 1273 600 100 N 5205 rhyolite 5 1 1273 600 100 N 5206 rhyolite 5 15 1273 600 100 N 5207 rhyolite 0219 05 1298 14400 30 N 3208 rhyolite 09 05 1298 14400 167 N 5209 rhyolite 024 05 1307 5400 167 N 5210 rhyolite 22 05 1307 5400 167 N 5211 rhyolite 22 05 1307 5400 167 N 5212 rhyolite 2 05 1307 5400 167 N 5213 rhyolite 078 01 1373 300 100 N 4214 rhyolite 371 2 1373 60 100 N 13

216

215 rhyolite 51 2 1373 624 100 N 12216 rhyolite 51 2 1373 613 100 N 12217 rhyolite 024 05 1375 1800 167 N 5218 rhyolite 09 05 1375 1800 167 N 5219 rhyolite 22 05 1375 1800 167 N 5220 rhyolite 38 05 1375 1800 167 N 5221 rhyolite 2 05 1375 1800 167 N 5222 rhyolite 09 05 1471 1200 167 N 5223 rhyolite 24 05 1471 1200 167 N 5224 rhyolite 41 05 1471 1200 167 N 5225 rhyolite 064 00061 1473 144000 05 N 10226 rhyolite 089 0011 1473 86400 05 N 10227 rhyolite 144 0025 1473 79200 05 N 10228 rhyolite 147 0025 1473 82800 05 N 10229 rhyolite 148 0025 1473 86400 05 N 10230 rhyolite 361 3 1473 60 100 N 13231 rhyolite 64 05 1478 900 2 N 3232 rhyolite 6 025 1488 1200 2 N 3233 rhyolite 51 1 1573 248 100 N 12234 rhyolite 397 2 1573 252 100 N 12235 rhyolite 227 2 1573 587 100 N 12236 rhyolite 09 41 1673 120 100 Y 13237 rhyolite 591 2 1773 120 100 N 12238 rhyolite 002 05 1873 7200 100 N 13239 rhyolite 517 2 1873 128 100 N 12240 rhyolite 09 4 1873 60 100 Y 13241 andesite 157 1 1523 0 100 N 7242 andesite 32 1 1573 300 100 N 7243 andesite 157 1 1573 300 100 N 7244 andesite 56 1 1573 120 100 N 7245 andesite 35 05 1673 90 100 N 7246 andesite 35 15 1673 90 100 N 7247 andesite 21 1 1773 60 100 N 7248 andesite 151 1 1773 60 100 N 7249 andesite 159 1 1813 126 100 N 7250 dacite 2517 00001 753 3000 20 N 8251 dacite 1453 00001 773 4202 20 N 8252 dacite 2513 00001 773 1800 20 N 8253 dacite 245 01 776 172200 30 N 9254 dacite 2354 00001 791 270 20 N 8255 dacite 1463 00001 792 1200 20 N 8256 dacite 1453 00001 792 2100 20 N 8257 dacite 2314 00001 810 484 20 N 8258 dacite 074 00001 824 1744680 20 N 9259 dacite 1425 00001 833 600 20 N 8260 dacite 245 01 834 689315 30 N 9261 dacite 1518 00001 845 180 20 N 8262 dacite 1525 00001 845 180 20 N 8

217

263 dacite 1411 00001 863 180 20 N 8264 dacite 245 01 878 103975 30 N 9265 dacite 145 0097 881 180900 100 N 9266 dacite 075 00975 881 413880 100 N 9267 dacite 245 014 881 40878 100 N 9268 dacite 245 013 910 19660 100 N 9269 dacite 073 0099 911 484260 100 N 9270 dacite 47 1 1423 300 100 N 7271 dacite 46 1 1473 300 100 N 7272 dacite 35 05 1573 73 100 N 7273 dacite 29 1 1573 480 100 N 7274 dacite 62 05 1673 120 100 N 7275 dacite 63 15 1673 120 100 N 7276 dacite 31 1 1773 90 100 N 7

ldquoNrdquo means no crystallization in the quenched glass and ldquoYrdquo means significant crystallization The crystallized samples were classified as failed experiments and were not discussed in the respective papers even though the samples were part of the respective study loz references 1 Zhang et al 1997b 2 Liu and Zhang 2000 3 Zhang and Behrens 2000 4 Zhang et al 2000 5 Behrens and Zhang 2001 6 Xu and Zhang 2002 7 Behrens et al 2004 8 Liu et al 2004a 9 Liu et al 2004b 10 Liu et al 2005 11 Hui et al in revision 12 Ni and Zhang revised 13 this study

Page 5: VISCOSITY OF SILICATE MELTS

iv

Yang Liu taught me a lot to do experiments Yang Chen provided help in glass

composition analysis with EMPA Wenjun Yong and Lixing Jin helped me with XRD

Huaiwei Ni helped in pressure calibration

I would like to express my gratitude to my fellow students for their friendship and

support including Yang Liu Daming Wang Maodu Yan Kate Kenedi Zeb Page Qiong

Liu Matt Mannon Yang Chen Huaiwei Ni Wenjun Yong Xiqiao Xu Ni Sun Steven

Ownby Lixing Jin Lin Ma and Tie Sun I also would like to express my special thanks

to my friend and former landlord Bob Trees for his support and help during my hard

time at Ann Arbor

My deepest gratitude goes to my wife Xiaoqing and our families Their love and

support are critically important for me to accomplish this work

v

TABLE OF CONTENTS

DEDICATIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipii

ACKNOWLEDGMENTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipiii

LIST OF FIGUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipvii

LIST OF TABLEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipix

LIST OF APPENDICEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipx

CHAPTER

I INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip1

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip5

II TOWARD A GENERAL VISCOSITY EQUATION OF NATURAL

ANHYDROUS AND HYDROUS SILICATE MELTShelliphelliphelliphelliphelliphellip7

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip7

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip8

TEMPERATURE DEPENDENCE OF VISCOSITYhelliphelliphelliphellip10

VISCOSITY OF BINARY MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip12

VISCOSITY MODELS FOR NATURAL ANHYDROUS AND

HYDROUS SILICATE EMLTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip19

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip42

III PRESSURE DEPENDENCE OF THE SPECIATION OF DISSOLVED

WATER IN RHYOLITC MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip52

EXPERIMENTAL METHODShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip53

ANALYTICAL PROCEDUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip59

RESULTS AND DISCUSSIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip62

CONCLUSIONShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip80

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip81

vi

IV PRESSURE DEPENDENCE OF VISCOSITY OF RHYOLITIC

MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip86

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip86

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip87

EXPERIMENTAL AND ANALYTICAL METHODShelliphelliphellip90

DISCUSSIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip107

CONCLUDING REMARKShelliphelliphelliphelliphelliphelliphelliphellip117

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip118

V CONCLUSIONShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip125

APPENDICEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip129

vii

LIST OF FIGURES

Figure

21 Comparisons of fitting results using Equations 2 3 and 4a for viscosityhelliphelliphelliphellip13

22 Comparisons of experiments viscosity data with calculated valueshelliphelliphelliphelliphelliphelliphellip16

23 Viscosity as a function of composition in four binary systemshelliphelliphelliphelliphelliphelliphelliphellip18

24 Comparison of experimental viscosity data with calculated valueshelliphelliphelliphelliphelliphellip23

25 Total alkalis versus SiO2 diagramhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip29

26 Comparison of experimental viscosity values with calculated valueshelliphelliphelliphelliphelliphellip36

27 The prediction of Equation 12helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip39

31 Experimental results for temperature distribution in piston cylinderhelliphelliphelliphelliphelliphellip57

32 The temperature dependence of lnK at some pressureshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip67

33 Two sets of reversal experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip69

34 Temperature dependence of K and pressure dependence of enthalpyhelliphelliphelliphelliphelliphellip72

35 The distribution of differences between experimental and predicted temperatureshellip76

36 Pressure effect on lnK at some temperatures and water concentrationshelliphelliphelliphelliphellip77

41 Sketch of kinetics of reaction 1 during coolinghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip93

42 Temperature dependence of viscosity of rhyolitic melts at various pressureshelliphelliphellip99

43 Comparison of viscosities of given rhyolitic melts at various pressureshelliphelliphelliphellip104

44 Pressure effect on crystallization in the rhyolitic meltshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip106

viii

45 Comparison of measured viscosity data of rhyolites with calculated valueshelliphelliphellip111

46 P-T-XH2Ot range of all experimental data of the modelhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip112

47 Pressure effect on viscosity at some temperatures and water concentrationshelliphelliphellip113

48 Pressure dependence of glass transition temperature of hydrous rhyoliteshelliphelliphellip115

B1 FTIR spectra for Chapter IIIhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip176

C1 FTIR spectra for Chapter IVhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip195

ix

LIST OF TABLES

Table

21 Fitting parameters of Equation 5 in four binary systemshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip17

22 Fitting parameters for Equation 8helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip22

23 Melt composition on anhydrous basishelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip26

24 Fitting parameters for Equation 11helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip33

25 Examples of calculation using Equation 12helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip35

26 The 2 deviations and data points of sub-groups in the viscosity databasehelliphelliphelliphellip37

31 Chemical compositions of KS and GMR rhyolite on anhydrous basishelliphelliphelliphelliphellip55

32a Experimental results for pressure calibration at 1073 Khelliphelliphelliphelliphelliphelliphelliphelliphelliphellip60

32b Literature data on quartz-coesite transition pressure at 1073 Khelliphelliphelliphelliphelliphelliphelliphellip60

33 The equilibrium speciation of water in rhyolitic melts under various pressureshelliphellip63

34 Fitting parameters for Equations 3 4 and 6helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip74

41 Chemical composition of KS GMR and EDF rhyolite on anhydrous basishelliphelliphellip91

42 Viscosity of EDF under pressures 02 and 04 GPa and KS at 04 GPahelliphelliphelliphelliphellip98

43 Viscosity of hydrous rhyolitic melts under various pressureshelliphelliphelliphelliphelliphelliphelliphellip100

A1 Viscosity database used to fit Equation 11helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip130

D1 Pressure dependence of easiness of crystallization for different meltshelliphelliphelliphelliphellip211

x

LIST OF APPENDICES

Appendix

A Viscosity data of natural silicate meltshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip130

B FTIR spectra for equilibrium speciation experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip176

C FTIR spectra for cooling experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip195

D Database for easiness of crystallization for different melts at different P-T

conditionhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip211

1

CHAPTER 1

INTRODUCTION

Knowledge of viscosity of silicate melts is necessary in order to quantitatively

model volcanic and magmatic processes and in turn to provide insights into the structure

and dynamics of silicate melts A mechanistic study of xenolith dissolution may aid in

understanding the diagenesis of magmatic system (eg Morgan et al 2006 Shaw

2006) A numerical model of bubble growth may advance in predicting the mode of

volcanic eruption (eg Proussevitch and Sahagian 1998 Liu and Zhang 2000) The

success of these models in accurately predicting kinetic and dynamic processes in

igneous systems is critically dependent on the quality of viscosity data of silicate melts

Laboratory viscosity measurements are performed to better understand detailed

physicochemical behaviors and the results of these studies are then used to understand the

behavior of the melts in nature (eg Scaillet et al 1996) Because the conditions that

pertained in laboratory experiments cannot always be identical to those occurring in

nature it is also important to have means of interpolating or extrapolating laboratory

results to different (T P X) conditions In this study one of the primary aims is to

establish a general viscosity model to estimate viscosity of silicate melts at ambient

pressure Furthermore hydrous species reaction viscometer based on the kinetics of

hydrous species reaction in the rhyolitic melts at high pressure is used to infer viscosity

2

of hydrous rhyolitic melts at pressure up to 283 GPa and parallel-plate creep viscometer

in an internally-heated pressure vessel is employed to measure natural rhyolitic melts at

pressure up to 04 GPa and the pressure effect on the viscosity of rhyolitic melts is

examined

Chapter II presents a new and empirical viscosity equation of anhydrous and

hydrous natural silicate melts The compositional dependence of viscosity of silicate

melts is of fundamental importance to understand the evolution of magmatic systems

(eg Marsh 2006) However previous viscosity models can only provide viscosity

prediction of silicate melts either in a limited composition range over a large temperature

range (eg Hess and Dingwell 1996 Zhang et al 2003) or in a limited temperature

range in a large compositional range (eg Shaw 1972) This chapter provides a general

viscosity model of silicate melts which can be used to calculate viscosity of all natural

silicate melts in a large temperature range Natural and nearly natural melt compositions

covered in this model include anhydrous peridotite to rhyolite anhydrous peralkaline to

peraluminous melts hydrous basalt to rhyolite hydrous peralkaline to peraluminous

melts This model can also be used to estimate the glass transition temperatures and

cooling rate of natural silicate melts The results of this study have been published in

Geochimica et Cosmochimica Acta (Hui and Zhang 2007)

Chapter III is an experimental study of the speciation of dissolved water in

rhyolitic melts at pressure up to 283 GPa This study is prerequisite for inferring

viscosity of hydrous rhyolitic melts using the hydrous species reaction viscometer

(Dingwell and Webb 1990 Zhang et al 2003) at high pressure (Chapter IV)

Furthermore the quantification of hydrous speciation in the rhyolitic melts under high

3

pressure can be applied to model H2O diffusion and understand the structure of hydrous

melts at high pressure In addition information from this study is also useful in future

models of thermodynamic properties of hydrous silicate melts Chapter III addresses the

first systematic experimental study of H2O speciation in rhyolitic melts containing 08 ndash 4

wt water at high pressure 094 ndash 283 GPa A speciation model accommodating

temperature pressure and water content dependence of hydrous species in rhyolitic melts

is also presented in this chapter The results from this study have been submitted to

Geochimica et Cosmochimica Acta (Hui et al 2008)

Chapter IV contains the first experimental study of viscosity of any melts at

pressure up to 283 GPa in the high viscosity range It extends a newly developed method

(hydrous species reaction viscometer Zhang et al 2003) to high pressures This new

development represents the only method capable of extracting viscosity data of melts in

the high viscosity range at pressures above 1 GPa Previously high-pressure (ge 1 GPa)

viscosity data were obtained by the falling-sphere technique in high-pressure apparatus

which can be applied only in the low viscosity range Hence all previous viscosity data at

high pressure (ge 1GPa) fall in the high temperature range (ie low viscosity range) No

viscosity data in the low temperature range at high pressure ((ge 1GPa) have been

published This study is the first to infer viscosity of hydrous rhyolitic melts containing

08 ndash 4 wt water using the hydrous species reaction viscometer (Dingwell and Webb

1990 Zhang et al 2003) at high pressures The viscosity of natural rhyolitic melts

containing 013 and 08 wt water at pressures up to 04 GPa also has been measured

using a parallel plate creep viscometer A viscosity model of rhyolitic melts in the high

viscosity range accounting for the dependence on pressure temperature and water content

4

is also presented in this chapter The results from this chapter have been submitted to

Geochimica et Cosmochimica Acta (Hui et al 2008)

5

REFERENCES

Dingwell DB Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2 427-

449

Hess K-U Dingwell DB (1996) Viscosities of hydrous leucogranitic melts A non-

Arrhenian model Am Mineral 81 1297-1300

Hui H Zhang Y (2007) Toward a general viscosity equation of natural anhydrous and

hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Hui H Zhang Y Xu Z Behrens H (2008) Pressure dependence of the speciation of

dissolved water in rhyolitic melts Geochim Cosmochim Acta In revision

Hui H Zhang Y Xu Z Del Gaudio P Behrens H (2008) Pressure dependence of

viscosity of rhyolitic melts Geochim Cosmochim Acta Submitted

Liu Y Zhang Y (2000) Bubble growth in rhyolitic melt Earth Planet Sci Lett 181

251-264

Marsh BD (2006) Dynamics of magmatic systems Elements 2 287-292

Morgan Z Liang Y Hess P (2006) An experimental study of anorthosite dissolution

in lunar picritic magmas Implications for assimilation processes Geochim

Cosmochim Acta 70 3477-3491

Proussevitch AA Sahagian DL (1998) Dynamics and energetics of bubble growth in

magmas analytical formulation and numerical modeling J Geophys Res 103

18223-18251

Scaillet B Holtz F Pichavant M Schmidt M (1996) Viscosity of Himalayan

leucogranites Implications for mechanisms of granitic magma ascent J Geophys

Res 101 27691-27699

6

Shaw CSJ (2006) Effects of melt viscosity and silica activity on the rate and

mechanism of quartz dissolution in melts of the CMAS and CAS systems Contrib

Mineral Petrol 151 665-680

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

7

CHAPTER II

TOWARD A GENERAL VISCOSITY EQUATION OF NATURAL ANHYDROUS AND HYDROUS SILICATE

MELTS

ABSTRACT

A new and empirical viscosity equation for anhydrous and hydrous natural silicate

melts has been developed using the following formulation

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

where η is viscosity in Pamiddots T is temperature in K and A B C and D are linear functions

of mole fractions of oxide components except for H2O The formulation is applied

successfully to fit the temperature and compositional dependence of viscosity for some

binary systems Furthermore the new model with eight parameters fits the compositional

and temperature dependence of the viscosity data of anhydrous natural silicate melts

better than the ten-parameter model in the literature The main purpose of this work is to

fit the entire high- and low-temperature viscosity database (1451 data points) of all

ldquonaturalrdquo silicate melts using this empirical formulation The general viscosity equation

has 37 parameters and is as follows

8

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

where η is viscosity in Pamiddots T is temperature in K Xi means mole fraction of oxide

component i and Z=(XH2O)1[1+(185797T)] Al2O3ex or (Na K)2Oex mean excess oxides

after forming (Na K)AlO2 The 2σ deviation of the fit is 061 logη units This general

model is recommended for viscosity calculations in modeling magma chamber processes

and volcanic eruptions

1 INTRODUCTION

Knowledge of the viscosity of silicate melts is critical to the understanding of

igneous processes such as melt segregation and migration in source regions magma

recharge magma mixing differentiation by crystal fractionation convection in magma

chambers dynamics and style of eruptions and magma fragmentation Numerous

measurements have been made on the viscosity of various silicate melts from felsic (eg

rhyolitic melt Neuville et al 1993) to ultramafic composition (eg peridotite liquid

Dingwell et al 2004) from anhydrous (eg Neuville et al 1993) to hydrous ones (eg

Whittington et al 2000) and from high temperature to low temperature A number of

authors have made efforts to model the viscosity data for the purpose of interpolation and

extrapolation Bottinga and Weill (1972) and Shaw (1972) were pioneers in developing

9

viscosity models for natural silicate melts Because of the extreme difficulty in

calibrating a better viscosity model these models were the only ones available for over

twenty years (Lange 1994) More advanced models and relationships have been

developed for specific melt compositions such as rhyolitic melts (eg Hess and

Dingwell 1996 Zhang et al 2003) For melt compositions from rhyolite to peridotite

Persikov (1998) developed a viscosity model for anhydrous and hydrous silicate melts at

high temperatures (for viscosity below 105 Pamiddots) and Giordano and Dingwell (2003a)

developed new models for anhydrous silicate melts applicable to a larger temperature

range 700 ndash 1600ordmC

In spite of recent advances in viscosity models there is still a need for a general

model that would apply to all natural silicate melts all accessible temperature ranges and

especially including the effect of H2O content The model of Giordano and Dingwell

(2003a) is noteworthy in this connection In the modeled temperature range (700-

1600degC) for anhydrous melts it has a 2σ uncertainty of 078 in logη However the model

is limited to anhydrous melts and cannot be applied to estimate viscosity at lower

temperatures For example the model predicts logη of 169 for a phonolite at 6147degC

while the experimentally determined logη is 1163 (Giordano et al 2000) Viscosity at lt

700degC is critical for understanding magma fragmentation and welding in tuffs The

purpose of this work is to develop a practical viscosity model for natural silicate melts

that is applicable to both anhydrous and hydrous natural melts and to the entire

temperature range in which experimental data are available

10

2 TEMPERATURE DEPENDENCE OF VISCOSITY

The temperature dependence of viscosity of silicate melts has been extensively

studied from a theoretical point of view or through empirical fitting of viscosity data For

a narrow temperature range usually for viscosities between 01 to 104 Pamiddots the

dependence of viscosity on temperature is well described by the Arrhenius equation (eg

Bottinga and Weill 1972 Shaw 1972) When the temperature range is large enough

most silicate melts exhibit a non-Arrhenian relationship between viscosity and

temperature (eg Neuville et al 1993 Hess and Dingwell 1996 Whittington et al

2000) It is possible that the isostructural viscosity variation is Arrhenian (Scherer 1984)

but viscosity variation due to temperature-induced structure change is the origin of the

non-Arrhenian behavior Many equations have been proposed to explain or fit the

temperature dependence of viscosity (eg Brush 1962)

One thermodynamic description of the temperature dependence of viscosity of

silicate melts is the Adam-Gibbs equation (eg Adam and Gibbs 1965 Richet 1984)

η = Ae exp Be TSconf( )[ ] (1)

where η is viscosity Ae is the pre-exponential factor independent of temperature Be is an

energy term T is temperature in K and Sconf is the configurational entropy of the melt

For compositions corresponding to a pure stable crystalline phase (such as diopside) the

configurational entropy as a function of temperature can be determined from appropriate

heat capacity measurements of liquids and crystals and glasses down to zero K (Richet et

al 1986) However for a multicomponent melt system in which oxide concentrations are

variable the configurational entropy as a function of temperature and composition cannot

be evaluated independently The above equation becomes a fitting equation with many

11

parameters which loses its theoretical appeal Hence this model is not used often to fit

viscosity-temperature relationship of silicate melts

The most often used empirical description for the temperature dependence of

viscosity is the VFT (Vogel-Fulcher-Tammann) equation (eg Fulcher 1925 Tammann

and Hesse 1926)

logη = A +B

T minus T0 (2)

where A B and T0 are fitting parameters Another model related to the fragility of the

melt has also been used (eg Avramov 1998 Zhang et al 2003)

logη = A +BT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ α

(3)

where α is fragility parameter and depends on heat capacity For a restricted

compositional range α is found to depend linearly on chemical composition as illustrated

by data in sodium or lead silicates (Avramov 1998)

Both Eqns 2 and 3 are three-parameter equations with no explicit consideration

of melt composition which is the least number of parameters to fit the non-Arrhenian

behavior Eqns 2 and 3 were extended to multicomponent melts by allowing the three

parameters to vary with composition but no working scheme was found to fit the

viscosity data (2σ uncertainty in logη is too large gt 09 log unit) With many trials the

following empirical relation was found to be extendable to multicomponent melts

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ (4)

where A B C and D are fitting parameters and are allowed to vary linearly with mole

fraction of oxide components in melts This equation would imply that the activation

12

energy for viscous relaxation depends on temperature exponentially Ea = d(lnη)d(1T) =

2303[B + Dexp(C+DT)] consistent with the activation energy of viscous flow derived

from Eqn 1 in Richet et al (1986) It is not clear whether there is theoretical basis for

Eqn 4 but it works empirically to fit viscosity data of multicomponent silicate melts

Although the above four-parameter equation can also fit viscosity data of a single

composition not all four parameters are necessary and a three-parameter equation either

Eqn 2 or 3 would be more advisable Nonetheless letting C = 0 reduces Eqn 4 to a

three-parameter equation which may fit viscosity data of a single composition

logη = A +BT

+ exp DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ (4a)

Fig 21 compares fits of viscosity data using Eqns 2 3 and 4a on anhydrous trachyte

melt (AMS_D1 Romano et al 2003) and tephrite melt (Whittington et al 2000) As

shown in Fig 21 these three equations all fit viscosity data well for a given anhydrous

melt

The primary purpose of proposing Eqn 4 is to fit viscosity data of

multicomponent silicate melts by making the four parameters linearly dependent on

composition Below first the compositional dependence of viscosity in binary melts is

discussed then Eqn 4 is applied to fit viscosity of anhydrous natural silicate melts and

finally the entire viscosity database on ldquonaturalrdquo anhydrous and hydrous silicate melts

3 VISCOSITY OF BINARY MELTS

At low temperatures the viscosity of melts in simple binary systems often shows

minima at intermediate compositions This minimum diminishes with increasing

13

0

2

4

6

8

10

12

14

05 06 07 08 09 1 11

TephriteEqn 2Eqn 3Eqn 4a

058 06 062 064 066 068 0705

075

1

125

15

175

2

B

logη

(η in

Pasdot

s)

1000T (T in K)

2

4

6

8

10

12

AMS_D1Eqn 2Eqn 3Eqn 4a

Eqn 4a-53257A87284B19105D

099972R

Eqn 3-19571A42355B17285α

099962R

Eqn 2-3851A90912B35116T0

09997R

AA

logη

(η in

Pasdot

s)

Fig 21 Comparisons of fitting results using Eqns 2 3 and 4a for viscosity data of (a) AMS_D1 trachyte (Romano et al 2003) and (b) tephrite (Whittington et al 2000)

14

temperature and eventually disappears at high enough temperature (Neuville and Richet

1991) The minimum of viscosity data in a binary system can be explained by a

combination of the Adam-Gibbs model and mixing law of configurational entropy of two

end-members (Neuville and Richet 1991) However in this strategy many fitting

parameters are needed to account for the viscosity dependence on composition and

temperature For example Neuville and Richet (1991) used a fifteen-parameter equation

to fit the viscosity data of Ca3Al2Si3O12-Mg3Al2Si3O12 binary system Moreover

asymmetry of viscosity as a function of composition such as in the Na2Si3O7-K2Si3O7

binary system can make it even more difficult for the Adam-Gibbs model to fit the

viscosity data in the binary system (Richet 1984)

On the other hand assuming that each of the four parameters is a linear function

of composition Eqn 4 becomes an eight-parameter equation to fit the temperature and

compositional dependence of viscosity of a binary system

( ) ( ) ( ) ( )1 1 2 2 1 1 2 21 1 2 2 1 1 2 2log exp

b X b X d X d Xa X a X c X c X

T Tη

+ +⎛ ⎞= + + + + +⎜ ⎟

⎝ ⎠ (5)

where a b c and d with subscript 1 and 2 are fitting parameters X is mole fraction of two

end-members in the system Compared to the fifteen-parameter equation of Neuville and

Richet (1991) the number of fitting parameters is almost halved although the physical

meaning of each parameter is less clear in Eqn 5

Fits using Eqn 5 and all fits below are carried out using the commercially

available program MatLab or Stata which employs nonlinear least square regression to

minimize χ2 = sum(logηcalci-logηobsi)2 The fitting errors on all parameters are obtained by

the program Stata When the standard error of a parameter is larger than the absolute

15

value of the parameter the parameter is removed and a new fit with one less fitting

parameter is carried out

Figure 22 shows fits of viscosity data of four binary systems MgSiO3-CaSiO3

(Urbain et al 1982 Scarfe and Cronin 1986 Neuville and Richet 1991)

Mg3Al2Si3O12-Ca3Al2Si3O12 pyrope-grossular (Neuville and Richet 1991) NaAlSi3O8-

CaAl2Si2O8 albite-anorthite (Kozu and Kani 1944 Urbain et al 1982 Hummel and

Arndt 1985) and NS3-KS3 Na2Si3O7-K2Si3O7 (Taylor and Dear 1937 Lillie 1939

Taylor and Doran 1941 Poole 1948 Shartsis et al 1952 Bockris et al 1955

Mackenzie 1957 Taylor and Rindone 1970 Ammar et al 1977) The viscosities of

partially crystallized samples during measurement are not used in the fitting The fitting

parameters are shown in Table 21 The 2σ deviations in terms of logη for CaSiO3-

MgSiO3 garnet plagioclase and NS3-KS3 systems are 039 025 029 and 030

respectively There is a minimum viscosity at intermediate compositions in all four

binary systems at low temperatures such as CaSiO3-MgSiO3 and garnet at 1050 K (Fig

23A) plagioclase at 1123 K (Fig 23B) and NS3-KS3 at 715 K (Fig 23C)

The compositional location of viscosity minimum varies with temperature This

can be seen from the viscosity data of plagioclase (albite-anorthite) binary system

(Hummel and Arndt 1985) As shown in Fig 23B the viscosity minimum of albite-

anorthite system is located at around 40 mole of anorthite in the composition range at

1123 K but the minimum is at a greater anorthite content at higher temperatures This

variation has been explained by Richet (1984) to be due to the mixing of configurational

entropies of anorthite and albite melts which increase at considerably different rates with

increasing temperature The magnitude of the viscosity minimum diminishes with

16

Fig 22 Comparisons of experimental viscosity data with calculated values using Eqn 5 with fitting parameters in Table 21 The data sources are as follows CaSiO3-MgSiO3 (Urbain et al 1982 Scarfe and Cronin 1986 Neuville and Richet 1991) Ca3Al2Si3O12-Mg3Al2Si3O12 garnets (Neuville and Richet 1991) CaAl2Si2O8-NaAlSi3O8 plagioclases (Kozu and Kani 1944 Urbain et al 1982 Hummel and Arndt 1985) NS3-KS3 (Na2Si3O7-K2Si3O7) (Taylor and Dear 1937 Lillie 1939 Taylor and Doran 1941 Poole 1948 Shartsis et al 1952 Bockris et al 1955 Mackenzie 1957 Taylor and Rindone 1970 Ammar et al 1977)

Neuville and Richet 199111 line

garnet

-2

0

2

4

6

8

10

12

14

-2 0 2 4 6 8 10 12 14

Ktradezu and Kani 1944Hummel and Arndt 1985Urbain et al 198211 line

Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s)

plagioclase

-2 0 2 4 6 8 10 12 14

Ammar et al 1977

Bockris et al 1955

Lillie 1939

Mackenzie 1957

Poole 1948

Shartsis et al 1952

Taylor and Dear 1937

Taylor and Doran 1941

Taylor and Rindone 1970

Measured logη (η in Pasdots)

11 line

(Na K) Si O2 3 7

-2

0

2

4

6

8

10

12

14

Neuville and Richet 1991Urbain et al 1982Scarfe and Cronin 198611 line

Cal

cula

ted

logη

(η in

Pasdot

s)

(Ca Mg)SiO3

17

Table 21 Fitting parameters of Eqn 5 in the binary systems of CaSiO3-MgSiO3 garnet plagioclase and NS3-KS3

parameter CaSiO3-MgSiO3 garnet plagioclase NS3-KS3

a1 -31287 (04255)

23593 (11691)

-45179 (10170)

-32839 (05488)

a2 -94323 (04710)

-43178 (01053)

-63903 (06947)

-61410 (07446)

b1 -212604 (16359)

59402 (34463)

47706 (20814)

b2 179038 (9527)

165512 (19446)

118218 (13486)

c1 -12322 (03808)

08438 (01057)

-20844 (09118)

-11788 (09117)

c2 -59221 (09186)

-31234 (15216)

-51302 (32636)

d1 40716 (3713)

27049 (1157)

50614 (8312)

24647 (4784)

d2 74655 (8636)

28789 (88)

46909 (12991)

42955 (20116)

Note Numbers in parentheses are 2 times the standard errors (2σ) of the fitting respective parameters For CaSiO3-MgSiO3 1=CaSiO3 2=MgSiO3 for garnet 1=Ca3Al2Si3O12 (grossular) 2=Mg3Al2Si3O12 (pyrope) for plagioclase 1=CaAl2Si2O8 (anorthite) 2=NaAlSi3O8 (albite) for NS3-KS3 1=Na2Si3O7 2=K2Si3O7

18

85

95

105

115

125

135

0 02 04 06 08 1

MgSiO3-CaSiO3 (1050 K)Py-Gr (1050 K)

mole fraction (Ca-end member)

logη

(η in

Pasdot

s) A

8

9

10

11

12

0 02 04 06 08 1Ab An

logη

(η in

Pasdot

s)

T=1123K

T=1153K

T=1183K

B

0

2

4

6

8

10

12

14

0 02 04 06 08 1

logη

(η in

Pasdot

s)

KS NS3 3

T=715K

T=823K

T=1073K

T=1673K

C

Fig 23 Viscosity as a function of composition in four binary systems (A) CaSiO3-MgSiO3 and garnet (B) plagioclase and (C) NS3-KS3 (Na2Si3O7-K2Si3O7) The solid curves are calculated from Eqn 5 with fitting parameters in Table 21 The sources of viscosity data are as follows (A) interpolated from Neuville and Richet (1991) using Arrhenius relationship of viscosity and temperature (narrow temperature range) with the same compositions (B) open symbols Hummel and Arndt 1985 solid symbols interpolated data from Hummel and Arndt (1985) using Arrhenius relationship of viscosity and temperature (narrow temperature range) (C) data are from Taylor and Dear 1937 Lillie 1939 Taylor and Doran 1941 Poole 1948 Bockris et al 1955 Mackenzie 1957 Ammar et al 1977 interpolated data from Taylor and Doran (1941) Poole (1948) Shartsis et al (1952) Bockris et al (1955) and Ammar et al (1977) and Poole (1948) and Mackenzie (1957) using VFT equation for the same compositions

19

increasing temperature as inferred by Neuville and Richet (1991) As shown in Fig

23C the viscosity minimum in NS3-KS3 system is less pronounced at 1673K than the

one at 715K

4 VISCOSITY MODELS FOR NATURAL ANHYDROUS AND

HYDROUS SILICATE MELTS

The main purpose of this work is to present a working model for calculation of

the viscosity of all natural anhydrous and hydrous silicate melts covering the entire

experimental temperature range The equation used to fit the viscosity data is Eqn 4

with each of A B C and D as a linear function of the compositional parameters For

example for an N-component system the parameter A may be written as

A = ai Xii=1

Nsum (6a)

Or A = a0 + ai Xii=1

Nminus1sum (6b)

where a0 and ai are fitting parameters with i being the ith oxide in the anhydrous melts

This formulation requires many fitting parameters In order to avoid the impression that

the model works only because of many parameters first an effort to use formulation of

Eqn 4 to fit a smaller data set that has been modeled recently by Giordano and Dingwell

(2003a) is presented to show that the new model can fit the same data using a smaller

number of parameters than that of Giordano and Dingwell (2003a)

20

41 A SIMPLE MODEL FOR NATURAL ANHYDROUS MELTS

For multicomponent silicate melts the dependence of viscosity on melt

composition is complicated In the quest of seeking simpler equations with a smaller

number of fitting parameters various parameters such as NBOT (eg Giordano and

Dingwell 2003a) and SM (SM = sum (Na2O+K2O+CaO+MgO+MnO+FeOtot2))

(Giordano and Dingwell 2003a) have been used in modeling melt viscosity Various

parameters were explored to simplify the compositional dependence After a number of

trials using the sum of network formers SiO2 Al2O3 and P2O5 as one single parameter is

found to work well in the context of Eqn 6b Hence this parameter is defined as

SAP = XSiO2+ XAl2O3

+ XP2O5 (7)

where Xi is mole fraction of oxide i in the melt Based on the above considerations the

following equation to relate viscosity temperature and melt composition is used

logη = a0 + a1X( )+b0 + b1X( )

T+ exp c0 + c1X( )+

d0 + d1X( )T

⎝ ⎜

⎠ ⎟ (8)

where X = SAP a b c and d with subscript 0 or 1 are fitting parameters

Giordano and Dingwell (2003a) presented two models for the viscosity of

anhydrous silicate melts The data set contained 314 viscosity data points Their preferred

model using the parameter SM contained 10 fitting parameters Although their database

contained viscosity data below 700degC they only modeled the data in the temperature

range of 700-1600degC With 10 parameters the 2σ deviation of their preferred model is

078 logη units at 700-1600degC

The purpose of using Eqn 8 to fit viscosity data is to compare with previous fits

Hence fitting the same viscosity database of the anhydrous natural silicate melts as used

21

by Giordano and Dingwell (2003a) is the ideal solution All the viscosity data used by

them plus the data at temperatures below 700degC are used to carry out the nonlinear fit and

the new model is as follows

logη = minus213517 +127366X( )+293003minus 97574X

T

+ exp 299791minus 324047X( )+minus588688 + 650818X

T⎛ ⎝ ⎜

⎞ ⎠ ⎟ (9)

The standard errors for the fitting parameters are shown in Table 22 Applying the above

equation to viscosity data at 700-1600degC the 2σ deviation is 063 logη units (Fig 24A)

That is with a smaller number of fitting parameters (8 versus 10) the formulation of Eqn

4 is able to fit anhydrous melt viscosity data to a slightly better precision at this

temperature range than the model of Giordano and Dingwell (2003a)

Another measure of a successful model is applicability to a wide range of

conditions For example Hess and Dingwell (1996) compared their viscosity model for

hydrous rhyolite at both high and low temperatures to the model of Shaw (1972) although

his model was for all anhydrous and hydrous silicate melts but at high temperatures only

and showed that their model is superior to that of Shaw (1972) at low temperatures The

eight-parameter model is able to fit low-temperature viscosity data (ie data at le 700degC

Fig 24B) For the whole temperature range Eqn 9 reproduces the experimental data

with a 2σ standard uncertainty of 077 (Fig 24) The model of Giordano and Dingwell

(2003a) on the other hand did not include data at le 700degC in the fit and hence did not

predict the data well Although Giordano and Dingwellrsquos model is not designed for

application below 700degC the applicability of this eight-parameter model to the full

temperature range of viscosity data demonstrates its superiority Viscosity data at le700degC

are of importance in processes such as magma fragmentation and welding in tuffs

22

Table 22 Fitting parameters for Eqn 8

a b c d 0

-213517 (21976)

293003 (21590)

299791 (147288)

-588688 (271124)

1

127366 (38896)

-97574 (37088)

-324047 (168378)

650818 (302724)

Note Numbers in parentheses are 2σ errors of fitting coefficients respectively

23

-1

1

3

5

7

9

11

13

-1 1 3 5 7 9 11 13

Giordano and Dingwell (2003a)Eqn 911 line

AC

alcu

late

d lo

gη (η

in P

asdots)

9

10

11

12

13

14

15

16

17

9 10 11 12 13 14 15 16 17

Giordano and Dingwell (2003a)Eqn 911 line

Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s) B

Fig 24 Comparison of experimental viscosity data with calculated values (A) in the temperature range from 700 to 1600degC (which is the temperature range that Giordano and Dingwell (2003a) recommended for their model) and (B) below 700degC

24

In summary with a smaller number of fitting parameters the new model does a

better job than the most recent viscosity models (Giordano and Dingwell 2003a) This

verifies that Eqn 4 provides a practical way to describe the compositional and

temperature dependences of the viscosity of natural silicate melts and the success of the

model below is not purely because of the many parameters involved

42 VISCOSITY DATA

The primary motivation of this work is to develop a practical viscosity model for

natural anhydrous and hydrous silicate melts Viscosity data for the development of new

viscosity model come from literature The compositional range is limited to ldquonaturalrdquo

silicate melts (including Fe-free haplogranitic haploandesitic haplobasanitic

haplotephritic haplophonolitic and haplotrachytic melts) The compositions range from

peridotite to rhyolite from peralkaline to peraluminous silicate melts and from

anhydrous to hydrous melts Simple synthetic melts such as Li2O-SiO2 Na2O-SiO2

K2O-SiO2 CaSiO3-MgSiO3 feldspar systems are not included but synthetic melts

intended to approximate natural silicate melt are included Simple synthetic melts are

excluded from the new model because there is still more work needed in developing a

completely general compositional model for the viscosity of all silicate melts For

example including simple melts such as Na2O-SiO2 would expand the compositional

space to pure Na2O melt which may require parameters A B C and D in Eqn 4 to vary

as a nonlinear function of oxide mole fractions This limitation was also encountered in

literature when other silicate liquid properties are modeled (1) The density model of

liquids is developed only for natural silicate liquids excluding simple synthetic melts

25

(Lange and Carmichael 1987 Lange 1997) (2) The thermodynamic model of silicate

melts is also developed only for natural silicate liquids excluding simple synthetic melts

(Ghiorso et al 1983 2002)

The compositions of ldquonaturalrdquo silicate melts for which viscosity data are available

are listed in Table 23 on an anhydrous basis The references are also given in Table 23

There are 1451 viscosity measurements Natural melt compositions covered in the

database are presented in Fig 25 on an anhydrous basis The compositions covered by

the data include anhydrous peridotite to rhyolite anhydrous peralkaline to peraluminous

melts hydrous basalt to rhyolite hydrous peralkaline to peraluminous melts The FeO-

free melts include haplogranitic melts (H1-26) haploandesite (A2 and A4) haplobasanite

(Bn3) haplotephrite (Te2) haplophonolite (Ph4) and haplotrachyte (Tr6) as shown in

Table 23 Some samples with the same or similar sample names (such as two HPG8 and

one HPG08) but different chemical compositions are treated as different samples with

different chemical compositions (that is all compositions were treated to be different and

the chemical analyses were not averaged) The viscosity ranges from 01 to 1015 Pamiddots

The temperature ranges from 573 to 19779 K The H2O concentration is le123 wt for

rhyolitic melt and below 5 wt for other melts

Viscosity data from partially crystallized melt (such as andesite ME113e Richet

et al 1996) are not used Viscosity data of phonolite melt with 088 wt water in

Whittington et al (2001) are shown by these authors to be outliers and are hence not

included The viscosities of Sample A (LGB rhyolite) in Neuville et al (1993) are not

used because these authors suspected the quality of the viscosity data Data on rhyolite

shown to be outliers by Zhang et al (2003) are not included The data of

26

Table 23 Melt composition on anhydrous basis (on wt basis)

Composition SiO2 TiO2 Al2O3 FeO MnOMgOCaO Na2OK2O P2O5 total ID ref Basanite (EIF) 4115 274 1210 1011 000 1124 1566 276 304 102 9982 Bn1 19 Basanite (EIF) 4122 274 1212 1003 000 1126 1569 276 305 102 9989 Bn2 17 Basanite (NIQ) 4357 297 1018 000 000 917 2607 759 096 000 10051 Bn3 1 Peridotite 4583 018 487 863 000 3163 637 032 000 000 9783 Pr 27 Basalt (ETN) 4703 161 1628 1088 020 517 1047 375 194 059 9792 Bl1 25 Basalt (ETN) 4781 194 1791 1090 019 475 996 394 211 048 9999 Bl2 17 Basalt 4821 125 1550 1064 000 908 1192 240 008 014 9922 Bl3 21 Tephrite (Ves_G_tot) 4920 083 1640 720 013 510 1020 270 650 072 9898 Te1 19 Basalt (MTV9) 4961 427 1101 1473 000 446 1004 281 047 251 9991 Bl5 28 Basalt (Kilauea 1921) 5001 260 1256 1079 024 939 1088 233 048 000 9937 Bl7 29 Tephrite 5056 235 1403 000 000 879 1500 704 301 000 10078 Te2 1 Basalt (MTV4) 5066 395 1135 1390 000 394 960 298 051 240 9929 Bl6 28 Basalt (MTV6) 5084 426 1138 1505 000 442 1018 301 055 004 9973 Bl8 28 Basalt (MTV2) 5087 405 1136 1420 000 423 962 306 052 009 9800 Bl9 28 Phonolite (Ves_W_tot) 5120 067 1860 610 013 250 730 375 790 040 9855 Ph1 19 Phonolite (V_1631_G) 5314 059 1984 472 013 177 675 477 828 000 9999 Ph2 23 Phonolite (V_1631_W) 5352 060 1984 480 014 176 676 466 791 000 9999 Ph3 23 Basalt 5354 105 1729 782 000 546 832 359 164 020 9891 Bl4 21 Andesite 5856 064 1898 745 000 348 617 324 092 000 9944 A1 21 Andesite 5869 001 2157 002 002 538 949 330 157 000 10005 A2 26 Phonolite 5882 079 1942 000 000 187 235 931 744 000 10000 Ph4 2 Andesite (Crater Lake) 5946 073 1790 518 010 371 645 423 147 000 9926 A5 29 Phonolite (ATN) 5970 046 1852 360 017 065 280 389 845 015 9839 Ph5 19 Phonolite (Td_ph) 6046 056 1881 331 020 036 067 976 545 006 9964 Ph6 22 Trachyte (IGC) 6074 027 1922 337 018 028 211 528 632 006 9783 Tr1 20 Trachyte (AMS_D1) 6086 039 1827 388 012 090 296 412 850 000 10000 Tr2 23 Andesite 6117 084 1729 539 000 335 583 385 139 000 9911 A3 11 Trachyte (AMS_B1) 6126 038 1838 350 014 074 297 458 804 000 9999 Tr3 23 Andesite (Crater Lake) 6215 076 1680 496 025 326 508 502 172 000 10000 A6 32 Andesite 6240 055 2001 003 002 322 908 352 093 012 9988 A4 8 Trachyte (MNV) 6388 031 1710 290 013 024 182 567 682 005 9892 Tr4 20 Trachyte (PVC) 6399 045 1696 255 014 032 083 633 637 009 9803 Tr5 19 Trachyte 6445 050 1671 000 000 292 536 670 337 000 10001 Tr6 2 Dacite 6528 059 1705 402 008 182 470 434 129 013 9930 D1 30 Dacite (UNZ) 6600 036 1523 408 010 221 501 384 216 014 9913 D2 24 Granite (263-2) 6677 039 2015 431 001 072 364 137 217 000 9953 R1 16 Trachyte (570-2) 6695 087 2124 257 006 001 163 183 455 000 9971 Tr7 16 Plagioliparite (851-2) 6716 001 2165 281 001 073 265 285 182 000 9969 R2 16 Trachyte (570-3) 6871 090 1928 259 006 000 165 187 466 000 9972 Tr8 16 Trachyte (570-1) 7016 092 1718 274 006 000 170 207 488 000 9971 Tr9 16 Plagioliparite (851-1) 7122 024 1680 291 006 080 262 309 194 000 9968 R3 16 Granite (130) 7142 001 1610 458 001 157 094 194 292 000 9949 R4 16 Granite (Barlak) 7312 019 1356 319 000 018 168 386 420 000 9998 R33 31 Rhyolite 7323 019 1360 278 000 017 169 378 411 013 9968 R5 21

27

Trachyte (570-4) 7335 090 1483 238 007 000 164 187 470 000 9974 Tr1016 HPG05 7349 000 1326 000 000 000 000 240 898 000 9813 H21 38 HPG8An10 7360 000 1560 000 000 000 210 440 380 000 9950 H4 33 Rhyolite 7379 005 1511 042 005 007 097 471 402 001 9920 R6 9 Rhyolite (GB4) 7389 006 1577 075 000 014 058 462 419 000 10000 R34 34 HPG8Na5 7410 000 1170 000 000 000 000 900 440 000 9920 H5 435HPG8Ca5 (Ca5) 7410 000 1220 000 000 000 520 440 400 000 9990 H6 36 HPG8K5 7460 000 1180 000 000 000 000 440 920 000 10000 H7 4 Rhyolite (M981023) 7470 008 1328 165 000 000 077 430 522 000 10000 R7 18 HPG04 7490 000 1352 000 000 000 000 364 722 000 9928 H22 38 Rhyolite (P3RR) 7537 007 1284 157 007 004 072 419 513 000 10000 R8 17 HPG8Al5 (Al05) 7540 000 1610 000 000 000 000 470 430 000 10050 H8 37 HPG03 7552 000 1390 000 000 000 000 477 553 000 9972 H23 38 HPG8Mg5 (Mg5) 7560 000 1200 000 000 490 000 450 400 000 10100 H9 36 Rhyolite 7603 006 1148 105 006 036 321 242 460 000 9927 R9 13 HPG02 7608 000 1389 000 000 000 000 596 384 000 9977 H24 38 AOQ 7612 000 1353 000 000 000 000 465 568 000 9998 H1 6 Rhyolite 7638 006 1159 103 005 036 325 244 466 000 9982 R10 13 HPG01 7652 000 1405 000 000 000 000 714 219 000 9990 H25 38 Rhyolite 7657 006 1165 104 007 036 323 246 462 000 10006 R11 13 Rhyolite (MCR) 7659 008 1267 100 000 003 052 398 488 000 9975 R12 14 Rhyolite 7660 010 1270 117 000 002 031 410 460 000 9960 R13 15 HPG09 7688 000 1145 000 000 000 000 360 560 000 9753 H10 38 Rhyolite (LGB) 7692 010 1292 089 005 011 086 389 425 003 10002 R14 10 Rhyolite (RH) 7699 003 1302 071 010 004 048 431 431 000 9999 R15 10 Rhyolite 7700 006 1177 100 006 036 329 248 468 000 10070 R16 13 Rhyolite (RH-r) 7701 003 1314 071 010 004 051 428 418 000 10000 R17 10 Rhyolite 7707 006 1167 099 007 035 328 242 462 000 10053 R18 13 Rhyolite (SH-r) 7708 009 1244 130 002 002 036 449 420 000 10000 R19 10 Rhyolite (EDFmr) 7715 009 1282 056 007 007 052 411 461 001 10001 R20 12 Rhyolite (SH) 7717 008 1240 130 002 001 035 450 420 000 10003 R21 10 Rhyolite (EDF) 7718 009 1291 061 007 007 051 405 452 001 10002 R22 12 HPG8Al2 (Al02) 7720 000 1390 000 000 000 000 450 430 000 9990 H11 37 Rhyolite 7727 003 1175 105 005 036 331 243 473 000 10098 R23 13 Rhyolite 7738 005 1170 103 005 036 324 244 480 000 10105 R24 13 Rhyolite 7746 005 1164 104 007 035 323 245 470 000 10099 R25 13 Rhyolite (BL6) 7748 017 1220 130 005 017 114 390 360 000 10001 R26 10 Rhyolite (BL6-r) 7753 017 1217 130 005 017 113 389 360 000 10001 R27 10 Rhyolite (LGB-r) 7788 007 1273 076 004 006 050 393 403 001 10001 R28 10 Rhyolite (BL3) 7788 016 1203 119 005 005 106 364 388 001 9995 R29 12 HPG8 7790 000 1189 000 000 000 000 453 417 000 9849 H2 5 Rhyolite 7790 007 1205 076 000 005 052 401 406 000 9942 R30 11 Rhyolite (EDF-1) 7800 009 1215 054 007 006 050 408 448 002 9999 R31 10 Rhyolite (EDF-2) 7800 009 1215 054 007 007 050 408 448 000 9998 R32 10 HPG11 7814 000 1164 000 000 000 000 126 911 000 10015 H12 38 HPG10 7821 000 1169 000 000 000 000 241 743 000 9974 H13 38 HPG07 7828 000 1192 000 000 000 000 591 223 000 9834 H14 38

28

HPG8 7860 000 1250 000 000 000 000 460 420 000 9990 H3 347HPG08 7860 000 1199 000 000 000 000 457 420 000 9936 H15 38 HPG06 7898 000 1211 000 000 000 000 704 062 000 9875 H26 38 HPG16 8103 000 991 000 000 000 000 124 739 000 9957 H16 38 HPG15 8174 000 1003 000 000 000 000 247 566 000 9990 H17 38 HPG14 8222 000 1017 000 000 000 000 366 389 000 9994 H18 38 HPG12 8231 000 1016 000 000 000 000 589 070 000 9906 H19 38 HPG13 8294 000 1030 000 000 000 000 468 241 000 10033 H20 38

The melt compositions are listed according to SiO2 content References 1 Whittington et al (2000) 2 Whittington et al (2001) 3 Dorfman et al (1996) 4 Hess et al (1995) 5 Dingwell et al (1992) 6 Schulze et al (1996) 7 Dingwell et al (1996) 8 Richet et al (1996) 9 Burnham (1964) 10 Stevenson et al (1998) 11 Neuville et al (1993) 12 Stevenson et al (1996) 13 Goto et al (2005) 14 Zhang et al (2003) 15 Shaw (1963) 16 Goto et al (1997) 17 Gottsmann et al (2002) 18 Stein and Spera (1993) 19 Giordano and Dingwell (2003a) 20 Giordano et al (2004) 21 Persikov (1991) 22 Giordano et al (2000) 23 Romano et al (2003) 24 Giordano et al (2005) 25 Giordano and Dingwell (2003b) 26 Liebskie et al (2003) 27 Dingwell et al (2004) 28 Toplis et al (1994) 29 Kushiro et al (1976) 30 Alidibirov et al (1997) 31 Persikov et al (1986) 32 Dunn and Scarfe (1986) 33 Dingwell et al (2000) 34 Scaillet et al (1996) 35 Dingwell et al (1998a) 36 Hess et al (1996) 37 Dingwell et al (1998b) 38 Hess et al (2001)

29

0

3

6

9

12

15

18

40 50 60 70 80SiO (wt)2

Na

O+K

O (w

t)

22

R

O

T

OOBPc

U

U

U

Ph

SS

S

F

1

1

1

2

2

2

3

3

3

Fig 25 Total alkalis versus SiO2 diagram (Le Bas et al 1986) showing the compositions of samples modeled in this work Pc picrobasalt B basalt O1 basaltic andesite O2 andesite O3 dacite R rhyolite S1 trachybasalt S2 basaltic trachyandesite S3 trachyandesite T trachyte or trachydacite U1 basanite or tephrite U2 phonotephrite U3 tephriphonolite Ph phonolite F foidite

30

Friedman (1963) are not used due to their large uncertainty Some viscosity data of

identical composition experimental temperature and viscosity value were reported in two

or more publications and it is not clear to us whether or not they mean the same

measurements Such data are counted only once in the database and in the regression

such as viscosity data of EIF basanite (Gottsmann et al 2002 Giordano and Dingwell

2003a) All the viscosity data used in the following fit are listed in Appendix A

Most viscosity data in the database are at 1 bar and some are at pressures up to 5

kbars The pressure effect is ignored as it has been shown that the effect is negligible for

pressures up to 5 kbars (Persikov 1998 Zhang et al 2003)

43 THE PREFERRED MODEL

The eight-parameter model (Eqn 9) grouped the effects of SiO2 Al2O3 and P2O5

on viscosity The model although appealing because of its simplicity still does not

reproduce experimental viscosity data well Furthermore it does not apply to hydrous

melts In order to produce a model that can be used to calculate viscosity to better

precision more compositional parameters are necessary In the preferred model in this

section the goal is to fit the entire viscosity database on natural silicate melts as

accurately as possible Although using the least number of parameters to fit is also a goal

it is subordinate to the goal of fitting the viscosity data as accurately as possible

In the preferred model parameters A B C and D in Eqn 4 are assumed to be

linear functions of oxide mole fractions because the assumption is simple and because it

considers different effects of the different oxide components to the viscosity Fe in the

natural silicate melts has two oxidation states ferric and ferrous The two behave

31

differently in the structure of the silicate melts Although the oxidation state of Fe has

been found to affect melt viscosity significantly especially at low temperatures

(Dingwell and Virgo 1987 Liebske et al 2003) often there is not enough information to

calculate the ferric to ferrous ratio of the experimental melts at low temperatures Hence

all iron is considered as FeO

Previous studies (eg Riebling 1966 Bruckner 1983) show that aluminum-

saturated melts [NaAl (molar) = 1] have higher viscosities than either aluminum-

oversaturated (peraluminous) or aluminum-undersaturated (alkaline to peralkaline) melts

Hence NaAlO2 and KAlO2 would be reasonable end members in this multicomponent

system Al2O3 in the melt is considered to combine with alkalis to form (Na K)AlO2

After forming (Na K)AlO2 either excess alkalis or excess aluminum are left as a

component in the melts

For hydrous melts H2O content plays a major role and the effect is not linear

Viscosity decreases rapidly with the first small amount of total dissolved water and then

not so rapidly at higher H2O contents (Lange 1994 Dingwell et al 1996) Water is

present in the silicate melts as at least two species molecular H2O and hydroxyl group

(Stolper 1982) The exact role of OH and molecular H2O on affecting melt viscosity is

not known H2O content raised to some power as an additional parameter is used as

shown in Zhang et al (2003) After many trials the following parameter seems useful in

fitting viscosity data of hydrous melts

( )1

2

11+

H O( ) e TZ X= (10)

32

where e1 is constant T is temperature in K and XH2O is oxide mole fraction of total

dissolved H2O Combining Eqns 4 6a and 10 the following model is used to fit all the

viscosity data in the database

log expi i i i

i ii i i i

i i

b X d Xa X c X

T Tη

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎝ ⎠

sum sumsum sum (11)

where Xi is the mole fraction of SiO2 TiO2 Al2O3ex FeOT MnO MgO CaO (Na

K)2Oex P2O5 H2O (Na K)AlO2 plus another term related to H2O (XH2O)1[1+(e1T)]

because a simple linear term with H2O is not enough to account for the dependence of

viscosity on H2O content The values of ai bi ci di and e1 with standard errors obtained

from the fit are listed in Table 24 In the process of fitting some parameters turned out to

be unnecessary and some could be combined These simplifications were made to reduce

the number of parameters The final fit contains 37 fitting parameters As shown in Table

24 all the fitting parameters are statistically significant This model can reproduce all the

viscosity data (in the electronic annex) with a 2σ deviation of 061 logη units in the

available temperature and compositional range of natural silicate melts Fig 26 shows

comparison between measured viscosity values of all the melts in the database including

hydrous and anhydrous natural melts and those calculated from Eqn 11 Because this is

the preferred model the full equation is written down as follows

33

Table 24 Fitting parameters for Eqn 11

a b103 c d103 SiO2

-683 (047)

1814 (047)

216 (016)

TiO2

-17079 (2098)

24893 (3312)

-14305 (2657)

Al2O3ex

-1471 (432)

3261 (470)

2173 (1075)

-2210 (1127)

(Fe Mn)O

-6198 (2591)

3856 (2681)

MgO

-1801 (278)

2596 (416)

-10553 (1950)

11083 (1995)

CaO

-1976 (327)

2264 (365)

-6992 (1123)

6712 (1126)

(Na K)2Oex

3431 (960)

-6829 (796)

-8567 (5049)

5801 (4609)

P2O5

38477 (11821)

Z

-14038 (7846)

3884 (2710)

33201 (18953)

-40497 (23747)

H2O

15926 (7994)

-4855 (2976)

-43222 (20727)

51375 (26004)

(Na K)AlO2

-843 (170)

1612 (168)

-316 (083)

e1

185797 (91556)

Note Numbers in parentheses are 2σ errors of fitting coefficients respectively

34

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

(12)

where Z=(XH2O)1[1+(185797T)] and all mole fractions (including H2O) add up to 1

Examples of calculation are given in Table 25

Fig 26 compares calculated viscosity with experimental viscosity for all data in the

database and shows that there is no systematic misfit The behavior of Eqn (12) was

examined by varying temperature and various oxide concentrations The calculated

viscosity varies smoothly and monotonically with these parameters with no up and down

fluctuations Furthermore in order to investigate whether some melts are systematically

misfit or are not fit as well as other melts ∆plusmn2σ for each melt composition is listed in

Table 26 where ∆ is the average difference between the experimental logη and

calculated logη and σ is the standard deviation The value of ∆ characterizes systematic

misfit and 2σ is a measure of data scatter As shown in Table 26 all rock groups of melts

have small ∆ values but ∆ values for subgroups vary from 0 up to 030 and most

subgroups still have small ∆ values There is no correlation between the ∆ values and

compositions of the melts On 2σ values there are some variations but no group is

obviously misfit There is no correlation between the reproducibility and the degree of

polymerization

Two sets of viscosity data on hydrous leucogranite (Whittington et al 2004) and

35

Table 25 Examples of calculation using Eqn 12

composition wt composition

mole fraction T (K)

calculated logη (Pas)

SiO2 5352 SiO2 05336 75375 947 TiO2 060 TiO2 00045 74875 960 Al2O3 1984 Al2O3ex 00212 72775 1015 FeOt 480 (Fe Mn)O 00412 71765 1042 MnO 014 MgO 00262 70435 1080 MgO 176 CaO 00722 CaO 676 (Na K)2Oex 00000 Na2O 466 P2O5 00000 K2O 791 H2O 01104 P2O5 000 (Na K)AlO2 01907 H2O 332

Note The melt is hydrous phonolite from Romano et al (2003)

36

-2

2

6

10

14

18

-2 2 6 10 14 18Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s)

Fig 26 Comparison of experimental viscosity values with calculated values using Eqn 12

37

Table 26 The 2σ deviations and data points of sub-groups in the viscosity database

Composition ∆plusmn2σ

number of data points

∆plusmn2σ (rock group)

anhydrous -021plusmn056 33 basanite (Bn1-3) hydrous 001plusmn045 33

-010 plusmn055

anhydrous 023plusmn073 38 tephrite (Te1-2) hydrous 001plusmn072 33

013 plusmn075

anhydrous -004plusmn054 40 Ph1-3 hydrous 030plusmn038 25 anhydrous -015plusmn057 59

phonolite

Ph4-6 hydrous -013plusmn063 40

-005 plusmn063

anhydrous -004plusmn071 43 Tr1-3 hydrous -001plusmn039 56 anhydrous 011plusmn052 68 Tr4-6 hydroous 013plusmn043 55

Trachyte

Tr7-10 anhydrous -012plusmn041 31

004plusmn053

anhydrous -005plusmn040 27 A1-2 A5 hydrous -002plusmn037 42

anhydrous -003plusmn040 52

Andesite

A3-4 A6 hydrous 006plusmn052 45

-001 plusmn043

R1-4 anhydrous 005plusmn045 25 anhydrous 002plusmn013 7 R5-8

R33-34 hydrous 013plusmn051 40 anhydrous 004plusmn043 83

Rhyolite

R9-32 hydrous -006plusmn058 197

-000plusmn054

anhydrous 020plusmn037 32 dacite (D1-2) hydrous -009plusmn053 9

014 plusmn047

anhydrous -011plusmn105 20 Bl1-3 Bl5 hydrous 007plusmn051 21

anhydrous 006plusmn109 28

Basalt

Bl4 Bl6-9 hydrous 003plusmn074 6

001 plusmn092

periodite (Pr) anhydrous -007plusmn055 8 -007plusmn055 anhydrous -001plusmn078 161 haplogranitic melt

(H1-26) hydrous 009plusmn061 94 003 plusmn072

leucogranite hydrous -015plusmn051 14 HPG8An10 anhydrous -002plusmn022 8

the melt used to test the model

38

anhydrous HPG8An10 (Dingwell et al 2000) are not included in the fit but are chosen

to test whether this preferred model can predict data not included in the fit Because water

content in the ldquoanhydrousrdquo melt of Whittington et al (2004) is not determined the

viscosity data of anhydrous melt are not used due to large effect of a small amount of

water on viscosity (Lange 1994 Zhang et al 2003) As shown in Fig 27 this new

model has the capability to predict the viscosity at low temperature with a 2σ deviation of

061

There are many viscosity models for specific compositions and many of them

have better accuracy than the 37-parameter general model For example the viscosity

model for hydrous and anhydrous rhyolitic melt by Zhang et al (2003) has a 2σ

uncertainty of 036 logη units specific models for five individual anhydrous and hydrous

melt compositions by Giordano et al (2005) have very low 2σ uncertainties Therefore

although the use of this grand model is recommended some specific models have better

accuracy and should be used when appropriate

One unattractive feature of the preferred model is the large number of parameters

used This means the fitting parameters themselves are not well resolved However it

does not affect the accuracy of the calculation of viscosities as long as no extrapolation is

attempted That is the model should not be extrapolated to binary systems nor to

viscosities above 1015 Pamiddots nor to temperature below 573 K nor to H2O content above 5

wt for melts other than rhyolite (For rhyolite the highest H2O content in the viscosity

database is 123 wt) As mentioned earlier Eqn 12 predicts smooth and monotonic

variations of logη with mole fraction of oxides or temperature Although it is desirable to

develop a model with a smaller number of fitting parameters the drawback of many

39

2

4

6

8

10

12

14

2 4 6 8 10 12 14

Cal

cula

ted

logη

(η in

Pasdot

s)

Measured logη (η in Pasdots)

Fig 27 The predictions of Eqn 12 Data sources filled symbols Whittington et al (2004) open symbols Dingwell et al (2000)

40

fitting parameters should not prevent the use of Eqn 12 in calculating viscosity of natural

silicate melts in a wide range of applications such as volcanic eruption dynamics as well

as other magmatic processes For example the viscosity model of Bottinga and Weill

(1972) has 285 fitting parameters for anhydrous melts at high temperatures and it was

widely applied Eqn 12 is easy to include in a software program or in a spreadsheet

program Using it to calculate viscosities of all natural silicate melts is recommended

Other applications of the viscosity model include (1) estimation of glass transition

temperature of any natural silicate melt given cooling rate (Dingwell and Webb 1990

Dingwell et al 2004 Giordano et al 2005) and (2) estimation of cooling rate of any

natural hydrous silicate glass based on apparent equilibrium temperature from H2O

speciation (Dingwell and Webb 1990 Zhang 1994 Zhang et al 2000 2003)

Even though this viscosity model can reproduce the entire viscosity database to a

better accuracy and for a greater range of compositions than previous models the

uncertainty in reproducing the viscosity data is still larger than the experimental data

uncertainty which is usually 01 logη units or less Hence there is still much room for

improvement The most important improvement might come from the development of a

better functional equation to describe viscosity dependence on temperature pressure and

composition For example new models adopted a different functional form of viscosity

A second improvement might derive from consideration of the effect of ferric and ferrous

iron which requires knowledge of experimental conditions under which the glasses were

prepared for the low-temperature viscosity measurements A third improvement might

arise from improved quantification of the effect of H2O on viscosity both in terms of

accurate determination of H2O for reported viscosity data and in terms of the functional

41

form used to handle the dependence of viscosity on H2O content Specifically in the

future every viscosity data should be accompanied by H2O content and other

concentrations simply describing a melt as dry is not good enough A fourth

improvement might originate from the incorporation of the effect of CO2 and other

volatile components in the melt So far the effect of CO2 on the viscosity of silicate melts

has only been carried out in several synthetic melts (Lange 1994 Bourgue and Richet

2001) A fifth improvement might stem from the incorporation of the pressure effect

(Persikov 1998) New experimental viscosity data are needed especially at high

pressures at low temperatures for melts with well-characterized ferricferrous ratios and

for melts with various and well-characterized volatile (H2O and CO2) concentrations

42

REFERENCES

Adam G and Gibbs JH (1965) On the temperature dependence of cooperative relaxation

properties in glass-forming liquids J Chem Phys 43 139-146

Alidibirov M Dingwell DB Stevenson RJ Hess K-U Webb SL and Zinke J

(1997) Physical properties of the 1980 Mount St Helens cryptodome magma Bull

Volcanol 59 103-111

Ammar MM El-Badry Kh and Gharib S (1977) Viscous properties of some alkali

silicate glasses in the annealing range Egypt J Phys 8 1-8

Avramov I (1998) Viscosity of glassforming melts Glastech Ber 71C 198-203

Bockris J OrsquoM Mackenzie JD and Kitchener JA (1955) Viscous flow in silica and

binary liquid silicates Trans Faraday Soc 51 1734-1748

Bottinga Y and Weill DF (1972) The viscosity of magmatic silicate liquids a model for

calculation Am J Sci 272 438-475

Bourgue E and Richet P (2001) The effects of dissolved CO2 on the density and

viscosity of silicate melts a preliminary study Earth Planet Sci Lett 193 57-68

Bruckner R (1983) Structure and properties of silicate melts Bull Mineacuteral 106 9-22

Brush SG (1962) Theories of liquid viscosity Chem Rev 62 513-548

Burnham CW (1964) Viscosity of a H2O rich pegmatite melt at high pressure (abstract)

Geol Soc Am Special Paper 76 26

Dingwell DB and Virgo D (1987) The effect of oxidation state on the viscosity of melts

in the system Na2O-FeO-Fe2O3-SiO2 Geochim Cosmochim Acta 51 195-205

Dingwell D B and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

43

Dingwell DB Courtial P Giordano D and Nichols ARL (2004) Viscosity of

peridotite liquid Earth Planet Sci Lett 226 127-138

Dingwell DB Hess K-U and Romano C (1998a) Extremely fluid behavior of hydrous

peralkaline rhyolites Earth Planet Sci Lett 158 31-38

Dingwell DB Hess K-U and Romano C (1998b) Viscosity data for hydrous

peraluminous granitic melts Comparison with a metaluminous model Am

Mineral 83 236-239

Dinwell DB Hess K-U and Romano C (2000) Viscosities of granitic (sensu lato)

melts Influence of the anorthite component Am Mineral 85 1342-1348

Dingwell DB Knoche R and Webb SL (1992) The effect of B2O3 on the viscosity of

haplogranitic liquids Am Mineral 77 457-461

Dingwell DB Romano C and Hess K-U (1996) The effect of water on the viscosity of

a haplogranitic melt under P-T-X conditions relevant to volcanism Contrib

Mineral Petrol 124 19-28

Dorfman A Hess K-U and Dingwell D (1996) Centrifuge-assisted falling-sphere

viscometry Eur J Mineral 8 507-514

Dunn T and Scarfe CM (1986) Variation of the chemical diffusivity of oxygen and

viscosity of an andesite melt with pressure at constant temperature Chem Geol 54

203-215

Friedman I Long W and Smith RL (1963) Viscosity and water content of rhyolitic

glass J Geophys Res 68 6523-6535

Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses J Am

Ceram Soc 8 339-355

44

Ghiorso MS Carmichael ISE Rivers ML and Sack RO (1983) The Gibbs free

energy of mixing of natural silicate liquids an expanded regular solution

approximation for the calculation of magmatic intensive variables Contrib

Mineral Petrol 84 107-145

Ghiorso MS Hirschmann MM Reiners PW and Kress VC III (2002) The pMELTS

A revision of MELTS for improved calculation of phase relations and major

element partitioning related to partial melting of the mantle to 3 GPa Geochem

Geophys Geosys 3 1010292001GC000217

Giordano D and Dingwell DB (2003a) Non-Arrhenian multicomponent melt viscosity

a model Earth Planet Sci Lett 208 337-349

Giordano D and Dingwell DB (2003b) Viscosity of hydrous Etna basalt implications

for Plinian-style basaltic eruptions Bull Volcanol 65 8-14

Giordano D Dingwell DB and Romano C (2000) Viscosity of a Teide phonolite in the

welding interval J Volcanol Geotherm Res 103 239-245

Giordano D Nichols ARL and Dingwell DB (2005) Glass transition temperatures of

natural hydrous melts a relationship with shear viscosity and implications for the

welding process J Volcanol Geotherm Res 142 105-118

Giordano D Romano C Papale P and Dingwell DB (2004) The viscosity of trachytes

and comparison with basalts phonolites and rhyolites Chem Geol 213 49-61

Goto A Oshima H and Nishida Y (1997) Empirical method of calculating the viscosity

of peraluminous silicate melts at high temperatures J Volcanol Geotherm Res 76

319-327

45

Goto A Taniguchi H and Kitakaze A (2005) Viscosity measurements of hydrous

rhyolitic melts using the fiber elongation method Bull Volcanol 67 590-596

Gottsmann J Giordano D and Dingwell DB (2002) Predicting shear viscosity during

volcanic processes at the glass transition a calorimetric calibration Earth Planet

Sci Lett 198 417-427

Hess K-U and Dingwell DB (1996) Viscosities of hydrous leucogranitic melts A non-

Arrhenian model Am Mineral 81 1297-1300

Hess K-U Dingwell DB Gennaro C and Mincione V (2001) Viscosity-temperature

behavior of dry melts in the Qz-Ab-Or system Chem Geol 174 133-142

Hess K-U Dingwell DB and Webb SL (1995) The influence of excess alkalis on the

viscosity of a haplogranitic melt Am Mineral 80 297-304

Hess KU Dingwell DB and Webb SL (1996) The influence of alkaline-earth oxides

(BeO MgO CaO SrO BaO) on the viscosity of a haplogranitic melt systematics

of non-Arrhenian behaviour Eur J Mineral 8 371-381

Hummel W and Arndt J (1985) Variation of viscosity with temperature and composition

in the plagioclase system Contrib Mineral Petrol 90 83-92

Kozu S and Kani K (1944) Viscosity measurements of the ternary system diopside-

albite-anorthite at high temperatures Bull Am Ceram Soc 23 377-378

Kushiro I Yoder HSJr and Mysen BO (1976) Viscosities of basalt and andesite melts

at high pressures J Geophys Res 81 6351-6356

Lange RA (1994) The effect of H2O CO2 and F on the density and viscosity of silicate

melts Rev Mineral 30 331-360

46

Lange RA (1997) A revised model for the density and thermal expansivity of K2O-

Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K extension to crustal

magmatic temperatures Contrib Mineral Petrol 130 1-11

Lange RA and Carmichael ISE (1987) Densities of Na2O-K2O-CaO-MgO-FeO-

Fe2O3-Al2O3-TiO2-SiO2 liquids new measurements and derived partial molar

properties Geochim Cosmochim Acta 53 2195-2204

Le Bas MJ Le Maitre RW Streckeisen A and Zanettin B (1986) A chemical

classification of volcanic rocks based on the total alkali-silica diagram J Petrol

27 745-750

Liebske C Behrens H Holtz F and Lange RA (2003) The influence of pressure and

composition on the viscosity of andesitic melts Geochim Cosmochim Acta 67

473-485

Lillie HR (1939) High-temperature viscosities of soda-silica glasses J Am Ceram Soc

22 367-374

Mackenzie JD (1957) The discrete ion theory and viscous flow in liquid silicates Trans

Faraday Soc 53 1488-1493

Neuville DR and Richet P (1991) Viscosity and mixing in molten (Ca Mg) pyroxenes

and garnets Geochim Cosmochim Acta 55 1011-1019

Neuville DR Courtial P Dingwell DB and Richet P (1993) Thermodynamic and

rheological properties of rhyolite and andesite melts Contrib Mineral Petrol 113

572-581

Persikov ES Epelrsquobaum MB and Bukhtiyarov PG (1986) The viscosity of a granite

magma interacting with an aqueous chloride fluid Geochem Intern 23 21-30

47

Persikov ES (1991) The viscosity of magmatic liquids Experiment generalized

patterns a model for calculation and prediction application Adv Phys Geochem

9 1-40

Persikov ES (1998) Viscosities of model and magmatic melts at the pressures and

temperatures of the Earthrsquos crust and upper mantle Russian Geol Geophys 39

1780-1792

Poole JP (1948) Viscositeacute a basse tempeacuterature des verres alcalino-silicateacutes Verres

Reacutefract 2 222-228

Richet P (1984) Viscosity and configurational entropy of silicate melts Geochim

Cosmochim Acta 48 471-483

Richet P Lejeune A-M Holtz F and Roux J (1996) Water and the viscosity of

andesite melts Chem Geol 128 185-197

Richet P Robie RA and Hemingway BS (1986) Low-temperature heat capacity of

diopside glass (CaMgSi2O6) a calorimetric test of the configurational-entropy

theory applied to the viscosity of liquid silicates Geochim Cosmochim Acta 50

1521-1533

Riebling EF (1966) Structure of sodium aluminosilicate melts containing at least 50

mole SiO2 at 1500 ˚C J Chem Phys 44 2857-2865

Romano C Giordano D Papale P Mincione V Dingwell DB and Rosi M (2003)

The dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean

Fields Chem Geol 202 23-38

48

Scaillet B Holtz F Pichavant M and Schmidt M (1996) Viscosity of Himalayan

leucogranites Implication for mechanisms of granitic magma ascent J Geophys

Res 101 27691-27699

Scarfe CM and Cronin DJ (1986) Viscosity-temperature relationships at 1 atm in the

system diopside-albite Am Mineral 71 767-771

Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural

relaxation J Am Ceram Soc 67 504-511

Schulze F Behrens H Holtz F Roux J and Johannes W (1996) The influence of H2O

on the viscosity of a haplogranitic melt Am Mineral 81 1155-1165

Shartsis L Spinner S and Capps W (1952) Density expansivity and viscosity of

molten alkali silicates J Am Ceram Soc 35 155-160

Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature

range 700deg to 900degC J Geophys Res 68 1512-1520

Shaw HR (1972) Viscosities of magmatic silicate liquids an empirical method of

prediction Am J Sci 272 870-893

Stein DJ and Spera FJ (1993) Experimental rheometry of melts and supercolled liquids

in the system NaAlSiO4-SiO2 Implications for structure and dynamics Am

Mineral 78 710-723

Stein DJ and Spera FJ (2002) Shear viscosity of rhyolite-vaporemulsions at magmatic

temperatures by concentric cylinder rheometry J Volcanol Geotherm Res 113

243-258

Stevenson RJ Bagdassarov NS and Dingwell DB (1998) The influence of trace

amounts of water on the viscosity of rhyolites Bull Volcanol 60 89-97

49

Stevenson RJ Dingwell DB Webb SL and Sharp TG (1996) Viscosity of microlite-

bearing rhyolitic obsidians an experimental study Bull Volcanol 58 298-309

Stolper E (1982) The speciation of water in silicate melts Geochim Cosmochim Acta

46 2609-2620

Tammann G and Hesse W (1926) Die abhaumlngigkeit der viscositaumlt von der temperatur bei

unterkuumlhlten fluumlssigkeiten Z Anorg Allg Chem 156 245-257

Taylor NW and Dear PS (1937) Elastic and viscous properties of several soda-silica

glasses in the annealing range of temperature J Am Ceram Soc 20 296-304

Taylor NW and Doran RF (1941) Elastic and viscous properties of several potash-

silica glasses in the annealing range of temperature J Am Ceram Soc 24 103-

109

Taylor TD and Rindone GE (1970) Properties of soda aluminosilicate glasses V low-

temperature viscosities J Am Ceram Soc 53 692-695

Toplis MJ Dingwell DB and Libourel G (1994) The effect of phosphorus on the iron

redox ratio viscosity and density of an envolved ferro-basalt Contrib Mineral

Petrol 117 293-304

Urbain G Bottinga Y and Richet P (1982) Viscosity of liquid silica silicates and

alumino-silicates Geochim Cosmochim Acta 46 1061-1072

Whittington A Richet P and Holtz F (2000) Water and the viscosity of depolymerized

aluminosilicate melts Geochim Cosmochim Acta 64 3725-3736

Whittington A Richet P and Holtz F (2001) The viscosity of hydrous phonolites and

trachytes Chem Geol 174 209-223

50

Whittington A Richet P Behrens H Holtz F and Scaillet B (2004) Experimental

temperature-X(H2O)-viscosity relationship for leucogranites and comparison with

synthetic silicic liquids Tran Royal Soc Edinburgh Earth Sci 95 59-71

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth Planet

Sci Lett 122 373-391

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

51

CHAPTER III

PRESSURE DEPENDENCE OF THE SPECIATION OF DISSOLVED WATER IN RHYOLITIC MELTS

ABSTRACT

Water speciation in rhyolitic melts with dissolved water ranging from 08 to 4

wt under high pressure was investigated Samples were heated in a piston-cylinder

apparatus at 624-1027 K and 094-283 GPa for sufficient time to equilibrate hydrous

species (molecular H2O and hydroxyl group H2Om + O = 2OH) in the melts and then

quenched roughly isobarically Concentrations of two hydrous species in the quenched

glasses were measured with Fourier transform infrared (FTIR) spectroscopy For samples

with total water content less than 27 wt the equilibrium constant is independent of

total H2O concentration Incorporating samples with higher water contents the

equilibrium constant depends on total H2O content and a regular solution model is used

to describe the dependence The equilibrium constant changes nonlinearly with pressure

for samples with a given water content at a given temperature The equilibrium constant

does not change much from ambient pressure to 1 GPa but it increases significantly from

1 to 3 GPa In other words more molecular H2O reacts to form hydroxyl groups as

pressure increases from 1 GPa which is consistent with breakage of tetrahedral

aluminosilicate units due to compression of the melt induced by high pressure The effect

52

of 19 GPa (from 094 to 283 GPa) on the equilibrium constant at 873 K is equivalent to

a temperature effect of 51 K (from 873 K to 924 K) at 094 GPa The results can be used

to evaluate the role of speciation in water diffusion to estimate the apparent equilibrium

temperature and to infer the viscosity of hydrous rhyolitic melts under high pressure

1 INTRODUCTION

The nature of dissolved water in silicate melt has received considerable attention

(eg Goranson 1938 Wasserburg 1957 Shaw 1964 Burnham 1975 Stolper 1982ab

McMillan 1994 Zhang 1999 Zhang et al 2007) As the most abundant volatile

component dissolved in terrestrial silicate melts dissolved water in melts plays an

important role in igneous processes Water can alter the structure of silicate melts hence

significantly change their physical and chemical properties such as solidusliquidus

temperatures (eg Tuttle and Bowen 1958) viscosity (eg Shaw 1972 Hui and Zhang

2007) crystal nucleation rates (eg Davis et al 1997) chemical diffusion (eg Watson

1991 Behrens and Zhang 2001) and oxygen ldquoselfrdquo diffusion (eg Zhang et al 1991a

Behrens et al 2007) Some of these effects are related to the speciation reaction below

(Stolper 1982ab)

H2Om + O = 2OH (1)

where H2Om denotes dissolved H2O molecules O denotes anhydrous oxygen and OH

denotes hydroxyl groups in silicate melts Total H2O content will be denoted as H2Ot

The equilibrium and kinetics of the above speciation reaction in rhyolitic melt has been

extensively studied (Stolper 1982a b Zhang et al 1991a 1995 1997b 2003 Ihinger et

al 1999 Nowak and Behrens 2001) Two debates have occurred about speciation

53

studies (see reviews by Zhang 1999 Behrens and Nowak 2003 Zhang et al 2007) The

early debate on whether species concentrations can be quenched from high temperature

(such as 1100 K) has been settled and the conclusion is that species concentrations will

be altered during quench if the initial temperature is above the glass transition

temperature for the given quench rate (Dingwell and Webb 1990) The later debate on

quenched versus in situ speciation studies has also been resolved and the conclusion is

that species concentrations can be preserved by rapid quench from intermediate

experimental temperatures (such as 800 K depending on H2Ot and quench rate) below

the glass transition temperature for the given quench rate (Withers et al 1999 Nowak

and Behrens 2001) The speciation data not only provide an understanding of the

detailed dissolution mechanism of H2O in melts but also can be applied to understand

H2O solubility and diffusivity in silicate melts and to infer viscosity of hydrous melts

Previous experimental studies mostly investigated H2O speciation at pressures

below 1 GPa This paper extends the experimental range to higher pressures The new

data reported here span 094-283 GPa 624-1027 K and 08-40 wt H2Ot Combining

these data with previous results (Ihinger et al 1999) a regular solution model is

developed to fit H2O speciation data from low to high pressures

2 EXPERIMENTAL METHODS

In this study hydrous rhyolitic glasses were held under a constant temperature

(623-1023 K nominal temperature) and pressure (1-3 GPa nominal pressure) in a piston

cylinder apparatus for sufficient duration (96 s to 3 days) for the two hydrous species in

the melt to reach equilibrium but short enough to avoid significant crystallization The

54

samples were then quenched to room temperature roughly isobarically Species

concentrations were measured by Fourier transform infrared (FTIR) spectroscopy at

ambient environment on the quenched glasses Based on various assessments (see

Introduction and Discussion) the quenched species concentrations reflect those at high

temperature and pressure

Starting materials include both natural hydrous rhyolitic glass (KS) and synthetic

hydrous rhyolitic glass prepared by hydration of natural rhyolitic glasses Sample KS is

from Mono Crater California Samples GMR+2 and GMR+4 were synthesized by adding

water to obsidian from Glass Mountain California The chemical compositions of these

two natural rhyolitic obsidians are listed in Table 31 Hydration of rhyolitic glasses was

implemented at 05 GPa by re-melting glass powders with added H2O at University of

Hannover Germany The obsidian glass powder and water were sealed in Au-Pd

capsules The capsules were placed in an internally heated pressure vessel (IHPV) and

heated to 1473 K at 05 GPa for overnight Sample assemblages were under H2O-

undersaturated running conditions during heating so that the loaded water was completely

dissolved in the melts Samples were then quenched isobarically The hydrated glasses

were crystal-free and bubble-free

The equilibrium experiments were performed in a piston cylinder apparatus at the

University of Michigan Glass fragments were prepared into cylinders with diameters of

about 2 mm and heights of about 2 mm Then a glass cylinder was placed into a graphite

capsule which was enclosed in crushable MgO as the inner pressure medium with

graphite heater outside and then BaCO3 cell as outer pressure medium The lid of the

graphite capsule was thin (about 05 mm thickness) to minimize the distance between the

55

Table 31 Chemical compositions (oxide wt) of KS and GMR rhyolite on an anhydrous basis

KS GMR SiO2 7594 7322 TiO2 009 031 Al2O3 1298 1408 FeO 098 145 MnO 005 005 MgO 003 026 CaO 056 131 Na2O 401 406 K2O 471 432 P2O5 029 007 H2Ot

076-090

189-223 in GMR+2338-417 in GMR+4

Total 9963 9913 Glass analyses were carried out with a CAMECA 5X-100 electron microprobe using a defocused beam (10 microm) with 1 nA current at the University of Michigan The oxide wt on an anhydrous basis is calculated by dividing the electron microprobe measured oxide concentration by 1-C where C is weight percent of H2Ot obtained by infrared spectroscopy

56

thermocouple tip and the sample The glass cylinder was placed in the center of the

graphite heater The running temperature was measured with a type-S thermocouple

(Pt90Rh10-Pt) or type-D thermocouple (Re3W97-Re25W75) The distance between

thermocouple tip and the center of the sample was typically about 13 mm after

experiments

A ldquopiston-outrdquo procedure was used to bring the assemblage to the final pressure at

373 K or 473 K The sample assemblage was relaxed at this temperature and at the

desired experimental pressure for at least 2 hours to close the gaps in the sample

assemblage After relaxation of the sample assemblage under pressure temperature was

increased at a rate of 200 K per minute to the designated temperature The sample stayed

at the desired temperature for sufficient time to ensure equilibrium for the interconversion

reaction between the two hydrous species in the sample but not too long enough for

appreciable crystallization No temperature overshoot occurred and temperature

fluctuation was le 2 K The sample was quenched roughly isobarically by turning off the

power and manually pumping to keep up the pressure The cooling rate is estimated to be

~ 100 Ks (Zhang et al 2000)

The thermal gradient in the piston cylinder was calibrated using water speciation

in rhyolitic glass (Zhang et al 1997a Ihinger et al 1999) Five experiments at 05 GPa

were carried out to calibrate the temperature distribution along the central axis of the

graphite heater The temperature distribution along the distance from the center of the

charge is shown in Fig 31 The equation for the temperature correction is

∆T asymp 221(T600)x2 (2)

where x is the distance between the thermocouple tip and the center of the charge in mm

57

0

10

20

30

40

50

0 1 2 3 4 5 6

sup2T (K

)

Distance from center (mm)

Fit by sup2 T=ax2

a=154 226 228 241 258

Temperature gradient in piston cylinder

T - 600degCTemperature correction

sup2 T = (T600)middotax2

where a = 221

Fig 31 Experimental results for temperature distribution in piston cylinder 2 at the University of Michigan laboratory calibrated using hydrous species equilibrium in rhyolite based on the speciation model of Zhang et al (1997a) Curves are best fittings of the different set of experimental data with different a values shown in the figure using Eqn 2

58

T is the temperature reading of the thermocouple in ˚C ∆T is the temperature difference

between the center and the thermocouple tip in ˚C and the constant 221 is the average of

5 experiments Therefore T+∆T is the temperature at the center of sample Depending on

the IR measurement position on the glass chip a correction of up to 6˚C was added to the

nominal temperature recorded by the thermocouple The pressure effect on emf of

different thermocouples results only in a small effect on temperature at le 3 GPa (Li et al

2003) and is ignored Overall the temperature uncertainty (2σ) for the series of

experiments in this study is estimated to be about 6 K

Pressure calibration of the piston-cylinder apparatus (Piston-cylinder 2 in the

laboratory) was conducted using two types of experiments the melting point of gold

(Akella and Kennedy 1971) at le 10 GPa and the quartz-coesite transition (eg Boyd

and England 1960 Kitahara and Kennedy 1964 Akella 1979 Mirwald and Massonne

1980 Bohlen and Boettcher 1982 Bose and Ganguly 1995) at 1073 K In the

calibration using gold melting temperature a gold wire connected the two legs of a type-

D thermocouple in a piston-cylinder At a well-maintained nominal pressure the

assemblage was gradually heated until melting of the Au wire (at which the thermocouple

signal was lost) The experiments show that the actual pressure is similar to the nominal

pressure within several percent Quartz-coesite reversal experiments at 1073 K were also

carried out with a starting material of a mixture of quartz (50 wt) and coesite (50 wt)

powder moistened to accelerate the reaction and sealed in Au capsule Here the

experimental procedure of Bose and Ganguly (1995) was followed The run product of

each experiment consists of only one pure crystalline phase as verified by X-ray

diffraction The experimental results are listed in Table 32a The calculated quartz-

59

coesite phase transition pressures at 1073 K from the literature are given in Table 32b

The literature data vary by 024 GPa reflecting difficulties in the experimental

calibrations Because these results do not completely agree with each other the most

recent experimental calibration (Bose and Ganguly 1995) was adopted to correct the

pressure in the piston cylinder apparatus by -6 (ie dividing the nominal pressure by

106) Some experiments were carried out using another piston cylinder for which the

correction is 5 based on another series of experiments to be reported in Ni and Zhang

(2008)

In order to further extend the pressure range some speciation experiments at 4-6

GPa were carried out in a multi-anvil apparatus at the University of Michigan However

except for one these charges crystallized extensively Because of the extreme difficulty

in quenching liquid to glass equilibrium speciation experiments were not continued at 4-

6 GPa

3 ANALYTICAL PROCEDURES

After quench each charge was embedded in epoxy resin Then it was polished on

both sides into a thin section along the cylindrical axis The thickness of the layer

polished away on each side of the charge was at least twice of the water diffusion

distance estimated using the diffusivity of Zhang and Behrens (2000) All run products

were analyzed for concentrations of H2Om and OH expressed in terms of H2O using an

FTIR Perkin-Elmer GX spectrometer at the University of Michigan An aperture of 01

mm in diameter was used to delimit the infrared beam size This aperture size allows

acquisition of high-quality IR spectra and evaluation of sample heterogeneity The

60

Table 32a Experimental results for pressure calibration using quartz-coesite transition at 1073 K

Nominal P (GPa)

t (h) Result

2896 72 quartz

2965 70 quartz

3034 70 quartz

3103 66 quartz

3137 70 coesite

3172 67 coesite

3378 66 coesite

Table 32b Literature data on quartz-coesite transition pressure at 1073 K

P (GPa) Reference

2846 Boyd amp England (1960)

2908 Kitahara amp Kennedy (1964)

3030 Akella (1979)

2920 Akella (1979)

2862 Mirwald amp Massonne (1980)

2792 Bohlen amp Boettcher (1982)

2935 Bose amp Ganguly (1995)

61

intensities (peak heights) of the absorption bands at 5230 cm-1 (A523) and 4520 cm-1

(A452) were measured The baseline was fit by flexicurve as shown in Zhang et al

(1997a)

Species (OH and H2Om) concentrations in terms of H2O were obtained from IR

band intensities according to Beerrsquos law Extensive effort has been made to calibrate the

IR method on hydrous rhyolitic glasses (eg Newman et al 1986 Zhang et al 1997a

Withers and Behrens 1999) The calibrations of Newman et al (1986) and Withers and

Behrens (1999) assumed constant molar absorptivities whereas Zhang et al (1997a)

considered the variability of the molar absorptivities With the calibration of Zhang et al

(1997a) the H2Ot content is highly reproducible for the same sample but with different

cooling rates but less so with other calibrations Furthermore the calibration of Zhang et

al (1997a) results in concentration-independent equilibrium constants of reaction (1) at

H2Ot le 27 wt However the calibration of Zhang et al (1997a) becomes increasingly

less accurate as H2Ot increases with error of 017 wt at 38 wt 039 wt at 56 wt

and 11 wt at 77 wt (Zhang and Behrens 2000) Because H2Ot in this work is less

than 42 wt and for consistency with the low-pressure speciation data of Ihinger et al

(1999) the molar absorptivities of Zhang et al (1997a) were adopted If a different

calibration is used there would be significant and systematic differences in species

concentrations and K Nonetheless the trends of how K depends on temperature and

pressure stay the same Furthermore as long as self-consistency is maintained the

equilibrium temperature (or the apparent equilibrium temperature) can be retrieved from

species concentrations accurately

62

Whether or not equilibrium is reached for reaction (1) in a particular experiment

the parameter

Q equiv(XOH

glass)2

XH2Om

glass XOglass

is used to monitor the change of proportions of OH and H2Om in a sample where Xiglass is

the measured mole fraction of species i in the quenched glass on a single oxygen basis

(Stolper 1982a b) and O denotes an anhydrous oxygen When the reaction duration is

long enough for the interconversion of these two hydrous species in the melt to reach

equilibrium and furthermore if this equilibrium state is retained in the quench process Q

will be equal to the equilibrium constant K

4 RESULTS AND DISCUSSION

41 SPECIES CONCENTRATIONS AND EQUILIBRIUM CONSTANTS

The concentrations of H2Om and OH in all quenched glasses calculated using the

calibration of Zhang et al (1997a) are listed in Table 33 The actual IR absorbance data

are also reported because there may be further improvement in the IR calibration The

equilibrium constants are listed in Table 33 and plotted as a function of 1000T in Fig

32

The uncertainty in each IR band intensity is about 1 relative leading to an error

of 0022 in lnK not accounting for systematic uncertainty of the calibration The

uncertainty in thickness measurement is about 2 microm which results in a negligible

increase in the overall uncertainty of lnK For high-pressure data there are additional

63

Table 33 The equilibrium speciation of water in rhyolitic melts under various pressures

Measurement T$ P$ Time Abs Abs Thickness H2Ot H2Om OH X(H2Ot) X(H2Om) X(OH) 1000T lnK K GPa s 5200 4500 mm wt wt wt K-1 KS-1-21 927 094 600 00270 01034 0717 0844 0160 0684 00151 00029 00245 107873 -1538 KS-1-22 926 094 600 00278 01028 0713 0849 0166 0683 00152 00030 00245 108043 -1573 KS-1-23 926 094 600 00255 00998 0708 0819 0153 0666 00147 00027 00239 107938 -1545 KS-1-31 879 094 14400 00593 01999 1415 0845 0178 0666 00151 00032 00239 113736 -1695 KS-1-32 877 094 14400 00589 01989 1407 0845 0178 0667 00151 00032 00239 114041 -1693 KS-1-33 878 094 14400 00627 02065 1431 0869 0186 0683 00156 00033 00245 113925 -1691 KS-1-41 819 094 187200 00676 01833 1321 0868 0218 0650 00155 00039 00233 122117 -1945 KS-1-42 817 094 187200 00673 01805 1311 0863 0218 0644 00155 00039 00231 122410 -1966 KS-1-43 818 094 187200 00694 01857 1326 0880 0223 0657 00158 00040 00235 122228 -1946 GMR+2-1-11 828 094 600 01862 02472 1038 1964 0772 1192 00349 00137 00423 120769 -1977 GMR+2-1-12 827 094 600 01892 02480 1041 1974 0782 1192 00350 00139 00423 120907 -1991 GMR+2-1-13 826 094 600 01808 02449 1033 1940 0753 1187 00344 00134 00422 121022 -1960 GMR+2-1-21 777 094 600 02150 02467 1063 2014 0870 1144 00357 00154 00406 128775 -2180 GMR+2-1-22 778 094 600 02114 02467 1059 2010 0859 1151 00357 00152 00408 128497 -2155 GMR+2-1-23 778 094 600 02099 02451 1058 1997 0854 1143 00354 00152 00406 128515 -2163 GMR+2-1-31 725 094 183600 01824 01848 0885 1886 0886 1000 00335 00157 00355 137978 -2469 GMR+2-1-32 727 094 183600 01841 01873 0888 1904 0891 1012 00338 00158 00360 137634 -2452 GMR+2-1-33 726 094 183600 01868 01892 0888 1929 0905 1024 00343 00161 00364 137800 -2443 GMR+2-1-R11 776 094 720 01756 01913 0782 2180 0968 1212 00386 00172 00430 128916 -2166 GMR+2-1-R12 775 094 720 01742 01870 0773 2167 0972 1195 00384 00172 00424 129036 -2199 GMR+2-1-R13 776 094 720 01746 01903 0789 2146 0954 1193 00381 00169 00423 128916 -2186 GMR+4-1-21 726 094 10800 01375 00780 0243 4010 2485 1525 00701 00434 00533 137751 -2626 GMR+4-1-22 725 094 10800 01396 00807 0256 3893 2392 1501 00681 00418 00525 137846 -2621 GMR+4-1-23 725 094 10800 01315 00745 0236 3944 2447 1497 00689 00428 00523 137928 -2648 GMR+4-1-31 676 094 46800 02577 01364 0490 3575 2300 1276 00627 00403 00447 147921 -2914 GMR+4-1-32 675 094 46800 02586 01344 0482 3621 2348 1273 00635 00411 00446 148152 -2938 GMR+4-1-33 676 094 46800 02581 01368 0499 3515 2261 1255 00617 00397 00440 147982 -2931 GMR+4-1-41 626 094 261360 03017 01423 0573 3394 2298 1096 00596 00404 00385 159840 -3224 GMR+4-1-42 624 094 261360 03013 01414 0574 3375 2291 1084 00593 00402 00381 160157 -3242

64

GMR+4-1-43 625 094 261360 03012 01408 0568 3406 2315 1091 00598 00406 00383 159905 -3240 KS-2-11 926 189 600 00476 01838 1209 0894 0168 0727 00160 00030 00260 107938 -1459 KS-2-12 926 189 600 00475 01828 1208 0891 0167 0723 00159 00030 00259 108049 -1469 KS-2-13 926 189 600 00463 01806 1203 0880 0164 0716 00158 00029 00257 107968 -1466 KS-2-21 877 189 14400 00699 02340 1561 0904 0191 0713 00162 00034 00255 114018 -1625 KS-2-22 876 189 14400 00653 02264 1562 0864 0178 0687 00155 00032 00246 114156 -1633 KS-2-23 876 189 14400 00649 02264 1560 0865 0177 0688 00155 00032 00246 114176 -1625 KS-2-41 960 189 600 00419 01795 1189 0872 0150 0722 00156 00027 00259 104195 -1360 KS-2-42 959 189 600 00419 01795 1196 0866 0149 0717 00155 00027 00257 104320 -1368 KS-2-43 962 189 600 00415 01795 1198 0863 0147 0716 00155 00026 00256 103982 -1362 GMR+2-2-11 825 189 7200 01032 01397 0538 2153 0827 1325 00382 00147 00470 121199 -1829 GMR+2-2-12 826 189 7200 00992 01378 0536 2109 0797 1312 00374 00141 00465 121006 -1814 GMR+2-2-13 825 189 7200 00962 01329 0524 2080 0790 1289 00369 00140 00457 121179 -1841 GMR+2-2-21 777 189 86400 01633 02049 0850 2032 0827 1205 00361 00147 00428 128756 -2023 GMR+2-2-22 776 189 86400 01618 02020 0852 1998 0817 1181 00355 00145 00419 128904 -2053 GMR+2-2-23 776 189 86400 01607 02027 0852 1998 0812 1187 00355 00144 00421 128904 -2036 GMR+2-2-41 856 189 600 01450 02017 0757 2196 0826 1370 00389 00146 00486 116794 -1760 GMR+2-2-42 856 189 600 01461 02051 0759 2225 0830 1395 00394 00147 00494 116807 -1729 GMR+2-2-43 855 189 600 01468 02042 0759 2221 0834 1387 00394 00148 00491 116954 -1746 GMR+4-2-11 757 189 1260 02299 01444 0414 4165 2444 1721 00727 00426 00601 132182 -2361 GMR+4-2-12 756 189 1260 02228 01393 0403 4132 2432 1701 00721 00424 00594 132305 -2381 GMR+4-2-13 756 189 1260 02359 01500 0432 4117 2401 1716 00719 00419 00599 132297 -2351 GMR+4-2-21 726 189 14400 02950 01847 0575 3809 2249 1560 00667 00394 00546 137766 -2482 GMR+4-2-22 725 189 14400 02949 01838 0574 3804 2253 1552 00666 00394 00543 137956 -2494 GMR+4-2-23 726 189 14400 02918 01833 0578 3749 2212 1537 00656 00387 00538 137788 -2496 GMR+4-2-31 676 189 172800 04221 02261 0741 3920 2500 1420 00685 00437 00496 148015 -2778 GMR+4-2-32 675 189 172800 04178 02246 0737 3907 2488 1419 00683 00435 00496 148155 -2773 GMR+4-2-33 675 189 172800 04296 02279 0745 3953 2532 1421 00691 00443 00497 148070 -2788 KS-3-11 876 286 7200 00622 02310 1566 0870 0169 0701 00156 00030 00251 114211 -1539 KS-3-12 875 286 7200 00614 02297 1568 0863 0166 0696 00154 00030 00249 114288 -1540 KS-3-13 875 286 7200 00631 02318 1564 0877 0172 0705 00157 00031 00253 114248 -1543 KS-3-R11 877 283 14400 00349 01493 1117 0760 0133 0627 00136 00024 00225 114045 -1524 KS-3-R12 878 283 14400 00353 01499 1121 0762 0134 0628 00137 00024 00225 113841 -1532

65

KS-3-R13 877 283 14400 00357 01501 1118 0766 0136 0630 00137 00024 00226 114035 -1536 KS-3-21 977 286 600 00352 01785 1248 0799 0120 0680 00143 00021 00244 102327 -1259 KS-3-22 977 286 600 00355 01788 1248 0802 0121 0681 00144 00022 00244 102372 -1264 KS-3-23 977 286 600 00355 01785 1248 0800 0121 0679 00143 00022 00244 102347 -1269 KS-3-24 975 286 600 00348 01761 1251 0786 0118 0667 00141 00021 00239 102525 -1283 KS-3-31 926 286 600 00435 01998 1438 0785 0128 0657 00141 00023 00235 108042 -1399 KS-3-32 927 286 600 00431 01987 1439 0779 0127 0652 00140 00023 00234 107927 -1404 KS-3-33 926 286 600 00435 02005 1439 0787 0128 0659 00141 00023 00236 107982 -1391 KS-3-41 1027 286 96 00372 02101 1489 0776 0106 0670 00139 00019 00240 097390 -1168 KS-3-42 1026 286 96 00376 02105 1489 0779 0107 0671 00140 00019 00241 097456 -1174 KS-3-43 1026 286 96 00369 02093 1489 0772 0105 0667 00138 00019 00239 097456 -1168 KS-3-44 1026 286 96 00365 02082 1489 0767 0104 0663 00138 00019 00238 097490 -1170 GMR+2-3-11 876 283 600 01364 02250 0837 2102 0702 1400 00373 00124 00497 114103 -1554 GMR+2-3-12 875 283 600 01377 02250 0836 2111 0709 1402 00374 00126 00497 114243 -1563 GMR+2-3-13 876 283 600 01326 02220 0831 2078 0687 1391 00369 00122 00493 114191 -1547 GMR+2-3-21 825 283 7200 01509 02250 0845 2145 0769 1376 00380 00136 00488 121184 -1682 GMR+2-3-22 825 283 7200 02077 03063 1159 2134 0772 1362 00378 00137 00483 121149 -1706 GMR+2-3-23 825 283 7200 02067 03075 1162 2131 0766 1365 00378 00136 00484 121149 -1694 GMR+2-3-31 777 283 172800 02163 02836 1081 2202 0863 1339 00390 00153 00475 128707 -1851 GMR+2-3-32 777 283 172800 02174 02826 1082 2197 0866 1331 00389 00153 00472 128745 -1867 GMR+2-3-33 775 283 172800 02199 02841 1080 2220 0878 1342 00393 00156 00476 128972 -1864 GMR+4-3-11 776 283 960 02616 02005 0563 3871 2039 1833 00677 00357 00641 128814 -2055 GMR+4-3-12 775 283 960 02644 02014 0564 3894 2057 1837 00681 00360 00643 129041 -2059 GMR+4-3-13 776 283 960 02598 01991 0561 3857 2031 1825 00675 00355 00639 128818 -2060 GMR+4-3-31 726 283 21600 02769 01951 0580 3777 2092 1685 00661 00366 00590 137668 -2253 GMR+4-3-32 726 283 21600 02748 01930 0579 3745 2079 1666 00656 00364 00583 137835 -2271 GMR+4-3-33 726 283 21600 02763 01959 0589 3718 2054 1664 00651 00360 00583 137770 -2261 GMR+4-3-41 676 283 259200 03326 01961 0601 3999 2431 1568 00699 00425 00548 147929 -2547 GMR+4-3-42 675 283 259200 03337 01972 0602 4012 2435 1577 00701 00426 00551 148109 -2538 GMR+4-3-43 675 283 259200 03297 01955 0598 3995 2422 1574 00698 00423 00550 148041 -2536 KS-1b-11 973 00001 600 00191 00907 0611 0842 0133 0709 00151 00024 00254 102759 -1276 KS-1b-12 973 00001 600 00194 00907 0608 0849 0136 0713 00152 00024 00256 102759 -1287 KS-1b-13 973 00001 600 00190 00898 0606 0841 0134 0708 00151 00024 00253 102759 -1286

66

KS-1b-21 923 00001 600 00214 00959 0691 0787 0131 0655 00141 00024 00235 108325 -1425 KS-1b-22 923 00001 600 00206 00938 0685 0774 0128 0646 00139 00023 00231 108325 -1430 KS-1b-23 923 00001 600 00219 00966 0688 0800 0135 0664 00143 00024 00238 108325 -1427 KS-1b-R11 923 00001 7200 00402 01796 1292 0789 0132 0657 00141 00024 00235 108325 -1426 KS-1b-R12 923 00001 7200 00400 01794 1291 0788 0132 0657 00141 00024 00235 108325 -1423 KS-1b-R13 923 00001 7200 00402 01797 1292 0789 0132 0657 00141 00024 00236 108325 -1424 KS-1b-R21 923 00001 2400 00685 02875 1975 0839 0147 0692 00150 00026 00248 108325 -1430 KS-1b-R22 923 00001 2400 00685 02870 1976 0838 0147 0690 00150 00026 00247 108325 -1435 KS-1b-R23 923 00001 2400 00675 02846 1973 0830 0145 0685 00149 00026 00245 108325 -1438 KS-1b-31 873 00001 21600 00501 01763 1231 0851 0173 0678 00152 00031 00243 114528 -1632 KS-1b-32 873 00001 21600 00501 01766 1231 0852 0173 0679 00153 00031 00243 114528 -1628 KS-1b-33 873 00001 21600 00498 01757 1230 0848 0172 0676 00152 00031 00242 114528 -1633

Note $ T has been corrected using Eqn (2) P has been corrected based on pressure calibration Three or four points were measured by IR for each experimental sample they are listed as xxx1 2 3 or 4 These experiments are reversal runs (Fig 33)

67

-26

-24

-22

-2

-18

-16

-14

-12

-1

09 1 11 12 13 14 15

KSGMR+2GMR+4

00001 GPa

283 GPa

1000T

lnK

A

-28

-26

-24

-22

-2

-18

-16

-14

-12

1 11 12 13 14 15

KSGMR+2GMR+4

189 GPa

00001 GPa

1000T

lnK

B

-35

-3

-25

-2

-15

1 11 12 13 14 15 16 17

KSGMR+2GMR+4

lnK

1000T

00001 GPa

094 GPa

C

-28

-26

-24

-22

-2

-18

-16

-14

-12

1 11 12 13 14 15

KSIhinger et al 99

lnK

1000T

00001 GPaD

Fig 32 The temperature dependence of lnK at some pressures Water concentrations for samples KS (076-090 wt) and GMR+2 (189-223 wt) are less than 27 wt and speciation data on them overlap indicating that K is independent of H2Ot when water content is less than 27 wt The dashed reference line is the ideal mixing model for water content less than 27 wt at ambient pressure from Ihinger et al (1999) The solid lines are the best-fit linear regression results for the data showing that ideal solution model (Eqn 3) works well for lt 27 wt H2Ot (KS and GMR+2) The regression for GMR+4 was separated from that for other compositions and is different

68

errors in estimating the species concentrations such as density variation with pressure

Hence the uncertainty from the IR measurement in lnK is estimated to be003

42 ATTAINMENT AND RETENTION OF EQUILIBRIUM

In this section the attainment of equilibrium at the experimental temperature and

the retention during quench are examined In either of the following two scenarios the

measured species concentrations would not reflect those at equilibrium in other words Q

ne K (1) the duration for the reaction at the experimental temperature is not long enough

for it to reach equilibrium (attainment of equilibrium) or (2) species concentrations in the

melt are changed during isobarically quenching to room temperature (retention of

equilibrium)

To demonstrate the attainment of equilibrium reversal experiments have been

carried out under two sets of conditions (a GMR+2-1-R1 776 K 094 GPa and 216

wt H2Ot b KS-3-R1 877 K 283 GPa and 076 wt H2Ot Table 33) One

experiment in each reversal pair was first relaxed at a temperature above the reversal

experimental temperature and one below to obtain different Q values Hence each set of

the reversal experiments approached the same final value of Q from initially higher or

lower Q values (Fig 33) This final Q value is the equilibrium constant K These

experiments are informative for constraining the duration required for a sample to reach

equilibrium at this set of conditions Durations for all other experiments were estimated

from these experiments and from kinetic experiments under ambient pressure (Zhang et

al 1995 1997b 2000) the actual experimental duration was longer than that estimated

for reaching equilibrium at specific running condition

69

-2

-19

-18

-17

-16

-15

-14

0 5000 1 104 15 104

lnQ

time (s)

876 K 283 GPa

A

-24

-23

-22

-21

-2

-19

0 100 200 300 400 500 600 700 800time (s)

lnQ

777 K 094 GPa

B

Fig 33 Two sets of reversal experiments to examine the duration required to reach equilibrium Solid curves are schematic illustrations of Q evolution in different experiments (A) KS sample (B) GMR+2 sample The relaxation might be much faster than illustrated by the curves

70

The issue of whether or not the equilibrium state can be retained during quench

has received considerable attention during the last two decades (eg Dingwell and Webb

1990 Zhang et al 1991b 1995 Ihinger et al 1999 Withers et al 1999 Zhang 1999

Nowak and Behrens 2001 Xu and Zhang 2002 Behrens and Nowak 2003) As

reviewed in the Introduction the different sides have worked together and resolved the

debates the consensus is that species concentrations can be retained by quench if the

experimental temperature is not too high (such as le850 K depending on H2Ot see Table

33) so that it is below the glass transition temperature for the given quench rate and

pressure (Withers et al 1999 Behrens and Nowak 2003)

In summary for attainment of equilibrium the experimental temperature must be

high enough (such as 673 K depending on H2Ot and pressure see Table 33) For

retention of equilibrium species concentrations through quench the experimental

temperature must be low enough In other words the experimental temperature must

satisfy the conditions that for the time scale of the isothermal experiments the sample is

in the liquid state whereas for the time scale of quenching the sample is in the glass

state Hence there is a limited temperature window for a given H2Ot and pressure at

which equilibrium speciation can be obtained from quench experiments

43 EQUILIBRIUM CONSTANT AS A FUNCTION OF TEMPERATURE H2Ot

AND PRESSURE

Equilibrium speciation data are listed in Table 33 and results are plotted in Fig

32 as lnK versus 1000T As shown in Figs 32a 32b and 32c K is independent of

water content when H2Ot in the sample is less than 27 wt consistent with Zhang et al

71

(1997a) Some new experimental data at ambient pressure are also reported here to

extend the temperature coverage of Ihinger et al (1999) Other speciation data have been

obtained on rhyolitic or quasi-rhyolitic melts (eg Sowerby and Keppler 1999 Nowak

and Behrens 2001 Behrens and Nowak 2003) but they are based on different IR

calibrations (different molar absorptivities) and cannot be directly compared with the new

data The new 1-bar data are consistent with those of Ihinger et al (1999) as shown in

Fig 32d A simple ideal solution model (Eqn 3) can be used to describe speciation in the

rhyolitic melts with low water content (up to 27 wt H2O) at any given pressure

lnK = A +1000

TB (3)

where A and B are fitting parameters independent of chemical composition The fitting

results are shown in Figs 32 and 34a and fitting parameters at each pressure are listed in

Table 34 The high-pressure experiments show an increase of lnK with increasing

pressure systematically As shown in Fig 34a the effect of 189 GPa (from 094 to 283

GPa) on the equilibrium constant of the speciation reaction at 773 K is equivalent to that

of 67 K (from 773 K to 840 K) on the equilibrium constant at 094 GPa The enthalpy of

reaction (1) at a given pressure can be inferred from the slopes of the best-fitting lines in

Fig 34a ie from fitting parameter B As shown in Fig 34b enthalpy of reaction (1)

decreases nonlinearly with pressure from 2702 kJmol under ambient pressure to 1853

kJmol at 283 GPa (Fig 34b)

Although K for reaction (1) does not depend on H2Ot concentration for water

content less than 27 wt at higher water content (here ~ 4 wt H2Ot) it depends on

H2Ot content This result indicates either mixing between H2Om OH and O in reaction

72

18

20

22

24

26

28

0 05 1 15 2 25 3

∆H (K

Jm

ol)

P (GPa)

∆H=26975-07704P-07773P2

B

-25

-2

-15

-1

09 1 11 12 13 14 15

00001 GPa094 GPa189 GPa283 GPa

A

lnK

1000T (T in K)

7001100 1000 900 800

T (K)

change in ln K due to change in P

change in T

change in ln K due to change in T

Fig 34 (A) The dependence of K on temperature for samples with H2Ot lt27 wt at various pressures Data for 00001 GPa are from Ihinger et al (1999) and this work The curves are the best-fit linear regression results using Eqn 3 The arrow lines indicate changes in lnK and T respectively (B) The pressure dependence of enthalpy of reaction (1) for samples with H2Ot lt27 wt The solid line is the best-fit regression result with equation shown in the figure

73

(1) is non-ideal or the already complicated calibration of Zhang et al (1997a) to convert

IR band intensities to species concentrations is imperfect (Ihinger et al 1999)

In the absence of an unambiguous calibration of the molar absorptivities of two

hydrous species in high-water-content samples the simplest approximation beyond ideal

mixing of H2Om OH and O in hydrous silicate melt is a regular solution model Silver

and Stolper (1989) illustrated a way to extend the simple ideal mixing model to a regular

solution model adapted also by Silver et al (1990) Zhang et al (1991b) and Ihinger et

al (1999) The same formulation is adapted here

lnK = ln XOH2

XH2OmXO

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = A+1000

TB+C XH2Om

+ D XOH( ) (4)

where A B C and D are fitting parameters independent of H2Ot and their physical

meanings are shown in Silver and Stolper (1989) Values of these fitting parameters at

each pressure are listed in Table 34 The maximum differences for these equations to

reproduce experimental equilibrium temperature are also listed in Table 34 and they are

within 10 K at high pressures

Eqn 4 could be expanded to accommodate the dependence of K on temperature

pressure and water content if the fitting parameters A B C and D in Eqn 4 are assumed

to be functions of pressure As discussed above the dependence on pressure is not linear

After some trials the following formulation is found to fit all speciation data in rhyolitic

melt well

lnK = A0 +AP P( )+1000

T(B0 +BP P + B

P3

2P

32 ) +

⎝ ⎜

(C0 +CP P +CP

32P

32 )XH2Om

+ (D0 +DP P + DP

32P

32 )XOH

⎠ ⎟

(5)

74

Table 34 Fitting parameters for Eqns 3 4 and 6

lnK lnKrsquo

ideal mixing regular solution model regular solution model

A B A B C D ∆T (K) $ A B C D ∆T (K) $

00001 GPa 20616 -32495 18120 -30830 -74203 30437 183 27524 -28404 -12945 189

094 GPa 17636 -30599 13264 -26529 -53362 01706 79 22910 -24292 01720 -17996 77

189 GPa 14995 -27503 10359 -23199 -71853 09728 73 18976 -20068 -16630 86

283 GPa 10053 -22285 07611 -20211 -75335 18349 90 16609 -17348 -15492 102

Note Water content is less than 22 wt

$ Maximum temperature difference between experimental temperature and model predicted temperature New data reported here and literature data from Ihinger et al (1999) which include some speciation data at P le 100 MPa

75

where P is pressure in GPa T is temperature in K and X is mole fraction of species H2Om

or OH This formulation could reproduce all experimental data with a 2σ uncertainty of

0058 in lnK The best-fit parameters in Eqn 5 with 2σ errors are A0 = 18120 plusmn 01044

AP = -03832 plusmn 00418 B0 = -30830 plusmn 00796 BP = 02999 plusmn 00638 BP32 = 00507 plusmn

00386 C0 = -74203 plusmn 14953 CP = 50262 plusmn 14040 CP32 = -31271 plusmn 09076 D0 =

30437 plusmn 13731 DP = -54527 plusmn 19763 DP32 = 30464 plusmn 12441 The reproducibility of

experimental equilibrium temperature by Eqn 5 is shown in a histogram (Fig 35) which

is approximately a Gaussian distribution Fig 36 further shows how well K at some

water contents can be reproduced

44 RELATING ABSORBANCES DIRECTLY TO TEMPERATURE AND

PRESSURE

Estimating the apparent equilibrium temperature of hydrous rhyolite of a given

cooling rate for inferring viscosity is one of the most important applications of this work

(Zhang et al 2003 Zhang and Xu 2007) Owing to possible future improvement of

molar absorptivities of two hydrous species it is useful to recast speciation data directly

in terms of IR band intensities (Ihinger et al 1999 Liu et al 2004a) so that equilibrium

temperature or the apparent equilibrium temperature can be directly estimated from

infrared data Following Zhang et al (2000) K is defined below

K = A452( )2A523

where A is absorbance per mm sample thickness By analogy with the regular solution

model (Eqn 4) the following equation is used to relate K and A

76

0

10

20

30

40

50

60

-20 -10 0 10 20∆T (K)

Num

ber o

f mea

sure

men

ts

Fig 35 Histogram showing the distribution of differences between the experimental equilibrium temperature and predicted temperature by Eqn 5 Sources of data include Ihinger et al (1999) and this work

77

-24

-22

-2

-18

-16

-14

-12

773K873K973K923K823K

lnK

973 K

873 K

773 K

Š27 wt H2OtA

-32

-3

-28

-26

-24

-22

-2

-18

-16

0 05 1 15 2 25 3

lnK

P (GPa)

39 wt H2Ot

673 K

773 K

873 K

B

Fig 36 Pressure effect on lnK at some temperatures and water concentrations The curves are calculated from Eqn 5 Points are experimental data In (A) three curves are calculated at each temperature for H2Ot of 07 17 and 27 wt from top to bottom at each temperature In (B) the dashed curve means temperature is above the experimental temperature

78

lnK = lnA452( )2

A523= A +1000

TB +C A523 + D A452( ) (6)

The best-fit parameters for four different pressures are listed in Table 34 The differences

between experimental and predicted temperatures using Eqn 6 are also listed in Table

34 which are not much different from the regular solution model using species

concentrations (Eqn 4) A model was developed to directly relate K A T and P

analogous to Eqn 5 as follows

lnK = A0+APP( )+1000

T(B0+BPP + B

P3

2P

32 ) +

⎝ ⎜

(C0+CPP +CP

32P

32 )A523 + (D0+DPP + D

P3

2P

32 )A452

⎠ ⎟

(7)

where P is pressure in GPa T is temperature in K and A is absorbance per mm sample

thickness for species H2Om or OH This formulation reproduces all of the data with a 2σ

uncertainty of 0059 in lnK The best-fit parameters in Eqn 7 with 2σ errors are A0 =

27524 plusmn 00944 AP = -03890 plusmn 00395 B0 = -28404 plusmn 00809 BP = 03053 plusmn 00697

BP32 = 00531 plusmn 00433 CP = 03768 plusmn 01301 CP32 = -02261 plusmn 00836 D0 = -12945

plusmn 00893 DP = -09499 plusmn 04076 DP32 = 05121 plusmn 02573 Because Eqn 7 is

independent of molar absorptivity future improvement in molar absorptivities of these

bands will not affect the reproducibility of Eqn 7 It can reproduce experimental

temperature with a 2σ uncertainty of 13 K (similar to the reproducibility of Eqn 5 shown

in Fig 35) directly from measured absorbances

79

45 APPLICATIONS

Speciation plays an important role in H2O solubility (eg Silver et al 1990

Blank et al 1993 Zhang 1999) as well as diffusion (eg Zhang et al 1991ab Zhang

and Behrens 2000 Liu et al 2004b Zhang et al 2007) and crystal nucleation (eg

Davis et al 1997) Several models (Eqns 3-5) are provided to determine H2Om and OH

concentrations as functions of pressure temperature and H2Ot in rhyolitic melts Hence

the new results can be applied to model H2O diffusion quantify the dependence of

molecular H2O diffusivity on pressure and quantitatively understand the effect of

dissolved H2Ot on the nucleation and crystal growth in hydrous melts under high

pressure Furthermore information from this work may be useful in future models of

thermodynamic properties of hydrous silicate melts

Another application of the new results is to predict apparent equilibrium

temperature Tae (Zhang 1994) As discussed by Zhang (1994) Tae is one of the well-

defined parameters in measurements for any given cooling history and can be a good

indicator of cooling rate Because of negligible dependence of K on pressure when the

pressure is lt 1 GPa and because natural rhyolitic glasses general cool at nearly surface

pressures for naturally cooled hydrous rhyolitic glasses the equation at ambient pressure

(eg Eqn 7 in Ihinger et al 1999) is applicable to calculate apparent equilibrium

temperature For experimental glasses cooled at high pressures such as 2 GPa the

pressure effect must be considered Knowledge of Tae is critical to inferring viscosity

based on kinetic experiments of the hydrous species reaction (Zhang et al 2003 Zhang

and Xu 2007) since it is assumed that the viscosity at the apparent equilibrium

temperature is inversely proportional to the cooling rate (Dingwell and Webb 1990

80

Zhang et al 2003) Hence by conducting a controlled cooling rate experiment of a

hydrous rhyolitic melt under pressure after calculating Tae the viscosity at this

temperature (and pressure) can be estimated At present this is the only method to

estimate viscosity at P gt 1 GPa in the viscosity range of 109-1014 Pamiddots The application

for inferring viscosity is the main motivation for us to conduct this research Results from

this work are applied to infer viscosity at high pressure in Chapter IV

5 CONCLUSIONS

The equilibrium of the interconversion reaction between two dissolved water

species (H2Om and OH) was experimentally investigated as a function of pressure

(00001 094 189 and 283 GPa) temperature (624-1027 K) and H2O concentrations

(08 to 42 wt) The speciation data at total H2O content le 27 can be described by

an ideal mixing model consistent with previous results With inclusion of speciation data

at higher water contents one way to describe the speciation data is a regular solution

model The general speciation model (Eqn 5) constructed to accommodate the

dependence of H2O speciation in the rhyolitic melts on T-P-X can be used to predict

species concentrations at P le 283 GPa total H2O content le 42 wt and temperature of

624-1027 K Furthermore it can be used to calculate apparent equilibrium temperature

which can then be used to infer viscosity of hydrous rhyolitic melts under high pressure

81

REFERENCES

Akella J (1979) Quartz hArr coesite transition and the comparative friction measurements

in piston-cylinder apparatus using talc-alsimag-glass (TAG) and NaCl high-

pressure cells N Jb Miner Mh H5 217-224

Akella J and Kennedy GC (1971) Melting of gold silver and copper ndash proposal for a

new high-pressure calibration scale J Geophys Res 76 4969-4977

Behrens H and Nowak M (2003) Quantification of H2O speciation in silicate glasses

and melts by IR spectroscopy ndash in situ versus quench techniques Phase Trans 76

45-61

Behrens H and Zhang Y (2001) Ar diffusion in hydrous silicic melts implications for

volatile diffusion mechanisms and fractionation Earth Planet Sci Lett 192 363-

376

Behrens H Zhang Y Leschik M Wiedenbeck M Heide G and Frischat GH (2007)

Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts Earth

Planet Sci Lett 254 69-76

Blank JG Stolper EM and Carroll MR (1993) Solubilities of carbon dioxide and

water in rhyolitic melt at 850 ordmC and 750 bars Earth Planet Sci Lett 119 27-36

Bohlen SR and Boettcher AL (1982) The quartz hArr coesite transformation a precise

determination and the effects of other components J Geophys Res 87 7073-7078

Bose K and Ganguly J (1995) Quartz-coesite transition revisited reversed experimental

determination at 500-1200 ˚C and retrieved thermochemical properties Am

Mineral 80 231-238

82

Boyd FR and England JL (1960) The quartz-coesite transition J Geophys Res 65

749-756

Burnham CW (1975) Water and magmas a mixing model Geochim Cosmochim Acta

39 1077-1084

Davis MJ Ihinger PD and Lasaga AC (1997) The influence of water on nucleation

kinetics in silicate melt J Non-Cryst Solids 219 62-69

Dingwell DB and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

Goranson RW (1938) Silicate-water systems phase equilibria in the NaAlSi3O8-H2O

and KAlSi3O8-H2O systems at high temperatures and pressures Am J Sci 35-A

71-91

Hui H and Zhang Y (2007) Toward a general viscosity equation for natural anhydrous

and hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Ihinger PD Zhang Y and Stolper EM (1999) The speciation of dissolved water in

rhyolitic melt Geochim Cosmochim Acta 63 3567-3578

Kitahara S and Kennedy GC (1964) The quartz-coesite transition J Geophys Res 69

5395-5400

Li J Hadidiacos C Mao H Fei Y and Hemley RJ (2003) Behavior of thermocouples

under high pressure in a multi-anvil apparatus High Pressure Res 23 389-401

Liu Y Behrens H and Zhang Y (2004a) The speciation of dissolved H2O in dacitic

melt Am Mineral 89 277-284

Liu Y Zhang Y and Behrens H (2004b) H2O diffusion in dacitic melts Chem Geol

209 327-340

83

McMillan PF (1994) Water solubility and speciation models Rev Mineral 30 131-156

Mirwald PW and Massonne H-J (1980) The low-high quartz and quartz-coesite

transition to 40 kbar between 600˚ and 1600˚C and some reconnaissance data on the

effect of NaAlO2 compoenent on the low quartz-coesite transition J Geophys Res

85 6983-6990

Newman S Stolper EM and Epstein S (1986) Measurement of water in rhyolitic

glasses calibration of an infrared spectroscopic technique Am Mineral 71 1527-

1541

Ni H and Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high

pressure data Chem Geol Revised

Nowak M and Behrens H (2001) Water in rhyolitic magmas getting a grip on a slippery

problem Earth Planet Sci Lett 184 515-522

Shaw HR (1964) Theoretical solubility of H2O in silicate melts quasi-crystalline

models J Geol 72 601-617

Shaw HR (1972) Viscosities of magmatic silicate liquids an empirical method of

prediction Am J Sci 272 870-893

Silver LA and Stolper E (1989) Water in albitic glasses J Petrol 30 667-709

Silver LA Ihinger PD and Stolper E (1990) The influence of bulk composition on the

speciation of water in silicate glasses Contrib Mineral Petrol 104 142-162

Sowerby JR and Keppler H (1999) Water speciation in rhyolitic melt determined by in

situ infrared spectroscopy Am Mineral 84 1843-1849

Stolper EM (1982a) The speciation of water in silicate melts Geochim Cosmochim

Acta 46 2609-2620

Stolper EM (1982b) Water in silicate glasses an infrared spectroscopic study Contrib

Mineral Petrol 81 1-17

84

Tuttle OF and Bowen NL (1958) Origin of granite in the light of experimental studies

in the system NaAlSi3O8- KAlSi3O8- SiO2-H2O Geol Soc Am Memoir 74 1-153

Wasserburg GJ (1957) The effects of H2O in silicate systems J Geol 65 15-23

Watson EB (1991) Diffusion of dissolved CO2 and Cl in hydrous silicic to intermediate

magmas Geochim Cosmochim Acta 55 1897-1902

Withers AC and Behrens H (1999) Temperature-induced changes in the NIR spectra of

hydrous albitic and rhyolitic glasses between 300 and 100 K Phys Chem Minerals

27 119-132

Withers AC Zhang Y and Behrens H (1999) Reconciliation of experimental results on

H2O speciation in rhyolitic glass using in situ and quenching techniques Earth

Planet Sci Lett 173 343-349

Xu Z and Zhang Y (2002) Quench rates in air water and liquid nitrogen and inference

of temperature in volcanic eruption columns Earth Planet Sci Lett 200 315-330

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth Planet

Sci Lett 122 373-391

Zhang Y (1999) H2O in rhyolitic glasses and melts measurement speciation solubility

and diffusion Rev Geophys 37 493-516

Zhang Y and Behrens H (2000) H2O diffusion in rhyolitic melts and glasses Chem

Geol 169 243-262

Zhang Y Belcher R Ihinger PD Wang L Xu Z and Newman S (1997a) New

calibration of infrared measurement of dissolved water in rhyolitic glasses

Geochim Cosmochim Acta 61 3089-3100

85

Zhang Y Jenkins J and Xu Z (1997b) Kinetics of the reaction H2O + O = 2OH in

rhyolitic glasses upon cooling geospeedometry and comparison with glass

transition Geochim Cosmochim Acta 61 2167-2173

Zhang Y Solper EM and Ihinger PD (1995) Kinetics of reaction H2O + O = 2OH in

rhyolitic glasses preliminary results Am Mineral 80 593-612

Zhang Y Stolper EM and Wasserburg GJ (1991a) Diffusion of a multi-species

component and its role in oxygen and water transport in silicates Earth Planet Sci

Lett 103 228-240

Zhang Y Stolper EM and Wasserburg GJ (1991b) Diffusion of water in rhyolitic

glasses Geochim Cosmochim Acta 55 441-456

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

Improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

Zhang Y Xu Z Zhu M and Wang H (2007) Silicate melt properties and volcanic

eruptions Rev Geophys doi1010292006RG000216

86

CHAPTER IV

PRESSURE DEPENDENCE OF VISCOSITY OF RHYOLITIC MELTS

ABSTRACT

Viscosity of silicate melts is a critical property for understanding volcanic and

igneous processes in the Earth Two methods were used to study the pressure effect on

the viscosity of rhyolitic melts hydrous species reaction viscometer in a piston cylinder

and parallel plate creep viscometer in an internally-heated pressure vessel (IHPV) With

the hydrous species reaction viscometer viscosities of hydrous rhyolitic melts were

inferred based on the kinetics of hydrous species reaction in the melt upon cooling (ie

the equivalence of rheologically defined glass transition temperature and chemically

defined apparent equilibrium temperature) The cooling experiments were carried out in a

piston cylinder apparatus using hydrous rhyolitic samples with 08 to 4 wt water at

pressures up to 283 GPa Cooling rates of the experiments varied from 01 Ks to 100

Ks hence the range of viscosity inferred from this method is 3 orders of magnitude The

data from this method show that viscosity increases with increasing pressure from 1 GPa

to 3 GPa for hydrous rhyolitic melts with water content ge 08 wt Viscosity of rhyolitic

melt with 013 wt water was also measured using parallel plate viscometer at pressures

87

02 and 04 GPa in an IHPV The data show that viscosity of rhyolitic melt with 013

wt water decreaseswith increasing pressure Combining new data with literature data a

viscosity model of rhyolitic melts in the high viscosity range as a function of temperature

pressure and water content is developed

1 INTRODUCTION

Viscosity of silicate melts is a property of fundamental importance in Earth

sciences Viscosities of silicate melts under ambient pressure have been studied

extensively (eg Shaw 1972 Hui and Zhang 2007) Several experimental techniques

are available to measure viscosity directly (1) in the low viscosity range (01 to 105 Pamiddots)

concentric cylinder viscometer (eg Dingwell 1986) and falling sphere technique (eg

Shaw 1963) (2) in the high viscosity range (108 to 1014 Pamiddots) micropenetration method

(eg Hummel and Arndt 1985) parallel plate creep viscometer (eg Neuville and

Richet 1991) and fiber elongation method (eg Lillie 1931) Few viscosity data are in

the intermediate viscosity range of 105 to 108 Pamiddots (Dorfman et al 1996 1997) because

(1) the methods applicable to low viscosity cannot be used because rotation rate or falling

rate would be too slow (2) the methods applicable to high viscosities cannot be used

because the melt would flow too easily and (3) many silicate melts crystallize rapidly in

this viscosity range In most cases geologists interpolated viscosity from models

constructed using experimental data in the high and low viscosity ranges (eg Rust and

Cashman 2007)

Some of these viscometers have been adapted to high-pressure apparatus

(Dingwell 1998) In the low viscosity range viscosity data at high pressure (ge 1 GPa) are

88

obtainable with the falling sphere technique (eg Kushiro et al 1976 Liebske et al

2005) For example in situ falling sphere technique in the high-pressure apparatus such

as multi-anvil with assistance of synchrotron can reach pressures up to 13 GPa (eg

Reid et al 2003 Liebske et al 2005) On the other hand in the high viscosity range no

viscosity data exist at pressures ge 1 GPa The practical reason is the limit of the current

experimental methods For example the maximum pressure that traditional viscometers

could reach is 04 GPa (eg Behrens and Schulze 2003) Based on the equivalence of

enthalpy relaxation and viscous relaxation Rosenhauer et al (1979) used high-pressure

differential thermal analysis experiments in an internally-heated pressure vessel (IHPV)

to infer viscosities of diopside albite and trisilicate at glass transition temperatures at

elevated pressures up to 07 GPa

Many geologic processes related to silicate melts deal with elevated pressures

The pressure scales of these processes may vary from 0-200 MPa for volcanic eruptions

to a couple of GPa for crustal anatexis and mantle melting to hundreds of GPa for core-

mantle segregation This extreme range of magnitudes requires the experimental

approach of studying melt viscosities to explore a very broad spectrum of measurement

principles and technologies In this report the hydrous species viscometer is developed

for high-pressure viscosity determination

Rosenhauer et al (1979) assumed the equivalence of enthalpy relaxation and

viscous relaxation to infer viscosity Dingwell and Webb (1990) assumed the equivalence

between viscous relaxation and hydrous species equilibration (see below) Dingwell

(1998) discussed the inference of viscosity at high pressures from glass transition based

on volume relaxation enthalpy relaxation spectroscopic measurements (applied in this

89

study) and called them as ldquoone of the most important breakthroughs for the prospect of

obtaining high pressure viscosity datardquo Zhang et al (2003) and Zhang and Xu (2007)

applied the hydrous species viscometer (see section 21) to infer viscosity of hydrous

silicate melts at the glass transition temperature range This method has several

advantages and disadvantages The most important advantage here is that this method can

be adapted to high-pressure apparatus such as piston cylinder as far as glass can be

obtained by quench Because the method relies on the measurement of hydrous species

concentrations it is only applicable to hydrous silicate melts with ge 05 wt total H2O

but not to melts with less H2O With this method viscosity is inferred but not obtained

from direct measurement

In this study the hydrous species reaction viscometer was applied in a piston

cylinder to investigate viscosity of hydrous rhyolitic melts with water content from 08 to

4 wt at pressures up to 283 GPa This pressure range is aimed to cover rhyolitic

(granitic) melt generated at depth from field observations (eg Sylvester 1999) and

experimental studies (eg Rapp and Watson 1995) Furthermore as will be shown later

increasing pressure seems to have a significant effect on crystallization rate in rhyolitic

melts which seems to indicate that viscosity decreases significantly with increasing

pressure The large pressure coverage allows the evaluation of whether this is true

In addition to this new method the parallel-plate viscometer in an IHPV was also

used to directly measure viscosity of natural rhyolite from 02 GPa to 04 GPa

Combining the literature data at pressure le05 GPa a viscosity model is developed

accommodating the dependence of viscosity of rhyolitic melts on temperature pressure

and water content in the high viscosity range

90

2 EXPERIMENTAL AND ANALYTICAL METHODS

The pressure effect on melt viscosity was studied on rhyolitic melts with different

water content The concentrations of total water and hydrous species in the samples were

determined by FTIR (Fourier transform infrared spectroscopy) at the University of

Michigan following the procedure shown in Zhang et al (1997a) There are a few other

calibration methods in the literature (eg Newman et al 1986 Withers and Behrens

1999) The reason to use the calibration of Zhang et al (1997a) here is to be consistent

with the speciation study in Hui et al (2008) because their study is used to calculate the

apparent equilibrium temperature from concentrations of hydrous species retained in the

quenched glass

Starting materials include both natural rhyolitic glasses (EDF and KS) and

synthetic hydrous rhyolitic glasses prepared by hydration of natural rhyolitic glass

(GMR) Sample EDF is from Erevan Dry Fountain Armenia Sample KS is from Mono

Crater California Samples GMR+2 and GMR+4 were synthesized by adding water to a

natural obsidian (GMR) from Glass Mountain California The chemical compositions of

the samples are listed in Table 41 Hydration of rhyolitic glasses was implemented at

1473 K 05 GPa by re-melting glass powder with added H2O at University of Hannover

(Hui et al 2008) The hydrated glasses are crystal free and bubble free

21 HYDROUS SPECIES REACTION VISCOMETER

It is well known that water is present in the silicate melts as at least two species

molecular H2O (H2Om) and hydroxyl group (OH) (Stolper 1982ab) The species

reaction in the melts is

91

Table 41 Chemical compositions (oxide wt) of KS GMR and EDF rhyolite on anhydrous basis

KS GMR EDF SiO2 7594 7322 7678 TiO2 009 031 010 Al2O3 1298 1408 1277 FeO 098 145 052 MnO 005 005 009 MgO 003 026 007 CaO 056 131 056 Na2O 401 406 408 K2O 471 432 455 P2O5 029 007 - Total 9963 9913 9967

H2O 075-090

189-216 in GMR+2 354-420 in GMR+4 013

ref 1 2 1 Hui et al 2008 2 Behrens et al 2007

92

H2Om + O = 2OH (1)

where O is anhydrous bridging oxygen in the melt Total H2O content is denoted as H2Ot

The equilibrium constant K of Reaction (1) is defined as

K =XOH

2

XH2OmXO

(2)

where X means activity approximated by mole fraction The relationship between

equilibrium constant K and temperature (equilibrium line in Fig 41) can be expressed by

a regular solution model as (Silver et al 1990 Ihinger et al 1999)

lnK = A +1000

TB + CXH2Om

+ DXOH( ) (3)

where T is temperature in K and A B C and D are fitting parameters Hui et al (2008)

estimated these parameters for rhyolitic melts at high pressures During cooling at a

certain low temperature the concentrations of these two hydrous species in the melt start

to deviate from the equilibrium state In Fig 41 this is shown as curves off the straight

line (the equilibrium line) When temperature becomes too low to change species

concentrations water speciation is frozen in the melt as indicated by the horizontal

segments in Fig 41 The intersection of each horizontal line which is calculated from

the hydrous species concentrations retained in the quenched glass with the equilibrium

line defines the apparent equilibrium temperature (Zhang 1994) An equilibrated melt at

this temperature has the same water speciation as observed in the quenched glass at room

temperature This apparent equilibrium temperature depends on the cooling rate shown in

Fig 41 A higher apparent equilibrium temperature indicates a faster cooling rate

Glass transition temperature is defined rheologically as the temperature at which

viscosity is equal to 1012 Pasdots for a cooling rate of the order 10 Kmin As the cooling rate

93

ln

K

1T (K)TTT ae2ae1 e

equilibrium

rapid quench

slow quench

isothermal run rapid quench

Fig 41 Sketch of kinetics of Reaction (1) during cooling (Behrens and Nowak 2003) Tae is apparent equilibrium temperature which depends on the cooling rate Te is equilibrium temperature

94

varies the glass transition temperature also changes Based on theoretical considerations

and experimental results Moynihan et al (1976) showed the formula of dependence of

the glass transition temperature on the cooling rate

d logqd(1Tg)

= minus∆HR

(4)

where q is quench rate in Ks Tg is glass transition temperature in K R is the gas

constant and ∆H is the activation enthalpy for the relaxation times controlling the

structural enthalpy or volume relaxation which is also equal to the activation enthalpy of

the shear viscosity within experimental error Scherer (1984) generalized that viscosity is

reciprocal to the quench rate at the glass transition temperature Dingwell and Webb

(1990) advanced it further to infer viscosity from kinetics of hydrous species reaction

(ie Reaction 1) in the rhyolitic melt assuming the equivalence of the apparent

equilibrium temperature and glass transition temperature (ie time scale of Reaction 1 in

rhyolitic melt is the same as the structural relaxation time scale of rhyolitic melt because

both involve bridging oxygen in the melt structure of rhyolite) By comparing kinetic

data on Reaction (1) and viscosity data obtained by other methods (including from bubble

growth data of Liu et al 2000) Zhang et al (2003) formulated the equation below to

infer viscosity at the glass transition temperature (ie apparent equilibrium temperature)

for hydrous rhyolitic melts

logηTg= logηTae

=1145 minus logq (5)

where η is viscosity in Pasdots q is quench rate in Ks and 1145 is a constant Other

experimental studies have verified the equivalence of relaxation at the glass transition

temperature on viscosity volume and heat capacity (eg Sipp et al 1999 Toplis et al

95

2000) So the key in this method is to calculate the apparent equilibrium temperature for

a cooling experiment with known quench rate whereas viscosity at this temperature is

calculated from Eq (5)

All the cooling experiments were conducted in a piston cylinder A glass cylinder

with a diameter of about 2 mm and a height of about 2 mm was placed into a graphite

capsule which was enclosed in crushable MgO as the inner pressure medium with

graphite heater outside and then BaCO3 cell as outer pressure medium The charge was

heated to a high temperature for melt relaxation and for hydrous species in the melt to

reach equilibrium Then the sample was isobarically cooled at a desired cooling rate to

room temperature The temperature was measured with a type-S (Pt90Rh10-Pt) or type-D

(W97Re3-W75Re25) thermocouple The temperature history was recorded either by

computer or manually Pressure in the piston cylinder was calibrated using quartz-coesite

phase transition and melting of a gold wire (Hui et al 2008) The pressure of cooling

experiments ranges from 094 GPa (nominal pressure of 1 GPa) to 283 GPa (nominal

pressure of 3 GPa) Infrared spectra of the quenched glass were obtained using a Perkin-

Elmer FTIR spectrometer The baseline of IR spectra was fit by a flexicurve (Newman et

al 1986) The concentrations of hydrous species and total water content were obtained

using the calibration of Zhang et al (1997a) The apparent equilibrium temperature was

calculated from the hydrous species concentrations measured in the quenched glass using

Eqs (2) and (3) with parameters listed in Hui et al (2008) With the recorded cooling

rate viscosity was inferred from Eq (5) at the apparent equilibrium temperature The 2σ

error for viscosity inferred from this method is estimated to be 02 in terms of logη

(Zhang et al 2003)

96

In addition to the experiments in piston-cylinders at pressures below 3 GPa some

experiments at pressures above 3 GPa were also carried out in a multi-anvil device at the

University of Michigan But these experimental charges crystallized

22 PARALLEL-PLATE VISCOMETER

The parallel-plate creep viscometer in an IHPV was also used to measure

viscosity of rhyolitic melts near glass transition temperature Melt viscosity was derived

from the rate of deformation of a cylindrical sample with a diameter of 38 mm and a

height of 10 mm as a function of a constant vertically applied stress The design

operation and calibration of this viscometer are described in detail by Schulze et al

(1999) The detailed experimental procedure is explained in Behrens and Schulze (2003)

This technique can measure viscosity of the same cylinder in high viscosity range

covering three orders of magnitude from 1085 to 10115 Pasdots at pressures up to 04 GPa by

pumping in Ar (pressure media) or releasing it Effect of dehydration of the sample on the

viscosity measurements was monitored by repeated viscosity measurements at the same

P-T conditions during the whole experimental course and water content in the sample

was also checked after the experiment by infrared spectroscopy

To mitigate the effect of dehydration of the samples during measurement only the

samples with low water content was used in this method including sample EDF with

013 wt H2Ot and sample KS with 079 wt H2Ot For sample EDF viscosity was

measured at different pressures in the order of 02 04 and 02 GPa As shown in Table

42 and Fig 42 the viscosity values at the first and last 02 GPa are in good agreement

with difference within plusmn01 log units indicating that there was no significant water loss

97

or gain during viscosity measurement Temperature was corrected based on the melting

point of aluminum at 02 GPa (Lees and Williamson 1965) For sample KS dehydration

was discovered in a test run Hence only viscosity at 04 GPa was measured without

cycling back and forth to minimize the duration of the sample at high temperatures

Temperature in this measurement was corrected based on the melting point of zinc at 04

GPa (Akella et al 1973) Both samples were checked for water content by FTIR after

isobaric quench of the experimental charge Water loss or gain was negligible in both

viscosity measurement courses After experiments both samples were still in good

cylinder shapes indicating negligible temperature gradient and regular deformation

during creep experiments The reproducibility of viscosities is always within plusmn015 log

units (Behrens and Schulze 2003) However within one series of experiments the

precision is much better (within plusmn01 log units in this study)

3 EXPERIMENTAL RESULTS

Experimental results from the hydrous species reaction viscometer are

summarized in Table 43 Original IR absorbance peak heights are also reported because

there may be further improvement in the IR calibration Viscosity is plotted as a function

of 1000T at different pressures in Fig 42 Within the small temperature range of

viscosity measurements temperature dependence of viscosity of rhyolitic melts at each

pressure can be described by the Arrhenius relationship

η = η0 sdot exp Ea

RT⎛ ⎝ ⎜

⎞ ⎠ ⎟ (6)

where η0 is the pre-exponential factor and Ea is the activation energy for viscous flow

98

Table 42 Results of parallel plate creep viscometer with sample EDF at pressures of 02 and 04 GPa and sample KS at 04 GPa

EDF KS

02 GPa 04 GPa 04 GPa T logη T logη T logη K Pasdots

exp

K Pasdots exp

K Pasdots exp

103815 1142 12 102815 1119 11 84815 1151 1 104815 1128 1 103815 1103 6 85615 1135 6 104815 1121 13 103815 1101 10 86715 1114 5 106715 1083 2 105815 1078 7 88615 1060 2 106715 1074 5 108815 1025 8 90715 1030 3 108815 1052 14 111815 980 9 92515 1002 4 108715 1047 3 111815 997 4

Note means the chronological order of the measurements

99

9

95

10

105

11

115

12

125

13

EDFKS

logη

(Pasdot

s) 04 GPa

A KSGMR+2GMR+4

094 GPa

B

9

95

10

105

11

115

12

125

13

08 09 1 11 12 13 14 15

KSGMR+2GMR+4

logη

(Pasdot

s)

1000T (K)

189 GPa

C

08 09 1 11 12 13 14 15

KSGMR+2GMR+4

1000T (K)

283 GPa

D

Fig 42 Dependence of viscosities of rhyolitic melts (EDF KS GMR+2 and GMR+4) on temperature at pressures of 04 094 189 and 283 GPa All the data are from this study A is for parallel plate creep viscometer and B-D are from hydrous species reaction viscometer Straight lines are fit of the data by Arrhenius equation (ie Eq 6)

100

Table 43 Viscosity of hydrous rhyolitic melts at various pressures inferred from hydrous species reactions

Measurement P$ q Abs Abs Thickness H2Ot H2Om OH X(H2Ot) X(H2Om) X(OH) Tae logη GPa Ks 5200 4500 mm wt wt wt K Pasdots KS-1-21 094 956 00448 01608 1124 0846 0170 0677 00152 00030 00242 90603 1047 KS-1-22 094 956 00447 01604 1118 0849 0170 0679 00152 00030 00243 90711 1047 KS-1-23 094 956 00441 01610 1126 0843 0167 0677 00151 00030 00242 91123 1047 KS-1-31 094 099 00557 01717 1195 0877 0198 0678 00157 00036 00243 86261 1145 KS-1-32 094 099 00539 01689 1190 0862 0193 0669 00154 00034 00240 86308 1145 KS-1-33 094 099 00585 01748 1198 0898 0208 0690 00161 00037 00247 85979 1145 KS-1-41 094 010 00649 01883 1373 0843 0201 0642 00151 00036 00230 82961 1245 KS-1-42 094 010 00626 01857 1370 0829 0194 0634 00148 00035 00227 83131 1245 KS-1-43 094 010 00646 01883 1371 0844 0200 0643 00151 00036 00231 83140 1245 KS-1-51 094 9233 00432 01720 1163 0862 0158 0704 00154 00028 00252 95499 948 KS-1-52 094 9233 00432 01700 1150 0864 0160 0704 00155 00029 00252 95113 948 KS-1-53 094 9233 00435 01708 1164 0857 0159 0698 00153 00028 00250 94606 948 GMR+2-1-11 094 950 01720 02272 0990 1886 0747 1140 00335 00133 00405 80808 1047 GMR+2-1-12 094 950 01709 02268 0987 1886 0744 1142 00335 00132 00406 80982 1047 GMR+2-1-13 094 950 01729 02275 0991 1890 0750 1140 00336 00133 00405 80737 1047 GMR+2-1-21 094 100 01729 02048 0911 1920 0816 1104 00341 00145 00392 77482 1145 GMR+2-1-22 094 100 01750 02064 0910 1942 0827 1115 00345 00147 00396 77683 1145 GMR+2-1-23 094 100 01712 02030 0909 1905 0810 1096 00338 00144 00389 77310 1145 GMR+2-1-31 094 010 01105 01131 0502 2041 0947 1094 00362 00168 00388 74324 1245 GMR+2-1-32 094 010 01089 01118 0498 2031 0941 1090 00360 00167 00387 74289 1245 GMR+2-1-33 094 010 01097 01123 0504 2017 0937 1080 00358 00166 00383 74002 1245 GMR+4-1-21 094 968 02159 01114 0356 4116 2667 1449 00719 00466 00506 70115 1046 GMR+4-1-22 094 968 02137 01107 0351 4141 2678 1462 00723 00467 00511 70400 1046 GMR+4-1-23 094 968 02152 01107 0356 4094 2657 1437 00715 00464 00502 69869 1046 GMR+4-1-31 094 7687 01467 00859 0268 3937 2403 1534 00688 00420 00536 73394 956 GMR+4-1-32 094 7687 01540 00901 0282 3925 2397 1529 00686 00419 00534 73301 956 GMR+4-1-33 094 7687 01548 00885 0276 3989 2463 1526 00697 00430 00533 72897 956 GMR+4-1-41 094 100 01509 00789 0271 3779 2440 1339 00661 00427 00469 68409 1145

101

GMR+4-1-42 094 100 01509 00779 0267 3815 2477 1338 00668 00433 00468 68211 1145 GMR+4-1-43 094 100 01498 00792 0275 3711 2386 1325 00650 00418 00464 68296 1145 KS-2-11 189 100 00111 00396 0270 0871 0175 0696 00156 00031 00249 88340 1145 KS-2-12 189 100 00106 00397 0280 0832 0161 0671 00149 00029 00240 88552 1145 KS-2-21 189 13416 00431 01862 1201 0898 0153 0745 00161 00027 00267 98415 932 KS-2-22 189 13416 00381 01769 1192 0844 0136 0708 00151 00024 00254 98996 932 KS-2-23 189 13416 00428 01851 1202 0890 0152 0739 00159 00027 00265 97976 932 KS-2-31 189 965 00496 01892 1246 0895 0169 0726 00160 00030 00260 92376 1047 KS-2-32 189 965 00462 01842 1234 0871 0159 0712 00156 00029 00255 93137 1047 KS-2-33 189 965 00466 01848 1245 0867 0159 0707 00155 00028 00253 92731 1047 KS-2-41 189 010 00384 01244 0859 0875 0190 0685 00157 00034 00246 84743 1245 KS-2-42 189 010 00368 01219 0856 0855 0183 0672 00153 00033 00241 84746 1245 KS-2-43 189 010 00360 01203 0849 0849 0180 0668 00152 00032 00239 84782 1245 GMR+2-2-21 189 950 01595 02196 0870 2071 0789 1282 00367 00140 00455 82315 1047 GMR+2-2-22 189 950 01579 02181 0870 2052 0781 1271 00364 00139 00451 82082 1047 GMR+2-2-23 189 950 01611 02184 0860 2097 0807 1290 00372 00143 00458 82142 1047 GMR+2-2-31 189 100 02053 02498 0997 2147 0887 1259 00381 00157 00447 78631 1145 GMR+2-2-32 189 100 02008 02459 0989 2123 0875 1248 00376 00155 00443 78466 1145 GMR+2-2-33 189 100 02032 02484 0997 2129 0878 1251 00378 00156 00444 78517 1145 GMR+2-2-51 189 9072 01539 02177 0831 2142 0798 1343 00380 00142 00476 84745 949 GMR+2-2-52 189 9072 01526 02165 0825 2144 0797 1347 00380 00141 00478 84947 949 GMR+2-2-53 189 9072 01530 02180 0825 2158 0799 1359 00383 00142 00482 85415 949 GMR+4-2-31 189 100 04415 02595 0797 3997 2433 1564 00698 00425 00546 71658 1145 GMR+4-2-32 189 100 04356 02573 0796 3954 2402 1552 00691 00420 00543 71502 1145 GMR+4-2-33 189 100 04453 02581 0797 4002 2454 1548 00699 00429 00541 71181 1145 GMR+4-2-41 189 10700 02441 01593 0465 4004 2306 1698 00700 00403 00593 75759 942 GMR+4-2-42 189 10700 02370 01551 0457 3957 2277 1680 00692 00398 00587 75455 942 GMR+4-2-43 189 10700 02484 01621 0473 4005 2307 1698 00700 00403 00593 75754 942 GMR+4-2-51 189 967 03797 02294 0677 4115 2467 1648 00718 00431 00576 73632 1046 GMR+4-2-52 189 967 03914 02307 0677 4195 2545 1650 00732 00444 00576 73318 1046 GMR+4-2-53 189 967 03914 02320 0680 4188 2534 1655 00731 00442 00577 73481 1046 KS-3-11 286 100 00491 02066 1408 0847 0148 0699 00152 00027 00250 91618 1145 KS-3-12 286 100 00493 02064 1408 0847 0149 0698 00152 00027 00250 91316 1145

102

KS-3-13 286 100 00489 02064 1407 0846 0148 0698 00152 00027 00250 91667 1145 KS-3-21 283 099 00534 02252 1535 0846 0148 0698 00152 00027 00250 91666 1145 KS-3-22 283 099 00538 02256 1533 0850 0149 0701 00152 00027 00251 91589 1145 KS-3-23 283 099 00563 02289 1530 0871 0157 0714 00156 00028 00256 91206 1145 KS-3-91 283 010 00479 01785 1221 0861 0167 0694 00154 00030 00249 86565 1245 KS-3-92 283 010 00490 01803 1225 0870 0170 0700 00156 00030 00251 86401 1245 KS-3-93 283 010 00472 01765 1218 0852 0165 0687 00153 00030 00246 86242 1245 KS-3-81 283 956 00546 02581 1760 0831 0132 0699 00149 00024 00251 96821 1047 KS-3-82 283 956 00638 02732 1756 0903 0155 0748 00162 00028 00268 95734 1047 KS-3-83 283 956 00628 02723 1757 0897 0152 0744 00161 00027 00267 96032 1047 KS-3-111 283 11166 00332 01907 1389 0751 0102 0649 00135 00018 00233 102191 940 KS-3-112 283 11166 00335 01925 1395 0755 0102 0653 00135 00018 00234 102681 940 KS-3-113 283 11166 00335 01929 1395 0757 0102 0655 00136 00018 00235 102921 940 KS-3-114 283 11166 00336 01925 1392 0757 0103 0655 00136 00018 00235 102615 940 GMR+2-3-21 283 907 01210 02070 0823 1925 0632 1293 00342 00112 00459 85132 1049 GMR+2-3-22 283 907 01260 02089 0818 1977 0662 1315 00351 00118 00467 84823 1049 GMR+2-3-23 283 907 01263 02093 0823 1968 0660 1308 00349 00117 00464 84558 1049 GMR+2-3-31 283 100 01726 02538 1004 2030 0740 1290 00360 00131 00458 80291 1145 GMR+2-3-32 283 100 01740 02539 1004 2035 0746 1289 00361 00132 00458 80063 1145 GMR+2-3-33 283 100 01664 02503 1004 1983 0713 1270 00352 00127 00451 80350 1145 GMR+2-3-41 283 10430 00852 01523 0594 1944 0617 1327 00345 00110 00471 87819 943 GMR+2-3-42 283 10430 00849 01485 0572 1984 0638 1346 00352 00113 00478 87698 943 GMR+2-3-43 283 10430 00823 01449 0558 1981 0634 1347 00352 00113 00478 87944 943 GMR+4-3-41 283 100 02215 01709 0518 3540 1869 1671 00621 00328 00586 73953 1145 GMR+4-3-42 283 100 02256 01729 0516 3614 1913 1702 00633 00335 00597 74470 1145 GMR+4-3-43 283 100 02210 01673 0503 3605 1922 1683 00632 00337 00590 73843 1145 GMR+4-3-51 283 10700 01838 01477 0417 3766 1931 1835 00659 00338 00642 78153 942 GMR+4-3-52 283 10700 01812 01464 0410 3793 1938 1855 00664 00339 00649 78693 942 GMR+4-3-53 283 10700 01873 01509 0422 3803 1946 1857 00666 00341 00650 78673 942

Note A few points (two to four) were measured by IR for each experimental sample they are listed here as xxx1 2 3 or 4 $ P has been corrected based on pressure calibration q was calculated from the thermal history recorded by computer or manually

103

which depends on water content of the sample and experimental pressure Viscosity of

rhyolitic melts decreases with increasing water content systematically at a given pressure

and temperature as shown in Fig 42

Viscosities of samples EDF and KS obtained from the parallel plate creep

viscometer are listed in Table 42 including chronological order of measurements and

shown in Figs 43a and 43b Temperature dependence of viscosity of each sample at

each pressure can also be described by the Arrhenius relationship (ie Eq 6) within the

small temperature range of measurements

The pressure dependence of viscosity is more complicated For the ldquodryrdquo sample

(EDF) viscosity does not change significantly from 01 MPa to 02 GPa From 02 to 04

GPa the viscosity of sample EDF decreases by about 02 log units For hydrous samples

with 08 and 2 wt H2Ot (KS and GMR+2) viscosity increases monotonically by about

1 log unit as pressure increases from 01 MPa to 28 GPa For hydrous sample with about

4 wt H2Ot (GMR+4) viscosity first decreases as pressure increases from 01 MPa to

09 GPa and then increases from 09 to 28 GPa

At the experimental petrology laboratory of the University of Michigan a large

database has been accumulated on successful versus failed experiments in the diffusion

reaction kinetics and viscosity studies of silicate melts (Zhang et al 1997b 2000 Liu

and Zhang 2000 Zhang and Behrens 2000 Behrens and Zhang 2001 Xu and Zhang

2002 Behrens et al 2004 Liu et al 2004ab 2005 Hui et al 2008 Ni and Zhang

2008) Most of the failed experiments crystallized significantly Because these results

may be relevant to the discussion of viscosity (see Discussion) they are summarized in

Appendix D The data show

104

9

95

10

105

11

115

12

125

13

088 09 092 094 096 098

04 GPa02 GPa01 MPa (013 H2O)

logη

(Pasdot

s) A

EDF

095 1 105 11 115 12 125

283 GPa189 GPa094 GPa04 GPa01 MPa (08 H2O)

KS

B

9

95

10

105

11

115

12

125

13

11 115 12 125 13 135 14

283 GPa189 GPa094 GPa01 MPa (2 H2O)

GMR+2

logη

(Pasdot

s)

1000T (K)

C

125 13 135 14 145 15

283 GPa189 GPa094 GPa01 MPa (4 H2O)

D

GMR+4

1000T (K)

Fig 43 Comparisons of viscosities of given rhyolitic melts (EDF KS GMR+2 and GMR+4) at various pressures Data are from this study Straight lines are fit of the data by Arrhenius equation (ie Eq 6) Viscosities of various rhyolitic melts at 00001 GPa were calculated from Zhang et al (2003) as references

105

(1) It is more difficult to quench an overheated liquid into glass at high pressures than at

low pressures because of crystallization during quench at high pressures For example a

hydrous rhyolite melt containing 52 wt H2Ot quenched from 1873 K at 2 GPa (sample

239 in Appendix D) did not crystallize but a hydrous rhyolite sample containing only

09 wt H2Ot quenched from 1873 K at 4 GPa (sample 240 in Appendix D)

crystallized significantly

(2) Melts in the isothermal experiments at a temperature below the liquidus often

crystallize more easily at high pressures than at low pressures (Hui et al 2008) For

example a hydrous rhyolitic glass (09 wt H2Ot) held at 823 K and 3 GPa for 10 days

(sample 56 in Appendix D) did not crystallize significantly but a similar glass held at

the same temperature but 4 GPa for only 31 hours (sample 57 in Appendix D)

crystallized For another example a hydrous rhyolitic glass with 077 wt H2Ot held at

1123 K and 61 MPa for 72 hours (sample 172 in Appendix D) did not crystallize but

another sample with same amount of H2Ot held at 1123 K and 3 GPa for only one minute

(sample 174 in Appendix D) crystallized significantly

Fig 44 shows some more trends The findings indicate that crystallization rate

increases significantly with increasing pressure meaning crystal nucleation andor

growth rates in melts increase with increasing pressure in hydrous rhyolitic melts The

relationship with viscosity will be discussed in the next section

106

25

3

35

4

45

5

55

6

0 1 2 3 4 5

crystallizedglass

logt

(t in

s)

P (GPa)

873 plusmn 10 Κ

075-116 wt H2Ot

A

-5

-4

-3

-2

-1

0

1

2

3

0 1 2 3 4 5

crystallizedglasscritical quench 06wtcritical quench 09wtcritical quench 12wt

logq

(q in

Ks

)

P (GPa)

078-115 wt H2Ot

B

Fig 44 The effect of pressure on crystallization kinetics in the rhyolitic melt for (A) isothermal experiments and (B) controlled cooling rate experiments In (B) critical quench rates for rhyolitic melt with water contents of 06 09 and 12 wt are calculated from Eqs (8) and (9) (see text Senkov 2007) and the dashed lines are extrapolations to show the trends for 06 and 12 wt water respectively

107

4 DISCUSSION

41 PRESSURE DEPENDENCE OF VISCOSITY

Viscosities of a variety of silicate liquids in the low viscosity range have been

investigated using the falling sphere technique in high-pressure apparatus demonstrating

a complex pressure dependence of viscosities (Scarfe et al 1987 Lange 1994)

Pressure-induced viscosity change has been related to the degree of polymerization of the

melt in general (Scarfe et al 1987) Viscosities of anhydrous rhyolite melt (eg Scarfe et

al 1987) jadeite melt (eg Kushiro 1976) dacite melt (eg Tinker et al 2004)

andesite melt (eg Kushiro et al 1976) and some basalt melts (eg Scarfe et al 1987)

decrease with increasing pressure in the first several GPa whereas those of diopside melt

(eg Scarfe et al 1979) and peridotite melt (Liebske et al 2005) both highly

depolymerized increase with increasing pressure

Water dissolved in the silicate melt can depolymerize the melt by forming

hydroxyl group (Reaction 1) The negative pressure dependence of viscosity of

anhydrous melt may change to positive pressure dependence of viscosity after adding a

certain amount of water For example viscosity of anhydrous andesite melt decreases

with pressure (Kushiro et al 1976) but viscosity of andesite with 3 wt water increases

with pressure (Kushiro 1978) Also the pressure dependence of viscosity of a given melt

may change from positive to negative with further increase of pressure such as periodite

(Liebske et al 2005) or from negative to positive such as albite (Funakoshi et al

2002) In other words there may be a viscosity maximum or minimum with increasing

pressure

108

In the high viscosity range only a few studies have been conducted on the

pressure dependence of viscosity of silicate melts in a pressure range up to 04 GPa

previously Viscosity of the albite-diopside binary system shows a change in the sign of

the pressure dependence from negative for albite to positive for diopside (Schulze et al

1999 Behrens and Schulze 2003) The pressure dependence of viscosity of

haploandesite in the high viscosity range changes from negative for anhydrous melt to

positive for hydrous melt with 106 wt water or up (Liebske et al 2003) This is

consistent with pressure dependence of viscosity of andesite in the low viscosity range in

general (Kushiro et al 1976 Kushiro 1978) Moreover pressure effect on viscosity

becomes more pronounced with decreasing temperature

Due to experimental limitations viscosity of sample EDF which contained minor

amount of water was measured at pressures le 04 GPa The viscosity decreases with

increasing pressure as shown in Fig 43a in this pressure range That is it behaves as a

polymerized melt as expected But for the hydrous samples KS and GMR+2 as shown in

Figs 43b and 43c the viscosity increases with increasing pressure based on the new

data As dissolved H2O depolymerizes the melt this trend is consistent with literature

data (Kushiro et al 1976 Kushiro 1978 Liebske et al 2003) The viscosities of the

sample GMR+4 which contains about 4 wt water increase systematically from 1 GPa

to 3 GPa as shown in Fig 43d The pressure dependence of viscosity from ambient

pressure to 1 GPa is small and whether the dependence is positive or negative depends on

the temperature

109

42 MODELING THE P-T-X DEPENDENCE OF VISCOSITY

There are various models used to describe temperature dependence of viscosity of

anhydrous and hydrous natural silicate melts (eg Shaw 1972 Hui and Zhang 2007)

The pressure dependence of viscosity has been modeled for some anhydrous melts such

as peridotite liquid (Liebske et al 2005) but has not been quantified for hydrous natural

silicate melts because only limited data were available For example for hydrous

rhyolitic melt there are only two data points at pressure gt 05 GPa (one data point of

AOQ at 1173 K 1 GPa and another one at 1173 K 075 GPa Schulze et al 1996) in the

low viscosity range These new data are the first viscosity data at pressures ge 1 GPa in the

low-temperature (high viscosity) range Because data on the pressure dependence of

viscosity of rhyolitic melts in the high temperature range are limited (Schulze et al

1996) only the data in the low temperature region are considered in constructing a model

on the dependence of viscosity on temperature pressure and water content In this narrow

temperature range the Arrhenius relationship can describe the temperature dependence of

viscosity Hence parameters η0 and Ea in Eq (6) are treated as functions of water content

and pressure to construct a viscosity model The data used for the model include viscosity

data from this study and literature data in the high viscosity range (Neuville et al 1993

Stevenson et al 1995 Zhang et al 2003 Zhang and Xu 2007) Because the precision

of the parallel plate viscometer is much higher this data set was weighed 10 times more

than other data in the regression After some trials the equation below is found to fit the

data well

110

logη = a0 + aPP12

⎝ ⎜

⎠ ⎟ + b0 + bPP

12

⎝ ⎜

⎠ ⎟ 1minus exp c0 + cPP

12

⎝ ⎜

⎠ ⎟ X

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

+ d0 + dPP12

⎝ ⎜

⎠ ⎟ + e0 + ePP

12

⎝ ⎜

⎠ ⎟ 1minus exp f0 + fPP

12

⎝ ⎜

⎠ ⎟ X

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟ 1000

T

(7)

where P is pressure in GPa and X is mole fraction of total water content in the melt on a

single oxygen basis (Stolper 1982b Zhang 1999) The best-fit parameters in Eq (7)

with 2σ errors are a0 = -78470 plusmn 04972 aP = 11472 plusmn 05802 b0 = -124257 plusmn 09940

bP = 08080 plusmn 06278 c0 = -36440 plusmn 16134 cP = -101893 plusmn 17128 d0 = 213531 plusmn

05706 dP = -21722 plusmn 07371 e0 = -58335 plusmn 07198 eP = 40480 plusmn 06801 f0 = -893887

plusmn 103647 and fP = -305499 plusmn 152766 This equation can reproduce the whole database

(206 data points) with 2σ of 038 in terms of logη The dependence of viscosity as a

function of OH and molecular H2O concentrations was also examined at different

pressures but no simple relation emerged for a large range of water content Hence no

species information is included in fitting how viscosity depends on water concentration

Fig 45 shows a comparison between experimental viscosities and calculated values

using Eq (7) Although the fit is good extrapolation of the model beyond experimental

conditions is not recommended That is calculated viscosity at high pressures should be

inside the range of 109 to 1012 Pamiddots and T-P-XH2Ot conditions should be within conditions

shown in Fig 46 The calculated pressure dependence of viscosity of rhyolitic melts

with different water contents is shown in Fig 47 and it is in agreement with Figs 43b

43c and 43d

Glass transition temperature is an important rheological parameter of glass and

Eq (7) can be used to estimate glass transition temperature of rhyolitic melt under high

111

8

10

12

14

16

18

8 10 12 14 16 18

our dataliterature data11 line

measured logη

calc

ulat

ed lo

Fig 45 Comparison of measured viscosity data of rhyolitic melts with those calculated from Eq (7)

112

500

600

700

800

900

1000

1100

1200

1300

0 05 1 15 2 25 3

T (K

)

P (GPa)

0

1

2

3

4

5

6

7

8

0 05 1 15 2 25 3

H2O

t (w

t)

P (GPa)

A

B

Fig 46 P-T-XH2Ot range of all experimental data of the model ie Eq (7)

113

765

785

765755

845

815

775

794

815

845

A

9

95

10

105

11

115

12

0 005 01 015 02 025 03 035 04

logη

(Pasdot

s)

P (GPa)

750C

800C

850C

900C

750

800

850

900

469

605

575

529

577

549

512

535

502

C

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3

450C

500C

550C

600C

logη

(Pasdot

s)

P (GPa)

450

500

550

468

512483

462

441

459

428

410

477

369

D

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3

400C

450C

500C

logη

(Pasdot

s)

P (GPa)

400400

450

500

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3P (GPa)

logη

(Pasdot

s)

550C

600C

650C

700C750C

550

600

650

700

558

678

635

589

574

689

642

591

711

654

611

753

A558

678

635

589

574

689

642

591

711

654

611

753

AB575583

594

613

634

652

Fig 47 Pressure effect on viscosity at some temperatures and water concentrations The curves (with temperature indicated by large numbers) are calculated from Eq (7) with different water concentrations (A) 013 wt (B) 08 wt (C) 2 wt and (D) 4 wt Points are experimental data at indicated temperatures (small numbers) and points at 01 MPa are calculated from the viscosity model of Zhang et al (2003)

114

pressure Fig 48 shows pressure dependence of glass transition temperatures of hydrous

rhyolitic melts containing different water contents calculated from Eq (7) with a cooling

rate of 028 Ks = 168 Kmin (at η = 1012 Pamiddots) The trend of pressure dependence of the

glass transition temperature (Fig 48) is the same as that of viscosity (Fig 47)

43 AN APPARENT PARADOX OF THE PRESSURE EFFECT ON VISCOSITY

AND ON GLASS FORMATION

Appendix 4 lists the melt compositions the experimental conditions and whether

the sample charges crystallized significantly during experiments Pressure facilitates

crystallization in both isothermal experiments and cooling experiments based on the

results in Appendix 4 as summarized in the Experimental results That is as pressure

increases crystallization is more rapid in isothermal experiments and it is also more

difficult to quench the same hydrous melt into glass from liquid One might expect that

the increased easiness of crystallization at high pressures were related to increasing

diffusivity and hence decreasing viscosity with increasing pressure However new

viscosity data show that viscosity of hydrous rhyolitic melt increases rather than

decreases with increasing pressure Hence there is an apparent paradox of increasing

viscosity as well as increased easiness of crystallization with increasing pressure

Raising the pressure increases the density of the melt and changes the structure of

the melt which might facilitate crystallization More importantly increasing the pressure

raises the liquidus of the melt Hence for a supercooled metastable liquid at a given

temperature the degree of undercooling is larger at higher pressure That is the Gibbs

free energy difference between the melt and the crystals ∆Gm-c increases with pressure

115

650

700

750

800

850

900

0 05 1 15 2 25 3

08 wt2 wt4 wt

T g (K

)

P (GPa)

Fig 48 Pressure dependence of glass transition temperatures of hydrous rhyolitic melts with different water contents (08 2 and 4 wt H2O) calculated from Eq (7) when η = 1012 Pamiddots (ie cooling rate is 028 Ks)

116

The increased easiness of crystallization at isothermal conditions may be partly attributed

to greater ∆Gm-c although quantification is not available at the moment

For cooling of a liquid from a temperature above the liquidus as the pressure

increases the liquidus is crossed at a higher temperature That is crystallization starts at a

higher temperature where kinetics is more rapid Furthermore there is a larger

temperature interval (and hence a larger time interval) for crystallization Hence more

crystallization is expected For this case the glass-forming ability (that is the degree of

difficulty of crystallization) has been proposed recently using the concept of fragility

(eg Martinez and Angell 2001 Senkov 2007) If the temperature dependence of

viscosity is Arrhenian from low to high viscosity (001 to 1015 Pamiddots) the liquid is said to

be strong If the temperature dependence of viscosity deviates from Arrhenian behavior

more the liquid is said to be more fragile It is easier for strong liquids to quench to

glass Senkov (2007) defined a dimensionless glass forming ability (GFA) parameter F1

which can be expressed as follows

F1 =2(Tg minus T0 )

2(Tg minus T0 ) + (TL minus Tg ) (8)

where TL is the liquidus Tg is the temperature at which the viscosity is 1012 Pamiddots and T0

(related to fragility) is the temperature in the VFT equation of logη = A + B(T-T0)

Senkov (2007) further related the critical cooling rate required for glass formation to the

GFA parameter as follows

qc = 10(054-F1)0047 (9)

If the cooling rate is above qc the liquid would be cooled into a glass Otherwise there

would be significant crystallization In order to apply the above approach TL as a

117

function of H2Ot and P was estimated from the MELTS program (Ghiorso and Sack

1995 Asimow and Ghiorso 1998) and Tg from the viscosity model developed in this

work (ie Eq 7) For T0 at low pressures the viscosity model of Zhang et al (2003) is

used which resulted in T0 of 300plusmn30 K for H2Ot gt 06 wt For viscosities of hydrous

rhyolitic melt at high pressures there are not enough data in the low-viscosity range to

estimate T0 Hence a constant T0 of 300 K was assumed to roughly estimate F1 and qc

The critical cooling rate as a function of pressure for a few H2Ot contents is plotted in

Fig 44b It can be seen that the limited experimental data are in agreement with this

approach Hence it appears that the paradox of increased easiness of crystallization at

high pressures and increasing viscosity with pressure can be reconciled by the GFA

parameter of Senkov (2007)

5 CONCLUDING REMARKS

Viscosity of hydrous rhyolitic melts containing 08 to 4 wt water was inferred

using the hydrous species reaction viscometer at pressures up to 283 GPa This

represents the first viscosity data at low temperature (high viscosity) and pressures above

1 GPa Viscosity of rhyolitic melts with 013 wt and 08 wt water was also measured

using the parallel plate creep viscometer at pressures up to 04 GPa No experimental

method is available to determine viscosity of ldquodryrdquo melt at higher pressures Combining

the data of this study with literature data a viscosity model is constructed as a function of

temperature pressure and water content in the high viscosity range The model (ie Eq

7) can be utilized for interpolation within the range of available data (Fig 46) but is not

recommended for extrapolation

118

REFERENCES

Akella J Ganguly J Grover R and Kennedy G (1973) Melting of lead and zinc to

60 kbar J Phys Chem Solids 34 631-636

Asimow PD and Ghiorso MS (1998) Algorithmic modifications extending MELTS to

calculate subsolidus phase relations Am Mineral 83 1127-1131

Behrens H and Nowak M (2003) Quantification of H2O speciation in silicate glasses

and melts by IR spectroscopy ndash in situ versus quench techniques Phase Trans 76

45-61

Behrens H and Schulze F (2003) Pressure dependence of melt viscosity in the system

NaAlSi3O8-CaMgSi2O6 Am Mineral 88 1351-1363

Behrens H and Zhang Y (2001) Ar diffusion in hydrous rhyolitic and albitic

glassesmelts Earth Planet Sci Lett 192 363-376

Behrens H Zhang Y and Xu Z (2004) H2O diffusion in dacitic and andesitic melts

Geochim Cosmochim Acta 68 5139-5150

Behrens H Zhang Y Leschik M Wiedenbeck M Heide G and Frischat GH

(2007) Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts

Earth Planet Sci Lett 254 69-76

Dingwell D (1986) Viscosity-temperature relationships in the system Na2Si2O5-

Na4Al2O5 Geochim Cosmochim Acta 50 1261-1265

Dingwell DB (1998) Melt viscosity and diffusion under elevated pressures Rev

Mineral 37 397-422

Dingwell DB and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

119

Dorfman A Dingwell DB and Bagdassarov NS (1997) A rotating autoclave for

centrifuge studies Falling sphere viscometry Eur J Mineral 9 345-350

Dorfman A Hess K-U and Dingwell DB (1996) Centrifuge-assisted falling sphere

viscometry Eur J Mineral 8 507-514

Funakoshi K-i Suzuki A and Terasaki H (2002) In situ viscosity measurements of

albite melt under high pressure J Phys Condensed Matt 14 11343-11347

Ghiorso MS and Sack RO (1995) Chemical mass transfer in magmatic processes IV

A revised and internally consistent thermodynamic model for the interpolation and

extrapolation of liquid-solid equilibria in magmatic systems at elevated

temperatures and pressures Contrib Mineral Petrol 119 197-212

Hui H and Zhang Y (2007) Toward a general viscosity equation for natural anhydrous

and hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Hui H Zhang Y Xu Z and Behrens H (2008) Pressure dependence of the speciation

of dissolved water in rhyolitic melts Geochim Cosmochim Acta In revision

Hummel W and Arndt J (1985) Variation of viscosity with temperature and

composition in the plagioclase system Contrib Mineral Petrol 90 83-92

Ihinger PD Zhang Y and Stolper EM (1999) The speciation of dissolved water in

rhyolitic melt Geochim Cosmochim Acta 63 3567-3578

Kushiro I (1976) Changes in viscosity and structure of melt of NaAlSi2O6 composition

at high pressures J Geophys Res 81 6347-6350

Kushiro I (1978) Density and viscosity of hydrous calc-alkalic andesite magma at high

pressures Carnegie Inst Washington Year Book 77 675-677

120

Kushiro I Yoder HS Jr and Myson BO (1976) Viscosities of basalt and andesite

melts at high pressures J Geophys Res 81 6351-6356

Lange RA (1994) The effect of H2O CO2 and F on the density and viscosity of silicate

melts Rev Mineral 30 331-365

Lees J and Williamson BHJ (1965) Combined very high pressurehigh temperature

calibration of the tetrahedral anvil apparatus fusion curves of zinc aluminium

germanium and silicon to 60 kilobars Nature 208 278-279

Liebske C Behrens H Holtz F and Lange RA (2003) The influence of pressure and

composition on the viscosity of andesitic melts Geochim Cosmochim Acta 67

473-485

Liebske C Schmickler B Terasaki H Poe BT Suzuki A Funakoshi K-i Ando

R and Rubie DC (2005) Viscosity of peridotite liquid up to 13 GPa Implications

for magma ocean viscosities Earth Planet Sci Lett 240 589-604

Lillie HR (1931) Viscosity of glass between the strain point and melting temperature J

Am Ceram Soc 14 502-512

Liu Y and Zhang Y (2000) Bubble growth in rhyolitic melt Earth Planet Sci Lett

181 251-264

Liu Y Behrens H and Zhang Y (2004a) The speciation of dissolved H2O in dacitic

melt Am Mineral 89 277-284

Liu Y Zhang Y and Behrens H (2004b) H2O diffusion in dacitic melt Chem Geol

209 327-340

Liu Y Zhang Y and Behrens H (2005) Solubility of H2O in rhyolitic melts at low

pressures J Volcanol Geotherm Res 143 219-235

121

Martinez L-M and Angell CA (2001) A thermodynamic connection to the fragility of

glass-forming liquids Nature 410 663-667

Moynihan CT Easteal AJ Wilder J and Tucker J (1976) Dependence of the glass

transition temperature on heating and cooling rate J Phys Chem 78 2673-2677

Neuville DR and Richet P (1991) Viscosity and mixing in molten (Ca Mg) pyroxenes

and garnets Geochim Cosmochim Acta 55 1011-1019

Neuville DR Courtial P Dingwell DB and Richet P (1993) Thermodynamic and

rheological properties of rhyolite and andesite melts Contrib Mineral Petrol 113

572-581

Newman S Stolper EM and Epstein S (1986) Measurement of water in rhyolitic

glasses calibration of an infrared spectroscopic technique Am Mineral 71 1527-

1541

Ni H and Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high

pressure data Chem Geol Revised

Rapp RP and Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar

Implications for continental growth and crust-mantle recycling J Petrol 36 891-

931

Reid J E Suzuki A Funakoshi K Terasaki H Poe BT Rubie DC and Ohtani

E (2003) The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa Phys

Earth Planet Inter 139 45-54

Richet P Lejeune A-M Holtz F and Roux J (1996) Water and the viscosity of

andesite melts Chem Geol 128 185-197

122

Rosenhauer M Scarfe CM and Virgo D (1979) Pressure dependence of the glass

transition temperature in glasses of diopside albite and sodium trisilicate

composition Carnegie Inst Washington Year Book 78 556-559

Rust AC and Cashman KV (2007) Multiple origins of obsidian pyroclasts and

implications for changes in the dynamics of the 1300 BP eruption of Newberry

Volcano USA Bull Volcanol 69 825-845

Scarfe CM Mysen BO and Virgo D (1979) Changes in viscosity and density of

melts of sodium disilicate sodium metasilicate and diopside composition with

pressure Carnegie Inst Washington Year Book 78 547-551

ScarfeCM Mysen BO and Virgo D (1987) Pressure dependence of the viscosity of

silicate melts In Mysen BO (ed) Magmatic Processes Physicochemical

Principles Geochem Soc Spec Pub 1 59-67

Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural

relaxation J Am Ceram Soc 67 504-511

Schulze F Behrens H and Hurkuck W (1999) Determination of the influence of

pressure and dissolved water on the viscosity of highly viscous melts Application

of a new parallel-plate viscometer Am Mineral 84 1512-1520

Schulze F Behrens H Holtz F Roux J and Johannes W (1996) The influence of

H2O on the viscosity of a haplogranitic melt Am Mineral 81 1155-1165

Senkov ON (2007) Correlation between fragility and glass-forming ability of metallic

alloys Phys Rev B 76 104202 DOI 101103PhysRevB76104202

Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature

range 700deg to 900degC J Geophys Res 68 6337-6343

123

Shaw HR (1972) Viscosities of magmatic silicate liquids An empirical method of

prediction Am J Sci 272 870-893

Silver LA Ihinger PD and Stolper E (1990) The influence of bulk composition on

the speciation of water in silicate glasses Contrib Mineral Petrol 104 142-162

Stevenson RJ Dingwell DB Webb SL and Bagdassarov NS (1995) The

equivalence of enthalpy and shear stress relaxation in rhyolitic obsidians and

quantification of the liquid-glass transition in volcanic processes J Volcanol

Geotherm Res 68 297-306

Stolper EM (1982a) The speciation of water in silicate melts Geochim Cosmochim

Acta 46 2609-2620

Stolper EM (1982b) Water in silicate glasses an infrared spectroscopic study Contrib

Mineral Petrol 81 1-17

Sylvester PJ (1998) Post-collisional strongly peraluminous granites Lithos 45 29-44

Tinker D Lesher CE Baxter GM Uchida T and Wang Y (2004) High-pressure

viscometry of polymerized silicate melts and limitations of the Eyring equation

Am Mineral 89 1701-1708

Withers AC and Behrens H (1999) Temperature-induced changes in the NIR spectra

of hydrous albitic and rhyolitic glasses between 300 and 100 K Phys Chem

Minerals 27 119-132

Xu Z and Zhang Y (2002) Quench rates in air water and liquid nitrogen and

inference of temperature in volcanic eruption columns Earth Planet Sci Lett 200

315-330

124

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth

Planet Sci Lett 122 373-391

Zhang Y (1999) H2O in rhyolitic glasses and melts Measurement speciation solubility

and diffusion Rev Geophys 37 493-516

Zhang Y and Behrens H (2000) H2O diffusion in rhyolitic melts and glasses Chem

Geol 169 243-262

Zhang Y Belcher R Ihinger PD Wang L Xu Z and Newman S (1997a) New

calibration of infrared measurement of dissolved water in rhyolitic glasses

Geochim Cosmochim Acta 61 3089-3100

Zhang Y Jenkins J and Xu Z (1997b) Kinetics of the reaction H2O + O hArr 2OH in

rhyolitic glasses upon cooling Geospeedometry and comparison with glass

transition Geochim Cosmochim Acta 61 2167-2173

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

Improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

ZhangY and Xu Z (2007) A long-duration experiment on hydrous species

geospeedometer and hydrous melt viscosity Geochim Cosmochim Acta 71 5226-

5232

125

CHAPTER V

CONCLUSIONS

The goal of this dissertation is to understand viscosity of natural silicate melts A

two-pronged approach is used One is to construct a general viscosity model using

available viscosity data (mostly at pressures below 05 GPa) to predict viscosity of all

natural silicate melts in all experimental temperature range at low pressures The second

is to experimentally investigate viscosity at high pressures and in the low temperature

range (high viscosity range) because such data are lacking Concerted effort on viscosity

measurements at high pressures will allow an even more general viscosity model

accounting for the effect of composition temperature and pressure

A new empirical viscosity equation for all natural and nearly natural silicate melts

at all experimentally covered temperature conditions is presented in Chapter II using the

following formulation

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

where η is viscosity in Pamiddots T is temperature in K and A B C and D are linear functions

of mole fractions of oxide components except for H2O The formulation is first applied

successfully to fit the temperature and compositional dependence of viscosity for four

binary systems Then a simpler version of the model with eight parameters is found to fit

126

the compositional and temperature dependence of the viscosity data of anhydrous natural

silicate melts better than the best model in literature A general viscosity equation with 37

parameters using this empirical formulation can fit the entire high- and low-temperature

viscosity database (1451 data points) of all ldquonaturalrdquo anhydrous and hydrous silicate

melts

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

where η is viscosity in Pamiddots T is temperature in K Xi means mole fraction of oxide

component i and Z=(XH2O)1[1+(185797T)] Al2O3ex or (Na K)2Oex mean excess oxide after

forming (Na K)AlO2 The 2σ deviation of the fit is 061 logη units This general model

can be used to calculate viscosity for modeling magma chamber processes and volcanic

eruptions It also can be used to calculate glass transition temperature for different silicate

melts

Temperature and melt composition affect melt viscosity but pressure can also

affect the viscosity of silicate melt The pressure dependence of hydrous melt viscosity in

the high viscosity range is not known Hence the pressure dependence of rhyolitic melts

in the high viscosity range has been investigated in this dissertation (Chapters III and IV)

Hydrous species reaction viscometer in piston cylinder and parallel-plate creep

viscometer in internally heated pressure vessel were used to investigate viscosity under

127

high pressure In order to use hydrous species reaction viscometer under high pressure it

is necessary to study the speciation of dissolved water in rhyolitic melt under high

pressure first

The equilibrium of reaction between two dissolved water species (H2Om and OH)

as a function of pressure (00001 094 189 and 283 GPa) temperature (624-1027 K)

and H2O concentrations (08 to 42 wt) was investigated in this study The speciation

data with total H2O content le 22 can be described by an ideal mixing model consistent

with previous results With inclusion of speciation data at higher water contents one way

to describe the speciation data is a regular solution model A speciation model was

constructed to accommodate the dependence of H2O speciation in the rhyolitic melts on

T-P-X

( )

2 m

32

3 32 2

H O OH

1000ln 18120 03832 ( 30830+02999 +00507 )+

( 74203+50262 31271 ) (30437 54527 +30464 )

K P P PT

P P X P P X

⎛= minus + minus⎜

⎝⎞

minus minus + minus ⎟⎠

where P is pressure in GPa T is temperature in K and X is mole fraction of species H2Om

or OH This formulation can be used to predict species concentrations at P le 283 GPa

total H2O content le 42 wt and temperature of 624-1027 K Furthermore it can be used

to calculate apparent equilibrium temperature which can then be used to infer viscosity

of hydrous rhyolitic melts under high pressure The results of Chapter III provide basis

for the study of Chapter IV

With the study of the speciation of dissolved water in rhyolitic melt under high

pressure viscosity of hydrous rhyolitic melts containing 08 to 4 wt water was inferred

using the hydrous species reaction viscometer at pressures up to 283 GPa Viscosity of

128

rhyolitic melts with 013 wt and 08 wt water was also measured using the parallel

plate creep viscometer at pressures up to 04 GPa but no experiment method is available

to determine viscosity of ldquodryrdquo melt at pressures gt 05 GPa Combining the data of this

study with previous data an Arrhenian viscosity model in high viscosity range is

constructed

logη = minus78470 +11472P12

⎝ ⎜

⎠ ⎟ +

minus124257 + 08080P12

⎝ ⎜

⎠ ⎟ 1minus exp minus36440 minus101893P

12

⎝ ⎜

⎠ ⎟ x

⎝ ⎜ ⎜

⎠ ⎟ ⎟ +

213531minus 21722P12

⎝ ⎜

⎠ ⎟ +

⎝ ⎜ ⎜

minus58335 + 40480P12

⎝ ⎜

⎠ ⎟ 1minus exp minus893887 minus 305499P

12

⎝ ⎜

⎠ ⎟ x

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ⎞

⎠ ⎟ ⎟ 1000

T

where P is pressure in GPa and X is mole fraction of total water content in the melt This

model can be utilized for interpolation but is not recommended for extrapolation beyond

the range of available data (Figure 46 in Chapter IV)

129

APPENDICES

130

APPENDIX A

VISCOSITY DATA OF NATURAL SILICATE MELTS

The viscosity data on the following pages are used to fit Eqn 11 in Chapter II The reference numbers of all the viscosity data

points is the same as the ones in Table 23

Table A1 Viscosity database used to fit Eqn 11

measured calculated SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O K2O P2O5 H2O T logη logη ∆

Comp wt wt wt wt wt wt wt wt wt wt wt K Pas Pas ref

1 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 1573 041 002 -039 12 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9774 916 917 001 13 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9829 894 903 009 14 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9927 866 877 011 15 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8865 137 1368 -002 16 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8923 134 1307 -033 17 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8992 1299 1247 -052 18 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9121 1222 116 -062 19 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9136 1216 1151 -065 1

10 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9187 1183 1124 -059 111 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9242 1156 1097 -059 1

131

12 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9292 1126 1075 -051 113 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9341 1104 1055 -049 114 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9409 1075 103 -045 115 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9447 1051 1016 -035 116 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9528 1017 989 -028 117 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9582 993 972 -021 118 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9595 988 968 -02 119 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9664 957 948 -009 120 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 972 935 932 -003 121 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8458 122 119 -03 122 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8511 1195 1158 -037 123 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 856 1164 1131 -033 124 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8671 1113 1076 -037 125 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8721 1091 1053 -038 126 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8773 1066 1032 -034 127 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8878 1025 991 -034 128 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8193 1215 123 015 129 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8269 1176 1182 006 130 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8342 1135 1141 006 131 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8409 1108 1106 -002 132 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8456 1084 1084 0 133 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8516 1055 1057 002 134 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8563 1035 1037 002 135 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8615 1013 1016 003 136 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 800 1238 1259 021 137 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8032 1207 1237 03 138 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8095 1188 1198 01 139 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8141 1159 1171 012 140 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8206 1136 1136 0 141 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8253 1111 1112 001 142 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8305 1086 1088 002 143 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8359 106 1063 003 1

132

44 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 841 1039 1042 003 145 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8457 1018 1023 005 146 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 7945 1233 1262 029 147 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8051 1192 1195 003 148 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8204 1102 1114 012 149 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8284 1076 1076 0 150 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8362 1034 1043 009 151 Bn3 4357 297 1018 0 0 917 2607 759 096 0 188 7617 123 1297 067 152 Bn3 4357 297 1018 0 0 917 2607 759 096 0 188 8023 1072 1083 011 153 Bn3 4357 297 1018 0 0 917 2607 759 096 0 196 7794 1157 1175 018 154 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14139 196 294 098 155 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14635 165 239 074 156 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14975 145 203 058 157 Te2 5056 235 1403 0 0 879 15 704 301 0 002 15132 138 187 049 158 Te2 5056 235 1403 0 0 879 15 704 301 0 002 1565 113 136 023 159 Te2 5056 235 1403 0 0 879 15 704 301 0 002 16144 091 091 0 160 Te2 5056 235 1403 0 0 879 15 704 301 0 002 16662 07 047 -023 161 Te2 5056 235 1403 0 0 879 15 704 301 0 002 17186 05 004 -046 162 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9763 993 1052 059 163 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9831 971 1032 061 164 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9867 957 1021 064 165 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9921 93 1006 076 166 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9972 918 993 075 167 Te2 5056 235 1403 0 0 879 15 704 301 0 002 10081 873 964 091 168 Te2 5056 235 1403 0 0 879 15 704 301 0 002 918 1285 1294 009 169 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9307 1205 1225 02 170 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9341 1186 1209 023 171 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9464 1132 1156 024 172 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9567 1075 1117 042 173 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9606 1061 1103 042 174 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9673 1038 108 042 175 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9712 1021 1068 047 1

133

76 Te2 5056 235 1403 0 0 879 15 704 301 0 012 905 127 1272 002 177 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9156 1201 1218 017 178 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9265 1177 1169 -008 179 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9374 112 1126 006 180 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9478 1067 109 023 181 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9589 1023 1054 031 182 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9684 987 1025 038 183 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8684 1249 1238 -011 184 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8785 1197 1193 -004 185 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8898 1157 1148 -009 186 Te2 5056 235 1403 0 0 879 15 704 301 0 052 899 1099 1114 015 187 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8342 1238 1258 02 188 Te2 5056 235 1403 0 0 879 15 704 301 0 088 844 1178 1216 038 189 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8555 1158 1171 013 190 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8665 1121 113 009 191 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8761 1077 1097 02 192 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8304 1239 1262 023 193 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8416 1215 1214 -001 194 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8518 1163 1174 011 195 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8621 1143 1136 -007 196 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8695 1049 111 061 197 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8828 1041 1065 024 198 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8935 995 1032 037 199 Te2 5056 235 1403 0 0 879 15 704 301 0 092 918 892 961 069 1

100 Te2 5056 235 1403 0 0 879 15 704 301 0 136 822 1251 1179 -072 1101 Te2 5056 235 1403 0 0 879 15 704 301 0 136 832 1189 1144 -045 1102 Te2 5056 235 1403 0 0 879 15 704 301 0 136 8366 1141 1128 -013 1103 Te2 5056 235 1403 0 0 879 15 704 301 0 136 8475 1112 1091 -021 1104 Te2 5056 235 1403 0 0 879 15 704 301 0 16 8255 1131 1121 -01 1105 Te2 5056 235 1403 0 0 879 15 704 301 0 16 816 1213 1153 -06 1106 Te2 5056 235 1403 0 0 879 15 704 301 0 16 847 1091 1052 -039 1107 Te2 5056 235 1403 0 0 879 15 704 301 0 227 818 1079 1046 -033 1

134

108 Te2 5056 235 1403 0 0 879 15 704 301 0 227 7827 126 1158 -102 1109 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 18155 192 15 -042 2110 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 1766 212 176 -036 2111 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 17219 233 201 -032 2112 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 16694 257 233 -024 2113 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 16174 286 266 -02 2114 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9733 1039 1004 -035 2115 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 990 997 97 -027 2116 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10051 962 94 -022 2117 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10152 938 921 -017 2118 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10268 915 9 -015 2119 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10348 897 886 -011 2120 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10464 866 866 0 2121 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 8892 1312 1206 -106 2122 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 8982 1271 1181 -09 2123 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 911 1225 1148 -077 2124 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 920 1196 1125 -071 2125 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9322 1155 1095 -06 2126 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9415 1129 1074 -055 2127 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9523 1094 1049 -045 2128 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9625 1067 1027 -04 2129 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7308 1202 1147 -055 2130 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7406 1154 1121 -033 2131 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7501 1121 1096 -025 2132 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7617 1091 1067 -024 2133 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7823 1031 1017 -014 2134 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7303 1203 1139 -064 2135 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 741 1179 111 -069 2136 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7617 1092 1057 -035 2137 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7809 104 1011 -029 2138 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6764 1234 1201 -033 2139 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6835 1197 1179 -018 2

135

140 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6914 1167 1155 -012 2141 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7026 1139 1123 -016 2142 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7176 1089 1081 -008 2143 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7279 1053 1053 0 2144 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7381 1022 1027 005 2145 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7479 1005 1003 -002 2146 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6541 1214 1183 -031 2147 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 664 1176 1152 -024 2148 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6751 1137 1118 -019 2149 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6859 109 1086 -004 2150 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 7043 1035 1035 0 2151 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 7164 996 1003 007 2152 Ph4 5882 079 1942 0 0 187 235 931 744 0 472 587 1237 1221 -016 2153 Ph4 5882 079 1942 0 0 187 235 931 744 0 472 6013 1177 1168 -009 2154 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 18277 186 142 -044 2155 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 17765 209 173 -036 2156 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 17258 232 205 -027 2157 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 16778 256 238 -018 2158 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 16285 283 273 -01 2159 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1578 312 312 0 2160 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 15317 341 35 009 2161 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9733 1196 1243 047 2162 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9818 1167 1212 045 2163 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9942 1123 117 047 2164 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9984 1114 1156 042 2165 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9992 1109 1153 044 2166 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10146 1059 1106 047 2167 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10361 1004 1046 042 2168 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1045 982 1023 041 2169 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10572 953 993 04 2170 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10658 934 973 039 2171 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10826 899 935 036 2

136

172 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1092 881 915 034 2173 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 11031 858 892 034 2174 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 11137 837 871 034 2175 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 19287 146 086 -06 2176 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 18796 164 113 -051 2177 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9511 1277 1331 054 2178 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 8792 1216 1175 -041 2179 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 8895 1178 115 -028 2180 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9099 1114 1102 -012 2181 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9309 105 1054 004 2182 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9422 1024 1029 005 2183 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9579 985 995 01 2184 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9659 96 978 018 2185 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9793 931 951 02 2186 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9893 908 93 022 2187 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8324 122 1202 -018 2188 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8362 1208 1193 -015 2189 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8371 1199 1191 -008 2190 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8426 1183 1178 -005 2191 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8472 1173 1167 -006 2192 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8582 1142 1141 -001 2193 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8698 1104 1115 011 2194 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8793 108 1093 013 2195 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8899 1049 107 021 2196 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 7944 1221 1209 -012 2197 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 7998 1201 1195 -006 2198 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8048 1186 1183 -003 2199 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8121 1166 1165 -001 2200 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8207 1137 1144 007 2201 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8286 1115 1126 011 2202 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8393 109 1101 011 2203 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8466 1066 1084 018 2

137

204 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8548 1042 1066 024 2205 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7254 1231 1238 007 2206 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 736 1193 1207 014 2207 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7436 1157 1185 028 2208 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7491 1145 117 025 2209 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7578 1119 1146 027 2210 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 769 1086 1116 03 2211 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7806 1057 1086 029 2212 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7912 1025 106 035 2213 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 8022 1001 1033 032 2214 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 6922 1223 1254 031 2215 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 7033 1189 1218 029 2216 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 713 1148 1189 041 2217 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 7229 1121 1159 038 2218 Tr6 6445 05 1671 0 0 292 536 67 337 0 492 6211 123 13 07 2219 Tr6 6445 05 1671 0 0 292 536 67 337 0 492 6308 1189 1264 075 2220 H3 786 0 125 0 0 0 0 46 42 0 002 14532 679 736 057 3221 H3 786 0 125 0 0 0 0 46 42 0 002 11549 1102 1117 015 4222 H3 786 0 125 0 0 0 0 46 42 0 002 11782 1063 108 017 4223 H3 786 0 125 0 0 0 0 46 42 0 002 11989 1028 1048 02 4224 H3 786 0 125 0 0 0 0 46 42 0 002 1212 1016 1029 013 4225 H3 786 0 125 0 0 0 0 46 42 0 002 16702 49 548 058 4226 H3 786 0 125 0 0 0 0 46 42 0 002 17192 453 512 059 4227 H3 786 0 125 0 0 0 0 46 42 0 002 17682 415 478 063 4228 H3 786 0 125 0 0 0 0 46 42 0 002 18172 381 446 065 4229 H3 786 0 125 0 0 0 0 46 42 0 002 18672 358 416 058 4230 H3 786 0 125 0 0 0 0 46 42 0 002 19162 324 387 063 4231 H5 741 0 117 0 0 0 0 9 44 0 002 94765 974 1007 033 4232 H5 741 0 117 0 0 0 0 9 44 0 002 91965 1045 1063 018 4233 H5 741 0 117 0 0 0 0 9 44 0 002 90365 107 1097 027 4234 H5 741 0 117 0 0 0 0 9 44 0 002 88345 1135 1142 007 4235 H5 741 0 117 0 0 0 0 9 44 0 002 12132 601 639 038 4

138

236 H5 741 0 117 0 0 0 0 9 44 0 002 11432 684 716 032 4237 H5 741 0 117 0 0 0 0 9 44 0 002 10732 784 804 02 4238 H5 741 0 117 0 0 0 0 9 44 0 002 12932 533 564 031 4239 H5 741 0 117 0 0 0 0 9 44 0 002 17682 253 268 015 4240 H5 741 0 117 0 0 0 0 9 44 0 002 17192 272 29 018 4241 H5 741 0 117 0 0 0 0 9 44 0 002 16702 291 314 023 4242 H5 741 0 117 0 0 0 0 9 44 0 002 16212 314 34 026 4243 H5 741 0 117 0 0 0 0 9 44 0 002 15712 338 367 029 4244 H5 741 0 117 0 0 0 0 9 44 0 002 15222 361 396 035 4245 H5 741 0 117 0 0 0 0 9 44 0 002 14732 387 427 04 4246 H7 746 0 118 0 0 0 0 44 92 0 002 96935 1016 1086 07 4247 H7 746 0 118 0 0 0 0 44 92 0 002 94575 1065 1135 07 4248 H7 746 0 118 0 0 0 0 44 92 0 002 92725 1115 1175 06 4249 H7 746 0 118 0 0 0 0 44 92 0 002 18672 254 248 -006 4250 H7 746 0 118 0 0 0 0 44 92 0 002 18172 272 271 -001 4251 H7 746 0 118 0 0 0 0 44 92 0 002 17682 292 295 003 4252 H7 746 0 118 0 0 0 0 44 92 0 002 17192 314 32 006 4253 H7 746 0 118 0 0 0 0 44 92 0 002 16702 336 347 011 4254 H7 746 0 118 0 0 0 0 44 92 0 002 16212 357 376 019 4255 H7 746 0 118 0 0 0 0 44 92 0 002 15712 382 407 025 4256 H2 779 0 1189 0 0 0 0 453 417 0 002 12424 977 978 001 5257 H2 779 0 1189 0 0 0 0 453 417 0 002 11765 109 1076 -014 5258 H2 779 0 1189 0 0 0 0 453 417 0 002 11174 115 1173 023 5259 H2 779 0 1189 0 0 0 0 453 417 0 002 19652 298 353 055 5260 H1 7612 0 1353 0 0 0 0 465 568 0 003 16732 491 502 011 6261 H1 7612 0 1353 0 0 0 0 465 568 0 003 16732 492 502 01 6262 H1 7612 0 1353 0 0 0 0 465 568 0 105 14732 421 505 084 6263 H1 7612 0 1353 0 0 0 0 465 568 0 105 15732 377 435 058 6264 H1 7612 0 1353 0 0 0 0 465 568 0 155 14732 385 437 052 6265 H1 7612 0 1353 0 0 0 0 465 568 0 155 15732 345 371 026 6266 H1 7612 0 1353 0 0 0 0 465 568 0 155 16732 298 308 01 6267 H1 7612 0 1353 0 0 0 0 465 568 0 209 14732 361 377 016 6

139

268 H1 7612 0 1353 0 0 0 0 465 568 0 209 15732 32 313 -007 6269 H1 7612 0 1353 0 0 0 0 465 568 0 258 15732 307 272 -035 6270 H1 7612 0 1353 0 0 0 0 465 568 0 322 14732 327 288 -039 6271 H1 7612 0 1353 0 0 0 0 465 568 0 322 15732 288 232 -056 6272 H1 7612 0 1353 0 0 0 0 465 568 0 375 15732 254 208 -046 6273 H1 7612 0 1353 0 0 0 0 465 568 0 5 12732 337 332 -005 6274 H1 7612 0 1353 0 0 0 0 465 568 0 5 14232 275 246 -029 6275 H1 7612 0 1353 0 0 0 0 465 568 0 5 11732 395 398 003 6276 H1 7612 0 1353 0 0 0 0 465 568 0 59 12732 318 307 -011 6277 H1 7612 0 1353 0 0 0 0 465 568 0 59 11732 371 37 -001 6278 H1 7612 0 1353 0 0 0 0 465 568 0 59 11732 363 37 007 6279 H1 7612 0 1353 0 0 0 0 465 568 0 59 10732 425 441 016 6280 H1 7612 0 1353 0 0 0 0 465 568 0 703 10732 403 414 011 6281 H1 7612 0 1353 0 0 0 0 465 568 0 703 11732 346 346 0 6282 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 368 394 026 6283 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 367 394 027 6284 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 372 394 022 6285 H1 7612 0 1353 0 0 0 0 465 568 0 821 11732 313 33 017 6286 H1 7612 0 1353 0 0 0 0 465 568 0 821 11732 312 33 018 6287 H3 786 0 125 0 0 0 0 46 42 0 041 97675 1076 112 044 7288 H3 786 0 125 0 0 0 0 46 42 0 042 92185 118 1184 004 7289 H3 786 0 125 0 0 0 0 46 42 0 042 96045 114 1134 -006 7290 H3 786 0 125 0 0 0 0 46 42 0 095 93975 942 992 05 7291 H3 786 0 125 0 0 0 0 46 42 0 096 86685 1098 1098 0 7292 H3 786 0 125 0 0 0 0 46 42 0 096 88455 1045 1068 023 7293 H3 786 0 125 0 0 0 0 46 42 0 099 88425 1048 1062 014 7294 H3 786 0 125 0 0 0 0 46 42 0 099 92275 968 1005 037 7295 H3 786 0 125 0 0 0 0 46 42 0 128 88565 983 1004 021 7296 H3 786 0 125 0 0 0 0 46 42 0 13 89455 96 986 026 7297 H3 786 0 125 0 0 0 0 46 42 0 131 87595 988 1015 027 7298 H3 786 0 125 0 0 0 0 46 42 0 132 85605 1038 1048 01 7299 H3 786 0 125 0 0 0 0 46 42 0 133 82255 1096 1112 016 7

140

300 H3 786 0 125 0 0 0 0 46 42 0 135 80155 1139 1154 015 7301 H3 786 0 125 0 0 0 0 46 42 0 137 84055 1058 1069 011 7302 H3 786 0 125 0 0 0 0 46 42 0 18 84975 969 987 018 7303 H3 786 0 125 0 0 0 0 46 42 0 185 78015 113 1127 -003 7304 H3 786 0 125 0 0 0 0 46 42 0 188 81975 1009 1035 026 7305 H3 786 0 125 0 0 0 0 46 42 0 225 81845 962 992 03 7306 H3 786 0 125 0 0 0 0 46 42 0 229 77505 1049 1082 033 7307 H3 786 0 125 0 0 0 0 46 42 0 261 82185 912 946 034 7308 H3 786 0 125 0 0 0 0 46 42 0 335 78825 993 943 -05 7309 A4 624 055 2001 003 002 322 908 352 093 012 0 9962 1276 1295 019 8310 A4 624 055 2001 003 002 322 908 352 093 012 0 10079 1232 1243 011 8311 A4 624 055 2001 003 002 322 908 352 093 012 0 10114 1218 1229 011 8312 A4 624 055 2001 003 002 322 908 352 093 012 0 10185 1195 12 005 8313 A4 624 055 2001 003 002 322 908 352 093 012 0 10249 1174 1176 002 8314 A4 624 055 2001 003 002 322 908 352 093 012 0 10335 1141 1145 004 8315 A4 624 055 2001 003 002 322 908 352 093 012 0 10437 1109 1111 002 8316 A4 624 055 2001 003 002 322 908 352 093 012 0 10538 1076 1079 003 8317 A4 624 055 2001 003 002 322 908 352 093 012 0 10589 1057 1064 007 8318 A4 624 055 2001 003 002 322 908 352 093 012 0 10689 1033 1035 002 8319 A4 624 055 2001 003 002 322 908 352 093 012 0 1073 1019 1024 005 8320 A4 624 055 2001 003 002 322 908 352 093 012 0 10846 987 993 006 8321 A4 624 055 2001 003 002 322 908 352 093 012 0 10941 96 969 009 8322 A4 624 055 2001 003 002 322 908 352 093 012 0 11077 93 936 006 8323 A4 624 055 2001 003 002 322 908 352 093 012 0 11138 912 922 01 8324 A4 624 055 2001 003 002 322 908 352 093 012 0 11238 892 9 008 8325 A4 624 055 2001 003 002 322 908 352 093 012 0 15137 335 367 032 8326 A4 624 055 2001 003 002 322 908 352 093 012 0 15366 317 346 029 8327 A4 624 055 2001 003 002 322 908 352 093 012 0 15755 29 312 022 8328 A4 624 055 2001 003 002 322 908 352 093 012 0 16011 273 29 017 8329 A4 624 055 2001 003 002 322 908 352 093 012 0 16224 259 273 014 8330 A4 624 055 2001 003 002 322 908 352 093 012 0 16504 242 25 008 8331 A4 624 055 2001 003 002 322 908 352 093 012 0 16731 228 233 005 8

141

332 A4 624 055 2001 003 002 322 908 352 093 012 0 16986 215 214 -001 8333 A4 624 055 2001 003 002 322 908 352 093 012 0 17286 197 192 -005 8334 A4 624 055 2001 003 002 322 908 352 093 012 0 17531 185 175 -01 8335 A4 624 055 2001 003 002 322 908 352 093 012 0 17762 174 159 -015 8336 A4 624 055 2001 003 002 322 908 352 093 012 0 18017 162 142 -02 8337 A4 624 055 2001 003 002 322 908 352 093 012 0 18039 16 141 -019 8338 A4 624 055 2001 003 002 322 908 352 093 012 0 18295 148 125 -023 8339 A4 624 055 2001 003 002 322 908 352 093 012 0 18522 139 11 -029 8340 A4 624 055 2001 003 002 322 908 352 093 012 0 18746 128 097 -031 8341 A4 624 055 2001 003 002 322 908 352 093 012 0 19041 116 079 -037 8342 A4 624 055 2001 003 002 322 908 352 093 012 0 19294 105 065 -04 8343 A4 624 055 2001 003 002 322 908 352 093 012 0 1952 096 052 -044 8344 A4 624 055 2001 003 002 322 908 352 093 012 0 19779 086 038 -048 8345 A4 624 055 2001 003 002 322 908 352 093 012 027 9357 127 1279 009 8346 A4 624 055 2001 003 002 322 908 352 093 012 027 9461 1232 1242 01 8347 A4 624 055 2001 003 002 322 908 352 093 012 027 9654 1164 1178 014 8348 A4 624 055 2001 003 002 322 908 352 093 012 027 9824 1109 1125 016 8349 A4 624 055 2001 003 002 322 908 352 093 012 027 9989 1054 1077 023 8350 A4 624 055 2001 003 002 322 908 352 093 012 027 10108 1023 1045 022 8351 A4 624 055 2001 003 002 322 908 352 093 012 027 10218 993 1016 023 8352 A4 624 055 2001 003 002 322 908 352 093 012 027 10416 946 967 021 8353 A4 624 055 2001 003 002 322 908 352 093 012 027 10614 903 921 018 8354 A4 624 055 2001 003 002 322 908 352 093 012 027 10813 856 878 022 8355 A4 624 055 2001 003 002 322 908 352 093 012 1 8645 1219 118 -039 8356 A4 624 055 2001 003 002 322 908 352 093 012 1 8776 1173 1147 -026 8357 A4 624 055 2001 003 002 322 908 352 093 012 1 8984 1103 1097 -006 8358 A4 624 055 2001 003 002 322 908 352 093 012 1 9114 1062 1066 004 8359 A4 624 055 2001 003 002 322 908 352 093 012 1 9223 1033 1041 008 8360 A4 624 055 2001 003 002 322 908 352 093 012 1 9423 978 996 018 8361 A4 624 055 2001 003 002 322 908 352 093 012 1 9632 928 951 023 8362 A4 624 055 2001 003 002 322 908 352 093 012 1 9861 874 903 029 8363 A4 624 055 2001 003 002 322 908 352 093 012 2 7937 1187 1166 -021 8

142

364 A4 624 055 2001 003 002 322 908 352 093 012 2 804 1148 1139 -009 8365 A4 624 055 2001 003 002 322 908 352 093 012 2 8245 1072 1088 016 8366 A4 624 055 2001 003 002 322 908 352 093 012 2 8251 1075 1087 012 8367 A4 624 055 2001 003 002 322 908 352 093 012 2 8252 1073 1087 014 8368 A4 624 055 2001 003 002 322 908 352 093 012 2 8255 1074 1086 012 8369 A4 624 055 2001 003 002 322 908 352 093 012 2 8257 107 1085 015 8370 A4 624 055 2001 003 002 322 908 352 093 012 2 8461 1008 1038 03 8371 A4 624 055 2001 003 002 322 908 352 093 012 2 8664 949 992 043 8372 A4 624 055 2001 003 002 322 908 352 093 012 266 7215 1342 1288 -054 8373 A4 624 055 2001 003 002 322 908 352 093 012 266 7426 1266 1223 -043 8374 A4 624 055 2001 003 002 322 908 352 093 012 266 7537 122 119 -03 8375 A4 624 055 2001 003 002 322 908 352 093 012 266 7651 117 1158 -012 8376 A4 624 055 2001 003 002 322 908 352 093 012 266 7867 109 11 01 8377 A4 624 055 2001 003 002 322 908 352 093 012 266 7992 1049 1068 019 8378 A4 624 055 2001 003 002 322 908 352 093 012 266 823 975 1011 036 8379 A4 624 055 2001 003 002 322 908 352 093 012 266 8438 923 964 041 8380 A4 624 055 2001 003 002 322 908 352 093 012 266 864 875 921 046 8381 A4 624 055 2001 003 002 322 908 352 093 012 346 723 1249 1195 -054 8382 A4 624 055 2001 003 002 322 908 352 093 012 346 7331 121 1165 -045 8383 A4 624 055 2001 003 002 322 908 352 093 012 346 7445 116 1132 -028 8384 A4 624 055 2001 003 002 322 908 352 093 012 346 7552 1121 1102 -019 8385 A4 624 055 2001 003 002 322 908 352 093 012 346 7644 1078 1077 -001 8386 A4 624 055 2001 003 002 322 908 352 093 012 346 7911 995 1009 014 8387 A4 624 055 2001 003 002 322 908 352 093 012 346 7978 976 993 017 8388 A4 624 055 2001 003 002 322 908 352 093 012 346 8123 942 959 017 8389 A4 624 055 2001 003 002 322 908 352 093 012 346 8348 875 909 034 8390 R6 7379 005 1511 042 005 007 097 471 402 001 88 97315 511 469 -042 9391 R6 7379 005 1511 042 005 007 097 471 402 001 88 10732 414 392 -022 9392 R6 7379 005 1511 042 005 007 097 471 402 001 88 11732 345 327 -018 9393 R14 7692 01 1292 089 005 011 086 389 425 003 008 12212 864 885 021 10394 R14 7692 01 1292 089 005 011 086 389 425 003 008 12062 881 906 025 10395 R14 7692 01 1292 089 005 011 086 389 425 003 008 11792 92 945 025 10

143

396 R14 7692 01 1292 089 005 011 086 389 425 003 008 11512 965 987 022 10397 R14 7692 01 1292 089 005 011 086 389 425 003 008 11382 982 1007 025 10398 R15 7699 003 1302 071 01 004 048 431 431 0 149 72315 1318 1326 008 10399 R15 7699 003 1302 071 01 004 048 431 431 0 149 73715 1285 1286 001 10400 R15 7699 003 1302 071 01 004 048 431 431 0 149 74815 1245 1256 011 10401 R15 7699 003 1302 071 01 004 048 431 431 0 149 75815 1214 123 016 10402 R15 7699 003 1302 071 01 004 048 431 431 0 149 77415 1191 1189 -002 10403 R15 7699 003 1302 071 01 004 048 431 431 0 149 78415 1145 1165 02 10404 R15 7699 003 1302 071 01 004 048 431 431 0 149 79415 1155 1141 -014 10405 R15 7699 003 1302 071 01 004 048 431 431 0 149 80415 1092 1119 027 10406 R15 7699 003 1302 071 01 004 048 431 431 0 149 81415 1105 1097 -008 10407 R15 7699 003 1302 071 01 004 048 431 431 0 149 82215 106 108 02 10408 R15 7699 003 1302 071 01 004 048 431 431 0 149 83215 1058 1059 001 10409 R15 7699 003 1302 071 01 004 048 431 431 0 149 84215 1039 1039 0 10410 R15 7699 003 1302 071 01 004 048 431 431 0 149 85115 1026 1022 -004 10411 R15 7699 003 1302 071 01 004 048 431 431 0 149 86215 101 1001 -009 10412 R17 7701 003 1314 071 01 004 051 428 418 0 001 12332 964 922 -042 10413 R17 7701 003 1314 071 01 004 051 428 418 0 001 12052 993 963 -03 10414 R17 7701 003 1314 071 01 004 051 428 418 0 001 11582 1069 1038 -031 10415 R17 7701 003 1314 071 01 004 051 428 418 0 001 11352 112 1077 -043 10416 R17 7701 003 1314 071 01 004 051 428 418 0 001 11112 1127 1119 -008 10417 R17 7701 003 1314 071 01 004 051 428 418 0 001 10882 1195 1162 -033 10418 R17 7701 003 1314 071 01 004 051 428 418 0 001 10642 1238 1209 -029 10419 R19 7708 009 1244 13 002 002 036 449 42 0 004 12312 884 869 -015 10420 R19 7708 009 1244 13 002 002 036 449 42 0 004 12067 916 902 -014 10421 R19 7708 009 1244 13 002 002 036 449 42 0 004 11792 951 942 -009 10422 R19 7708 009 1244 13 002 002 036 449 42 0 004 11612 971 968 -003 10423 R19 7708 009 1244 13 002 002 036 449 42 0 004 11422 998 997 -001 10424 R21 7717 008 124 13 002 001 035 45 42 0 012 10702 1016 1064 048 10425 R21 7717 008 124 13 002 001 035 45 42 0 012 10922 1008 103 022 10426 R21 7717 008 124 13 002 001 035 45 42 0 012 11002 993 1018 025 10427 R21 7717 008 124 13 002 001 035 45 42 0 012 11292 953 976 023 10

144

428 R21 7717 008 124 13 002 001 035 45 42 0 012 11582 896 935 039 10429 R21 7717 008 124 13 002 001 035 45 42 0 012 11872 857 896 039 10430 R26 7748 017 122 13 005 017 114 39 36 0 013 11882 85 872 022 10431 R26 7748 017 122 13 005 017 114 39 36 0 013 11522 91 923 013 10432 R26 7748 017 122 13 005 017 114 39 36 0 013 11272 951 96 009 10433 R26 7748 017 122 13 005 017 114 39 36 0 013 10932 1005 1013 008 10434 R26 7748 017 122 13 005 017 114 39 36 0 013 10932 1025 1013 -012 10435 R26 7748 017 122 13 005 017 114 39 36 0 013 10612 1062 1065 003 10436 R27 7753 017 1217 13 005 017 113 389 36 0 004 11342 1007 996 -011 10437 R27 7753 017 1217 13 005 017 113 389 36 0 004 11522 981 967 -014 10438 R27 7753 017 1217 13 005 017 113 389 36 0 004 11592 962 956 -006 10439 R27 7753 017 1217 13 005 017 113 389 36 0 004 11782 934 926 -008 10440 R27 7753 017 1217 13 005 017 113 389 36 0 004 11872 909 912 003 10441 R27 7753 017 1217 13 005 017 113 389 36 0 004 11962 904 899 -005 10442 R27 7753 017 1217 13 005 017 113 389 36 0 004 12247 862 858 -004 10443 R28 7788 007 1273 076 004 006 05 393 403 001 002 11852 1012 998 -014 10444 R28 7788 007 1273 076 004 006 05 393 403 001 002 12082 979 963 -016 10445 R31 78 009 1215 054 007 006 05 408 448 002 006 12382 866 895 029 10446 R31 78 009 1215 054 007 006 05 408 448 002 006 12232 889 915 026 10447 R31 78 009 1215 054 007 006 05 408 448 002 006 12042 906 942 036 10448 R31 78 009 1215 054 007 006 05 408 448 002 006 11852 948 969 021 10449 R31 78 009 1215 054 007 006 05 408 448 002 006 11712 951 99 039 10450 R31 78 009 1215 054 007 006 05 408 448 002 006 11657 969 998 029 10451 R31 78 009 1215 054 007 006 05 408 448 002 006 11369 1004 1042 038 10452 R31 78 009 1215 054 007 006 05 408 448 002 006 11199 1029 1069 04 10453 R31 78 009 1215 054 007 006 05 408 448 002 006 10778 1089 114 051 10454 R31 78 009 1215 054 007 006 05 408 448 002 006 10403 1165 1207 042 10455 R32 78 009 1215 054 007 007 05 408 448 0 013 11712 92 95 03 10456 R32 78 009 1215 054 007 007 05 408 448 0 013 11202 999 1022 023 10457 R32 78 009 1215 054 007 007 05 408 448 0 013 10782 1049 1084 035 10458 R32 78 009 1215 054 007 007 05 408 448 0 013 10242 1154 117 016 10459 R32 78 009 1215 054 007 007 05 408 448 0 013 99215 12 1224 024 10

145

460 A3 6117 084 1729 539 0 335 583 385 139 0 002 9811 1133 1117 -016 11461 A3 6117 084 1729 539 0 335 583 385 139 0 002 9922 1083 1089 006 11462 A3 6117 084 1729 539 0 335 583 385 139 0 002 10118 1025 1042 017 11463 A3 6117 084 1729 539 0 335 583 385 139 0 002 10255 99 1012 022 11464 A3 6117 084 1729 539 0 335 583 385 139 0 002 10368 967 987 02 11465 A3 6117 084 1729 539 0 335 583 385 139 0 002 1670 219 23 011 11466 A3 6117 084 1729 539 0 335 583 385 139 0 002 1719 197 196 -001 11467 A3 6117 084 1729 539 0 335 583 385 139 0 002 1768 174 164 -01 11468 A3 6117 084 1729 539 0 335 583 385 139 0 002 1818 152 133 -019 11469 A3 6117 084 1729 539 0 335 583 385 139 0 002 1867 133 104 -029 11470 A3 6117 084 1729 539 0 335 583 385 139 0 002 9393 1266 1235 -031 11471 A3 6117 084 1729 539 0 335 583 385 139 0 002 9506 123 1201 -029 11472 A3 6117 084 1729 539 0 335 583 385 139 0 002 9617 1185 1169 -016 11473 A3 6117 084 1729 539 0 335 583 385 139 0 002 9718 1164 1141 -023 11474 R30 779 007 1205 076 0 005 052 401 406 0 0 1670 479 473 -006 11475 R30 779 007 1205 076 0 005 052 401 406 0 0 1719 441 438 -003 11476 R30 779 007 1205 076 0 005 052 401 406 0 0 1768 409 404 -005 11477 R30 779 007 1205 076 0 005 052 401 406 0 0 1817 381 373 -008 11478 R30 779 007 1205 076 0 005 052 401 406 0 0 1867 35 343 -007 11479 R30 779 007 1205 076 0 005 052 401 406 0 0 1051 121 1259 049 11480 R30 779 007 1205 076 0 005 052 401 406 0 0 10706 1192 1217 025 11481 R30 779 007 1205 076 0 005 052 401 406 0 0 10813 1181 1194 013 11482 R30 779 007 1205 076 0 005 052 401 406 0 0 11006 1134 1156 022 11483 R30 779 007 1205 076 0 005 052 401 406 0 0 10984 1127 116 033 11484 R30 779 007 1205 076 0 005 052 401 406 0 0 11111 1105 1136 031 11485 R30 779 007 1205 076 0 005 052 401 406 0 0 11269 1089 1106 017 11486 R30 779 007 1205 076 0 005 052 401 406 0 0 11272 1073 1106 033 11487 R30 779 007 1205 076 0 005 052 401 406 0 0 11674 1019 1035 016 11488 R30 779 007 1205 076 0 005 052 401 406 0 0 11935 978 992 014 11489 R30 779 007 1205 076 0 005 052 401 406 0 0 10969 1137 1163 026 11490 R30 779 007 1205 076 0 005 052 401 406 0 0 10976 1134 1162 028 11491 R30 779 007 1205 076 0 005 052 401 406 0 0 11068 1118 1144 026 11

146

492 R30 779 007 1205 076 0 005 052 401 406 0 0 11203 1092 1118 026 11493 R30 779 007 1205 076 0 005 052 401 406 0 0 11261 1081 1108 027 11494 R30 779 007 1205 076 0 005 052 401 406 0 0 11305 1077 1099 022 11495 R30 779 007 1205 076 0 005 052 401 406 0 0 11345 1066 1092 026 11496 R30 779 007 1205 076 0 005 052 401 406 0 0 11347 1063 1092 029 11497 R30 779 007 1205 076 0 005 052 401 406 0 0 11469 1042 107 028 11498 R30 779 007 1205 076 0 005 052 401 406 0 0 11551 1031 1056 025 11499 R30 779 007 1205 076 0 005 052 401 406 0 0 11563 103 1054 024 11500 R30 779 007 1205 076 0 005 052 401 406 0 0 11671 1015 1035 02 11501 R30 779 007 1205 076 0 005 052 401 406 0 0 11771 999 1018 019 11502 R30 779 007 1205 076 0 005 052 401 406 0 0 11941 973 991 018 11503 R30 779 007 1205 076 0 005 052 401 406 0 0 12133 936 961 025 11504 R30 779 007 1205 076 0 005 052 401 406 0 0 10983 1156 116 004 11505 R30 779 007 1205 076 0 005 052 401 406 0 0 11106 1137 1137 0 11506 R30 779 007 1205 076 0 005 052 401 406 0 0 11203 1121 1118 -003 11507 R30 779 007 1205 076 0 005 052 401 406 0 0 11344 1093 1092 -001 11508 R30 779 007 1205 076 0 005 052 401 406 0 0 11513 1065 1062 -003 11509 R30 779 007 1205 076 0 005 052 401 406 0 0 11661 1036 1037 001 11510 R30 779 007 1205 076 0 005 052 401 406 0 0 11757 1018 1021 003 11511 R30 779 007 1205 076 0 005 052 401 406 0 0 11902 995 997 002 11512 R30 779 007 1205 076 0 005 052 401 406 0 0 12045 974 974 0 11513 R30 779 007 1205 076 0 005 052 401 406 0 0 12191 954 952 -002 11514 R30 779 007 1205 076 0 005 052 401 406 0 0 12308 936 934 -002 11515 R30 779 007 1205 076 0 005 052 401 406 0 0 988 1377 1408 031 11516 R30 779 007 1205 076 0 005 052 401 406 0 0 1063 1249 1233 -016 11517 R30 779 007 1205 076 0 005 052 401 406 0 0 1068 1226 1222 -004 11518 R30 779 007 1205 076 0 005 052 401 406 0 0 1091 1187 1175 -012 11519 R30 779 007 1205 076 0 005 052 401 406 0 0 1094 1151 1169 018 11520 R30 779 007 1205 076 0 005 052 401 406 0 0 1128 1102 1104 002 11521 R30 779 007 1205 076 0 005 052 401 406 0 0 1129 1102 1102 0 11522 R30 779 007 1205 076 0 005 052 401 406 0 0 1131 1092 1099 007 11523 R30 779 007 1205 076 0 005 052 401 406 0 0 1135 1087 1091 004 11

147

524 R30 779 007 1205 076 0 005 052 401 406 0 0 1136 109 1089 -001 11525 R30 779 007 1205 076 0 005 052 401 406 0 0 1138 1084 1086 002 11526 R30 779 007 1205 076 0 005 052 401 406 0 0 1157 1062 1052 -01 11527 R30 779 007 1205 076 0 005 052 401 406 0 0 1186 1007 1004 -003 11528 R30 779 007 1205 076 0 005 052 401 406 0 0 1219 955 952 -003 11529 R30 779 007 1205 076 0 005 052 401 406 0 0 1221 957 949 -008 11530 R30 779 007 1205 076 0 005 052 401 406 0 0 1253 919 902 -017 11531 R30 779 007 1205 076 0 005 052 401 406 0 0 920 1508 1601 093 11532 R30 779 007 1205 076 0 005 052 401 406 0 0 1916 322 315 -007 11533 R20 7715 009 1282 056 007 007 052 411 461 001 012 12313 868 874 006 12534 R20 7715 009 1282 056 007 007 052 411 461 001 012 1219 889 89 001 12535 R20 7715 009 1282 056 007 007 052 411 461 001 012 1201 912 913 001 12536 R20 7715 009 1282 056 007 007 052 411 461 001 012 11765 947 946 -001 12537 R20 7715 009 1282 056 007 007 052 411 461 001 012 11493 991 983 -008 12538 R22 7718 009 1291 061 007 007 051 405 452 001 01 12382 866 874 008 12539 R22 7718 009 1291 061 007 007 051 405 452 001 01 12232 889 893 004 12540 R22 7718 009 1291 061 007 007 051 405 452 001 01 12042 906 919 013 12541 R22 7718 009 1291 061 007 007 051 405 452 001 01 11852 948 944 -004 12542 R22 7718 009 1291 061 007 007 051 405 452 001 01 11662 969 971 002 12543 R22 7718 009 1291 061 007 007 051 405 452 001 01 11372 1004 1012 008 12544 R29 7788 016 1203 119 005 005 106 364 388 001 011 11882 888 897 009 12545 R29 7788 016 1203 119 005 005 106 364 388 001 011 11782 913 911 -002 12546 R29 7788 016 1203 119 005 005 106 364 388 001 011 11642 931 931 0 12547 R29 7788 016 1203 119 005 005 106 364 388 001 011 11532 954 947 -007 12548 R29 7788 016 1203 119 005 005 106 364 388 001 011 11488 948 953 005 12549 R29 7788 016 1203 119 005 005 106 364 388 001 011 11412 975 965 -01 12550 R29 7788 016 1203 119 005 005 106 364 388 001 011 11212 1003 995 -008 12551 R29 7788 016 1203 119 005 005 106 364 388 001 011 11162 1021 1003 -018 12552 R29 7788 016 1203 119 005 005 106 364 388 001 011 10922 105 104 -01 12553 R29 7788 016 1203 119 005 005 106 364 388 001 011 10742 1073 107 -003 12554 R10 7638 006 1159 103 005 036 325 244 466 0 002 10482 1161 1168 007 13555 R10 7638 006 1159 103 005 036 325 244 466 0 002 10732 1101 1109 008 13

148

556 R10 7638 006 1159 103 005 036 325 244 466 0 002 10982 1048 1054 006 13557 R10 7638 006 1159 103 005 036 325 244 466 0 002 11232 1002 1003 001 13558 R10 7638 006 1159 103 005 036 325 244 466 0 002 11482 957 955 -002 13559 R10 7638 006 1159 103 005 036 325 244 466 0 002 10732 11 1109 009 13560 R10 7638 006 1159 103 005 036 325 244 466 0 002 11232 997 1003 006 13561 R10 7638 006 1159 103 005 036 325 244 466 0 002 11732 912 91 -002 13562 R10 7638 006 1159 103 005 036 325 244 466 0 002 11982 875 868 -007 13563 R11 7657 006 1165 104 007 036 323 246 462 0 017 99815 1165 1158 -007 13564 R11 7657 006 1165 104 007 036 323 246 462 0 017 10232 1091 1107 016 13565 R11 7657 006 1165 104 007 036 323 246 462 0 017 10232 1094 1107 013 13566 R11 7657 006 1165 104 007 036 323 246 462 0 017 10482 1036 1059 023 13567 R11 7657 006 1165 104 007 036 323 246 462 0 017 10732 987 1012 025 13568 R11 7657 006 1165 104 007 036 323 246 462 0 017 10982 942 968 026 13569 R11 7657 006 1165 104 007 036 323 246 462 0 017 11232 906 926 02 13570 R16 77 006 1177 1 006 036 329 248 468 0 055 94815 1146 1069 -077 13571 R16 77 006 1177 1 006 036 329 248 468 0 055 97315 1085 1029 -056 13572 R16 77 006 1177 1 006 036 329 248 468 0 055 97315 1088 1029 -059 13573 R16 77 006 1177 1 006 036 329 248 468 0 055 99815 105 99 -06 13574 R16 77 006 1177 1 006 036 329 248 468 0 055 10232 996 952 -044 13575 R16 77 006 1177 1 006 036 329 248 468 0 055 10232 994 952 -042 13576 R16 77 006 1177 1 006 036 329 248 468 0 055 10732 905 88 -025 13577 R18 7707 006 1167 099 007 035 328 242 462 0 027 97315 1154 115 -004 13578 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1128 1103 -025 13579 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1123 1103 -02 13580 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1057 1058 001 13581 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1083 1058 -025 13582 R18 7707 006 1167 099 007 035 328 242 462 0 027 10482 1002 1014 012 13583 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 957 972 015 13584 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 981 972 -009 13585 R18 7707 006 1167 099 007 035 328 242 462 0 027 10982 937 931 -006 13586 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1151 1103 -048 13587 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1083 1058 -025 13

149

588 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1089 1058 -031 13589 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 984 972 -012 13590 R23 7727 003 1175 105 005 036 331 243 473 0 058 97315 1071 102 -051 13591 R23 7727 003 1175 105 005 036 331 243 473 0 058 99815 1029 982 -047 13592 R23 7727 003 1175 105 005 036 331 243 473 0 058 10232 986 944 -042 13593 R23 7727 003 1175 105 005 036 331 243 473 0 058 10482 943 908 -035 13594 R23 7727 003 1175 105 005 036 331 243 473 0 058 10732 902 873 -029 13595 R23 7727 003 1175 105 005 036 331 243 473 0 058 10982 866 838 -028 13596 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1016 1014 -002 13597 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1042 1014 -028 13598 R24 7738 005 117 103 005 036 324 244 48 0 037 10482 969 974 005 13599 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 932 934 002 13600 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 947 934 -013 13601 R24 7738 005 117 103 005 036 324 244 48 0 037 10982 896 896 0 13602 R24 7738 005 117 103 005 036 324 244 48 0 037 11232 875 859 -016 13603 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1014 1014 0 13604 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1034 1014 -02 13605 R24 7738 005 117 103 005 036 324 244 48 0 037 10482 974 974 0 13606 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 935 934 -001 13607 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 951 934 -017 13608 R24 7738 005 117 103 005 036 324 244 48 0 037 10982 903 896 -007 13609 R24 7738 005 117 103 005 036 324 244 48 0 037 11232 879 859 -02 13610 R25 7746 005 1164 104 007 035 323 245 47 0 031 99815 1095 1082 -013 13611 R25 7746 005 1164 104 007 035 323 245 47 0 031 10232 1044 1039 -005 13612 R25 7746 005 1164 104 007 035 323 245 47 0 031 10482 997 997 0 13613 R25 7746 005 1164 104 007 035 323 245 47 0 031 10732 953 956 003 13614 R25 7746 005 1164 104 007 035 323 245 47 0 031 10982 912 916 004 13615 R25 7746 005 1164 104 007 035 323 245 47 0 031 11232 882 878 -004 13616 R25 7746 005 1164 104 007 035 323 245 47 0 031 94815 1244 1173 -071 13617 R25 7746 005 1164 104 007 035 323 245 47 0 031 97315 117 1127 -043 13618 R25 7746 005 1164 104 007 035 323 245 47 0 031 99815 1131 1082 -049 13619 R9 7603 006 1148 105 006 036 321 242 46 0 0 10732 1148 1135 -013 13

150

620 R9 7603 006 1148 105 006 036 321 242 46 0 0 10982 1086 1076 -01 13621 R9 7603 006 1148 105 006 036 321 242 46 0 0 11232 104 1022 -018 13622 R9 7603 006 1148 105 006 036 321 242 46 0 0 11482 991 972 -019 13623 R9 7603 006 1148 105 006 036 321 242 46 0 0 11732 946 926 -02 13624 R9 7603 006 1148 105 006 036 321 242 46 0 0 11982 913 882 -031 13625 R12 7659 008 1267 1 0 003 052 398 488 0 168 738 1235 1252 017 14626 R12 7659 008 1267 1 0 003 052 398 488 0 173 710 1322 1324 002 14627 R12 7659 008 1267 1 0 003 052 398 488 0 157 671 152 1476 -044 14628 R12 7659 008 1267 1 0 003 052 398 488 0 182 709 1323 1313 -01 14629 R12 7659 008 1267 1 0 003 052 398 488 0 186 731 1234 1244 01 14630 R12 7659 008 1267 1 0 003 052 398 488 0 188 755 1153 1177 024 14631 R12 7659 008 1267 1 0 003 052 398 488 0 237 729 1162 118 018 14632 R12 7659 008 1267 1 0 003 052 398 488 0 255 804 968 98 012 14633 R12 7659 008 1267 1 0 003 052 398 488 0 184 845 963 982 019 14634 R12 7659 008 1267 1 0 003 052 398 488 0 263 678 1322 1296 -026 14635 R12 7659 008 1267 1 0 003 052 398 488 0 306 682 1242 1233 -009 14636 R12 7659 008 1267 1 0 003 052 398 488 0 3 710 1171 1158 -013 14637 R12 7659 008 1267 1 0 003 052 398 488 0 142 730 1322 1317 -005 14638 R12 7659 008 1267 1 0 003 052 398 488 0 143 757 123 1241 011 14639 R12 7659 008 1267 1 0 003 052 398 488 0 142 787 1157 1168 011 14640 R12 7659 008 1267 1 0 003 052 398 488 0 093 769 1323 1305 -018 14641 R12 7659 008 1267 1 0 003 052 398 488 0 112 780 1227 1238 011 14642 R12 7659 008 1267 1 0 003 052 398 488 0 116 810 1149 116 011 14643 R12 7659 008 1267 1 0 003 052 398 488 0 239 643 152 1446 -074 14644 R12 7659 008 1267 1 0 003 052 398 488 0 051 841 1323 1253 -07 14645 R12 7659 008 1267 1 0 003 052 398 488 0 203 873 872 907 035 14646 R12 7659 008 1267 1 0 003 052 398 488 0 197 798 103 1062 032 14647 R12 7659 008 1267 1 0 003 052 398 488 0 197 773 1082 112 038 14648 R12 7659 008 1267 1 0 003 052 398 488 0 204 848 926 951 025 14649 R12 7659 008 1267 1 0 003 052 398 488 0 203 824 968 999 031 14650 R12 7659 008 1267 1 0 003 052 398 488 0 136 873 97 999 029 14651 R12 7659 008 1267 1 0 003 052 398 488 0 141 848 103 1038 008 14

151

652 R12 7659 008 1267 1 0 003 052 398 488 0 146 873 962 984 022 14653 R12 7659 008 1267 1 0 003 052 398 488 0 38 750 962 981 019 14654 R12 7659 008 1267 1 0 003 052 398 488 0 38 642 13 1281 -019 14655 R12 7659 008 1267 1 0 003 052 398 488 0 38 625 1423 1339 -084 14656 R12 7659 008 1267 1 0 003 052 398 488 0 56 707 96 95 -01 14657 R12 7659 008 1267 1 0 003 052 398 488 0 56 604 1324 1249 -075 14658 R12 7659 008 1267 1 0 003 052 398 488 0 56 648 1144 1107 -037 14659 R12 7659 008 1267 1 0 003 052 398 488 0 77 670 96 921 -039 14660 R12 7659 008 1267 1 0 003 052 398 488 0 77 573 1324 1211 -113 14661 R12 7659 008 1267 1 0 003 052 398 488 0 77 603 1145 1108 -037 14662 R12 7659 008 1267 1 0 003 052 398 488 0 078 825 1224 1207 -017 14663 R12 7659 008 1267 1 0 003 052 398 488 0 08 823 1224 1207 -017 14664 R12 7659 008 1267 1 0 003 052 398 488 0 082 820 1224 1209 -015 14665 R12 7659 008 1267 1 0 003 052 398 488 0 079 971 961 962 001 14666 R12 7659 008 1267 1 0 003 052 398 488 0 084 846 1153 115 -003 14667 R12 7659 008 1267 1 0 003 052 398 488 0 083 892 1064 1069 005 14668 R12 7659 008 1267 1 0 003 052 398 488 0 089 772 1323 1305 -018 14669 R12 7659 008 1267 1 0 003 052 398 488 0 081 804 1276 1246 -03 14670 R12 7659 008 1267 1 0 003 052 398 488 0 084 765 1371 1335 -036 14671 R12 7659 008 1267 1 0 003 052 398 488 0 084 752 142 137 -05 14672 R12 7659 008 1267 1 0 003 052 398 488 0 083 784 132 1289 -031 14673 R12 7659 008 1267 1 0 003 052 398 488 0 084 779 132 1299 -021 14674 R12 7659 008 1267 1 0 003 052 398 488 0 081 728 152 1446 -074 14675 R12 7659 008 1267 1 0 003 052 398 488 0 114 748 1322 1318 -004 14676 R12 7659 008 1267 1 0 003 052 398 488 0 117 897 948 991 043 14677 R13 766 01 127 117 0 002 031 41 46 0 43 1073 551 5 -051 15678 R13 766 01 127 117 0 002 031 41 46 0 43 1073 545 5 -045 15679 R13 766 01 127 117 0 002 031 41 46 0 43 1123 526 46 -066 15680 R13 766 01 127 117 0 002 031 41 46 0 43 1123 517 46 -057 15681 R13 766 01 127 117 0 002 031 41 46 0 43 1173 488 422 -066 15682 R13 766 01 127 117 0 002 031 41 46 0 62 973 552 52 -032 15683 R13 766 01 127 117 0 002 031 41 46 0 62 1023 505 475 -03 15

152

684 R13 766 01 127 117 0 002 031 41 46 0 62 1073 457 435 -022 15685 R13 766 01 127 117 0 002 031 41 46 0 62 1073 463 435 -028 15686 R13 766 01 127 117 0 002 031 41 46 0 62 1123 425 398 -027 15687 R1 6677 039 2015 431 001 072 364 137 217 0 002 15732 377 399 022 16688 R1 6677 039 2015 431 001 072 364 137 217 0 002 16232 329 359 03 16689 R1 6677 039 2015 431 001 072 364 137 217 0 002 16732 29 322 032 16690 R1 6677 039 2015 431 001 072 364 137 217 0 002 17232 267 287 02 16691 R1 6677 039 2015 431 001 072 364 137 217 0 002 17232 264 287 023 16692 R1 6677 039 2015 431 001 072 364 137 217 0 002 17732 235 254 019 16693 R1 6677 039 2015 431 001 072 364 137 217 0 002 18232 209 223 014 16694 R1 6677 039 2015 431 001 072 364 137 217 0 002 18732 186 193 007 16695 R2 6716 001 2165 281 001 073 265 285 182 0 002 17232 288 331 043 16696 R2 6716 001 2165 281 001 073 265 285 182 0 002 17732 26 298 038 16697 R2 6716 001 2165 281 001 073 265 285 182 0 002 18232 233 266 033 16698 R2 6716 001 2165 281 001 073 265 285 182 0 002 18732 209 237 028 16699 R3 7122 024 168 291 006 08 262 309 194 0 002 16232 392 379 -013 16700 R3 7122 024 168 291 006 08 262 309 194 0 002 16732 361 342 -019 16701 R3 7122 024 168 291 006 08 262 309 194 0 002 17232 328 307 -021 16702 R3 7122 024 168 291 006 08 262 309 194 0 002 17732 3 275 -025 16703 R3 7122 024 168 291 006 08 262 309 194 0 002 18232 273 244 -029 16704 R3 7122 024 168 291 006 08 262 309 194 0 002 18732 248 215 -033 16705 R4 7142 001 161 458 001 157 094 194 292 0 002 15732 419 423 004 16706 R4 7142 001 161 458 001 157 094 194 292 0 002 16232 387 385 -002 16707 R4 7142 001 161 458 001 157 094 194 292 0 002 16732 352 349 -003 16708 R4 7142 001 161 458 001 157 094 194 292 0 002 17232 322 316 -006 16709 R4 7142 001 161 458 001 157 094 194 292 0 002 17732 292 285 -007 16710 R4 7142 001 161 458 001 157 094 194 292 0 002 18232 265 255 -01 16711 R4 7142 001 161 458 001 157 094 194 292 0 002 18732 24 228 -012 16712 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 16732 385 357 -028 16713 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17132 359 328 -031 16714 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17532 337 301 -036 16715 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17932 31 275 -035 16

153

716 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 18332 292 25 -042 16717 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 18732 276 226 -05 16718 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 17532 319 311 -008 16719 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 17932 3 285 -015 16720 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18132 257 272 015 16721 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18332 242 259 017 16722 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18532 231 247 016 16723 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18732 222 235 013 16724 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16532 368 375 007 16725 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16732 355 36 005 16726 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16932 342 346 004 16727 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17132 326 331 005 16728 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17332 311 317 006 16729 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17532 3 304 004 16730 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17732 285 291 006 16731 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17932 275 278 003 16732 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18132 264 265 001 16733 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18332 255 252 -003 16734 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18532 242 24 -002 16735 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18732 234 228 -006 16736 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 16332 41 377 -033 16737 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 16732 371 347 -024 16738 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17132 344 319 -025 16739 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17532 318 292 -026 16740 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17932 295 266 -029 16741 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 18332 273 241 -032 16742 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 18732 259 217 -042 16743 Bl2 4781 194 1791 109 019 475 996 394 211 048 0 10202 994 956 -038 17744 Bl2 4781 194 1791 109 019 475 996 394 211 048 0 94615 1165 1134 -031 17745 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 98315 994 1008 014 17746 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 10132 869 925 056 17747 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 95315 1141 1117 -024 17

154

748 R8 7537 007 1284 157 007 004 072 419 513 0 014 99315 111 1146 036 17749 R8 7537 007 1284 157 007 004 072 419 513 0 014 10112 1078 1115 037 17750 R8 7537 007 1284 157 007 004 072 419 513 0 014 10432 1018 1062 044 17751 R8 7537 007 1284 157 007 004 072 419 513 0 014 10842 956 997 041 17752 R8 7537 007 1284 157 007 004 072 419 513 0 014 11142 915 952 037 17753 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 785 792 007 18754 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 782 792 01 18755 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 787 792 005 18756 R7 747 008 1328 165 0 0 077 43 522 0 0 13232 726 73 004 18757 R7 747 008 1328 165 0 0 077 43 522 0 0 13732 679 673 -006 18758 R7 747 008 1328 165 0 0 077 43 522 0 0 13732 677 673 -004 18759 R7 747 008 1328 165 0 0 077 43 522 0 0 14232 625 62 -005 18760 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 1744 -022 -068 -046 19761 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 17194 -016 -049 -033 19762 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16948 -009 -029 -02 19763 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16702 -002 -009 -007 19764 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16456 007 012 005 19765 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 1621 016 034 018 19766 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 97515 1026 1014 -012 19767 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 98275 981 991 01 19768 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 98315 1005 99 -015 19769 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 965 1077 1048 -029 19770 Ph1 512 067 186 61 013 25 73 375 79 04 002 18179 097 092 -005 19771 Ph1 512 067 186 61 013 25 73 375 79 04 002 17933 107 107 0 19772 Ph1 512 067 186 61 013 25 73 375 79 04 002 17687 117 121 004 19773 Ph1 512 067 186 61 013 25 73 375 79 04 002 1744 128 136 008 19774 Ph1 512 067 186 61 013 25 73 375 79 04 002 17194 138 152 014 19775 Ph1 512 067 186 61 013 25 73 375 79 04 002 16948 15 168 018 19776 Ph1 512 067 186 61 013 25 73 375 79 04 002 16702 163 184 021 19777 Ph1 512 067 186 61 013 25 73 375 79 04 002 16456 175 201 026 19778 Ph1 512 067 186 61 013 25 73 375 79 04 002 1621 188 219 031 19779 Ph1 512 067 186 61 013 25 73 375 79 04 002 97815 1066 1034 -032 19

155

780 Ph1 512 067 186 61 013 25 73 375 79 04 002 9975 1015 985 -03 19781 Ph1 512 067 186 61 013 25 73 375 79 04 002 10164 975 942 -033 19782 Ph5 597 046 1852 36 017 065 28 389 845 015 002 1744 245 23 -015 19783 Ph5 597 046 1852 36 017 065 28 389 845 015 002 17194 258 245 -013 19784 Ph5 597 046 1852 36 017 065 28 389 845 015 002 16948 272 261 -011 19785 Ph5 597 046 1852 36 017 065 28 389 845 015 002 1621 316 311 -005 19786 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15964 332 329 -003 19787 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15718 348 348 0 19788 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15472 366 367 001 19789 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15226 383 386 003 19790 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14979 402 407 005 19791 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14733 42 428 008 19792 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14487 44 45 01 19793 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14241 46 472 012 19794 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10346 103 996 -034 19795 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10477 1011 971 -04 19796 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10675 973 934 -039 19797 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10838 955 905 -05 19798 Ph5 597 046 1852 36 017 065 28 389 845 015 002 11041 911 871 -04 19799 Te1 492 083 164 72 013 51 102 27 65 072 002 18179 053 038 -015 19800 Te1 492 083 164 72 013 51 102 27 65 072 002 17933 062 052 -01 19801 Te1 492 083 164 72 013 51 102 27 65 072 002 17687 071 068 -003 19802 Te1 492 083 164 72 013 51 102 27 65 072 002 1744 081 083 002 19803 Te1 492 083 164 72 013 51 102 27 65 072 002 17194 09 099 009 19804 Te1 492 083 164 72 013 51 102 27 65 072 002 16948 101 116 015 19805 Te1 492 083 164 72 013 51 102 27 65 072 002 16702 112 133 021 19806 Te1 492 083 164 72 013 51 102 27 65 072 002 16456 124 15 026 19807 Te1 492 083 164 72 013 51 102 27 65 072 002 1621 136 169 033 19808 Te1 492 083 164 72 013 51 102 27 65 072 002 9806 1055 1041 -014 19809 Te1 492 083 164 72 013 51 102 27 65 072 002 99335 1017 997 -02 19810 Te1 492 083 164 72 013 51 102 27 65 072 002 10023 978 969 -009 19811 Te1 492 083 164 72 013 51 102 27 65 072 002 10179 951 925 -026 19

156

812 Te1 492 083 164 72 013 51 102 27 65 072 002 10294 913 895 -018 19813 Te1 492 083 164 72 013 51 102 27 65 072 002 10401 879 87 -009 19814 Te1 492 083 164 72 013 51 102 27 65 072 002 96995 1098 1084 -014 19815 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18671 214 198 -016 19816 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18425 225 211 -014 19817 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18179 237 225 -012 19818 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17933 25 239 -011 19819 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17687 263 253 -01 19820 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1744 276 268 -008 19821 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17194 291 283 -008 19822 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16948 305 299 -006 19823 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16702 32 315 -005 19824 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16456 336 331 -005 19825 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1621 352 348 -004 19826 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15964 368 366 -002 19827 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15718 385 384 -001 19828 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15472 4 403 003 19829 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15226 421 423 002 19830 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 14979 44 443 003 19831 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 14733 459 464 005 19832 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 99603 1077 1091 014 19833 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10103 1053 1062 009 19834 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10117 1041 106 019 19835 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10163 1049 1051 002 19836 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10229 1019 1038 019 19837 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10338 995 1018 023 19838 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1055 963 979 016 19839 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10797 911 937 026 19840 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17692 237 248 011 20841 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17442 249 263 014 20842 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17192 263 279 016 20843 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16952 277 294 017 20

157

844 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16702 292 31 018 20845 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16462 308 327 019 20846 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16212 324 344 02 20847 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15962 34 363 023 20848 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15722 358 381 023 20849 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15472 376 4 024 20850 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15222 394 42 026 20851 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14982 414 44 026 20852 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14732 434 462 028 20853 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14492 454 483 029 20854 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 11342 932 857 -075 20855 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 11092 984 898 -086 20856 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 10762 1044 954 -09 20857 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 10562 1083 991 -092 20858 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 83515 1112 1122 01 20859 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 84215 1094 1107 013 20860 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 85215 1075 1086 011 20861 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 86815 1044 1052 008 20862 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 86915 103 105 02 20863 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 87715 1009 1034 025 20864 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 80215 1086 1065 -021 20865 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 81915 1036 1027 -009 20866 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 82615 1014 1011 -003 20867 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 78115 1052 1048 -004 20868 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 77915 1044 1053 009 20869 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 81115 994 98 -014 20870 Tr1 6074 027 1922 337 018 028 211 528 632 006 296 73215 1076 1058 -018 20871 Tr1 6074 027 1922 337 018 028 211 528 632 006 296 74015 1027 1038 011 20872 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 69115 1128 1123 -005 20873 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 71515 1045 1057 012 20874 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 73015 988 1018 03 20875 Tr4 6388 031 171 29 013 024 182 567 682 005 002 17687 25 245 -005 20

158

876 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1744 262 259 -003 20877 Tr4 6388 031 171 29 013 024 182 567 682 005 002 17194 275 274 -001 20878 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16948 289 29 001 20879 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16702 303 306 003 20880 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16456 318 322 004 20881 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1621 333 339 006 20882 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15964 349 357 008 20883 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15718 365 375 01 20884 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15472 382 394 012 20885 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15226 397 413 016 20886 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14979 417 434 017 20887 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14733 436 454 018 20888 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14487 455 476 021 20889 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1017 1003 1046 043 20890 Tr4 6388 031 171 29 013 024 182 567 682 005 002 97925 1071 1124 053 20891 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1090 876 913 037 20892 Tr4 6388 031 171 29 013 024 182 567 682 005 002 10425 956 997 041 20893 Tr4 6388 031 171 29 013 024 182 567 682 005 002 9586 1108 1169 061 20894 Tr4 6388 031 171 29 013 024 182 567 682 005 1 83915 1064 1066 002 20895 Tr4 6388 031 171 29 013 024 182 567 682 005 1 84815 1047 1047 0 20896 Tr4 6388 031 171 29 013 024 182 567 682 005 1 86215 1022 1019 -003 20897 Tr4 6388 031 171 29 013 024 182 567 682 005 1 87015 1008 1003 -005 20898 Tr4 6388 031 171 29 013 024 182 567 682 005 139 78815 1097 1113 016 20899 Tr4 6388 031 171 29 013 024 182 567 682 005 139 81815 1031 1044 013 20900 Tr4 6388 031 171 29 013 024 182 567 682 005 139 84315 99 99 0 20901 Tr4 6388 031 171 29 013 024 182 567 682 005 241 74515 1059 1077 018 20902 Tr4 6388 031 171 29 013 024 182 567 682 005 241 78815 967 974 007 20903 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67415 1085 1118 033 20904 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67315 108 112 04 20905 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67115 1079 1126 047 20906 Tr4 6388 031 171 29 013 024 182 567 682 005 386 65815 116 1166 006 20907 A1 5856 064 1898 745 0 348 617 324 092 0 083 14732 275 259 -016 21

159

908 A1 5856 064 1898 745 0 348 617 324 092 0 083 15732 222 185 -037 21909 A1 5856 064 1898 745 0 348 617 324 092 0 083 15732 215 185 -03 21910 A1 5856 064 1898 745 0 348 617 324 092 0 083 16232 176 152 -024 21911 A1 5856 064 1898 745 0 348 617 324 092 0 072 14732 237 27 033 21912 A1 5856 064 1898 745 0 348 617 324 092 0 1 14232 25 283 033 21913 A1 5856 064 1898 745 0 348 617 324 092 0 1 14732 225 244 019 21914 A1 5856 064 1898 745 0 348 617 324 092 0 1 13732 364 326 -038 21915 A1 5856 064 1898 745 0 348 617 324 092 0 1 14732 201 244 043 21916 A1 5856 064 1898 745 0 348 617 324 092 0 46 13732 18 174 -006 21917 A1 5856 064 1898 745 0 348 617 324 092 0 46 14732 145 118 -027 21918 Bl3 4821 125 155 1064 0 908 1192 24 008 014 022 13732 286 319 033 21919 Bl3 4821 125 155 1064 0 908 1192 24 008 014 022 15232 23 174 -056 21920 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 13732 174 183 009 21921 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 15732 091 048 -043 21922 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 13732 142 183 041 21923 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 15732 08 048 -032 21924 Bl4 5354 105 1729 782 0 546 832 359 164 02 636 12732 13 177 047 21925 Bl4 5354 105 1729 782 0 546 832 359 164 02 636 15732 027 021 -006 21926 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 14732 36 339 -021 21927 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 15732 216 25 034 21928 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 14732 34 339 -001 21929 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 15732 294 25 -044 21930 R5 7323 019 136 278 0 017 169 378 411 013 21 10732 61 619 009 21931 R5 7323 019 136 278 0 017 169 378 411 013 21 13732 325 356 031 21932 R5 7323 019 136 278 0 017 169 378 411 013 3 10732 48 548 068 21933 R5 7323 019 136 278 0 017 169 378 411 013 33 14732 225 229 004 21934 R5 7323 019 136 278 0 017 169 378 411 013 52 10732 397 444 047 21935 R5 7323 019 136 278 0 017 169 378 411 013 52 14732 167 188 021 21936 R5 7323 019 136 278 0 017 169 378 411 013 123 11232 32 325 005 21937 R5 7323 019 136 278 0 017 169 378 411 013 123 12232 24 281 041 21938 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17732 22 213 -007 22939 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17482 232 226 -006 22

160

940 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17232 244 24 -004 22941 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16982 257 254 -003 22942 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16732 27 268 -002 22943 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16482 283 283 0 22944 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16232 297 298 001 22945 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15982 311 314 003 22946 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15732 326 331 005 22947 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15482 342 348 006 22948 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15232 357 365 008 22949 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14982 374 383 009 22950 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14732 391 402 011 22951 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14482 407 421 014 22952 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14232 427 441 014 22953 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 13982 446 462 016 22954 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 13732 465 484 019 22955 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 10104 899 925 026 22956 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 88785 1163 1164 001 22957 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 92395 1085 1086 001 22958 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 94585 1031 1042 011 22959 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 96475 10 1006 006 22960 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 86705 879 925 046 22961 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 80455 1033 1052 019 22962 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 79395 1059 1075 016 22963 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 78045 1105 1107 002 22964 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 82175 99 1015 025 22965 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 76375 1084 1126 042 22966 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 77495 1082 1099 017 22967 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 77845 1045 1091 046 22968 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 78565 1025 1074 049 22969 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 74215 1016 994 -022 22970 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 72835 1055 1027 -028 22971 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 75905 959 955 -004 22

161

972 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 70335 957 912 -045 22973 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 66285 11 1017 -083 22974 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 67535 105 983 -067 22975 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 16702 228 201 -027 23976 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 1621 254 235 -019 23977 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 15718 283 271 -012 23978 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 15226 315 31 -005 23979 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 14733 348 351 003 23980 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 14241 387 395 008 23981 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 13749 429 443 014 23982 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 13257 475 494 019 23983 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 9804 1066 1019 -047 23984 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 99985 102 977 -043 23985 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10295 978 917 -061 23986 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10443 958 888 -07 23987 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10783 881 828 -053 23988 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 9621 1105 1062 -043 23989 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 84825 94 967 027 23990 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 83675 971 993 022 23991 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 81535 1035 1043 008 23992 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 78315 1129 1124 -005 23993 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 79515 916 977 061 23994 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 77905 962 1017 055 23995 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 75945 1016 1067 051 23996 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 73445 11 1136 036 23997 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 73605 984 101 026 23998 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 71765 1033 106 027 23999 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 70885 1061 1085 024 23

1000 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 16702 196 203 007 231001 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 1621 225 237 012 231002 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 15718 256 274 018 231003 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 15226 291 312 021 23

162

1004 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 14733 329 354 025 231005 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 14241 372 398 026 231006 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 13749 422 446 024 231007 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 13257 477 497 02 231008 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 98165 1026 1022 -004 231009 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 9961 997 99 -007 231010 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10254 944 93 -014 231011 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10283 901 924 023 231012 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10432 898 895 -003 231013 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 96235 1068 1067 -001 231014 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 86735 917 947 03 231015 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 86005 92 963 043 231016 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 84065 984 1006 022 231017 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 81885 1032 1057 025 231018 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 80555 1064 109 026 231019 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 78955 1105 113 025 231020 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 75375 932 947 015 231021 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 74875 946 96 014 231022 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 72775 982 1015 033 231023 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 71765 1025 1042 017 231024 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 70435 1082 108 -002 231025 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 79995 89 952 062 231026 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 77855 94 1003 063 231027 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 74675 1029 1086 057 231028 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 17692 249 21 -039 231029 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 17192 274 24 -034 231030 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 16702 301 272 -029 231031 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 16212 33 305 -025 231032 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 15722 362 341 -021 231033 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 15222 396 379 -017 231034 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 14732 433 42 -013 231035 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 14242 473 463 -01 23

163

1036 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10873 845 881 036 231037 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10385 932 968 036 231038 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10097 977 1024 047 231039 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 98515 1056 1076 02 231040 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 97335 1075 1102 027 231041 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 95695 1129 114 011 231042 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 72365 99 995 005 231043 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 70935 1031 1032 001 231044 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 68885 1105 1089 -016 231045 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 79455 97 962 -008 231046 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 77665 1005 1003 -002 231047 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 76125 1065 104 -025 231048 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 74385 1097 1085 -012 231049 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 82165 955 943 -012 231050 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 79545 102 1001 -019 231051 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 77575 108 1047 -033 231052 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 76385 1104 1077 -027 231053 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 91745 904 881 -023 231054 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 88545 972 94 -032 231055 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 86505 1008 98 -028 231056 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 84985 1042 1012 -03 231057 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 81965 1124 1078 -046 231058 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 17194 279 244 -035 231059 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 16702 306 275 -031 231060 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 1621 335 309 -026 231061 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 15718 367 345 -022 231062 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 15226 402 383 -019 231063 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 14733 439 424 -015 231064 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 14241 48 468 -012 231065 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10056 1039 1039 0 231066 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10414 941 968 027 231067 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10579 906 938 032 23

164

1068 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 96708 1118 1122 004 231069 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 87285 933 949 016 231070 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 85375 974 988 014 231071 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 83085 1009 1036 027 231072 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 81415 1056 1074 018 231073 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 81125 1062 1081 019 231074 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 79915 1085 1109 024 231075 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 79465 1119 112 001 231076 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 72425 985 993 008 231077 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 71805 1005 1009 004 231078 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 69875 1052 1061 009 231079 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 69335 1095 1076 -019 231080 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 67945 1133 1116 -017 231081 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 67735 1143 1122 -021 231082 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 86275 954 981 027 231083 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 84505 1001 1018 017 231084 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 82755 1024 1056 032 231085 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 80285 1074 1113 039 231086 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 79825 1102 1124 022 231087 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 78645 1156 1153 -003 231088 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 95945 883 875 -008 231089 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 90155 988 979 -009 231090 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 85905 107 1065 -005 231091 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 84075 1135 1105 -03 231092 D2 66 036 1523 408 01 221 501 384 216 014 002 1744 209 216 007 241093 D2 66 036 1523 408 01 221 501 384 216 014 002 17194 221 231 01 241094 D2 66 036 1523 408 01 221 501 384 216 014 002 16948 234 248 014 241095 D2 66 036 1523 408 01 221 501 384 216 014 002 16702 248 264 016 241096 D2 66 036 1523 408 01 221 501 384 216 014 002 16456 262 281 019 241097 D2 66 036 1523 408 01 221 501 384 216 014 002 1621 276 299 023 241098 D2 66 036 1523 408 01 221 501 384 216 014 002 15964 292 317 025 241099 D2 66 036 1523 408 01 221 501 384 216 014 002 15718 308 336 028 24

165

1100 D2 66 036 1523 408 01 221 501 384 216 014 002 15472 325 355 03 241101 D2 66 036 1523 408 01 221 501 384 216 014 002 15226 343 376 033 241102 D2 66 036 1523 408 01 221 501 384 216 014 002 14979 361 396 035 241103 D2 66 036 1523 408 01 221 501 384 216 014 002 14733 38 418 038 241104 D2 66 036 1523 408 01 221 501 384 216 014 002 14487 4 44 04 241105 D2 66 036 1523 408 01 221 501 384 216 014 002 14241 421 463 042 241106 D2 66 036 1523 408 01 221 501 384 216 014 002 13995 444 488 044 241107 D2 66 036 1523 408 01 221 501 384 216 014 002 13749 466 513 047 241108 D2 66 036 1523 408 01 221 501 384 216 014 002 10342 105 1034 -016 241109 D2 66 036 1523 408 01 221 501 384 216 014 002 10578 985 979 -006 241110 D2 66 036 1523 408 01 221 501 384 216 014 002 10742 928 944 016 241111 D2 66 036 1523 408 01 221 501 384 216 014 002 10912 891 91 019 241112 D2 66 036 1523 408 01 221 501 384 216 014 131 86205 1056 1017 -039 241113 D2 66 036 1523 408 01 221 501 384 216 014 131 83505 1118 1076 -042 241114 D2 66 036 1523 408 01 221 501 384 216 014 164 77205 1195 1173 -022 241115 D2 66 036 1523 408 01 221 501 384 216 014 164 80795 1112 1084 -028 241116 D2 66 036 1523 408 01 221 501 384 216 014 164 80845 1093 1083 -01 241117 D2 66 036 1523 408 01 221 501 384 216 014 164 83855 986 1015 029 241118 D2 66 036 1523 408 01 221 501 384 216 014 198 80395 1048 1045 -003 241119 D2 66 036 1523 408 01 221 501 384 216 014 198 81505 999 102 021 241120 D2 66 036 1523 408 01 221 501 384 216 014 198 83355 963 979 016 241121 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 84835 116 1193 033 251122 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 87035 108 1123 043 251123 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 87505 1074 1109 035 251124 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 88475 105 1081 031 251125 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 89165 1042 1061 019 251126 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 89255 1033 1059 026 251127 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 82635 1099 112 021 251128 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 83105 1089 1106 017 251129 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 83765 1073 1087 014 251130 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 84845 1037 1057 02 251131 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 80545 112 1093 -027 25

166

1132 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 81775 1088 1059 -029 251133 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82235 1057 1046 -011 251134 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82485 1054 1039 -015 251135 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82995 1025 1026 001 251136 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 84995 975 974 -001 251137 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 79775 1016 1005 -011 251138 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 80795 977 978 001 251139 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 81805 957 952 -005 251140 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 18179 018 01 -008 251141 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17933 026 026 0 251142 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17687 034 042 008 251143 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17441 043 059 016 251144 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17395 052 062 01 251145 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 16949 062 094 032 251146 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 16703 072 112 04 251147 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 98505 1082 993 -089 251148 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 98905 107 983 -087 251149 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 10042 1023 949 -074 251150 A2 5869 001 2157 002 002 538 949 33 157 0 0 1036 1158 1151 -007 261151 A2 5869 001 2157 002 002 538 949 33 157 0 0 1054 1077 1074 -003 261152 A2 5869 001 2157 002 002 538 949 33 157 0 0 1065 1045 1034 -011 261153 A2 5869 001 2157 002 002 538 949 33 157 0 0 1075 1016 10 -016 261154 A2 5869 001 2157 002 002 538 949 33 157 0 0 1084 987 972 -015 261155 A2 5869 001 2157 002 002 538 949 33 157 0 0 1096 955 938 -017 261156 A2 5869 001 2157 002 002 538 949 33 157 0 0 1106 93 911 -019 261157 A2 5869 001 2157 002 002 538 949 33 157 0 0 1116 906 886 -02 261158 A2 5869 001 2157 002 002 538 949 33 157 0 0 1036 1132 1151 019 261159 A2 5869 001 2157 002 002 538 949 33 157 0 0 1054 1083 1074 -009 261160 A2 5869 001 2157 002 002 538 949 33 157 0 0 1062 103 1044 014 261161 A2 5869 001 2157 002 002 538 949 33 157 0 0 1065 1044 1034 -01 261162 A2 5869 001 2157 002 002 538 949 33 157 0 0 1074 1015 1003 -012 261163 A2 5869 001 2157 002 002 538 949 33 157 0 0 1083 974 975 001 26

167

1164 A2 5869 001 2157 002 002 538 949 33 157 0 0 1088 963 96 -003 261165 A2 5869 001 2157 002 002 538 949 33 157 0 0 1094 948 943 -005 261166 A2 5869 001 2157 002 002 538 949 33 157 0 0 1103 925 919 -006 261167 A2 5869 001 2157 002 002 538 949 33 157 0 0 1113 899 893 -006 261168 A2 5869 001 2157 002 002 538 949 33 157 0 0 1123 875 87 -005 261169 A2 5869 001 2157 002 002 538 949 33 157 0 0 1081 1002 981 -021 261170 A2 5869 001 2157 002 002 538 949 33 157 0 0 1091 972 952 -02 261171 A2 5869 001 2157 002 002 538 949 33 157 0 0 1100 944 927 -017 261172 A2 5869 001 2157 002 002 538 949 33 157 0 0 1110 917 901 -016 261173 A2 5869 001 2157 002 002 538 949 33 157 0 0 1120 891 877 -014 261174 A2 5869 001 2157 002 002 538 949 33 157 0 0 1130 867 854 -013 261175 A2 5869 001 2157 002 002 538 949 33 157 0 106 917 1055 1067 012 261176 A2 5869 001 2157 002 002 538 949 33 157 0 106 928 1044 1035 -009 261177 A2 5869 001 2157 002 002 538 949 33 157 0 106 937 1007 101 003 261178 A2 5869 001 2157 002 002 538 949 33 157 0 106 935 997 1016 019 261179 A2 5869 001 2157 002 002 538 949 33 157 0 106 954 954 964 01 261180 A2 5869 001 2157 002 002 538 949 33 157 0 106 976 9 908 008 261181 A2 5869 001 2157 002 002 538 949 33 157 0 106 985 874 887 013 261182 A2 5869 001 2157 002 002 538 949 33 157 0 106 996 854 861 007 261183 A2 5869 001 2157 002 002 538 949 33 157 0 106 1013 813 823 01 261184 A2 5869 001 2157 002 002 538 949 33 157 0 106 908 1103 1093 -01 261185 A2 5869 001 2157 002 002 538 949 33 157 0 106 918 1065 1064 -001 261186 A2 5869 001 2157 002 002 538 949 33 157 0 106 938 1007 1007 0 261187 A2 5869 001 2157 002 002 538 949 33 157 0 106 948 981 98 -001 261188 A2 5869 001 2157 002 002 538 949 33 157 0 106 948 978 98 002 261189 A2 5869 001 2157 002 002 538 949 33 157 0 106 957 957 956 -001 261190 A2 5869 001 2157 002 002 538 949 33 157 0 106 977 904 906 002 261191 A2 5869 001 2157 002 002 538 949 33 157 0 106 987 877 882 005 261192 A2 5869 001 2157 002 002 538 949 33 157 0 196 840 108 1057 -023 261193 A2 5869 001 2157 002 002 538 949 33 157 0 196 849 1052 1036 -016 261194 A2 5869 001 2157 002 002 538 949 33 157 0 196 851 1043 1032 -011 261195 A2 5869 001 2157 002 002 538 949 33 157 0 196 859 102 1013 -007 26

168

1196 A2 5869 001 2157 002 002 538 949 33 157 0 196 870 985 988 003 261197 A2 5869 001 2157 002 002 538 949 33 157 0 196 879 957 968 011 261198 A2 5869 001 2157 002 002 538 949 33 157 0 196 889 932 945 013 261199 A2 5869 001 2157 002 002 538 949 33 157 0 196 844 108 1048 -032 261200 A2 5869 001 2157 002 002 538 949 33 157 0 196 853 1051 1027 -024 261201 A2 5869 001 2157 002 002 538 949 33 157 0 196 863 1017 1004 -013 261202 A2 5869 001 2157 002 002 538 949 33 157 0 196 864 1015 1002 -013 261203 A2 5869 001 2157 002 002 538 949 33 157 0 196 873 986 981 -005 261204 A2 5869 001 2157 002 002 538 949 33 157 0 196 883 956 959 003 261205 A2 5869 001 2157 002 002 538 949 33 157 0 196 893 927 936 009 261206 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1006 1073 1124 051 271207 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1013 1052 103 -022 271208 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1013 1043 103 -013 271209 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1017 1025 989 -036 271210 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1018 1013 98 -033 271211 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18669 -097 -101 -004 271212 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18571 -094 -095 -001 271213 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18473 -09 -089 001 271214 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 18732 -006 -093 -086 281215 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 18232 008 -056 -064 281216 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 17732 023 -018 -04 281217 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 17232 039 023 -016 281218 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 16732 055 066 011 281219 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 16232 073 111 038 281220 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 15732 094 16 066 281221 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 15232 117 212 094 281222 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 18672 -005 -069 -063 281223 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 18182 009 -033 -042 281224 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 17692 024 004 -02 281225 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 17192 04 044 004 281226 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 16702 057 085 028 281227 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 18732 -005 -089 -084 28

169

1228 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 18232 008 -052 -06 281229 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 17732 022 -014 -035 281230 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 17232 037 027 -01 281231 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 16732 053 07 017 281232 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 16232 072 116 044 281233 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 15732 092 164 073 281234 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 15232 116 216 101 281235 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 18672 -002 -073 -071 281236 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 18182 011 -037 -049 281237 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 17692 026 0 -026 281238 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 17192 042 041 -002 281239 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 16702 059 083 024 281240 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 16212 077 127 051 281241 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 15722 098 175 077 281242 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 15222 122 226 105 281243 A5 5946 073 179 518 013 371 645 423 147 0 0 16232 222 262 04 291244 A5 5946 073 179 518 013 371 645 423 147 0 0 15232 274 344 07 291245 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 17732 009 -004 -013 291246 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 16732 035 074 039 291247 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 15232 103 211 108 291248 D1 6528 059 1705 402 008 182 47 434 129 013 002 15712 322 343 021 301249 D1 6528 059 1705 402 008 182 47 434 129 013 002 16202 291 305 014 301250 D1 6528 059 1705 402 008 182 47 434 129 013 002 16702 261 269 008 301251 D1 6528 059 1705 402 008 182 47 434 129 013 002 17192 235 235 0 301252 D1 6528 059 1705 402 008 182 47 434 129 013 002 17682 211 204 -007 301253 D1 6528 059 1705 402 008 182 47 434 129 013 002 18172 187 174 -013 301254 D1 6528 059 1705 402 008 182 47 434 129 013 002 18672 166 145 -021 301255 D1 6528 059 1705 402 008 182 47 434 129 013 002 10091 106 1099 039 301256 D1 6528 059 1705 402 008 182 47 434 129 013 002 10235 1025 1065 04 301257 D1 6528 059 1705 402 008 182 47 434 129 013 002 10377 10 1033 033 301258 D1 6528 059 1705 402 008 182 47 434 129 013 002 10571 953 991 038 301259 D1 6528 059 1705 402 008 182 47 434 129 013 002 10759 925 953 028 30

170

1260 R33 7312 019 1356 319 0 018 168 386 42 0 21 12732 385 419 034 311261 R33 7312 019 1356 319 0 018 168 386 42 0 21 13732 332 343 011 311262 R33 7312 019 1356 319 0 018 168 386 42 0 21 14732 273 275 002 311263 R33 7312 019 1356 319 0 018 168 386 42 0 52 11732 369 357 -012 311264 R33 7312 019 1356 319 0 018 168 386 42 0 52 12732 305 289 -016 311265 R33 7312 019 1356 319 0 018 168 386 42 0 52 13732 251 232 -019 311266 R33 7312 019 1356 319 0 018 168 386 42 0 52 14732 203 184 -019 311267 R33 7312 019 1356 319 0 018 168 386 42 0 56 11732 36 347 -013 311268 R33 7312 019 1356 319 0 018 168 386 42 0 56 12732 297 281 -016 311269 R33 7312 019 1356 319 0 018 168 386 42 0 56 13732 242 227 -015 311270 R33 7312 019 1356 319 0 018 168 386 42 0 56 14732 185 181 -004 311271 R33 7312 019 1356 319 0 018 168 386 42 0 88 11732 3 304 004 311272 R33 7312 019 1356 319 0 018 168 386 42 0 88 14732 147 181 034 311273 A6 6215 076 168 496 025 326 508 502 172 0 0 16232 26 277 017 321274 A6 6215 076 168 496 025 326 508 502 172 0 0 16232 252 277 025 321275 H4 736 0 156 0 0 0 21 44 38 0 21 88045 897 899 002 331276 H4 736 0 156 0 0 0 21 44 38 0 21 83595 979 98 001 331277 H4 736 0 156 0 0 0 21 44 38 0 21 79595 1085 1065 -02 331278 H4 736 0 156 0 0 0 21 44 38 0 21 79495 1099 1067 -032 331279 H4 736 0 156 0 0 0 21 44 38 0 089 95135 962 984 022 331280 H4 736 0 156 0 0 0 21 44 38 0 089 97615 915 952 037 331281 H4 736 0 156 0 0 0 21 44 38 0 089 93835 103 1002 -028 331282 H4 736 0 156 0 0 0 21 44 38 0 089 91675 1081 1034 -047 331283 R34 7389 006 1577 075 0 014 058 462 419 0 666 12282 3 321 022 341284 R34 7389 006 1577 075 0 014 058 462 419 0 666 10862 386 419 033 341285 R34 7389 006 1577 075 0 014 058 462 419 0 398 13732 31 302 -008 341286 R34 7389 006 1577 075 0 014 058 462 419 0 398 12742 378 367 -011 341287 R34 7389 006 1577 075 0 014 058 462 419 0 398 11802 445 435 -01 341288 R34 7389 006 1577 075 0 014 058 462 419 0 666 11332 358 384 027 341289 R34 7389 006 1577 075 0 014 058 462 419 0 666 11832 324 35 026 341290 R34 7389 006 1577 075 0 014 058 462 419 0 666 11282 354 388 034 341291 R34 7389 006 1577 075 0 014 058 462 419 0 666 10732 394 429 035 34

171

1292 R34 7389 006 1577 075 0 014 058 462 419 0 666 11382 354 381 027 341293 R34 7389 006 1577 075 0 014 058 462 419 0 666 11332 352 384 033 341294 H5 741 0 117 0 0 0 0 9 44 0 29 62235 1005 1014 009 351295 H5 741 0 117 0 0 0 0 9 44 0 29 66145 869 915 046 351296 H5 741 0 117 0 0 0 0 9 44 0 29 59965 1094 108 -014 351297 H5 741 0 117 0 0 0 0 9 44 0 29 64375 908 958 05 351298 H5 741 0 117 0 0 0 0 9 44 0 181 65365 1082 1073 -009 351299 H5 741 0 117 0 0 0 0 9 44 0 181 69845 944 964 02 351300 H5 741 0 117 0 0 0 0 9 44 0 181 68515 968 994 026 351301 H5 741 0 117 0 0 0 0 9 44 0 697 49345 1068 1093 025 351302 H5 741 0 117 0 0 0 0 9 44 0 697 51745 91 999 089 351303 H5 741 0 117 0 0 0 0 9 44 0 697 52495 87 972 102 351304 H5 741 0 117 0 0 0 0 9 44 0 092 74475 1003 1014 011 351305 H5 741 0 117 0 0 0 0 9 44 0 092 71685 1094 1074 -02 351306 H5 741 0 117 0 0 0 0 9 44 0 129 74535 928 944 016 351307 H5 741 0 117 0 0 0 0 9 44 0 129 70725 1038 1026 -012 351308 H5 741 0 117 0 0 0 0 9 44 0 129 68655 1062 1074 012 351309 H5 741 0 117 0 0 0 0 9 44 0 063 77645 1017 1017 0 351310 H5 741 0 117 0 0 0 0 9 44 0 063 75635 1096 1057 -039 351311 H5 741 0 117 0 0 0 0 9 44 0 063 80445 931 966 035 351312 H5 741 0 117 0 0 0 0 9 44 0 077 77405 948 988 04 351313 H5 741 0 117 0 0 0 0 9 44 0 077 74415 108 1048 -032 351314 H6 741 0 122 0 0 0 52 44 4 0 002 10323 1091 1187 096 361315 H6 741 0 122 0 0 0 52 44 4 0 002 10535 1034 113 096 361316 H6 741 0 122 0 0 0 52 44 4 0 002 1076 964 1075 111 361317 H6 741 0 122 0 0 0 52 44 4 0 002 14732 449 488 039 361318 H6 741 0 122 0 0 0 52 44 4 0 002 15222 415 443 028 361319 H6 741 0 122 0 0 0 52 44 4 0 002 15712 383 401 018 361320 H6 741 0 122 0 0 0 52 44 4 0 002 16212 352 362 01 361321 H6 741 0 122 0 0 0 52 44 4 0 002 16702 326 326 0 361322 H6 741 0 122 0 0 0 52 44 4 0 002 17192 3 292 -008 361323 H6 741 0 122 0 0 0 52 44 4 0 002 17682 277 261 -016 36

172

1324 H6 741 0 122 0 0 0 52 44 4 0 002 18172 255 231 -024 361325 H6 741 0 122 0 0 0 52 44 4 0 002 18672 233 203 -03 361326 H9 756 0 12 0 0 49 0 45 4 0 002 10788 11 1145 045 361327 H9 756 0 12 0 0 49 0 45 4 0 002 10969 1066 1085 019 361328 H9 756 0 12 0 0 49 0 45 4 0 002 11136 1014 1035 021 361329 H9 756 0 12 0 0 49 0 45 4 0 002 11301 971 99 019 361330 H9 756 0 12 0 0 49 0 45 4 0 002 15224 441 431 -01 361331 H9 756 0 12 0 0 49 0 45 4 0 002 15716 406 391 -015 361332 H9 756 0 12 0 0 49 0 45 4 0 002 16208 372 353 -019 361333 H9 756 0 12 0 0 49 0 45 4 0 002 1670 34 318 -022 361334 H9 756 0 12 0 0 49 0 45 4 0 002 17192 312 285 -027 361335 H9 756 0 12 0 0 49 0 45 4 0 002 17684 286 254 -032 361336 H9 756 0 12 0 0 49 0 45 4 0 002 18176 261 225 -036 361337 H9 756 0 12 0 0 49 0 45 4 0 002 18668 235 197 -038 361338 H11 772 0 139 0 0 0 0 45 43 0 0 11761 113 1109 -021 371339 H11 772 0 139 0 0 0 0 45 43 0 0 11981 1108 1074 -034 371340 H11 772 0 139 0 0 0 0 45 43 0 0 12172 1048 1044 -004 371341 H11 772 0 139 0 0 0 0 45 43 0 0 12344 1014 1019 005 371342 H11 772 0 139 0 0 0 0 45 43 0 0 12574 1007 986 -021 371343 H11 772 0 139 0 0 0 0 45 43 0 107 86935 11 1075 -025 371344 H11 772 0 139 0 0 0 0 45 43 0 107 90875 1055 1012 -043 371345 H11 772 0 139 0 0 0 0 45 43 0 218 81505 1064 1014 -05 371346 H11 772 0 139 0 0 0 0 45 43 0 254 76725 1058 1078 02 371347 H11 772 0 139 0 0 0 0 45 43 0 254 79455 1019 1016 -003 371348 H11 772 0 139 0 0 0 0 45 43 0 254 74705 112 1127 007 371349 H8 754 0 161 0 0 0 0 47 43 0 0 12529 1012 996 -016 371350 H8 754 0 161 0 0 0 0 47 43 0 0 12339 1035 1023 -012 371351 H8 754 0 161 0 0 0 0 47 43 0 0 12161 107 1049 -021 371352 H8 754 0 161 0 0 0 0 47 43 0 0 12679 985 976 -009 371353 H8 754 0 161 0 0 0 0 47 43 0 0 1213 1058 1053 -005 371354 H8 754 0 161 0 0 0 0 47 43 0 117 89155 1052 1022 -03 371355 H8 754 0 161 0 0 0 0 47 43 0 117 86975 1085 106 -025 37

173

1356 H8 754 0 161 0 0 0 0 47 43 0 117 85655 1112 1084 -028 371357 H8 754 0 161 0 0 0 0 47 43 0 203 81945 1042 1029 -013 371358 H8 754 0 161 0 0 0 0 47 43 0 203 83285 984 1002 018 371359 H8 754 0 161 0 0 0 0 47 43 0 203 80135 107 1068 -002 371360 H8 754 0 161 0 0 0 0 47 43 0 203 79265 108 1088 008 371361 H8 754 0 161 0 0 0 0 47 43 0 277 76475 1014 1066 052 371362 H8 754 0 161 0 0 0 0 47 43 0 277 75555 106 1088 028 371363 H8 754 0 161 0 0 0 0 47 43 0 277 79285 991 1002 011 371364 H8 754 0 161 0 0 0 0 47 43 0 277 74785 1075 1107 032 371365 H10 7688 0 1145 0 0 0 0 36 56 0 002 12772 915 898 -017 381366 H10 7688 0 1145 0 0 0 0 36 56 0 002 12435 957 943 -014 381367 H10 7688 0 1145 0 0 0 0 36 56 0 002 12107 999 989 -01 381368 H10 7688 0 1145 0 0 0 0 36 56 0 002 11559 1085 1073 -012 381369 H10 7688 0 1145 0 0 0 0 36 56 0 002 11232 1135 1127 -008 381370 H12 7814 0 1164 0 0 0 0 126 911 0 002 12612 96 941 -019 381371 H12 7814 0 1164 0 0 0 0 126 911 0 002 1244 986 965 -021 381372 H12 7814 0 1164 0 0 0 0 126 911 0 002 12161 1031 1005 -026 381373 H12 7814 0 1164 0 0 0 0 126 911 0 002 11953 1075 1036 -039 381374 H12 7814 0 1164 0 0 0 0 126 911 0 002 11232 1212 1153 -059 381375 H13 7821 0 1169 0 0 0 0 241 743 0 002 12635 972 934 -038 381376 H13 7821 0 1169 0 0 0 0 241 743 0 002 1245 992 959 -033 381377 H13 7821 0 1169 0 0 0 0 241 743 0 002 11994 1052 1025 -027 381378 H13 7821 0 1169 0 0 0 0 241 743 0 002 11965 1072 103 -042 381379 H13 7821 0 1169 0 0 0 0 241 743 0 002 11232 118 1148 -032 381380 H14 7828 0 1192 0 0 0 0 591 223 0 002 12478 902 96 058 381381 H14 7828 0 1192 0 0 0 0 591 223 0 002 12253 934 992 058 381382 H14 7828 0 1192 0 0 0 0 591 223 0 002 12048 96 1021 061 381383 H14 7828 0 1192 0 0 0 0 591 223 0 002 11838 994 1053 059 381384 H14 7828 0 1192 0 0 0 0 591 223 0 002 11732 1013 107 057 381385 H14 7828 0 1192 0 0 0 0 591 223 0 002 11232 1092 1152 06 381386 H15 786 0 1199 0 0 0 0 457 42 0 002 11549 1102 1112 01 381387 H15 786 0 1199 0 0 0 0 457 42 0 002 11782 1063 1074 011 38

174

1388 H15 786 0 1199 0 0 0 0 457 42 0 002 11989 1028 1043 015 381389 H15 786 0 1199 0 0 0 0 457 42 0 002 1212 1016 1023 007 381390 H15 786 0 1199 0 0 0 0 457 42 0 002 11232 1153 1165 012 381391 H16 8103 0 991 0 0 0 0 124 739 0 002 12668 1025 985 -04 381392 H16 8103 0 991 0 0 0 0 124 739 0 002 12567 1036 999 -037 381393 H16 8103 0 991 0 0 0 0 124 739 0 002 1236 1056 1029 -027 381394 H16 8103 0 991 0 0 0 0 124 739 0 002 12375 1063 1027 -036 381395 H16 8103 0 991 0 0 0 0 124 739 0 002 12225 1097 1049 -048 381396 H16 8103 0 991 0 0 0 0 124 739 0 002 12243 11 1046 -054 381397 H16 8103 0 991 0 0 0 0 124 739 0 002 12137 1127 1062 -065 381398 H16 8103 0 991 0 0 0 0 124 739 0 002 11232 1308 1212 -096 381399 H17 8174 0 1003 0 0 0 0 247 566 0 002 12637 997 986 -011 381400 H17 8174 0 1003 0 0 0 0 247 566 0 002 12416 1023 1017 -006 381401 H17 8174 0 1003 0 0 0 0 247 566 0 002 12173 1059 1053 -006 381402 H17 8174 0 1003 0 0 0 0 247 566 0 002 11941 11 1089 -011 381403 H17 8174 0 1003 0 0 0 0 247 566 0 002 11232 1216 1208 -008 381404 H18 8222 0 1017 0 0 0 0 366 389 0 002 12708 986 984 -002 381405 H18 8222 0 1017 0 0 0 0 366 389 0 002 12538 1015 1008 -007 381406 H18 8222 0 1017 0 0 0 0 366 389 0 002 12262 1044 1048 004 381407 H18 8222 0 1017 0 0 0 0 366 389 0 002 1197 1095 1093 -002 381408 H18 8222 0 1017 0 0 0 0 366 389 0 002 11232 1212 1217 005 381409 H19 8231 0 1016 0 0 0 0 589 07 0 002 12425 986 1004 018 381410 H19 8231 0 1016 0 0 0 0 589 07 0 002 12268 1018 1027 009 381411 H19 8231 0 1016 0 0 0 0 589 07 0 002 12033 1054 1062 008 381412 H19 8231 0 1016 0 0 0 0 589 07 0 002 11768 1091 1104 013 381413 H19 8231 0 1016 0 0 0 0 589 07 0 002 11232 1187 1196 009 381414 H20 8294 0 103 0 0 0 0 468 241 0 001 12605 973 1005 032 381415 H20 8294 0 103 0 0 0 0 468 241 0 001 12367 101 104 03 381416 H20 8294 0 103 0 0 0 0 468 241 0 001 12155 1059 1072 013 381417 H20 8294 0 103 0 0 0 0 468 241 0 001 12173 106 1069 009 381418 H20 8294 0 103 0 0 0 0 468 241 0 001 11915 1114 111 -004 381419 H20 8294 0 103 0 0 0 0 468 241 0 001 11232 1272 1227 -045 38

175

1420 H21 7349 0 1326 0 0 0 0 24 898 0 003 12463 986 908 -078 381421 H21 7349 0 1326 0 0 0 0 24 898 0 003 12213 1022 941 -081 381422 H21 7349 0 1326 0 0 0 0 24 898 0 003 12025 1049 967 -082 381423 H21 7349 0 1326 0 0 0 0 24 898 0 003 1177 1089 1004 -085 381424 H21 7349 0 1326 0 0 0 0 24 898 0 003 11232 1177 1088 -089 381425 H22 749 0 1352 0 0 0 0 364 722 0 002 12679 946 891 -055 381426 H22 749 0 1352 0 0 0 0 364 722 0 002 12403 99 927 -063 381427 H22 749 0 1352 0 0 0 0 364 722 0 002 12266 101 946 -064 381428 H22 749 0 1352 0 0 0 0 364 722 0 002 11914 106 996 -064 381429 H22 749 0 1352 0 0 0 0 364 722 0 002 11232 1176 1101 -075 381430 H23 7552 0 139 0 0 0 0 477 553 0 002 12652 936 915 -021 381431 H23 7552 0 139 0 0 0 0 477 553 0 002 12364 996 954 -042 381432 H23 7552 0 139 0 0 0 0 477 553 0 002 1223 1012 972 -04 381433 H23 7552 0 139 0 0 0 0 477 553 0 002 11884 1066 1022 -044 381434 H23 7552 0 139 0 0 0 0 477 553 0 002 11232 1192 1125 -067 381435 H24 7608 0 1389 0 0 0 0 596 384 0 002 12174 954 976 022 381436 H24 7608 0 1389 0 0 0 0 596 384 0 002 11923 1013 1013 0 381437 H24 7608 0 1389 0 0 0 0 596 384 0 002 11769 105 1036 -014 381438 H24 7608 0 1389 0 0 0 0 596 384 0 002 11513 109 1075 -015 381439 H24 7608 0 1389 0 0 0 0 596 384 0 002 11232 1159 1121 -038 381440 H25 7652 0 1405 0 0 0 0 714 219 0 002 12188 964 972 008 381441 H25 7652 0 1405 0 0 0 0 714 219 0 002 11976 999 1002 003 381442 H25 7652 0 1405 0 0 0 0 714 219 0 002 1175 1034 1036 002 381443 H25 7652 0 1405 0 0 0 0 714 219 0 002 1150 108 1074 -006 381444 H25 7652 0 1405 0 0 0 0 714 219 0 002 11232 1127 1118 -009 381445 H26 7898 0 1211 0 0 0 0 704 062 0 001 12711 915 935 02 381446 H26 7898 0 1211 0 0 0 0 704 062 0 001 12586 945 952 007 381447 H26 7898 0 1211 0 0 0 0 704 062 0 001 12394 965 979 014 381448 H26 7898 0 1211 0 0 0 0 704 062 0 001 12099 1035 1022 -013 381449 H26 7898 0 1211 0 0 0 0 704 062 0 001 11893 1074 1053 -021 381450 H26 7898 0 1211 0 0 0 0 704 062 0 001 11686 1124 1086 -038 381451 H26 7898 0 1211 0 0 0 0 704 062 0 001 11232 1224 1162 -062 38

176

APPENDIX B

FTIR SPECTRA FOR EQUILIBRIUM SPECIATION EXPERIMENTS

The FTIR spectra on the following pages are for the measurements listed in Table

33 in Chapter III All spectra were normalized to the sample thickness (mm)

Fig B1 FTIR spectra for equilibrium speciation experiments

053

058

063

068

073

40004500500055006000

KS-1-21

wavenumber (cm-1)

A (1

mm

)

049

054

059

064

069

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-22

055

06

065

07

075

40004500500055006000

KS-1-23

wavenumber (cm-1)

A (1

mm

)

025

027

029

031

033

035

037

039

041

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-31

177

022

024

026

028

03

032

034

036

038

40004500500055006000

KS-1-32

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-33

035

037

039

041

043

045

047

049

051

40004500500055006000

KS-1-41

A (1

mm

)

wavenumber (cm-1)

034

036

038

04

042

044

046

048

05

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-42

027

029

031

033

035

037

039

041

043

40004500500055006000

KS-1-43

A (1

mm

)

wavenumber (cm-1)

038

042

046

05

054

058

062

066

40004500500055006000

GMR+2-1-11

A (1

mm

)

wavenumber (cm-1)

178

034

038

042

046

05

054

058

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-12

035

039

043

047

051

055

059

063

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-13

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-21

045

05

055

06

065

07

075

08

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-22

045

05

055

06

065

07

075

08

40004500500055006000

GMR+2-1-23

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-31

179

033

038

043

048

053

058

063

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-32

033

038

043

048

053

058

063

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-33

045

05

055

06

065

07

075

08

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-R11

04

045

05

055

06

065

07

075

40004500500055006000

GMR+2-1-R12

A (1

mm

)

wavenumber (cm-1)

045

05

055

06

065

07

075

08

40004500500055006000

GMR+2-1-R13

wavenumber (cm-1)

A (1

mm

)

12

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-21

180

11

13

15

17

19

21

23

25

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-22

11

13

15

17

19

21

23

25

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-23

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-31

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-32

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-33

04

05

06

07

08

09

1

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-41

181

04

05

06

07

08

09

1

40004500500055006000

GMR+4-1-42A

(1m

m)

wavenumber (cm-1)

04

05

06

07

08

09

1

40004500500055006000

GMR+4-1-43

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

40004500500055006000

KS-2-11

wavenumber (cm-1)

A (1

mm

)

033

038

043

048

053

40004500500055006000

KS-2-12

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

40004500500055006000

KS-2-13

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

40004500500055006000

KS-2-21

wavenumber (cm-1)

A (1

mm

)

182

023

028

033

038

043

40004500500055006000

KS-2-22

A (1

mm

)

wavenumber (cm-1)

022

027

032

037

042

40004500500055006000

KS-2-23

wavenumber (cm-1)

A (1

mm

)

033

038

043

048

053

40004500500055006000

KS-2-41

wavenumber (cm-1)

A (1

mm

)

029

034

039

044

049

40004500500055006000

wavenumber (cm-1)

KS-2-42

A (1

mm

)

028

033

038

043

048

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-43

045

05

055

06

065

07

075

08

085

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-11

183

055

06

065

07

075

08

085

09

095

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-12

055

06

065

07

075

08

085

09

095

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-13

032

037

042

047

052

057

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-21

032

037

042

047

052

057

062

40004500500055006000

GMR+2-2-22

A (1

mm

)

wavenumber (cm-1)

032

037

042

047

052

057

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-23

055

06

065

07

075

08

085

09

40004500500055006000

GMR+2-2-41

A (1

mm

)

wavenumber (cm-1)

184

05

055

06

065

07

075

08

085

40004500500055006000

GMR+2-2-42

wavenumber (cm-1)

A (1

mm

)

045

05

055

06

065

07

075

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-43

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-11

08

1

12

14

16

18

40004500500055006000

GMR+4-2-12

A (1

mm

)

wavenumber (cm-1)

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-13

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-21

A (1

mm

)

wavenumber (cm-1)

185

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-22A

(1m

m)

wavenumber (cm-1)

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-23

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-31

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-32

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-33

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

40004500500055006000

KS-3-11

A (1

mm

)

wavenumber (cm-1)

186

04

045

05

055

06

40004500500055006000

KS-3-12

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

40004500500055006000

KS-3-13

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

KS-3-21

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-22

025

03

035

04

045

40004500500055006000

KS-3-23

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

KS-3-24

wavenumber (cm-1)

A (1

mm

)

187

023

025

027

029

031

033

035

037

039

40004500500055006000

KS-3-31

wavenumber (cm-1)

A (1

mm

)

023

025

027

029

031

033

035

037

039

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-32

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-3-33

A (1

mm

)

wavenumber (cm-1)

025

027

029

031

033

035

037

039

041

40004500500055006000

KS-3-41

wavenumber (cm-1)

A (1

mm

)

026

028

03

032

034

036

038

04

042

40004500500055006000

KS-3-42

A (1

mm

)

wavenumber (cm-1)

026

028

03

032

034

036

038

04

042

40004500500055006000

KS-3-43

wavenumber (cm-1)

A (1

mm

)

188

027

029

031

033

035

037

039

041

043

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-44

045

047

049

051

053

055

057

059

061

40004500500055006000

KS-3-R11

wavenumber (cm-1)

A (1

mm

)

036

038

04

042

044

046

048

05

052

40004500500055006000

KS-3-R12

wavenumber (cm-1)

A (1

mm

)

033

035

037

039

041

043

045

047

049

40004500500055006000

KS-3-R13

wavenumber (cm-1)

A (1

mm

)

032

037

042

047

052

057

062

067

40004500500055006000

GMR+2-3-11

A (1

mm

)

wavenumber (cm-1)

032

037

042

047

052

057

062

067

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-12

189

032

037

042

047

052

057

062

067

40004500500055006000

GMR+2-3-13A

(1m

m)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-3-21

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-22

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-23

wavenumber (cm-1)

A (1

mm

)

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-31

wavenumber (cm-1)

A (1

mm

)

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-32

A (1

mm

)

wavenumber (cm-1)

190

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-33

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-11

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-12

A (1

mm

)

wavenumber (cm-1)05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-13

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-31

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-32

wavenumber (cm-1)

A (1

mm

)

191

04

05

06

07

08

09

1

40004500500055006000

GMR+4-3-33A

(1m

m)

wavenumber (cm-1)

04

05

06

07

08

09

1

11

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+4-3-41

04

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-42

A (1

mm

)

wavenumber (cm-1)

04

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-43

A (1

mm

)

wavenumber (cm-1)

023

028

033

038

043

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-11

045

05

055

06

065

40004500500055006000

KS-1b-12

A (1

mm

)

wavenumber (cm-1)

192

027

032

037

042

047

40004500500055006000

KS-1b-13

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-1b-21

wavenumber (cm-1)

A (1

mm

)

021

023

025

027

029

031

033

035

037

40004500500055006000

KS-1b-22

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-1b-23

A (1

mm

)

wavenumber (cm-1)

028

031

034

037

04

043

046

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1b-31

031

034

037

04

043

046

049

40004500500055006000

KS-1b-32

A (1

mm

)

wavenumber (cm-1)

193

033

036

039

042

045

048

051

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-33

024

026

028

03

032

034

036

038

04

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-R11

027

029

031

033

035

037

039

041

043

40004500500055006000

KS-1b-R12

A (1

mm

)

wavenumber (cm-1)

031

033

035

037

039

041

043

045

047

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-R13

063

065

067

069

071

073

075

077

079

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1b-R21

054

056

058

06

062

064

066

068

07

40004500500055006000

KS-1b-R22

A (1

mm

)

wavenumber (cm-1)

194

058

06

062

064

066

068

07

072

074

40004500500055006000

KS-1b-R23

A (1

mm

)

wavenumber (cm-1)

195

APPENDIX C

FTIR SPECTRA FOR COOLING EXPERIMENTS

The FTIR spectra on the following pages are for the measurements listed in Table

43 in Chapter IV All spectra were normalized to the sample thickness (mm)

Fig C1 FTIR spectra for cooling experiments

042

044

046

048

05

052

054

056

058

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-21

036

038

04

042

044

046

048

05

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-22

05

052

054

056

058

06

062

064

40004500500055006000

KS-1-23

A (1

mm

)

wavenumber (cm-1)

048

05

052

054

056

058

06

062

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-31

196

044

046

048

05

052

054

056

058

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-32

036

038

04

042

044

046

048

05

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-33

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-41

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-42

022

024

026

028

03

032

034

036

038

40004500500055006000

KS-1-43

wavenumber (cm-1)

A (1

mm

)

028

032

036

04

044

048

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1-51

197

028

032

036

04

044

048

40004500500055006000

KS-1-52

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

40004500500055006000

KS-1-53

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-11

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-12

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-13

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-21

wavenumber (cm-1)

A (1

mm

)

198

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-22

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-23

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-31

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-32

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-33

wavenumber (cm-1)

A (1

mm

)

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-21

199

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

GMR+4-1-22

wavenumber (cm-1)

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-23

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-31

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-32

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-33

wavenumber (cm-1)

A (1

mm

)

14

16

18

2

22

24

26

28

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-41

200

14

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-42

A (1

mm

)

wavenumber (cm-1)

14

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-43

wavenumber (cm-1)

A (1

mm

)

-065

-06

-055

-05

-045

-04

40004500500055006000

KS-2-11

A (1

mm

)

wavenumber (cm-1)

-025

-02

-015

-01

-005

0

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-2-12

032

036

04

044

048

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-21

028

032

036

04

044

048

40004500500055006000

KS-2-22

A (1

mm

)

wavenumber (cm-1)

201

025

029

033

037

041

045

40004500500055006000

KS-2-23

wavenumber (cm-1)

A (1

mm

)

026

031

036

041

046

40004500500055006000

KS-2-31

wavenumber (cm-1)

A (1

mm

)

024

029

034

039

044

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-32

03

035

04

045

05

40004500500055006000

KS-2-33

wavenumber (cm-1)

A (1

mm

)

-008

-0044

-0008

0028

0064

01

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-41

-02

-0164

-0128

-0092

-0056

-002

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-2-42

202

-006

-0024

0012

0048

0084

012

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-43

03

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-21

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-22

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-23

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-31

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-32

A (1

mm

)

wavenumber (cm-1)

203

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-33

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-51

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-52

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-53

wavenumber (cm-1)

A (1

mm

)

01

02

03

04

05

06

07

08

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-31

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-32

wavenumber (cm-1)

A (1

mm

)

204

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-33

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-41

A (1

mm

)

wavenumber (cm-1)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-42

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-43

wavenumber (cm-1)

A (1

mm

)

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-51

A (1

mm

)

wavenumber (cm-1)

01

02

03

04

05

06

07

08

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-52

205

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-53A

(1m

m)

wavenumber (cm-1)

025

03

035

04

045

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-11

025

03

035

04

045

40004500500055006000

KS-3-12

A (1

mm

)

wavenumber (cm-1)

023

028

033

038

043

40004500500055006000

KS-3-13

A (1

mm

)

wavenumber (cm-1)

028

031

034

037

04

043

046

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-3-21

029

032

035

038

041

044

047

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-22

206

031

034

037

04

043

046

049

40004500500055006000wavenumber (cm-1)

A (1

mm

)KS-3-23

025

03

035

04

045

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-81

03

035

04

045

05

40004500500055006000

KS-3-82

A (1

mm

)

wavenumber (cm-1)

026

031

036

041

046

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-83

04

045

05

055

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-91

036

04

044

048

052

056

40004500500055006000

KS-3-92

A (1

mm

)

wavenumber (cm-1)

207

038

043

048

053

058

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-93

039

041

043

045

047

049

051

053

055

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-111

04

042

044

046

048

05

052

054

056

40004500500055006000

KS-3-112

A (1

mm

)

wavenumber (cm-1)

041

043

045

047

049

051

053

055

057

40004500500055006000

KS-3-113

A (1

mm

)

wavenumber (cm-1)

033

035

037

039

041

043

045

047

049

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-114

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-21

wavenumber (cm-1)

A (1

mm

)

208

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-22A

(1m

m)

wavenumber (cm-1)03

035

04

045

05

055

06

065

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-3-23

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-31

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-32

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-33

A (1

mm

)

wavenumber (cm-1)

04

045

05

055

06

065

07

075

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-41

209

04

045

05

055

06

065

07

075

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-3-42

04

045

05

055

06

065

07

075

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-43

08

1

12

14

16

18

40004500500055006000

GMR+4-3-41

A (1

mm

)

wavenumber (cm-1)

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-3-42

08

1

12

14

16

18

40004500500055006000

GMR+4-3-43

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-3-51

210

03

04

05

06

07

08

09

40004500500055006000wavenumber (cm-1)

A (1

mm

)GMR+4-3-52

03

04

05

06

07

08

09

40004500500055006000

GMR+4-3-53

wavenumber (cm-1)

A (1

mm

)

211

APPENDIX D

DATABASE FOR EASINESS OF CRYSTALLIZATION FOR DIFFERENT MELTS AT DIFFERENT P-T CONDITION

Experimental database for easiness of crystallization for different melts at

different P-T condition has been accumulated at the experimental petrology laboratory

the University of Michigan The references are listed at the end of the table

Table D1 Pressure dependence of easiness of crystallization for different melts at

different temperatures

Composition H2Ot P T t q Crystallization Refloz wt GPa K s Ks

1 rhyolite 653 05 613 7200 50 N 42 rhyolite 653 05 613 1260 50 N 43 rhyolite 46 03 623 18000 50 N 134 rhyolite 389 1 623 261360 50 N 115 rhyolite 653 05 643 300 0017 N 46 rhyolite 533 05 673 300 0017 N 47 rhyolite 389 1 673 46800 50 N 118 rhyolite 389 2 673 172800 50 N 119 rhyolite 518 2 673 720000 50 N 12

10 rhyolite 371 3 673 259200 50 N 1111 rhyolite 365 05 678 300 00017 N 412 rhyolite 365 05 678 600 59 N 413 rhyolite 364 05 703 300 0017 N 414 rhyolite 263 00001 723 600 0017 N 115 rhyolite 365 05 723 300 1 N 416 rhyolite 18 1 723 183600 50 N 1117 rhyolite 389 1 723 10800 50 N 1118 rhyolite 389 2 723 14400 50 N 1119 rhyolite 389 3 723 21600 50 N 1120 rhyolite 389 3 723 21600 50 N 1121 rhyolite 527 05 733 300 1 N 422 rhyolite 239 00001 735 600 0000177 N 1

212

23 rhyolite 653 05 743 300 50 N 424 rhyolite 1571 00001 752 600 0000177 N 125 rhyolite 306 00001 753 600 0108 N 126 rhyolite 365 05 753 600 1 N 427 rhyolite 527 05 753 240 50 N 428 rhyolite 087 05 753 1067900 30 N 329 rhyolite 389 2 753 1260 50 N 1130 rhyolite 51 2 753 172800 50 Y 1231 rhyolite 085 3 763 36000 50 Y 1132 rhyolite 149 00001 773 176220 427 N 233 rhyolite 46 03 773 300 50 N 1334 rhyolite 18 1 773 600 50 N 1135 rhyolite 389 1 773 600 50 N 1136 rhyolite 18 2 773 86400 50 N 1137 rhyolite 591 2 773 54000 50 Y 1238 rhyolite 18 3 773 172800 50 N 1139 rhyolite 389 3 773 960 50 N 1140 rhyolite 09 4 773 10800 50 Y 1141 rhyolite 09 62 773 10800 50 Y 1142 rhyolite 3 00001 783 600 055 N 143 rhyolite 365 05 793 300 52 N 444 rhyolite 177 00001 798 26820 1259 N 245 rhyolite 371 05 803 68520 30 N 346 rhyolite 0809 00001 813 600 00002 N 147 rhyolite 08 1 813 187200 54 N 1148 rhyolite 1729 00001 823 600 0017 N 149 rhyolite 1824 00001 823 600 0017 N 150 rhyolite 1681 00001 823 600 0125 N 151 rhyolite 1855 00001 823 600 013 N 152 rhyolite 1879 00001 823 600 082 N 153 rhyolite 18 1 823 600 55 N 1154 rhyolite 18 2 823 7200 55 N 1155 rhyolite 09 3 823 176400 55 N 1156 rhyolite 09 3 823 864000 55 N 1157 rhyolite 09 4 823 11100 55 Y 1158 rhyolite 18 3 823 7200 55 N 1159 rhyolite 181 00001 824 10800 59 N 260 rhyolite 0186 00001 825 3628800 20 N 1061 rhyolite 76 05 828 9065 70 N 362 rhyolite 073 05 836 236800 30 N 363 rhyolite 0839 00001 843 600 0002 N 164 rhyolite 1421 00001 843 600 0017 N 165 rhyolite 1433 00001 843 600 0141 N 166 rhyolite 0928 00001 847 600 0017 N 167 rhyolite 192 00001 848 2700 84 N 268 rhyolite 131 00001 848 16800 141 N 269 rhyolite 18 2 853 600 58 N 1170 rhyolite 142 00001 863 600 0762 N 1

213

71 rhyolite 082 081 865 252900 30 N 372 rhyolite 081 005 868 167700 30 N 373 rhyolite 0811 00001 872 600 0049 N 174 rhyolite 0839 00001 873 600 00055 N 175 rhyolite 085 00001 873 21600 65 N 1176 rhyolite 085 3 873 7200 60 Y 1177 rhyolite 087 1 873 14400 60 N 1178 rhyolite 088 3 873 2400 60 N 1179 rhyolite 09 2 873 14400 60 N 1180 rhyolite 09 4 873 10800 60 Y 1181 rhyolite 09 4 873 10800 60 Y 1182 rhyolite 1118 00001 873 600 015 N 183 rhyolite 1155 00001 873 600 0915 N 184 rhyolite 116 00001 873 5760 20 N 285 rhyolite 139 00001 873 3900 20 N 286 rhyolite 187 00001 873 1215 20 N 287 rhyolite 2 2 873 600 60 N 1188 rhyolite 2 3 873 600 60 N 1189 rhyolite 226 2 873 43200 60 N 1290 rhyolite 228 2 873 86400 60 N 1291 rhyolite 361 3 873 60 1 N 1392 rhyolite 396 2 873 14400 60 Y 1293 rhyolite 51 1 873 36000 60 N 1294 rhyolite 079 02 874 227760 30 N 395 rhyolite 0892 00001 875 600 0017 N 196 rhyolite 079 05 875 263650 30 N 397 rhyolite 077 00001 876 93160 30 N 398 rhyolite 186 05 878 144300 30 N 399 rhyolite 0802 00001 880 600 0161 N 1

100 rhyolite 085 3 883 3600 001 Y 13101 rhyolite 0831 00001 893 600 0018 N 1102 rhyolite 084 00001 893 600 0018 N 1103 rhyolite 085 3 903 3600 001 Y 13104 rhyolite 08 00001 923 600 75 N 11105 rhyolite 08 00001 923 7200 75 N 11106 rhyolite 084 00001 923 2400 75 N 11107 rhyolite 085 1 923 600 65 N 11108 rhyolite 089 2 923 600 65 N 11109 rhyolite 085 3 923 600 33 Y 13110 rhyolite 085 3 923 600 033 Y 13111 rhyolite 201 1 923 600 01 N 13112 rhyolite 382 1 923 120 1 N 13113 rhyolite 0513 00001 941 600 0017 N 1114 rhyolite 087 2 953 600 68 N 11115 rhyolite 76 05 969 720 30 N 3116 rhyolite 0124 00001 971 1450800 20 N 10117 rhyolite 137 0011 973 259200 05 N 10118 rhyolite 218 00249 973 172800 05 N 10

214

119 rhyolite 389 2 973 60 1 N 13120 rhyolite 389 3 973 60 10 N 13121 rhyolite 08 00001 973 600 50 N 11122 rhyolite 082 1 973 480 70 N 11123 rhyolite 08 1 973 300 01 N 13124 rhyolite 08 2 973 300 01 N 13125 rhyolite 085 3 973 600 70 Y 11126 rhyolite 082 3 973 300 01 Y 13127 rhyolite 09 4 973 3600 70 Y 11128 rhyolite 0836 00001 993 300 127 N 6129 rhyolite 09 4 993 600 05 Y 13130 rhyolite 0805 00001 1000 300 20 N 6131 rhyolite 0784 00001 1003 600 79 N 6132 rhyolite 088 00001 1013 60 127 N 6133 rhyolite 08 00001 1021 300 65 N 6134 rhyolite 0116 00001 1023 1292400 20 N 10135 rhyolite 068 00001 1023 300 178 N 6136 rhyolite 0766 00001 1023 300 84 N 6137 rhyolite 08 3 1023 600 0333 Y 13138 rhyolite 082 1 1023 120 1 N 13139 rhyolite 082 2 1023 120 1 N 13140 rhyolite 082 3 1023 120 10 N 13141 rhyolite 083 3 1023 120 1 N 13142 rhyolite 084 00001 1023 450 130 N 6143 rhyolite 085 3 1023 120 75 N 11144 rhyolite 085 3 1023 120 1 N 13145 rhyolite 0855 00001 1023 600 174 N 6146 rhyolite 18 2 1023 120 10 N 13147 rhyolite 18 2 1023 120 1 N 13148 rhyolite 18 3 1023 120 10 N 13149 rhyolite 18 3 1023 120 1 N 13150 rhyolite 183 1 1023 120 1 N 13151 rhyolite 389 2 1023 60 10 N 13152 rhyolite 389 3 1023 60 75 Y 13153 rhyolite 08 00001 1024 600 14 N 6154 rhyolite 07 1 1073 60 10 N 13155 rhyolite 08 1 1073 120 80 N 13156 rhyolite 08 2 1073 120 10 N 13157 rhyolite 082 02 1073 300 0167 N 4158 rhyolite 083 01 1073 600 0167 N 4159 rhyolite 085 2 1073 300 0167 N 13160 rhyolite 178 02 1073 600 80 N 4161 rhyolite 181 1 1073 60 10 N 13162 rhyolite 182 2 1073 60 80 N 13163 rhyolite 241 01 1073 600 80 N 4164 rhyolite 25 02 1073 600 80 N 4165 rhyolite 389 1 1073 60 10 N 13166 rhyolite 389 1 1073 60 80 N 13

215

167 rhyolite 389 2 1073 60 80 N 13168 rhyolite 389 3 1073 60 80 Y 13169 rhyolite 09 4 1103 300 4 Y 13170 rhyolite 0103 00001 1123 219600 20 N 10171 rhyolite 0105 00001 1123 867600 20 N 10172 rhyolite 077 00061 1123 259200 05 N 10173 rhyolite 077 2 1123 120 85 N 13174 rhyolite 077 3 1123 60 85 Y 13175 rhyolite 085 2 1123 300 85 N 13176 rhyolite 11 00112 1123 338400 05 N 10177 rhyolite 111 00114 1123 172800 05 N 10178 rhyolite 176 00253 1123 176400 05 N 10179 rhyolite 18 3 1123 120 85 Y 13180 rhyolite 241 02 1123 3600 067 N 4181 rhyolite 389 3 1123 60 85 Y 13182 rhyolite 0106 00001 1124 1134000 20 N 10183 rhyolite 76 05 1126 240 30 N 3184 rhyolite 6 025 1135 1800 2 N 3185 rhyolite 76 05 1173 0 2 N 3186 rhyolite 76 05 1173 1800 2 N 3187 rhyolite 23 05 1173 7200 167 N 5188 rhyolite 0225 05 1180 36000 30 N 3189 rhyolite 07 00061 1268 173160 05 N 10190 rhyolite 0102 00001 1272 1083600 20 N 10191 rhyolite 0099 00001 1273 691200 20 N 10192 rhyolite 012 01 1273 1800 167 N 5193 rhyolite 012 01 1273 14400 167 N 5194 rhyolite 012 03 1273 14400 167 N 5195 rhyolite 078 02 1273 300 100 N 4196 rhyolite 081 02 1273 300 67 N 4197 rhyolite 083 02 1273 300 083 N 4198 rhyolite 09 4 1273 120 100 Y 13199 rhyolite 099 00114 1275 88200 05 N 10200 rhyolite 115 05 1273 600 0017 N 4201 rhyolite 115 05 1273 600 100 N 4202 rhyolite 155 00252 1273 86400 05 N 10203 rhyolite 157 0025 1273 86400 05 N 10204 rhyolite 5 05 1273 600 100 N 5205 rhyolite 5 1 1273 600 100 N 5206 rhyolite 5 15 1273 600 100 N 5207 rhyolite 0219 05 1298 14400 30 N 3208 rhyolite 09 05 1298 14400 167 N 5209 rhyolite 024 05 1307 5400 167 N 5210 rhyolite 22 05 1307 5400 167 N 5211 rhyolite 22 05 1307 5400 167 N 5212 rhyolite 2 05 1307 5400 167 N 5213 rhyolite 078 01 1373 300 100 N 4214 rhyolite 371 2 1373 60 100 N 13

216

215 rhyolite 51 2 1373 624 100 N 12216 rhyolite 51 2 1373 613 100 N 12217 rhyolite 024 05 1375 1800 167 N 5218 rhyolite 09 05 1375 1800 167 N 5219 rhyolite 22 05 1375 1800 167 N 5220 rhyolite 38 05 1375 1800 167 N 5221 rhyolite 2 05 1375 1800 167 N 5222 rhyolite 09 05 1471 1200 167 N 5223 rhyolite 24 05 1471 1200 167 N 5224 rhyolite 41 05 1471 1200 167 N 5225 rhyolite 064 00061 1473 144000 05 N 10226 rhyolite 089 0011 1473 86400 05 N 10227 rhyolite 144 0025 1473 79200 05 N 10228 rhyolite 147 0025 1473 82800 05 N 10229 rhyolite 148 0025 1473 86400 05 N 10230 rhyolite 361 3 1473 60 100 N 13231 rhyolite 64 05 1478 900 2 N 3232 rhyolite 6 025 1488 1200 2 N 3233 rhyolite 51 1 1573 248 100 N 12234 rhyolite 397 2 1573 252 100 N 12235 rhyolite 227 2 1573 587 100 N 12236 rhyolite 09 41 1673 120 100 Y 13237 rhyolite 591 2 1773 120 100 N 12238 rhyolite 002 05 1873 7200 100 N 13239 rhyolite 517 2 1873 128 100 N 12240 rhyolite 09 4 1873 60 100 Y 13241 andesite 157 1 1523 0 100 N 7242 andesite 32 1 1573 300 100 N 7243 andesite 157 1 1573 300 100 N 7244 andesite 56 1 1573 120 100 N 7245 andesite 35 05 1673 90 100 N 7246 andesite 35 15 1673 90 100 N 7247 andesite 21 1 1773 60 100 N 7248 andesite 151 1 1773 60 100 N 7249 andesite 159 1 1813 126 100 N 7250 dacite 2517 00001 753 3000 20 N 8251 dacite 1453 00001 773 4202 20 N 8252 dacite 2513 00001 773 1800 20 N 8253 dacite 245 01 776 172200 30 N 9254 dacite 2354 00001 791 270 20 N 8255 dacite 1463 00001 792 1200 20 N 8256 dacite 1453 00001 792 2100 20 N 8257 dacite 2314 00001 810 484 20 N 8258 dacite 074 00001 824 1744680 20 N 9259 dacite 1425 00001 833 600 20 N 8260 dacite 245 01 834 689315 30 N 9261 dacite 1518 00001 845 180 20 N 8262 dacite 1525 00001 845 180 20 N 8

217

263 dacite 1411 00001 863 180 20 N 8264 dacite 245 01 878 103975 30 N 9265 dacite 145 0097 881 180900 100 N 9266 dacite 075 00975 881 413880 100 N 9267 dacite 245 014 881 40878 100 N 9268 dacite 245 013 910 19660 100 N 9269 dacite 073 0099 911 484260 100 N 9270 dacite 47 1 1423 300 100 N 7271 dacite 46 1 1473 300 100 N 7272 dacite 35 05 1573 73 100 N 7273 dacite 29 1 1573 480 100 N 7274 dacite 62 05 1673 120 100 N 7275 dacite 63 15 1673 120 100 N 7276 dacite 31 1 1773 90 100 N 7

ldquoNrdquo means no crystallization in the quenched glass and ldquoYrdquo means significant crystallization The crystallized samples were classified as failed experiments and were not discussed in the respective papers even though the samples were part of the respective study loz references 1 Zhang et al 1997b 2 Liu and Zhang 2000 3 Zhang and Behrens 2000 4 Zhang et al 2000 5 Behrens and Zhang 2001 6 Xu and Zhang 2002 7 Behrens et al 2004 8 Liu et al 2004a 9 Liu et al 2004b 10 Liu et al 2005 11 Hui et al in revision 12 Ni and Zhang revised 13 this study

Page 6: VISCOSITY OF SILICATE MELTS

v

TABLE OF CONTENTS

DEDICATIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipii

ACKNOWLEDGMENTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipiii

LIST OF FIGUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipvii

LIST OF TABLEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipix

LIST OF APPENDICEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipx

CHAPTER

I INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip1

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip5

II TOWARD A GENERAL VISCOSITY EQUATION OF NATURAL

ANHYDROUS AND HYDROUS SILICATE MELTShelliphelliphelliphelliphelliphellip7

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip7

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip8

TEMPERATURE DEPENDENCE OF VISCOSITYhelliphelliphelliphellip10

VISCOSITY OF BINARY MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip12

VISCOSITY MODELS FOR NATURAL ANHYDROUS AND

HYDROUS SILICATE EMLTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip19

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip42

III PRESSURE DEPENDENCE OF THE SPECIATION OF DISSOLVED

WATER IN RHYOLITC MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip51

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip52

EXPERIMENTAL METHODShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip53

ANALYTICAL PROCEDUREShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip59

RESULTS AND DISCUSSIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip62

CONCLUSIONShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip80

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip81

vi

IV PRESSURE DEPENDENCE OF VISCOSITY OF RHYOLITIC

MELTShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip86

ABSTRACThelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip86

INTRODUCTIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip87

EXPERIMENTAL AND ANALYTICAL METHODShelliphelliphellip90

DISCUSSIONhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip107

CONCLUDING REMARKShelliphelliphelliphelliphelliphelliphelliphellip117

REFERENCEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip118

V CONCLUSIONShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip125

APPENDICEShelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip129

vii

LIST OF FIGURES

Figure

21 Comparisons of fitting results using Equations 2 3 and 4a for viscosityhelliphelliphelliphellip13

22 Comparisons of experiments viscosity data with calculated valueshelliphelliphelliphelliphelliphelliphellip16

23 Viscosity as a function of composition in four binary systemshelliphelliphelliphelliphelliphelliphelliphellip18

24 Comparison of experimental viscosity data with calculated valueshelliphelliphelliphelliphelliphellip23

25 Total alkalis versus SiO2 diagramhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip29

26 Comparison of experimental viscosity values with calculated valueshelliphelliphelliphelliphelliphellip36

27 The prediction of Equation 12helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip39

31 Experimental results for temperature distribution in piston cylinderhelliphelliphelliphelliphelliphellip57

32 The temperature dependence of lnK at some pressureshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip67

33 Two sets of reversal experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip69

34 Temperature dependence of K and pressure dependence of enthalpyhelliphelliphelliphelliphelliphellip72

35 The distribution of differences between experimental and predicted temperatureshellip76

36 Pressure effect on lnK at some temperatures and water concentrationshelliphelliphelliphelliphellip77

41 Sketch of kinetics of reaction 1 during coolinghelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip93

42 Temperature dependence of viscosity of rhyolitic melts at various pressureshelliphelliphellip99

43 Comparison of viscosities of given rhyolitic melts at various pressureshelliphelliphelliphellip104

44 Pressure effect on crystallization in the rhyolitic meltshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip106

viii

45 Comparison of measured viscosity data of rhyolites with calculated valueshelliphelliphellip111

46 P-T-XH2Ot range of all experimental data of the modelhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip112

47 Pressure effect on viscosity at some temperatures and water concentrationshelliphelliphellip113

48 Pressure dependence of glass transition temperature of hydrous rhyoliteshelliphelliphellip115

B1 FTIR spectra for Chapter IIIhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip176

C1 FTIR spectra for Chapter IVhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip195

ix

LIST OF TABLES

Table

21 Fitting parameters of Equation 5 in four binary systemshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip17

22 Fitting parameters for Equation 8helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip22

23 Melt composition on anhydrous basishelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip26

24 Fitting parameters for Equation 11helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip33

25 Examples of calculation using Equation 12helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip35

26 The 2 deviations and data points of sub-groups in the viscosity databasehelliphelliphelliphellip37

31 Chemical compositions of KS and GMR rhyolite on anhydrous basishelliphelliphelliphelliphellip55

32a Experimental results for pressure calibration at 1073 Khelliphelliphelliphelliphelliphelliphelliphelliphelliphellip60

32b Literature data on quartz-coesite transition pressure at 1073 Khelliphelliphelliphelliphelliphelliphelliphellip60

33 The equilibrium speciation of water in rhyolitic melts under various pressureshelliphellip63

34 Fitting parameters for Equations 3 4 and 6helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip74

41 Chemical composition of KS GMR and EDF rhyolite on anhydrous basishelliphelliphellip91

42 Viscosity of EDF under pressures 02 and 04 GPa and KS at 04 GPahelliphelliphelliphelliphellip98

43 Viscosity of hydrous rhyolitic melts under various pressureshelliphelliphelliphelliphelliphelliphelliphellip100

A1 Viscosity database used to fit Equation 11helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip130

D1 Pressure dependence of easiness of crystallization for different meltshelliphelliphelliphelliphellip211

x

LIST OF APPENDICES

Appendix

A Viscosity data of natural silicate meltshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip130

B FTIR spectra for equilibrium speciation experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip176

C FTIR spectra for cooling experimentshelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip195

D Database for easiness of crystallization for different melts at different P-T

conditionhelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellip211

1

CHAPTER 1

INTRODUCTION

Knowledge of viscosity of silicate melts is necessary in order to quantitatively

model volcanic and magmatic processes and in turn to provide insights into the structure

and dynamics of silicate melts A mechanistic study of xenolith dissolution may aid in

understanding the diagenesis of magmatic system (eg Morgan et al 2006 Shaw

2006) A numerical model of bubble growth may advance in predicting the mode of

volcanic eruption (eg Proussevitch and Sahagian 1998 Liu and Zhang 2000) The

success of these models in accurately predicting kinetic and dynamic processes in

igneous systems is critically dependent on the quality of viscosity data of silicate melts

Laboratory viscosity measurements are performed to better understand detailed

physicochemical behaviors and the results of these studies are then used to understand the

behavior of the melts in nature (eg Scaillet et al 1996) Because the conditions that

pertained in laboratory experiments cannot always be identical to those occurring in

nature it is also important to have means of interpolating or extrapolating laboratory

results to different (T P X) conditions In this study one of the primary aims is to

establish a general viscosity model to estimate viscosity of silicate melts at ambient

pressure Furthermore hydrous species reaction viscometer based on the kinetics of

hydrous species reaction in the rhyolitic melts at high pressure is used to infer viscosity

2

of hydrous rhyolitic melts at pressure up to 283 GPa and parallel-plate creep viscometer

in an internally-heated pressure vessel is employed to measure natural rhyolitic melts at

pressure up to 04 GPa and the pressure effect on the viscosity of rhyolitic melts is

examined

Chapter II presents a new and empirical viscosity equation of anhydrous and

hydrous natural silicate melts The compositional dependence of viscosity of silicate

melts is of fundamental importance to understand the evolution of magmatic systems

(eg Marsh 2006) However previous viscosity models can only provide viscosity

prediction of silicate melts either in a limited composition range over a large temperature

range (eg Hess and Dingwell 1996 Zhang et al 2003) or in a limited temperature

range in a large compositional range (eg Shaw 1972) This chapter provides a general

viscosity model of silicate melts which can be used to calculate viscosity of all natural

silicate melts in a large temperature range Natural and nearly natural melt compositions

covered in this model include anhydrous peridotite to rhyolite anhydrous peralkaline to

peraluminous melts hydrous basalt to rhyolite hydrous peralkaline to peraluminous

melts This model can also be used to estimate the glass transition temperatures and

cooling rate of natural silicate melts The results of this study have been published in

Geochimica et Cosmochimica Acta (Hui and Zhang 2007)

Chapter III is an experimental study of the speciation of dissolved water in

rhyolitic melts at pressure up to 283 GPa This study is prerequisite for inferring

viscosity of hydrous rhyolitic melts using the hydrous species reaction viscometer

(Dingwell and Webb 1990 Zhang et al 2003) at high pressure (Chapter IV)

Furthermore the quantification of hydrous speciation in the rhyolitic melts under high

3

pressure can be applied to model H2O diffusion and understand the structure of hydrous

melts at high pressure In addition information from this study is also useful in future

models of thermodynamic properties of hydrous silicate melts Chapter III addresses the

first systematic experimental study of H2O speciation in rhyolitic melts containing 08 ndash 4

wt water at high pressure 094 ndash 283 GPa A speciation model accommodating

temperature pressure and water content dependence of hydrous species in rhyolitic melts

is also presented in this chapter The results from this study have been submitted to

Geochimica et Cosmochimica Acta (Hui et al 2008)

Chapter IV contains the first experimental study of viscosity of any melts at

pressure up to 283 GPa in the high viscosity range It extends a newly developed method

(hydrous species reaction viscometer Zhang et al 2003) to high pressures This new

development represents the only method capable of extracting viscosity data of melts in

the high viscosity range at pressures above 1 GPa Previously high-pressure (ge 1 GPa)

viscosity data were obtained by the falling-sphere technique in high-pressure apparatus

which can be applied only in the low viscosity range Hence all previous viscosity data at

high pressure (ge 1GPa) fall in the high temperature range (ie low viscosity range) No

viscosity data in the low temperature range at high pressure ((ge 1GPa) have been

published This study is the first to infer viscosity of hydrous rhyolitic melts containing

08 ndash 4 wt water using the hydrous species reaction viscometer (Dingwell and Webb

1990 Zhang et al 2003) at high pressures The viscosity of natural rhyolitic melts

containing 013 and 08 wt water at pressures up to 04 GPa also has been measured

using a parallel plate creep viscometer A viscosity model of rhyolitic melts in the high

viscosity range accounting for the dependence on pressure temperature and water content

4

is also presented in this chapter The results from this chapter have been submitted to

Geochimica et Cosmochimica Acta (Hui et al 2008)

5

REFERENCES

Dingwell DB Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2 427-

449

Hess K-U Dingwell DB (1996) Viscosities of hydrous leucogranitic melts A non-

Arrhenian model Am Mineral 81 1297-1300

Hui H Zhang Y (2007) Toward a general viscosity equation of natural anhydrous and

hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Hui H Zhang Y Xu Z Behrens H (2008) Pressure dependence of the speciation of

dissolved water in rhyolitic melts Geochim Cosmochim Acta In revision

Hui H Zhang Y Xu Z Del Gaudio P Behrens H (2008) Pressure dependence of

viscosity of rhyolitic melts Geochim Cosmochim Acta Submitted

Liu Y Zhang Y (2000) Bubble growth in rhyolitic melt Earth Planet Sci Lett 181

251-264

Marsh BD (2006) Dynamics of magmatic systems Elements 2 287-292

Morgan Z Liang Y Hess P (2006) An experimental study of anorthosite dissolution

in lunar picritic magmas Implications for assimilation processes Geochim

Cosmochim Acta 70 3477-3491

Proussevitch AA Sahagian DL (1998) Dynamics and energetics of bubble growth in

magmas analytical formulation and numerical modeling J Geophys Res 103

18223-18251

Scaillet B Holtz F Pichavant M Schmidt M (1996) Viscosity of Himalayan

leucogranites Implications for mechanisms of granitic magma ascent J Geophys

Res 101 27691-27699

6

Shaw CSJ (2006) Effects of melt viscosity and silica activity on the rate and

mechanism of quartz dissolution in melts of the CMAS and CAS systems Contrib

Mineral Petrol 151 665-680

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

7

CHAPTER II

TOWARD A GENERAL VISCOSITY EQUATION OF NATURAL ANHYDROUS AND HYDROUS SILICATE

MELTS

ABSTRACT

A new and empirical viscosity equation for anhydrous and hydrous natural silicate

melts has been developed using the following formulation

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

where η is viscosity in Pamiddots T is temperature in K and A B C and D are linear functions

of mole fractions of oxide components except for H2O The formulation is applied

successfully to fit the temperature and compositional dependence of viscosity for some

binary systems Furthermore the new model with eight parameters fits the compositional

and temperature dependence of the viscosity data of anhydrous natural silicate melts

better than the ten-parameter model in the literature The main purpose of this work is to

fit the entire high- and low-temperature viscosity database (1451 data points) of all

ldquonaturalrdquo silicate melts using this empirical formulation The general viscosity equation

has 37 parameters and is as follows

8

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

where η is viscosity in Pamiddots T is temperature in K Xi means mole fraction of oxide

component i and Z=(XH2O)1[1+(185797T)] Al2O3ex or (Na K)2Oex mean excess oxides

after forming (Na K)AlO2 The 2σ deviation of the fit is 061 logη units This general

model is recommended for viscosity calculations in modeling magma chamber processes

and volcanic eruptions

1 INTRODUCTION

Knowledge of the viscosity of silicate melts is critical to the understanding of

igneous processes such as melt segregation and migration in source regions magma

recharge magma mixing differentiation by crystal fractionation convection in magma

chambers dynamics and style of eruptions and magma fragmentation Numerous

measurements have been made on the viscosity of various silicate melts from felsic (eg

rhyolitic melt Neuville et al 1993) to ultramafic composition (eg peridotite liquid

Dingwell et al 2004) from anhydrous (eg Neuville et al 1993) to hydrous ones (eg

Whittington et al 2000) and from high temperature to low temperature A number of

authors have made efforts to model the viscosity data for the purpose of interpolation and

extrapolation Bottinga and Weill (1972) and Shaw (1972) were pioneers in developing

9

viscosity models for natural silicate melts Because of the extreme difficulty in

calibrating a better viscosity model these models were the only ones available for over

twenty years (Lange 1994) More advanced models and relationships have been

developed for specific melt compositions such as rhyolitic melts (eg Hess and

Dingwell 1996 Zhang et al 2003) For melt compositions from rhyolite to peridotite

Persikov (1998) developed a viscosity model for anhydrous and hydrous silicate melts at

high temperatures (for viscosity below 105 Pamiddots) and Giordano and Dingwell (2003a)

developed new models for anhydrous silicate melts applicable to a larger temperature

range 700 ndash 1600ordmC

In spite of recent advances in viscosity models there is still a need for a general

model that would apply to all natural silicate melts all accessible temperature ranges and

especially including the effect of H2O content The model of Giordano and Dingwell

(2003a) is noteworthy in this connection In the modeled temperature range (700-

1600degC) for anhydrous melts it has a 2σ uncertainty of 078 in logη However the model

is limited to anhydrous melts and cannot be applied to estimate viscosity at lower

temperatures For example the model predicts logη of 169 for a phonolite at 6147degC

while the experimentally determined logη is 1163 (Giordano et al 2000) Viscosity at lt

700degC is critical for understanding magma fragmentation and welding in tuffs The

purpose of this work is to develop a practical viscosity model for natural silicate melts

that is applicable to both anhydrous and hydrous natural melts and to the entire

temperature range in which experimental data are available

10

2 TEMPERATURE DEPENDENCE OF VISCOSITY

The temperature dependence of viscosity of silicate melts has been extensively

studied from a theoretical point of view or through empirical fitting of viscosity data For

a narrow temperature range usually for viscosities between 01 to 104 Pamiddots the

dependence of viscosity on temperature is well described by the Arrhenius equation (eg

Bottinga and Weill 1972 Shaw 1972) When the temperature range is large enough

most silicate melts exhibit a non-Arrhenian relationship between viscosity and

temperature (eg Neuville et al 1993 Hess and Dingwell 1996 Whittington et al

2000) It is possible that the isostructural viscosity variation is Arrhenian (Scherer 1984)

but viscosity variation due to temperature-induced structure change is the origin of the

non-Arrhenian behavior Many equations have been proposed to explain or fit the

temperature dependence of viscosity (eg Brush 1962)

One thermodynamic description of the temperature dependence of viscosity of

silicate melts is the Adam-Gibbs equation (eg Adam and Gibbs 1965 Richet 1984)

η = Ae exp Be TSconf( )[ ] (1)

where η is viscosity Ae is the pre-exponential factor independent of temperature Be is an

energy term T is temperature in K and Sconf is the configurational entropy of the melt

For compositions corresponding to a pure stable crystalline phase (such as diopside) the

configurational entropy as a function of temperature can be determined from appropriate

heat capacity measurements of liquids and crystals and glasses down to zero K (Richet et

al 1986) However for a multicomponent melt system in which oxide concentrations are

variable the configurational entropy as a function of temperature and composition cannot

be evaluated independently The above equation becomes a fitting equation with many

11

parameters which loses its theoretical appeal Hence this model is not used often to fit

viscosity-temperature relationship of silicate melts

The most often used empirical description for the temperature dependence of

viscosity is the VFT (Vogel-Fulcher-Tammann) equation (eg Fulcher 1925 Tammann

and Hesse 1926)

logη = A +B

T minus T0 (2)

where A B and T0 are fitting parameters Another model related to the fragility of the

melt has also been used (eg Avramov 1998 Zhang et al 2003)

logη = A +BT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ α

(3)

where α is fragility parameter and depends on heat capacity For a restricted

compositional range α is found to depend linearly on chemical composition as illustrated

by data in sodium or lead silicates (Avramov 1998)

Both Eqns 2 and 3 are three-parameter equations with no explicit consideration

of melt composition which is the least number of parameters to fit the non-Arrhenian

behavior Eqns 2 and 3 were extended to multicomponent melts by allowing the three

parameters to vary with composition but no working scheme was found to fit the

viscosity data (2σ uncertainty in logη is too large gt 09 log unit) With many trials the

following empirical relation was found to be extendable to multicomponent melts

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ (4)

where A B C and D are fitting parameters and are allowed to vary linearly with mole

fraction of oxide components in melts This equation would imply that the activation

12

energy for viscous relaxation depends on temperature exponentially Ea = d(lnη)d(1T) =

2303[B + Dexp(C+DT)] consistent with the activation energy of viscous flow derived

from Eqn 1 in Richet et al (1986) It is not clear whether there is theoretical basis for

Eqn 4 but it works empirically to fit viscosity data of multicomponent silicate melts

Although the above four-parameter equation can also fit viscosity data of a single

composition not all four parameters are necessary and a three-parameter equation either

Eqn 2 or 3 would be more advisable Nonetheless letting C = 0 reduces Eqn 4 to a

three-parameter equation which may fit viscosity data of a single composition

logη = A +BT

+ exp DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟ (4a)

Fig 21 compares fits of viscosity data using Eqns 2 3 and 4a on anhydrous trachyte

melt (AMS_D1 Romano et al 2003) and tephrite melt (Whittington et al 2000) As

shown in Fig 21 these three equations all fit viscosity data well for a given anhydrous

melt

The primary purpose of proposing Eqn 4 is to fit viscosity data of

multicomponent silicate melts by making the four parameters linearly dependent on

composition Below first the compositional dependence of viscosity in binary melts is

discussed then Eqn 4 is applied to fit viscosity of anhydrous natural silicate melts and

finally the entire viscosity database on ldquonaturalrdquo anhydrous and hydrous silicate melts

3 VISCOSITY OF BINARY MELTS

At low temperatures the viscosity of melts in simple binary systems often shows

minima at intermediate compositions This minimum diminishes with increasing

13

0

2

4

6

8

10

12

14

05 06 07 08 09 1 11

TephriteEqn 2Eqn 3Eqn 4a

058 06 062 064 066 068 0705

075

1

125

15

175

2

B

logη

(η in

Pasdot

s)

1000T (T in K)

2

4

6

8

10

12

AMS_D1Eqn 2Eqn 3Eqn 4a

Eqn 4a-53257A87284B19105D

099972R

Eqn 3-19571A42355B17285α

099962R

Eqn 2-3851A90912B35116T0

09997R

AA

logη

(η in

Pasdot

s)

Fig 21 Comparisons of fitting results using Eqns 2 3 and 4a for viscosity data of (a) AMS_D1 trachyte (Romano et al 2003) and (b) tephrite (Whittington et al 2000)

14

temperature and eventually disappears at high enough temperature (Neuville and Richet

1991) The minimum of viscosity data in a binary system can be explained by a

combination of the Adam-Gibbs model and mixing law of configurational entropy of two

end-members (Neuville and Richet 1991) However in this strategy many fitting

parameters are needed to account for the viscosity dependence on composition and

temperature For example Neuville and Richet (1991) used a fifteen-parameter equation

to fit the viscosity data of Ca3Al2Si3O12-Mg3Al2Si3O12 binary system Moreover

asymmetry of viscosity as a function of composition such as in the Na2Si3O7-K2Si3O7

binary system can make it even more difficult for the Adam-Gibbs model to fit the

viscosity data in the binary system (Richet 1984)

On the other hand assuming that each of the four parameters is a linear function

of composition Eqn 4 becomes an eight-parameter equation to fit the temperature and

compositional dependence of viscosity of a binary system

( ) ( ) ( ) ( )1 1 2 2 1 1 2 21 1 2 2 1 1 2 2log exp

b X b X d X d Xa X a X c X c X

T Tη

+ +⎛ ⎞= + + + + +⎜ ⎟

⎝ ⎠ (5)

where a b c and d with subscript 1 and 2 are fitting parameters X is mole fraction of two

end-members in the system Compared to the fifteen-parameter equation of Neuville and

Richet (1991) the number of fitting parameters is almost halved although the physical

meaning of each parameter is less clear in Eqn 5

Fits using Eqn 5 and all fits below are carried out using the commercially

available program MatLab or Stata which employs nonlinear least square regression to

minimize χ2 = sum(logηcalci-logηobsi)2 The fitting errors on all parameters are obtained by

the program Stata When the standard error of a parameter is larger than the absolute

15

value of the parameter the parameter is removed and a new fit with one less fitting

parameter is carried out

Figure 22 shows fits of viscosity data of four binary systems MgSiO3-CaSiO3

(Urbain et al 1982 Scarfe and Cronin 1986 Neuville and Richet 1991)

Mg3Al2Si3O12-Ca3Al2Si3O12 pyrope-grossular (Neuville and Richet 1991) NaAlSi3O8-

CaAl2Si2O8 albite-anorthite (Kozu and Kani 1944 Urbain et al 1982 Hummel and

Arndt 1985) and NS3-KS3 Na2Si3O7-K2Si3O7 (Taylor and Dear 1937 Lillie 1939

Taylor and Doran 1941 Poole 1948 Shartsis et al 1952 Bockris et al 1955

Mackenzie 1957 Taylor and Rindone 1970 Ammar et al 1977) The viscosities of

partially crystallized samples during measurement are not used in the fitting The fitting

parameters are shown in Table 21 The 2σ deviations in terms of logη for CaSiO3-

MgSiO3 garnet plagioclase and NS3-KS3 systems are 039 025 029 and 030

respectively There is a minimum viscosity at intermediate compositions in all four

binary systems at low temperatures such as CaSiO3-MgSiO3 and garnet at 1050 K (Fig

23A) plagioclase at 1123 K (Fig 23B) and NS3-KS3 at 715 K (Fig 23C)

The compositional location of viscosity minimum varies with temperature This

can be seen from the viscosity data of plagioclase (albite-anorthite) binary system

(Hummel and Arndt 1985) As shown in Fig 23B the viscosity minimum of albite-

anorthite system is located at around 40 mole of anorthite in the composition range at

1123 K but the minimum is at a greater anorthite content at higher temperatures This

variation has been explained by Richet (1984) to be due to the mixing of configurational

entropies of anorthite and albite melts which increase at considerably different rates with

increasing temperature The magnitude of the viscosity minimum diminishes with

16

Fig 22 Comparisons of experimental viscosity data with calculated values using Eqn 5 with fitting parameters in Table 21 The data sources are as follows CaSiO3-MgSiO3 (Urbain et al 1982 Scarfe and Cronin 1986 Neuville and Richet 1991) Ca3Al2Si3O12-Mg3Al2Si3O12 garnets (Neuville and Richet 1991) CaAl2Si2O8-NaAlSi3O8 plagioclases (Kozu and Kani 1944 Urbain et al 1982 Hummel and Arndt 1985) NS3-KS3 (Na2Si3O7-K2Si3O7) (Taylor and Dear 1937 Lillie 1939 Taylor and Doran 1941 Poole 1948 Shartsis et al 1952 Bockris et al 1955 Mackenzie 1957 Taylor and Rindone 1970 Ammar et al 1977)

Neuville and Richet 199111 line

garnet

-2

0

2

4

6

8

10

12

14

-2 0 2 4 6 8 10 12 14

Ktradezu and Kani 1944Hummel and Arndt 1985Urbain et al 198211 line

Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s)

plagioclase

-2 0 2 4 6 8 10 12 14

Ammar et al 1977

Bockris et al 1955

Lillie 1939

Mackenzie 1957

Poole 1948

Shartsis et al 1952

Taylor and Dear 1937

Taylor and Doran 1941

Taylor and Rindone 1970

Measured logη (η in Pasdots)

11 line

(Na K) Si O2 3 7

-2

0

2

4

6

8

10

12

14

Neuville and Richet 1991Urbain et al 1982Scarfe and Cronin 198611 line

Cal

cula

ted

logη

(η in

Pasdot

s)

(Ca Mg)SiO3

17

Table 21 Fitting parameters of Eqn 5 in the binary systems of CaSiO3-MgSiO3 garnet plagioclase and NS3-KS3

parameter CaSiO3-MgSiO3 garnet plagioclase NS3-KS3

a1 -31287 (04255)

23593 (11691)

-45179 (10170)

-32839 (05488)

a2 -94323 (04710)

-43178 (01053)

-63903 (06947)

-61410 (07446)

b1 -212604 (16359)

59402 (34463)

47706 (20814)

b2 179038 (9527)

165512 (19446)

118218 (13486)

c1 -12322 (03808)

08438 (01057)

-20844 (09118)

-11788 (09117)

c2 -59221 (09186)

-31234 (15216)

-51302 (32636)

d1 40716 (3713)

27049 (1157)

50614 (8312)

24647 (4784)

d2 74655 (8636)

28789 (88)

46909 (12991)

42955 (20116)

Note Numbers in parentheses are 2 times the standard errors (2σ) of the fitting respective parameters For CaSiO3-MgSiO3 1=CaSiO3 2=MgSiO3 for garnet 1=Ca3Al2Si3O12 (grossular) 2=Mg3Al2Si3O12 (pyrope) for plagioclase 1=CaAl2Si2O8 (anorthite) 2=NaAlSi3O8 (albite) for NS3-KS3 1=Na2Si3O7 2=K2Si3O7

18

85

95

105

115

125

135

0 02 04 06 08 1

MgSiO3-CaSiO3 (1050 K)Py-Gr (1050 K)

mole fraction (Ca-end member)

logη

(η in

Pasdot

s) A

8

9

10

11

12

0 02 04 06 08 1Ab An

logη

(η in

Pasdot

s)

T=1123K

T=1153K

T=1183K

B

0

2

4

6

8

10

12

14

0 02 04 06 08 1

logη

(η in

Pasdot

s)

KS NS3 3

T=715K

T=823K

T=1073K

T=1673K

C

Fig 23 Viscosity as a function of composition in four binary systems (A) CaSiO3-MgSiO3 and garnet (B) plagioclase and (C) NS3-KS3 (Na2Si3O7-K2Si3O7) The solid curves are calculated from Eqn 5 with fitting parameters in Table 21 The sources of viscosity data are as follows (A) interpolated from Neuville and Richet (1991) using Arrhenius relationship of viscosity and temperature (narrow temperature range) with the same compositions (B) open symbols Hummel and Arndt 1985 solid symbols interpolated data from Hummel and Arndt (1985) using Arrhenius relationship of viscosity and temperature (narrow temperature range) (C) data are from Taylor and Dear 1937 Lillie 1939 Taylor and Doran 1941 Poole 1948 Bockris et al 1955 Mackenzie 1957 Ammar et al 1977 interpolated data from Taylor and Doran (1941) Poole (1948) Shartsis et al (1952) Bockris et al (1955) and Ammar et al (1977) and Poole (1948) and Mackenzie (1957) using VFT equation for the same compositions

19

increasing temperature as inferred by Neuville and Richet (1991) As shown in Fig

23C the viscosity minimum in NS3-KS3 system is less pronounced at 1673K than the

one at 715K

4 VISCOSITY MODELS FOR NATURAL ANHYDROUS AND

HYDROUS SILICATE MELTS

The main purpose of this work is to present a working model for calculation of

the viscosity of all natural anhydrous and hydrous silicate melts covering the entire

experimental temperature range The equation used to fit the viscosity data is Eqn 4

with each of A B C and D as a linear function of the compositional parameters For

example for an N-component system the parameter A may be written as

A = ai Xii=1

Nsum (6a)

Or A = a0 + ai Xii=1

Nminus1sum (6b)

where a0 and ai are fitting parameters with i being the ith oxide in the anhydrous melts

This formulation requires many fitting parameters In order to avoid the impression that

the model works only because of many parameters first an effort to use formulation of

Eqn 4 to fit a smaller data set that has been modeled recently by Giordano and Dingwell

(2003a) is presented to show that the new model can fit the same data using a smaller

number of parameters than that of Giordano and Dingwell (2003a)

20

41 A SIMPLE MODEL FOR NATURAL ANHYDROUS MELTS

For multicomponent silicate melts the dependence of viscosity on melt

composition is complicated In the quest of seeking simpler equations with a smaller

number of fitting parameters various parameters such as NBOT (eg Giordano and

Dingwell 2003a) and SM (SM = sum (Na2O+K2O+CaO+MgO+MnO+FeOtot2))

(Giordano and Dingwell 2003a) have been used in modeling melt viscosity Various

parameters were explored to simplify the compositional dependence After a number of

trials using the sum of network formers SiO2 Al2O3 and P2O5 as one single parameter is

found to work well in the context of Eqn 6b Hence this parameter is defined as

SAP = XSiO2+ XAl2O3

+ XP2O5 (7)

where Xi is mole fraction of oxide i in the melt Based on the above considerations the

following equation to relate viscosity temperature and melt composition is used

logη = a0 + a1X( )+b0 + b1X( )

T+ exp c0 + c1X( )+

d0 + d1X( )T

⎝ ⎜

⎠ ⎟ (8)

where X = SAP a b c and d with subscript 0 or 1 are fitting parameters

Giordano and Dingwell (2003a) presented two models for the viscosity of

anhydrous silicate melts The data set contained 314 viscosity data points Their preferred

model using the parameter SM contained 10 fitting parameters Although their database

contained viscosity data below 700degC they only modeled the data in the temperature

range of 700-1600degC With 10 parameters the 2σ deviation of their preferred model is

078 logη units at 700-1600degC

The purpose of using Eqn 8 to fit viscosity data is to compare with previous fits

Hence fitting the same viscosity database of the anhydrous natural silicate melts as used

21

by Giordano and Dingwell (2003a) is the ideal solution All the viscosity data used by

them plus the data at temperatures below 700degC are used to carry out the nonlinear fit and

the new model is as follows

logη = minus213517 +127366X( )+293003minus 97574X

T

+ exp 299791minus 324047X( )+minus588688 + 650818X

T⎛ ⎝ ⎜

⎞ ⎠ ⎟ (9)

The standard errors for the fitting parameters are shown in Table 22 Applying the above

equation to viscosity data at 700-1600degC the 2σ deviation is 063 logη units (Fig 24A)

That is with a smaller number of fitting parameters (8 versus 10) the formulation of Eqn

4 is able to fit anhydrous melt viscosity data to a slightly better precision at this

temperature range than the model of Giordano and Dingwell (2003a)

Another measure of a successful model is applicability to a wide range of

conditions For example Hess and Dingwell (1996) compared their viscosity model for

hydrous rhyolite at both high and low temperatures to the model of Shaw (1972) although

his model was for all anhydrous and hydrous silicate melts but at high temperatures only

and showed that their model is superior to that of Shaw (1972) at low temperatures The

eight-parameter model is able to fit low-temperature viscosity data (ie data at le 700degC

Fig 24B) For the whole temperature range Eqn 9 reproduces the experimental data

with a 2σ standard uncertainty of 077 (Fig 24) The model of Giordano and Dingwell

(2003a) on the other hand did not include data at le 700degC in the fit and hence did not

predict the data well Although Giordano and Dingwellrsquos model is not designed for

application below 700degC the applicability of this eight-parameter model to the full

temperature range of viscosity data demonstrates its superiority Viscosity data at le700degC

are of importance in processes such as magma fragmentation and welding in tuffs

22

Table 22 Fitting parameters for Eqn 8

a b c d 0

-213517 (21976)

293003 (21590)

299791 (147288)

-588688 (271124)

1

127366 (38896)

-97574 (37088)

-324047 (168378)

650818 (302724)

Note Numbers in parentheses are 2σ errors of fitting coefficients respectively

23

-1

1

3

5

7

9

11

13

-1 1 3 5 7 9 11 13

Giordano and Dingwell (2003a)Eqn 911 line

AC

alcu

late

d lo

gη (η

in P

asdots)

9

10

11

12

13

14

15

16

17

9 10 11 12 13 14 15 16 17

Giordano and Dingwell (2003a)Eqn 911 line

Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s) B

Fig 24 Comparison of experimental viscosity data with calculated values (A) in the temperature range from 700 to 1600degC (which is the temperature range that Giordano and Dingwell (2003a) recommended for their model) and (B) below 700degC

24

In summary with a smaller number of fitting parameters the new model does a

better job than the most recent viscosity models (Giordano and Dingwell 2003a) This

verifies that Eqn 4 provides a practical way to describe the compositional and

temperature dependences of the viscosity of natural silicate melts and the success of the

model below is not purely because of the many parameters involved

42 VISCOSITY DATA

The primary motivation of this work is to develop a practical viscosity model for

natural anhydrous and hydrous silicate melts Viscosity data for the development of new

viscosity model come from literature The compositional range is limited to ldquonaturalrdquo

silicate melts (including Fe-free haplogranitic haploandesitic haplobasanitic

haplotephritic haplophonolitic and haplotrachytic melts) The compositions range from

peridotite to rhyolite from peralkaline to peraluminous silicate melts and from

anhydrous to hydrous melts Simple synthetic melts such as Li2O-SiO2 Na2O-SiO2

K2O-SiO2 CaSiO3-MgSiO3 feldspar systems are not included but synthetic melts

intended to approximate natural silicate melt are included Simple synthetic melts are

excluded from the new model because there is still more work needed in developing a

completely general compositional model for the viscosity of all silicate melts For

example including simple melts such as Na2O-SiO2 would expand the compositional

space to pure Na2O melt which may require parameters A B C and D in Eqn 4 to vary

as a nonlinear function of oxide mole fractions This limitation was also encountered in

literature when other silicate liquid properties are modeled (1) The density model of

liquids is developed only for natural silicate liquids excluding simple synthetic melts

25

(Lange and Carmichael 1987 Lange 1997) (2) The thermodynamic model of silicate

melts is also developed only for natural silicate liquids excluding simple synthetic melts

(Ghiorso et al 1983 2002)

The compositions of ldquonaturalrdquo silicate melts for which viscosity data are available

are listed in Table 23 on an anhydrous basis The references are also given in Table 23

There are 1451 viscosity measurements Natural melt compositions covered in the

database are presented in Fig 25 on an anhydrous basis The compositions covered by

the data include anhydrous peridotite to rhyolite anhydrous peralkaline to peraluminous

melts hydrous basalt to rhyolite hydrous peralkaline to peraluminous melts The FeO-

free melts include haplogranitic melts (H1-26) haploandesite (A2 and A4) haplobasanite

(Bn3) haplotephrite (Te2) haplophonolite (Ph4) and haplotrachyte (Tr6) as shown in

Table 23 Some samples with the same or similar sample names (such as two HPG8 and

one HPG08) but different chemical compositions are treated as different samples with

different chemical compositions (that is all compositions were treated to be different and

the chemical analyses were not averaged) The viscosity ranges from 01 to 1015 Pamiddots

The temperature ranges from 573 to 19779 K The H2O concentration is le123 wt for

rhyolitic melt and below 5 wt for other melts

Viscosity data from partially crystallized melt (such as andesite ME113e Richet

et al 1996) are not used Viscosity data of phonolite melt with 088 wt water in

Whittington et al (2001) are shown by these authors to be outliers and are hence not

included The viscosities of Sample A (LGB rhyolite) in Neuville et al (1993) are not

used because these authors suspected the quality of the viscosity data Data on rhyolite

shown to be outliers by Zhang et al (2003) are not included The data of

26

Table 23 Melt composition on anhydrous basis (on wt basis)

Composition SiO2 TiO2 Al2O3 FeO MnOMgOCaO Na2OK2O P2O5 total ID ref Basanite (EIF) 4115 274 1210 1011 000 1124 1566 276 304 102 9982 Bn1 19 Basanite (EIF) 4122 274 1212 1003 000 1126 1569 276 305 102 9989 Bn2 17 Basanite (NIQ) 4357 297 1018 000 000 917 2607 759 096 000 10051 Bn3 1 Peridotite 4583 018 487 863 000 3163 637 032 000 000 9783 Pr 27 Basalt (ETN) 4703 161 1628 1088 020 517 1047 375 194 059 9792 Bl1 25 Basalt (ETN) 4781 194 1791 1090 019 475 996 394 211 048 9999 Bl2 17 Basalt 4821 125 1550 1064 000 908 1192 240 008 014 9922 Bl3 21 Tephrite (Ves_G_tot) 4920 083 1640 720 013 510 1020 270 650 072 9898 Te1 19 Basalt (MTV9) 4961 427 1101 1473 000 446 1004 281 047 251 9991 Bl5 28 Basalt (Kilauea 1921) 5001 260 1256 1079 024 939 1088 233 048 000 9937 Bl7 29 Tephrite 5056 235 1403 000 000 879 1500 704 301 000 10078 Te2 1 Basalt (MTV4) 5066 395 1135 1390 000 394 960 298 051 240 9929 Bl6 28 Basalt (MTV6) 5084 426 1138 1505 000 442 1018 301 055 004 9973 Bl8 28 Basalt (MTV2) 5087 405 1136 1420 000 423 962 306 052 009 9800 Bl9 28 Phonolite (Ves_W_tot) 5120 067 1860 610 013 250 730 375 790 040 9855 Ph1 19 Phonolite (V_1631_G) 5314 059 1984 472 013 177 675 477 828 000 9999 Ph2 23 Phonolite (V_1631_W) 5352 060 1984 480 014 176 676 466 791 000 9999 Ph3 23 Basalt 5354 105 1729 782 000 546 832 359 164 020 9891 Bl4 21 Andesite 5856 064 1898 745 000 348 617 324 092 000 9944 A1 21 Andesite 5869 001 2157 002 002 538 949 330 157 000 10005 A2 26 Phonolite 5882 079 1942 000 000 187 235 931 744 000 10000 Ph4 2 Andesite (Crater Lake) 5946 073 1790 518 010 371 645 423 147 000 9926 A5 29 Phonolite (ATN) 5970 046 1852 360 017 065 280 389 845 015 9839 Ph5 19 Phonolite (Td_ph) 6046 056 1881 331 020 036 067 976 545 006 9964 Ph6 22 Trachyte (IGC) 6074 027 1922 337 018 028 211 528 632 006 9783 Tr1 20 Trachyte (AMS_D1) 6086 039 1827 388 012 090 296 412 850 000 10000 Tr2 23 Andesite 6117 084 1729 539 000 335 583 385 139 000 9911 A3 11 Trachyte (AMS_B1) 6126 038 1838 350 014 074 297 458 804 000 9999 Tr3 23 Andesite (Crater Lake) 6215 076 1680 496 025 326 508 502 172 000 10000 A6 32 Andesite 6240 055 2001 003 002 322 908 352 093 012 9988 A4 8 Trachyte (MNV) 6388 031 1710 290 013 024 182 567 682 005 9892 Tr4 20 Trachyte (PVC) 6399 045 1696 255 014 032 083 633 637 009 9803 Tr5 19 Trachyte 6445 050 1671 000 000 292 536 670 337 000 10001 Tr6 2 Dacite 6528 059 1705 402 008 182 470 434 129 013 9930 D1 30 Dacite (UNZ) 6600 036 1523 408 010 221 501 384 216 014 9913 D2 24 Granite (263-2) 6677 039 2015 431 001 072 364 137 217 000 9953 R1 16 Trachyte (570-2) 6695 087 2124 257 006 001 163 183 455 000 9971 Tr7 16 Plagioliparite (851-2) 6716 001 2165 281 001 073 265 285 182 000 9969 R2 16 Trachyte (570-3) 6871 090 1928 259 006 000 165 187 466 000 9972 Tr8 16 Trachyte (570-1) 7016 092 1718 274 006 000 170 207 488 000 9971 Tr9 16 Plagioliparite (851-1) 7122 024 1680 291 006 080 262 309 194 000 9968 R3 16 Granite (130) 7142 001 1610 458 001 157 094 194 292 000 9949 R4 16 Granite (Barlak) 7312 019 1356 319 000 018 168 386 420 000 9998 R33 31 Rhyolite 7323 019 1360 278 000 017 169 378 411 013 9968 R5 21

27

Trachyte (570-4) 7335 090 1483 238 007 000 164 187 470 000 9974 Tr1016 HPG05 7349 000 1326 000 000 000 000 240 898 000 9813 H21 38 HPG8An10 7360 000 1560 000 000 000 210 440 380 000 9950 H4 33 Rhyolite 7379 005 1511 042 005 007 097 471 402 001 9920 R6 9 Rhyolite (GB4) 7389 006 1577 075 000 014 058 462 419 000 10000 R34 34 HPG8Na5 7410 000 1170 000 000 000 000 900 440 000 9920 H5 435HPG8Ca5 (Ca5) 7410 000 1220 000 000 000 520 440 400 000 9990 H6 36 HPG8K5 7460 000 1180 000 000 000 000 440 920 000 10000 H7 4 Rhyolite (M981023) 7470 008 1328 165 000 000 077 430 522 000 10000 R7 18 HPG04 7490 000 1352 000 000 000 000 364 722 000 9928 H22 38 Rhyolite (P3RR) 7537 007 1284 157 007 004 072 419 513 000 10000 R8 17 HPG8Al5 (Al05) 7540 000 1610 000 000 000 000 470 430 000 10050 H8 37 HPG03 7552 000 1390 000 000 000 000 477 553 000 9972 H23 38 HPG8Mg5 (Mg5) 7560 000 1200 000 000 490 000 450 400 000 10100 H9 36 Rhyolite 7603 006 1148 105 006 036 321 242 460 000 9927 R9 13 HPG02 7608 000 1389 000 000 000 000 596 384 000 9977 H24 38 AOQ 7612 000 1353 000 000 000 000 465 568 000 9998 H1 6 Rhyolite 7638 006 1159 103 005 036 325 244 466 000 9982 R10 13 HPG01 7652 000 1405 000 000 000 000 714 219 000 9990 H25 38 Rhyolite 7657 006 1165 104 007 036 323 246 462 000 10006 R11 13 Rhyolite (MCR) 7659 008 1267 100 000 003 052 398 488 000 9975 R12 14 Rhyolite 7660 010 1270 117 000 002 031 410 460 000 9960 R13 15 HPG09 7688 000 1145 000 000 000 000 360 560 000 9753 H10 38 Rhyolite (LGB) 7692 010 1292 089 005 011 086 389 425 003 10002 R14 10 Rhyolite (RH) 7699 003 1302 071 010 004 048 431 431 000 9999 R15 10 Rhyolite 7700 006 1177 100 006 036 329 248 468 000 10070 R16 13 Rhyolite (RH-r) 7701 003 1314 071 010 004 051 428 418 000 10000 R17 10 Rhyolite 7707 006 1167 099 007 035 328 242 462 000 10053 R18 13 Rhyolite (SH-r) 7708 009 1244 130 002 002 036 449 420 000 10000 R19 10 Rhyolite (EDFmr) 7715 009 1282 056 007 007 052 411 461 001 10001 R20 12 Rhyolite (SH) 7717 008 1240 130 002 001 035 450 420 000 10003 R21 10 Rhyolite (EDF) 7718 009 1291 061 007 007 051 405 452 001 10002 R22 12 HPG8Al2 (Al02) 7720 000 1390 000 000 000 000 450 430 000 9990 H11 37 Rhyolite 7727 003 1175 105 005 036 331 243 473 000 10098 R23 13 Rhyolite 7738 005 1170 103 005 036 324 244 480 000 10105 R24 13 Rhyolite 7746 005 1164 104 007 035 323 245 470 000 10099 R25 13 Rhyolite (BL6) 7748 017 1220 130 005 017 114 390 360 000 10001 R26 10 Rhyolite (BL6-r) 7753 017 1217 130 005 017 113 389 360 000 10001 R27 10 Rhyolite (LGB-r) 7788 007 1273 076 004 006 050 393 403 001 10001 R28 10 Rhyolite (BL3) 7788 016 1203 119 005 005 106 364 388 001 9995 R29 12 HPG8 7790 000 1189 000 000 000 000 453 417 000 9849 H2 5 Rhyolite 7790 007 1205 076 000 005 052 401 406 000 9942 R30 11 Rhyolite (EDF-1) 7800 009 1215 054 007 006 050 408 448 002 9999 R31 10 Rhyolite (EDF-2) 7800 009 1215 054 007 007 050 408 448 000 9998 R32 10 HPG11 7814 000 1164 000 000 000 000 126 911 000 10015 H12 38 HPG10 7821 000 1169 000 000 000 000 241 743 000 9974 H13 38 HPG07 7828 000 1192 000 000 000 000 591 223 000 9834 H14 38

28

HPG8 7860 000 1250 000 000 000 000 460 420 000 9990 H3 347HPG08 7860 000 1199 000 000 000 000 457 420 000 9936 H15 38 HPG06 7898 000 1211 000 000 000 000 704 062 000 9875 H26 38 HPG16 8103 000 991 000 000 000 000 124 739 000 9957 H16 38 HPG15 8174 000 1003 000 000 000 000 247 566 000 9990 H17 38 HPG14 8222 000 1017 000 000 000 000 366 389 000 9994 H18 38 HPG12 8231 000 1016 000 000 000 000 589 070 000 9906 H19 38 HPG13 8294 000 1030 000 000 000 000 468 241 000 10033 H20 38

The melt compositions are listed according to SiO2 content References 1 Whittington et al (2000) 2 Whittington et al (2001) 3 Dorfman et al (1996) 4 Hess et al (1995) 5 Dingwell et al (1992) 6 Schulze et al (1996) 7 Dingwell et al (1996) 8 Richet et al (1996) 9 Burnham (1964) 10 Stevenson et al (1998) 11 Neuville et al (1993) 12 Stevenson et al (1996) 13 Goto et al (2005) 14 Zhang et al (2003) 15 Shaw (1963) 16 Goto et al (1997) 17 Gottsmann et al (2002) 18 Stein and Spera (1993) 19 Giordano and Dingwell (2003a) 20 Giordano et al (2004) 21 Persikov (1991) 22 Giordano et al (2000) 23 Romano et al (2003) 24 Giordano et al (2005) 25 Giordano and Dingwell (2003b) 26 Liebskie et al (2003) 27 Dingwell et al (2004) 28 Toplis et al (1994) 29 Kushiro et al (1976) 30 Alidibirov et al (1997) 31 Persikov et al (1986) 32 Dunn and Scarfe (1986) 33 Dingwell et al (2000) 34 Scaillet et al (1996) 35 Dingwell et al (1998a) 36 Hess et al (1996) 37 Dingwell et al (1998b) 38 Hess et al (2001)

29

0

3

6

9

12

15

18

40 50 60 70 80SiO (wt)2

Na

O+K

O (w

t)

22

R

O

T

OOBPc

U

U

U

Ph

SS

S

F

1

1

1

2

2

2

3

3

3

Fig 25 Total alkalis versus SiO2 diagram (Le Bas et al 1986) showing the compositions of samples modeled in this work Pc picrobasalt B basalt O1 basaltic andesite O2 andesite O3 dacite R rhyolite S1 trachybasalt S2 basaltic trachyandesite S3 trachyandesite T trachyte or trachydacite U1 basanite or tephrite U2 phonotephrite U3 tephriphonolite Ph phonolite F foidite

30

Friedman (1963) are not used due to their large uncertainty Some viscosity data of

identical composition experimental temperature and viscosity value were reported in two

or more publications and it is not clear to us whether or not they mean the same

measurements Such data are counted only once in the database and in the regression

such as viscosity data of EIF basanite (Gottsmann et al 2002 Giordano and Dingwell

2003a) All the viscosity data used in the following fit are listed in Appendix A

Most viscosity data in the database are at 1 bar and some are at pressures up to 5

kbars The pressure effect is ignored as it has been shown that the effect is negligible for

pressures up to 5 kbars (Persikov 1998 Zhang et al 2003)

43 THE PREFERRED MODEL

The eight-parameter model (Eqn 9) grouped the effects of SiO2 Al2O3 and P2O5

on viscosity The model although appealing because of its simplicity still does not

reproduce experimental viscosity data well Furthermore it does not apply to hydrous

melts In order to produce a model that can be used to calculate viscosity to better

precision more compositional parameters are necessary In the preferred model in this

section the goal is to fit the entire viscosity database on natural silicate melts as

accurately as possible Although using the least number of parameters to fit is also a goal

it is subordinate to the goal of fitting the viscosity data as accurately as possible

In the preferred model parameters A B C and D in Eqn 4 are assumed to be

linear functions of oxide mole fractions because the assumption is simple and because it

considers different effects of the different oxide components to the viscosity Fe in the

natural silicate melts has two oxidation states ferric and ferrous The two behave

31

differently in the structure of the silicate melts Although the oxidation state of Fe has

been found to affect melt viscosity significantly especially at low temperatures

(Dingwell and Virgo 1987 Liebske et al 2003) often there is not enough information to

calculate the ferric to ferrous ratio of the experimental melts at low temperatures Hence

all iron is considered as FeO

Previous studies (eg Riebling 1966 Bruckner 1983) show that aluminum-

saturated melts [NaAl (molar) = 1] have higher viscosities than either aluminum-

oversaturated (peraluminous) or aluminum-undersaturated (alkaline to peralkaline) melts

Hence NaAlO2 and KAlO2 would be reasonable end members in this multicomponent

system Al2O3 in the melt is considered to combine with alkalis to form (Na K)AlO2

After forming (Na K)AlO2 either excess alkalis or excess aluminum are left as a

component in the melts

For hydrous melts H2O content plays a major role and the effect is not linear

Viscosity decreases rapidly with the first small amount of total dissolved water and then

not so rapidly at higher H2O contents (Lange 1994 Dingwell et al 1996) Water is

present in the silicate melts as at least two species molecular H2O and hydroxyl group

(Stolper 1982) The exact role of OH and molecular H2O on affecting melt viscosity is

not known H2O content raised to some power as an additional parameter is used as

shown in Zhang et al (2003) After many trials the following parameter seems useful in

fitting viscosity data of hydrous melts

( )1

2

11+

H O( ) e TZ X= (10)

32

where e1 is constant T is temperature in K and XH2O is oxide mole fraction of total

dissolved H2O Combining Eqns 4 6a and 10 the following model is used to fit all the

viscosity data in the database

log expi i i i

i ii i i i

i i

b X d Xa X c X

T Tη

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎝ ⎠

sum sumsum sum (11)

where Xi is the mole fraction of SiO2 TiO2 Al2O3ex FeOT MnO MgO CaO (Na

K)2Oex P2O5 H2O (Na K)AlO2 plus another term related to H2O (XH2O)1[1+(e1T)]

because a simple linear term with H2O is not enough to account for the dependence of

viscosity on H2O content The values of ai bi ci di and e1 with standard errors obtained

from the fit are listed in Table 24 In the process of fitting some parameters turned out to

be unnecessary and some could be combined These simplifications were made to reduce

the number of parameters The final fit contains 37 fitting parameters As shown in Table

24 all the fitting parameters are statistically significant This model can reproduce all the

viscosity data (in the electronic annex) with a 2σ deviation of 061 logη units in the

available temperature and compositional range of natural silicate melts Fig 26 shows

comparison between measured viscosity values of all the melts in the database including

hydrous and anhydrous natural melts and those calculated from Eqn 11 Because this is

the preferred model the full equation is written down as follows

33

Table 24 Fitting parameters for Eqn 11

a b103 c d103 SiO2

-683 (047)

1814 (047)

216 (016)

TiO2

-17079 (2098)

24893 (3312)

-14305 (2657)

Al2O3ex

-1471 (432)

3261 (470)

2173 (1075)

-2210 (1127)

(Fe Mn)O

-6198 (2591)

3856 (2681)

MgO

-1801 (278)

2596 (416)

-10553 (1950)

11083 (1995)

CaO

-1976 (327)

2264 (365)

-6992 (1123)

6712 (1126)

(Na K)2Oex

3431 (960)

-6829 (796)

-8567 (5049)

5801 (4609)

P2O5

38477 (11821)

Z

-14038 (7846)

3884 (2710)

33201 (18953)

-40497 (23747)

H2O

15926 (7994)

-4855 (2976)

-43222 (20727)

51375 (26004)

(Na K)AlO2

-843 (170)

1612 (168)

-316 (083)

e1

185797 (91556)

Note Numbers in parentheses are 2σ errors of fitting coefficients respectively

34

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

(12)

where Z=(XH2O)1[1+(185797T)] and all mole fractions (including H2O) add up to 1

Examples of calculation are given in Table 25

Fig 26 compares calculated viscosity with experimental viscosity for all data in the

database and shows that there is no systematic misfit The behavior of Eqn (12) was

examined by varying temperature and various oxide concentrations The calculated

viscosity varies smoothly and monotonically with these parameters with no up and down

fluctuations Furthermore in order to investigate whether some melts are systematically

misfit or are not fit as well as other melts ∆plusmn2σ for each melt composition is listed in

Table 26 where ∆ is the average difference between the experimental logη and

calculated logη and σ is the standard deviation The value of ∆ characterizes systematic

misfit and 2σ is a measure of data scatter As shown in Table 26 all rock groups of melts

have small ∆ values but ∆ values for subgroups vary from 0 up to 030 and most

subgroups still have small ∆ values There is no correlation between the ∆ values and

compositions of the melts On 2σ values there are some variations but no group is

obviously misfit There is no correlation between the reproducibility and the degree of

polymerization

Two sets of viscosity data on hydrous leucogranite (Whittington et al 2004) and

35

Table 25 Examples of calculation using Eqn 12

composition wt composition

mole fraction T (K)

calculated logη (Pas)

SiO2 5352 SiO2 05336 75375 947 TiO2 060 TiO2 00045 74875 960 Al2O3 1984 Al2O3ex 00212 72775 1015 FeOt 480 (Fe Mn)O 00412 71765 1042 MnO 014 MgO 00262 70435 1080 MgO 176 CaO 00722 CaO 676 (Na K)2Oex 00000 Na2O 466 P2O5 00000 K2O 791 H2O 01104 P2O5 000 (Na K)AlO2 01907 H2O 332

Note The melt is hydrous phonolite from Romano et al (2003)

36

-2

2

6

10

14

18

-2 2 6 10 14 18Measured logη (η in Pasdots)

Cal

cula

ted

logη

(η in

Pasdot

s)

Fig 26 Comparison of experimental viscosity values with calculated values using Eqn 12

37

Table 26 The 2σ deviations and data points of sub-groups in the viscosity database

Composition ∆plusmn2σ

number of data points

∆plusmn2σ (rock group)

anhydrous -021plusmn056 33 basanite (Bn1-3) hydrous 001plusmn045 33

-010 plusmn055

anhydrous 023plusmn073 38 tephrite (Te1-2) hydrous 001plusmn072 33

013 plusmn075

anhydrous -004plusmn054 40 Ph1-3 hydrous 030plusmn038 25 anhydrous -015plusmn057 59

phonolite

Ph4-6 hydrous -013plusmn063 40

-005 plusmn063

anhydrous -004plusmn071 43 Tr1-3 hydrous -001plusmn039 56 anhydrous 011plusmn052 68 Tr4-6 hydroous 013plusmn043 55

Trachyte

Tr7-10 anhydrous -012plusmn041 31

004plusmn053

anhydrous -005plusmn040 27 A1-2 A5 hydrous -002plusmn037 42

anhydrous -003plusmn040 52

Andesite

A3-4 A6 hydrous 006plusmn052 45

-001 plusmn043

R1-4 anhydrous 005plusmn045 25 anhydrous 002plusmn013 7 R5-8

R33-34 hydrous 013plusmn051 40 anhydrous 004plusmn043 83

Rhyolite

R9-32 hydrous -006plusmn058 197

-000plusmn054

anhydrous 020plusmn037 32 dacite (D1-2) hydrous -009plusmn053 9

014 plusmn047

anhydrous -011plusmn105 20 Bl1-3 Bl5 hydrous 007plusmn051 21

anhydrous 006plusmn109 28

Basalt

Bl4 Bl6-9 hydrous 003plusmn074 6

001 plusmn092

periodite (Pr) anhydrous -007plusmn055 8 -007plusmn055 anhydrous -001plusmn078 161 haplogranitic melt

(H1-26) hydrous 009plusmn061 94 003 plusmn072

leucogranite hydrous -015plusmn051 14 HPG8An10 anhydrous -002plusmn022 8

the melt used to test the model

38

anhydrous HPG8An10 (Dingwell et al 2000) are not included in the fit but are chosen

to test whether this preferred model can predict data not included in the fit Because water

content in the ldquoanhydrousrdquo melt of Whittington et al (2004) is not determined the

viscosity data of anhydrous melt are not used due to large effect of a small amount of

water on viscosity (Lange 1994 Zhang et al 2003) As shown in Fig 27 this new

model has the capability to predict the viscosity at low temperature with a 2σ deviation of

061

There are many viscosity models for specific compositions and many of them

have better accuracy than the 37-parameter general model For example the viscosity

model for hydrous and anhydrous rhyolitic melt by Zhang et al (2003) has a 2σ

uncertainty of 036 logη units specific models for five individual anhydrous and hydrous

melt compositions by Giordano et al (2005) have very low 2σ uncertainties Therefore

although the use of this grand model is recommended some specific models have better

accuracy and should be used when appropriate

One unattractive feature of the preferred model is the large number of parameters

used This means the fitting parameters themselves are not well resolved However it

does not affect the accuracy of the calculation of viscosities as long as no extrapolation is

attempted That is the model should not be extrapolated to binary systems nor to

viscosities above 1015 Pamiddots nor to temperature below 573 K nor to H2O content above 5

wt for melts other than rhyolite (For rhyolite the highest H2O content in the viscosity

database is 123 wt) As mentioned earlier Eqn 12 predicts smooth and monotonic

variations of logη with mole fraction of oxides or temperature Although it is desirable to

develop a model with a smaller number of fitting parameters the drawback of many

39

2

4

6

8

10

12

14

2 4 6 8 10 12 14

Cal

cula

ted

logη

(η in

Pasdot

s)

Measured logη (η in Pasdots)

Fig 27 The predictions of Eqn 12 Data sources filled symbols Whittington et al (2004) open symbols Dingwell et al (2000)

40

fitting parameters should not prevent the use of Eqn 12 in calculating viscosity of natural

silicate melts in a wide range of applications such as volcanic eruption dynamics as well

as other magmatic processes For example the viscosity model of Bottinga and Weill

(1972) has 285 fitting parameters for anhydrous melts at high temperatures and it was

widely applied Eqn 12 is easy to include in a software program or in a spreadsheet

program Using it to calculate viscosities of all natural silicate melts is recommended

Other applications of the viscosity model include (1) estimation of glass transition

temperature of any natural silicate melt given cooling rate (Dingwell and Webb 1990

Dingwell et al 2004 Giordano et al 2005) and (2) estimation of cooling rate of any

natural hydrous silicate glass based on apparent equilibrium temperature from H2O

speciation (Dingwell and Webb 1990 Zhang 1994 Zhang et al 2000 2003)

Even though this viscosity model can reproduce the entire viscosity database to a

better accuracy and for a greater range of compositions than previous models the

uncertainty in reproducing the viscosity data is still larger than the experimental data

uncertainty which is usually 01 logη units or less Hence there is still much room for

improvement The most important improvement might come from the development of a

better functional equation to describe viscosity dependence on temperature pressure and

composition For example new models adopted a different functional form of viscosity

A second improvement might derive from consideration of the effect of ferric and ferrous

iron which requires knowledge of experimental conditions under which the glasses were

prepared for the low-temperature viscosity measurements A third improvement might

arise from improved quantification of the effect of H2O on viscosity both in terms of

accurate determination of H2O for reported viscosity data and in terms of the functional

41

form used to handle the dependence of viscosity on H2O content Specifically in the

future every viscosity data should be accompanied by H2O content and other

concentrations simply describing a melt as dry is not good enough A fourth

improvement might originate from the incorporation of the effect of CO2 and other

volatile components in the melt So far the effect of CO2 on the viscosity of silicate melts

has only been carried out in several synthetic melts (Lange 1994 Bourgue and Richet

2001) A fifth improvement might stem from the incorporation of the pressure effect

(Persikov 1998) New experimental viscosity data are needed especially at high

pressures at low temperatures for melts with well-characterized ferricferrous ratios and

for melts with various and well-characterized volatile (H2O and CO2) concentrations

42

REFERENCES

Adam G and Gibbs JH (1965) On the temperature dependence of cooperative relaxation

properties in glass-forming liquids J Chem Phys 43 139-146

Alidibirov M Dingwell DB Stevenson RJ Hess K-U Webb SL and Zinke J

(1997) Physical properties of the 1980 Mount St Helens cryptodome magma Bull

Volcanol 59 103-111

Ammar MM El-Badry Kh and Gharib S (1977) Viscous properties of some alkali

silicate glasses in the annealing range Egypt J Phys 8 1-8

Avramov I (1998) Viscosity of glassforming melts Glastech Ber 71C 198-203

Bockris J OrsquoM Mackenzie JD and Kitchener JA (1955) Viscous flow in silica and

binary liquid silicates Trans Faraday Soc 51 1734-1748

Bottinga Y and Weill DF (1972) The viscosity of magmatic silicate liquids a model for

calculation Am J Sci 272 438-475

Bourgue E and Richet P (2001) The effects of dissolved CO2 on the density and

viscosity of silicate melts a preliminary study Earth Planet Sci Lett 193 57-68

Bruckner R (1983) Structure and properties of silicate melts Bull Mineacuteral 106 9-22

Brush SG (1962) Theories of liquid viscosity Chem Rev 62 513-548

Burnham CW (1964) Viscosity of a H2O rich pegmatite melt at high pressure (abstract)

Geol Soc Am Special Paper 76 26

Dingwell DB and Virgo D (1987) The effect of oxidation state on the viscosity of melts

in the system Na2O-FeO-Fe2O3-SiO2 Geochim Cosmochim Acta 51 195-205

Dingwell D B and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

43

Dingwell DB Courtial P Giordano D and Nichols ARL (2004) Viscosity of

peridotite liquid Earth Planet Sci Lett 226 127-138

Dingwell DB Hess K-U and Romano C (1998a) Extremely fluid behavior of hydrous

peralkaline rhyolites Earth Planet Sci Lett 158 31-38

Dingwell DB Hess K-U and Romano C (1998b) Viscosity data for hydrous

peraluminous granitic melts Comparison with a metaluminous model Am

Mineral 83 236-239

Dinwell DB Hess K-U and Romano C (2000) Viscosities of granitic (sensu lato)

melts Influence of the anorthite component Am Mineral 85 1342-1348

Dingwell DB Knoche R and Webb SL (1992) The effect of B2O3 on the viscosity of

haplogranitic liquids Am Mineral 77 457-461

Dingwell DB Romano C and Hess K-U (1996) The effect of water on the viscosity of

a haplogranitic melt under P-T-X conditions relevant to volcanism Contrib

Mineral Petrol 124 19-28

Dorfman A Hess K-U and Dingwell D (1996) Centrifuge-assisted falling-sphere

viscometry Eur J Mineral 8 507-514

Dunn T and Scarfe CM (1986) Variation of the chemical diffusivity of oxygen and

viscosity of an andesite melt with pressure at constant temperature Chem Geol 54

203-215

Friedman I Long W and Smith RL (1963) Viscosity and water content of rhyolitic

glass J Geophys Res 68 6523-6535

Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses J Am

Ceram Soc 8 339-355

44

Ghiorso MS Carmichael ISE Rivers ML and Sack RO (1983) The Gibbs free

energy of mixing of natural silicate liquids an expanded regular solution

approximation for the calculation of magmatic intensive variables Contrib

Mineral Petrol 84 107-145

Ghiorso MS Hirschmann MM Reiners PW and Kress VC III (2002) The pMELTS

A revision of MELTS for improved calculation of phase relations and major

element partitioning related to partial melting of the mantle to 3 GPa Geochem

Geophys Geosys 3 1010292001GC000217

Giordano D and Dingwell DB (2003a) Non-Arrhenian multicomponent melt viscosity

a model Earth Planet Sci Lett 208 337-349

Giordano D and Dingwell DB (2003b) Viscosity of hydrous Etna basalt implications

for Plinian-style basaltic eruptions Bull Volcanol 65 8-14

Giordano D Dingwell DB and Romano C (2000) Viscosity of a Teide phonolite in the

welding interval J Volcanol Geotherm Res 103 239-245

Giordano D Nichols ARL and Dingwell DB (2005) Glass transition temperatures of

natural hydrous melts a relationship with shear viscosity and implications for the

welding process J Volcanol Geotherm Res 142 105-118

Giordano D Romano C Papale P and Dingwell DB (2004) The viscosity of trachytes

and comparison with basalts phonolites and rhyolites Chem Geol 213 49-61

Goto A Oshima H and Nishida Y (1997) Empirical method of calculating the viscosity

of peraluminous silicate melts at high temperatures J Volcanol Geotherm Res 76

319-327

45

Goto A Taniguchi H and Kitakaze A (2005) Viscosity measurements of hydrous

rhyolitic melts using the fiber elongation method Bull Volcanol 67 590-596

Gottsmann J Giordano D and Dingwell DB (2002) Predicting shear viscosity during

volcanic processes at the glass transition a calorimetric calibration Earth Planet

Sci Lett 198 417-427

Hess K-U and Dingwell DB (1996) Viscosities of hydrous leucogranitic melts A non-

Arrhenian model Am Mineral 81 1297-1300

Hess K-U Dingwell DB Gennaro C and Mincione V (2001) Viscosity-temperature

behavior of dry melts in the Qz-Ab-Or system Chem Geol 174 133-142

Hess K-U Dingwell DB and Webb SL (1995) The influence of excess alkalis on the

viscosity of a haplogranitic melt Am Mineral 80 297-304

Hess KU Dingwell DB and Webb SL (1996) The influence of alkaline-earth oxides

(BeO MgO CaO SrO BaO) on the viscosity of a haplogranitic melt systematics

of non-Arrhenian behaviour Eur J Mineral 8 371-381

Hummel W and Arndt J (1985) Variation of viscosity with temperature and composition

in the plagioclase system Contrib Mineral Petrol 90 83-92

Kozu S and Kani K (1944) Viscosity measurements of the ternary system diopside-

albite-anorthite at high temperatures Bull Am Ceram Soc 23 377-378

Kushiro I Yoder HSJr and Mysen BO (1976) Viscosities of basalt and andesite melts

at high pressures J Geophys Res 81 6351-6356

Lange RA (1994) The effect of H2O CO2 and F on the density and viscosity of silicate

melts Rev Mineral 30 331-360

46

Lange RA (1997) A revised model for the density and thermal expansivity of K2O-

Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K extension to crustal

magmatic temperatures Contrib Mineral Petrol 130 1-11

Lange RA and Carmichael ISE (1987) Densities of Na2O-K2O-CaO-MgO-FeO-

Fe2O3-Al2O3-TiO2-SiO2 liquids new measurements and derived partial molar

properties Geochim Cosmochim Acta 53 2195-2204

Le Bas MJ Le Maitre RW Streckeisen A and Zanettin B (1986) A chemical

classification of volcanic rocks based on the total alkali-silica diagram J Petrol

27 745-750

Liebske C Behrens H Holtz F and Lange RA (2003) The influence of pressure and

composition on the viscosity of andesitic melts Geochim Cosmochim Acta 67

473-485

Lillie HR (1939) High-temperature viscosities of soda-silica glasses J Am Ceram Soc

22 367-374

Mackenzie JD (1957) The discrete ion theory and viscous flow in liquid silicates Trans

Faraday Soc 53 1488-1493

Neuville DR and Richet P (1991) Viscosity and mixing in molten (Ca Mg) pyroxenes

and garnets Geochim Cosmochim Acta 55 1011-1019

Neuville DR Courtial P Dingwell DB and Richet P (1993) Thermodynamic and

rheological properties of rhyolite and andesite melts Contrib Mineral Petrol 113

572-581

Persikov ES Epelrsquobaum MB and Bukhtiyarov PG (1986) The viscosity of a granite

magma interacting with an aqueous chloride fluid Geochem Intern 23 21-30

47

Persikov ES (1991) The viscosity of magmatic liquids Experiment generalized

patterns a model for calculation and prediction application Adv Phys Geochem

9 1-40

Persikov ES (1998) Viscosities of model and magmatic melts at the pressures and

temperatures of the Earthrsquos crust and upper mantle Russian Geol Geophys 39

1780-1792

Poole JP (1948) Viscositeacute a basse tempeacuterature des verres alcalino-silicateacutes Verres

Reacutefract 2 222-228

Richet P (1984) Viscosity and configurational entropy of silicate melts Geochim

Cosmochim Acta 48 471-483

Richet P Lejeune A-M Holtz F and Roux J (1996) Water and the viscosity of

andesite melts Chem Geol 128 185-197

Richet P Robie RA and Hemingway BS (1986) Low-temperature heat capacity of

diopside glass (CaMgSi2O6) a calorimetric test of the configurational-entropy

theory applied to the viscosity of liquid silicates Geochim Cosmochim Acta 50

1521-1533

Riebling EF (1966) Structure of sodium aluminosilicate melts containing at least 50

mole SiO2 at 1500 ˚C J Chem Phys 44 2857-2865

Romano C Giordano D Papale P Mincione V Dingwell DB and Rosi M (2003)

The dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean

Fields Chem Geol 202 23-38

48

Scaillet B Holtz F Pichavant M and Schmidt M (1996) Viscosity of Himalayan

leucogranites Implication for mechanisms of granitic magma ascent J Geophys

Res 101 27691-27699

Scarfe CM and Cronin DJ (1986) Viscosity-temperature relationships at 1 atm in the

system diopside-albite Am Mineral 71 767-771

Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural

relaxation J Am Ceram Soc 67 504-511

Schulze F Behrens H Holtz F Roux J and Johannes W (1996) The influence of H2O

on the viscosity of a haplogranitic melt Am Mineral 81 1155-1165

Shartsis L Spinner S and Capps W (1952) Density expansivity and viscosity of

molten alkali silicates J Am Ceram Soc 35 155-160

Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature

range 700deg to 900degC J Geophys Res 68 1512-1520

Shaw HR (1972) Viscosities of magmatic silicate liquids an empirical method of

prediction Am J Sci 272 870-893

Stein DJ and Spera FJ (1993) Experimental rheometry of melts and supercolled liquids

in the system NaAlSiO4-SiO2 Implications for structure and dynamics Am

Mineral 78 710-723

Stein DJ and Spera FJ (2002) Shear viscosity of rhyolite-vaporemulsions at magmatic

temperatures by concentric cylinder rheometry J Volcanol Geotherm Res 113

243-258

Stevenson RJ Bagdassarov NS and Dingwell DB (1998) The influence of trace

amounts of water on the viscosity of rhyolites Bull Volcanol 60 89-97

49

Stevenson RJ Dingwell DB Webb SL and Sharp TG (1996) Viscosity of microlite-

bearing rhyolitic obsidians an experimental study Bull Volcanol 58 298-309

Stolper E (1982) The speciation of water in silicate melts Geochim Cosmochim Acta

46 2609-2620

Tammann G and Hesse W (1926) Die abhaumlngigkeit der viscositaumlt von der temperatur bei

unterkuumlhlten fluumlssigkeiten Z Anorg Allg Chem 156 245-257

Taylor NW and Dear PS (1937) Elastic and viscous properties of several soda-silica

glasses in the annealing range of temperature J Am Ceram Soc 20 296-304

Taylor NW and Doran RF (1941) Elastic and viscous properties of several potash-

silica glasses in the annealing range of temperature J Am Ceram Soc 24 103-

109

Taylor TD and Rindone GE (1970) Properties of soda aluminosilicate glasses V low-

temperature viscosities J Am Ceram Soc 53 692-695

Toplis MJ Dingwell DB and Libourel G (1994) The effect of phosphorus on the iron

redox ratio viscosity and density of an envolved ferro-basalt Contrib Mineral

Petrol 117 293-304

Urbain G Bottinga Y and Richet P (1982) Viscosity of liquid silica silicates and

alumino-silicates Geochim Cosmochim Acta 46 1061-1072

Whittington A Richet P and Holtz F (2000) Water and the viscosity of depolymerized

aluminosilicate melts Geochim Cosmochim Acta 64 3725-3736

Whittington A Richet P and Holtz F (2001) The viscosity of hydrous phonolites and

trachytes Chem Geol 174 209-223

50

Whittington A Richet P Behrens H Holtz F and Scaillet B (2004) Experimental

temperature-X(H2O)-viscosity relationship for leucogranites and comparison with

synthetic silicic liquids Tran Royal Soc Edinburgh Earth Sci 95 59-71

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth Planet

Sci Lett 122 373-391

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

51

CHAPTER III

PRESSURE DEPENDENCE OF THE SPECIATION OF DISSOLVED WATER IN RHYOLITIC MELTS

ABSTRACT

Water speciation in rhyolitic melts with dissolved water ranging from 08 to 4

wt under high pressure was investigated Samples were heated in a piston-cylinder

apparatus at 624-1027 K and 094-283 GPa for sufficient time to equilibrate hydrous

species (molecular H2O and hydroxyl group H2Om + O = 2OH) in the melts and then

quenched roughly isobarically Concentrations of two hydrous species in the quenched

glasses were measured with Fourier transform infrared (FTIR) spectroscopy For samples

with total water content less than 27 wt the equilibrium constant is independent of

total H2O concentration Incorporating samples with higher water contents the

equilibrium constant depends on total H2O content and a regular solution model is used

to describe the dependence The equilibrium constant changes nonlinearly with pressure

for samples with a given water content at a given temperature The equilibrium constant

does not change much from ambient pressure to 1 GPa but it increases significantly from

1 to 3 GPa In other words more molecular H2O reacts to form hydroxyl groups as

pressure increases from 1 GPa which is consistent with breakage of tetrahedral

aluminosilicate units due to compression of the melt induced by high pressure The effect

52

of 19 GPa (from 094 to 283 GPa) on the equilibrium constant at 873 K is equivalent to

a temperature effect of 51 K (from 873 K to 924 K) at 094 GPa The results can be used

to evaluate the role of speciation in water diffusion to estimate the apparent equilibrium

temperature and to infer the viscosity of hydrous rhyolitic melts under high pressure

1 INTRODUCTION

The nature of dissolved water in silicate melt has received considerable attention

(eg Goranson 1938 Wasserburg 1957 Shaw 1964 Burnham 1975 Stolper 1982ab

McMillan 1994 Zhang 1999 Zhang et al 2007) As the most abundant volatile

component dissolved in terrestrial silicate melts dissolved water in melts plays an

important role in igneous processes Water can alter the structure of silicate melts hence

significantly change their physical and chemical properties such as solidusliquidus

temperatures (eg Tuttle and Bowen 1958) viscosity (eg Shaw 1972 Hui and Zhang

2007) crystal nucleation rates (eg Davis et al 1997) chemical diffusion (eg Watson

1991 Behrens and Zhang 2001) and oxygen ldquoselfrdquo diffusion (eg Zhang et al 1991a

Behrens et al 2007) Some of these effects are related to the speciation reaction below

(Stolper 1982ab)

H2Om + O = 2OH (1)

where H2Om denotes dissolved H2O molecules O denotes anhydrous oxygen and OH

denotes hydroxyl groups in silicate melts Total H2O content will be denoted as H2Ot

The equilibrium and kinetics of the above speciation reaction in rhyolitic melt has been

extensively studied (Stolper 1982a b Zhang et al 1991a 1995 1997b 2003 Ihinger et

al 1999 Nowak and Behrens 2001) Two debates have occurred about speciation

53

studies (see reviews by Zhang 1999 Behrens and Nowak 2003 Zhang et al 2007) The

early debate on whether species concentrations can be quenched from high temperature

(such as 1100 K) has been settled and the conclusion is that species concentrations will

be altered during quench if the initial temperature is above the glass transition

temperature for the given quench rate (Dingwell and Webb 1990) The later debate on

quenched versus in situ speciation studies has also been resolved and the conclusion is

that species concentrations can be preserved by rapid quench from intermediate

experimental temperatures (such as 800 K depending on H2Ot and quench rate) below

the glass transition temperature for the given quench rate (Withers et al 1999 Nowak

and Behrens 2001) The speciation data not only provide an understanding of the

detailed dissolution mechanism of H2O in melts but also can be applied to understand

H2O solubility and diffusivity in silicate melts and to infer viscosity of hydrous melts

Previous experimental studies mostly investigated H2O speciation at pressures

below 1 GPa This paper extends the experimental range to higher pressures The new

data reported here span 094-283 GPa 624-1027 K and 08-40 wt H2Ot Combining

these data with previous results (Ihinger et al 1999) a regular solution model is

developed to fit H2O speciation data from low to high pressures

2 EXPERIMENTAL METHODS

In this study hydrous rhyolitic glasses were held under a constant temperature

(623-1023 K nominal temperature) and pressure (1-3 GPa nominal pressure) in a piston

cylinder apparatus for sufficient duration (96 s to 3 days) for the two hydrous species in

the melt to reach equilibrium but short enough to avoid significant crystallization The

54

samples were then quenched to room temperature roughly isobarically Species

concentrations were measured by Fourier transform infrared (FTIR) spectroscopy at

ambient environment on the quenched glasses Based on various assessments (see

Introduction and Discussion) the quenched species concentrations reflect those at high

temperature and pressure

Starting materials include both natural hydrous rhyolitic glass (KS) and synthetic

hydrous rhyolitic glass prepared by hydration of natural rhyolitic glasses Sample KS is

from Mono Crater California Samples GMR+2 and GMR+4 were synthesized by adding

water to obsidian from Glass Mountain California The chemical compositions of these

two natural rhyolitic obsidians are listed in Table 31 Hydration of rhyolitic glasses was

implemented at 05 GPa by re-melting glass powders with added H2O at University of

Hannover Germany The obsidian glass powder and water were sealed in Au-Pd

capsules The capsules were placed in an internally heated pressure vessel (IHPV) and

heated to 1473 K at 05 GPa for overnight Sample assemblages were under H2O-

undersaturated running conditions during heating so that the loaded water was completely

dissolved in the melts Samples were then quenched isobarically The hydrated glasses

were crystal-free and bubble-free

The equilibrium experiments were performed in a piston cylinder apparatus at the

University of Michigan Glass fragments were prepared into cylinders with diameters of

about 2 mm and heights of about 2 mm Then a glass cylinder was placed into a graphite

capsule which was enclosed in crushable MgO as the inner pressure medium with

graphite heater outside and then BaCO3 cell as outer pressure medium The lid of the

graphite capsule was thin (about 05 mm thickness) to minimize the distance between the

55

Table 31 Chemical compositions (oxide wt) of KS and GMR rhyolite on an anhydrous basis

KS GMR SiO2 7594 7322 TiO2 009 031 Al2O3 1298 1408 FeO 098 145 MnO 005 005 MgO 003 026 CaO 056 131 Na2O 401 406 K2O 471 432 P2O5 029 007 H2Ot

076-090

189-223 in GMR+2338-417 in GMR+4

Total 9963 9913 Glass analyses were carried out with a CAMECA 5X-100 electron microprobe using a defocused beam (10 microm) with 1 nA current at the University of Michigan The oxide wt on an anhydrous basis is calculated by dividing the electron microprobe measured oxide concentration by 1-C where C is weight percent of H2Ot obtained by infrared spectroscopy

56

thermocouple tip and the sample The glass cylinder was placed in the center of the

graphite heater The running temperature was measured with a type-S thermocouple

(Pt90Rh10-Pt) or type-D thermocouple (Re3W97-Re25W75) The distance between

thermocouple tip and the center of the sample was typically about 13 mm after

experiments

A ldquopiston-outrdquo procedure was used to bring the assemblage to the final pressure at

373 K or 473 K The sample assemblage was relaxed at this temperature and at the

desired experimental pressure for at least 2 hours to close the gaps in the sample

assemblage After relaxation of the sample assemblage under pressure temperature was

increased at a rate of 200 K per minute to the designated temperature The sample stayed

at the desired temperature for sufficient time to ensure equilibrium for the interconversion

reaction between the two hydrous species in the sample but not too long enough for

appreciable crystallization No temperature overshoot occurred and temperature

fluctuation was le 2 K The sample was quenched roughly isobarically by turning off the

power and manually pumping to keep up the pressure The cooling rate is estimated to be

~ 100 Ks (Zhang et al 2000)

The thermal gradient in the piston cylinder was calibrated using water speciation

in rhyolitic glass (Zhang et al 1997a Ihinger et al 1999) Five experiments at 05 GPa

were carried out to calibrate the temperature distribution along the central axis of the

graphite heater The temperature distribution along the distance from the center of the

charge is shown in Fig 31 The equation for the temperature correction is

∆T asymp 221(T600)x2 (2)

where x is the distance between the thermocouple tip and the center of the charge in mm

57

0

10

20

30

40

50

0 1 2 3 4 5 6

sup2T (K

)

Distance from center (mm)

Fit by sup2 T=ax2

a=154 226 228 241 258

Temperature gradient in piston cylinder

T - 600degCTemperature correction

sup2 T = (T600)middotax2

where a = 221

Fig 31 Experimental results for temperature distribution in piston cylinder 2 at the University of Michigan laboratory calibrated using hydrous species equilibrium in rhyolite based on the speciation model of Zhang et al (1997a) Curves are best fittings of the different set of experimental data with different a values shown in the figure using Eqn 2

58

T is the temperature reading of the thermocouple in ˚C ∆T is the temperature difference

between the center and the thermocouple tip in ˚C and the constant 221 is the average of

5 experiments Therefore T+∆T is the temperature at the center of sample Depending on

the IR measurement position on the glass chip a correction of up to 6˚C was added to the

nominal temperature recorded by the thermocouple The pressure effect on emf of

different thermocouples results only in a small effect on temperature at le 3 GPa (Li et al

2003) and is ignored Overall the temperature uncertainty (2σ) for the series of

experiments in this study is estimated to be about 6 K

Pressure calibration of the piston-cylinder apparatus (Piston-cylinder 2 in the

laboratory) was conducted using two types of experiments the melting point of gold

(Akella and Kennedy 1971) at le 10 GPa and the quartz-coesite transition (eg Boyd

and England 1960 Kitahara and Kennedy 1964 Akella 1979 Mirwald and Massonne

1980 Bohlen and Boettcher 1982 Bose and Ganguly 1995) at 1073 K In the

calibration using gold melting temperature a gold wire connected the two legs of a type-

D thermocouple in a piston-cylinder At a well-maintained nominal pressure the

assemblage was gradually heated until melting of the Au wire (at which the thermocouple

signal was lost) The experiments show that the actual pressure is similar to the nominal

pressure within several percent Quartz-coesite reversal experiments at 1073 K were also

carried out with a starting material of a mixture of quartz (50 wt) and coesite (50 wt)

powder moistened to accelerate the reaction and sealed in Au capsule Here the

experimental procedure of Bose and Ganguly (1995) was followed The run product of

each experiment consists of only one pure crystalline phase as verified by X-ray

diffraction The experimental results are listed in Table 32a The calculated quartz-

59

coesite phase transition pressures at 1073 K from the literature are given in Table 32b

The literature data vary by 024 GPa reflecting difficulties in the experimental

calibrations Because these results do not completely agree with each other the most

recent experimental calibration (Bose and Ganguly 1995) was adopted to correct the

pressure in the piston cylinder apparatus by -6 (ie dividing the nominal pressure by

106) Some experiments were carried out using another piston cylinder for which the

correction is 5 based on another series of experiments to be reported in Ni and Zhang

(2008)

In order to further extend the pressure range some speciation experiments at 4-6

GPa were carried out in a multi-anvil apparatus at the University of Michigan However

except for one these charges crystallized extensively Because of the extreme difficulty

in quenching liquid to glass equilibrium speciation experiments were not continued at 4-

6 GPa

3 ANALYTICAL PROCEDURES

After quench each charge was embedded in epoxy resin Then it was polished on

both sides into a thin section along the cylindrical axis The thickness of the layer

polished away on each side of the charge was at least twice of the water diffusion

distance estimated using the diffusivity of Zhang and Behrens (2000) All run products

were analyzed for concentrations of H2Om and OH expressed in terms of H2O using an

FTIR Perkin-Elmer GX spectrometer at the University of Michigan An aperture of 01

mm in diameter was used to delimit the infrared beam size This aperture size allows

acquisition of high-quality IR spectra and evaluation of sample heterogeneity The

60

Table 32a Experimental results for pressure calibration using quartz-coesite transition at 1073 K

Nominal P (GPa)

t (h) Result

2896 72 quartz

2965 70 quartz

3034 70 quartz

3103 66 quartz

3137 70 coesite

3172 67 coesite

3378 66 coesite

Table 32b Literature data on quartz-coesite transition pressure at 1073 K

P (GPa) Reference

2846 Boyd amp England (1960)

2908 Kitahara amp Kennedy (1964)

3030 Akella (1979)

2920 Akella (1979)

2862 Mirwald amp Massonne (1980)

2792 Bohlen amp Boettcher (1982)

2935 Bose amp Ganguly (1995)

61

intensities (peak heights) of the absorption bands at 5230 cm-1 (A523) and 4520 cm-1

(A452) were measured The baseline was fit by flexicurve as shown in Zhang et al

(1997a)

Species (OH and H2Om) concentrations in terms of H2O were obtained from IR

band intensities according to Beerrsquos law Extensive effort has been made to calibrate the

IR method on hydrous rhyolitic glasses (eg Newman et al 1986 Zhang et al 1997a

Withers and Behrens 1999) The calibrations of Newman et al (1986) and Withers and

Behrens (1999) assumed constant molar absorptivities whereas Zhang et al (1997a)

considered the variability of the molar absorptivities With the calibration of Zhang et al

(1997a) the H2Ot content is highly reproducible for the same sample but with different

cooling rates but less so with other calibrations Furthermore the calibration of Zhang et

al (1997a) results in concentration-independent equilibrium constants of reaction (1) at

H2Ot le 27 wt However the calibration of Zhang et al (1997a) becomes increasingly

less accurate as H2Ot increases with error of 017 wt at 38 wt 039 wt at 56 wt

and 11 wt at 77 wt (Zhang and Behrens 2000) Because H2Ot in this work is less

than 42 wt and for consistency with the low-pressure speciation data of Ihinger et al

(1999) the molar absorptivities of Zhang et al (1997a) were adopted If a different

calibration is used there would be significant and systematic differences in species

concentrations and K Nonetheless the trends of how K depends on temperature and

pressure stay the same Furthermore as long as self-consistency is maintained the

equilibrium temperature (or the apparent equilibrium temperature) can be retrieved from

species concentrations accurately

62

Whether or not equilibrium is reached for reaction (1) in a particular experiment

the parameter

Q equiv(XOH

glass)2

XH2Om

glass XOglass

is used to monitor the change of proportions of OH and H2Om in a sample where Xiglass is

the measured mole fraction of species i in the quenched glass on a single oxygen basis

(Stolper 1982a b) and O denotes an anhydrous oxygen When the reaction duration is

long enough for the interconversion of these two hydrous species in the melt to reach

equilibrium and furthermore if this equilibrium state is retained in the quench process Q

will be equal to the equilibrium constant K

4 RESULTS AND DISCUSSION

41 SPECIES CONCENTRATIONS AND EQUILIBRIUM CONSTANTS

The concentrations of H2Om and OH in all quenched glasses calculated using the

calibration of Zhang et al (1997a) are listed in Table 33 The actual IR absorbance data

are also reported because there may be further improvement in the IR calibration The

equilibrium constants are listed in Table 33 and plotted as a function of 1000T in Fig

32

The uncertainty in each IR band intensity is about 1 relative leading to an error

of 0022 in lnK not accounting for systematic uncertainty of the calibration The

uncertainty in thickness measurement is about 2 microm which results in a negligible

increase in the overall uncertainty of lnK For high-pressure data there are additional

63

Table 33 The equilibrium speciation of water in rhyolitic melts under various pressures

Measurement T$ P$ Time Abs Abs Thickness H2Ot H2Om OH X(H2Ot) X(H2Om) X(OH) 1000T lnK K GPa s 5200 4500 mm wt wt wt K-1 KS-1-21 927 094 600 00270 01034 0717 0844 0160 0684 00151 00029 00245 107873 -1538 KS-1-22 926 094 600 00278 01028 0713 0849 0166 0683 00152 00030 00245 108043 -1573 KS-1-23 926 094 600 00255 00998 0708 0819 0153 0666 00147 00027 00239 107938 -1545 KS-1-31 879 094 14400 00593 01999 1415 0845 0178 0666 00151 00032 00239 113736 -1695 KS-1-32 877 094 14400 00589 01989 1407 0845 0178 0667 00151 00032 00239 114041 -1693 KS-1-33 878 094 14400 00627 02065 1431 0869 0186 0683 00156 00033 00245 113925 -1691 KS-1-41 819 094 187200 00676 01833 1321 0868 0218 0650 00155 00039 00233 122117 -1945 KS-1-42 817 094 187200 00673 01805 1311 0863 0218 0644 00155 00039 00231 122410 -1966 KS-1-43 818 094 187200 00694 01857 1326 0880 0223 0657 00158 00040 00235 122228 -1946 GMR+2-1-11 828 094 600 01862 02472 1038 1964 0772 1192 00349 00137 00423 120769 -1977 GMR+2-1-12 827 094 600 01892 02480 1041 1974 0782 1192 00350 00139 00423 120907 -1991 GMR+2-1-13 826 094 600 01808 02449 1033 1940 0753 1187 00344 00134 00422 121022 -1960 GMR+2-1-21 777 094 600 02150 02467 1063 2014 0870 1144 00357 00154 00406 128775 -2180 GMR+2-1-22 778 094 600 02114 02467 1059 2010 0859 1151 00357 00152 00408 128497 -2155 GMR+2-1-23 778 094 600 02099 02451 1058 1997 0854 1143 00354 00152 00406 128515 -2163 GMR+2-1-31 725 094 183600 01824 01848 0885 1886 0886 1000 00335 00157 00355 137978 -2469 GMR+2-1-32 727 094 183600 01841 01873 0888 1904 0891 1012 00338 00158 00360 137634 -2452 GMR+2-1-33 726 094 183600 01868 01892 0888 1929 0905 1024 00343 00161 00364 137800 -2443 GMR+2-1-R11 776 094 720 01756 01913 0782 2180 0968 1212 00386 00172 00430 128916 -2166 GMR+2-1-R12 775 094 720 01742 01870 0773 2167 0972 1195 00384 00172 00424 129036 -2199 GMR+2-1-R13 776 094 720 01746 01903 0789 2146 0954 1193 00381 00169 00423 128916 -2186 GMR+4-1-21 726 094 10800 01375 00780 0243 4010 2485 1525 00701 00434 00533 137751 -2626 GMR+4-1-22 725 094 10800 01396 00807 0256 3893 2392 1501 00681 00418 00525 137846 -2621 GMR+4-1-23 725 094 10800 01315 00745 0236 3944 2447 1497 00689 00428 00523 137928 -2648 GMR+4-1-31 676 094 46800 02577 01364 0490 3575 2300 1276 00627 00403 00447 147921 -2914 GMR+4-1-32 675 094 46800 02586 01344 0482 3621 2348 1273 00635 00411 00446 148152 -2938 GMR+4-1-33 676 094 46800 02581 01368 0499 3515 2261 1255 00617 00397 00440 147982 -2931 GMR+4-1-41 626 094 261360 03017 01423 0573 3394 2298 1096 00596 00404 00385 159840 -3224 GMR+4-1-42 624 094 261360 03013 01414 0574 3375 2291 1084 00593 00402 00381 160157 -3242

64

GMR+4-1-43 625 094 261360 03012 01408 0568 3406 2315 1091 00598 00406 00383 159905 -3240 KS-2-11 926 189 600 00476 01838 1209 0894 0168 0727 00160 00030 00260 107938 -1459 KS-2-12 926 189 600 00475 01828 1208 0891 0167 0723 00159 00030 00259 108049 -1469 KS-2-13 926 189 600 00463 01806 1203 0880 0164 0716 00158 00029 00257 107968 -1466 KS-2-21 877 189 14400 00699 02340 1561 0904 0191 0713 00162 00034 00255 114018 -1625 KS-2-22 876 189 14400 00653 02264 1562 0864 0178 0687 00155 00032 00246 114156 -1633 KS-2-23 876 189 14400 00649 02264 1560 0865 0177 0688 00155 00032 00246 114176 -1625 KS-2-41 960 189 600 00419 01795 1189 0872 0150 0722 00156 00027 00259 104195 -1360 KS-2-42 959 189 600 00419 01795 1196 0866 0149 0717 00155 00027 00257 104320 -1368 KS-2-43 962 189 600 00415 01795 1198 0863 0147 0716 00155 00026 00256 103982 -1362 GMR+2-2-11 825 189 7200 01032 01397 0538 2153 0827 1325 00382 00147 00470 121199 -1829 GMR+2-2-12 826 189 7200 00992 01378 0536 2109 0797 1312 00374 00141 00465 121006 -1814 GMR+2-2-13 825 189 7200 00962 01329 0524 2080 0790 1289 00369 00140 00457 121179 -1841 GMR+2-2-21 777 189 86400 01633 02049 0850 2032 0827 1205 00361 00147 00428 128756 -2023 GMR+2-2-22 776 189 86400 01618 02020 0852 1998 0817 1181 00355 00145 00419 128904 -2053 GMR+2-2-23 776 189 86400 01607 02027 0852 1998 0812 1187 00355 00144 00421 128904 -2036 GMR+2-2-41 856 189 600 01450 02017 0757 2196 0826 1370 00389 00146 00486 116794 -1760 GMR+2-2-42 856 189 600 01461 02051 0759 2225 0830 1395 00394 00147 00494 116807 -1729 GMR+2-2-43 855 189 600 01468 02042 0759 2221 0834 1387 00394 00148 00491 116954 -1746 GMR+4-2-11 757 189 1260 02299 01444 0414 4165 2444 1721 00727 00426 00601 132182 -2361 GMR+4-2-12 756 189 1260 02228 01393 0403 4132 2432 1701 00721 00424 00594 132305 -2381 GMR+4-2-13 756 189 1260 02359 01500 0432 4117 2401 1716 00719 00419 00599 132297 -2351 GMR+4-2-21 726 189 14400 02950 01847 0575 3809 2249 1560 00667 00394 00546 137766 -2482 GMR+4-2-22 725 189 14400 02949 01838 0574 3804 2253 1552 00666 00394 00543 137956 -2494 GMR+4-2-23 726 189 14400 02918 01833 0578 3749 2212 1537 00656 00387 00538 137788 -2496 GMR+4-2-31 676 189 172800 04221 02261 0741 3920 2500 1420 00685 00437 00496 148015 -2778 GMR+4-2-32 675 189 172800 04178 02246 0737 3907 2488 1419 00683 00435 00496 148155 -2773 GMR+4-2-33 675 189 172800 04296 02279 0745 3953 2532 1421 00691 00443 00497 148070 -2788 KS-3-11 876 286 7200 00622 02310 1566 0870 0169 0701 00156 00030 00251 114211 -1539 KS-3-12 875 286 7200 00614 02297 1568 0863 0166 0696 00154 00030 00249 114288 -1540 KS-3-13 875 286 7200 00631 02318 1564 0877 0172 0705 00157 00031 00253 114248 -1543 KS-3-R11 877 283 14400 00349 01493 1117 0760 0133 0627 00136 00024 00225 114045 -1524 KS-3-R12 878 283 14400 00353 01499 1121 0762 0134 0628 00137 00024 00225 113841 -1532

65

KS-3-R13 877 283 14400 00357 01501 1118 0766 0136 0630 00137 00024 00226 114035 -1536 KS-3-21 977 286 600 00352 01785 1248 0799 0120 0680 00143 00021 00244 102327 -1259 KS-3-22 977 286 600 00355 01788 1248 0802 0121 0681 00144 00022 00244 102372 -1264 KS-3-23 977 286 600 00355 01785 1248 0800 0121 0679 00143 00022 00244 102347 -1269 KS-3-24 975 286 600 00348 01761 1251 0786 0118 0667 00141 00021 00239 102525 -1283 KS-3-31 926 286 600 00435 01998 1438 0785 0128 0657 00141 00023 00235 108042 -1399 KS-3-32 927 286 600 00431 01987 1439 0779 0127 0652 00140 00023 00234 107927 -1404 KS-3-33 926 286 600 00435 02005 1439 0787 0128 0659 00141 00023 00236 107982 -1391 KS-3-41 1027 286 96 00372 02101 1489 0776 0106 0670 00139 00019 00240 097390 -1168 KS-3-42 1026 286 96 00376 02105 1489 0779 0107 0671 00140 00019 00241 097456 -1174 KS-3-43 1026 286 96 00369 02093 1489 0772 0105 0667 00138 00019 00239 097456 -1168 KS-3-44 1026 286 96 00365 02082 1489 0767 0104 0663 00138 00019 00238 097490 -1170 GMR+2-3-11 876 283 600 01364 02250 0837 2102 0702 1400 00373 00124 00497 114103 -1554 GMR+2-3-12 875 283 600 01377 02250 0836 2111 0709 1402 00374 00126 00497 114243 -1563 GMR+2-3-13 876 283 600 01326 02220 0831 2078 0687 1391 00369 00122 00493 114191 -1547 GMR+2-3-21 825 283 7200 01509 02250 0845 2145 0769 1376 00380 00136 00488 121184 -1682 GMR+2-3-22 825 283 7200 02077 03063 1159 2134 0772 1362 00378 00137 00483 121149 -1706 GMR+2-3-23 825 283 7200 02067 03075 1162 2131 0766 1365 00378 00136 00484 121149 -1694 GMR+2-3-31 777 283 172800 02163 02836 1081 2202 0863 1339 00390 00153 00475 128707 -1851 GMR+2-3-32 777 283 172800 02174 02826 1082 2197 0866 1331 00389 00153 00472 128745 -1867 GMR+2-3-33 775 283 172800 02199 02841 1080 2220 0878 1342 00393 00156 00476 128972 -1864 GMR+4-3-11 776 283 960 02616 02005 0563 3871 2039 1833 00677 00357 00641 128814 -2055 GMR+4-3-12 775 283 960 02644 02014 0564 3894 2057 1837 00681 00360 00643 129041 -2059 GMR+4-3-13 776 283 960 02598 01991 0561 3857 2031 1825 00675 00355 00639 128818 -2060 GMR+4-3-31 726 283 21600 02769 01951 0580 3777 2092 1685 00661 00366 00590 137668 -2253 GMR+4-3-32 726 283 21600 02748 01930 0579 3745 2079 1666 00656 00364 00583 137835 -2271 GMR+4-3-33 726 283 21600 02763 01959 0589 3718 2054 1664 00651 00360 00583 137770 -2261 GMR+4-3-41 676 283 259200 03326 01961 0601 3999 2431 1568 00699 00425 00548 147929 -2547 GMR+4-3-42 675 283 259200 03337 01972 0602 4012 2435 1577 00701 00426 00551 148109 -2538 GMR+4-3-43 675 283 259200 03297 01955 0598 3995 2422 1574 00698 00423 00550 148041 -2536 KS-1b-11 973 00001 600 00191 00907 0611 0842 0133 0709 00151 00024 00254 102759 -1276 KS-1b-12 973 00001 600 00194 00907 0608 0849 0136 0713 00152 00024 00256 102759 -1287 KS-1b-13 973 00001 600 00190 00898 0606 0841 0134 0708 00151 00024 00253 102759 -1286

66

KS-1b-21 923 00001 600 00214 00959 0691 0787 0131 0655 00141 00024 00235 108325 -1425 KS-1b-22 923 00001 600 00206 00938 0685 0774 0128 0646 00139 00023 00231 108325 -1430 KS-1b-23 923 00001 600 00219 00966 0688 0800 0135 0664 00143 00024 00238 108325 -1427 KS-1b-R11 923 00001 7200 00402 01796 1292 0789 0132 0657 00141 00024 00235 108325 -1426 KS-1b-R12 923 00001 7200 00400 01794 1291 0788 0132 0657 00141 00024 00235 108325 -1423 KS-1b-R13 923 00001 7200 00402 01797 1292 0789 0132 0657 00141 00024 00236 108325 -1424 KS-1b-R21 923 00001 2400 00685 02875 1975 0839 0147 0692 00150 00026 00248 108325 -1430 KS-1b-R22 923 00001 2400 00685 02870 1976 0838 0147 0690 00150 00026 00247 108325 -1435 KS-1b-R23 923 00001 2400 00675 02846 1973 0830 0145 0685 00149 00026 00245 108325 -1438 KS-1b-31 873 00001 21600 00501 01763 1231 0851 0173 0678 00152 00031 00243 114528 -1632 KS-1b-32 873 00001 21600 00501 01766 1231 0852 0173 0679 00153 00031 00243 114528 -1628 KS-1b-33 873 00001 21600 00498 01757 1230 0848 0172 0676 00152 00031 00242 114528 -1633

Note $ T has been corrected using Eqn (2) P has been corrected based on pressure calibration Three or four points were measured by IR for each experimental sample they are listed as xxx1 2 3 or 4 These experiments are reversal runs (Fig 33)

67

-26

-24

-22

-2

-18

-16

-14

-12

-1

09 1 11 12 13 14 15

KSGMR+2GMR+4

00001 GPa

283 GPa

1000T

lnK

A

-28

-26

-24

-22

-2

-18

-16

-14

-12

1 11 12 13 14 15

KSGMR+2GMR+4

189 GPa

00001 GPa

1000T

lnK

B

-35

-3

-25

-2

-15

1 11 12 13 14 15 16 17

KSGMR+2GMR+4

lnK

1000T

00001 GPa

094 GPa

C

-28

-26

-24

-22

-2

-18

-16

-14

-12

1 11 12 13 14 15

KSIhinger et al 99

lnK

1000T

00001 GPaD

Fig 32 The temperature dependence of lnK at some pressures Water concentrations for samples KS (076-090 wt) and GMR+2 (189-223 wt) are less than 27 wt and speciation data on them overlap indicating that K is independent of H2Ot when water content is less than 27 wt The dashed reference line is the ideal mixing model for water content less than 27 wt at ambient pressure from Ihinger et al (1999) The solid lines are the best-fit linear regression results for the data showing that ideal solution model (Eqn 3) works well for lt 27 wt H2Ot (KS and GMR+2) The regression for GMR+4 was separated from that for other compositions and is different

68

errors in estimating the species concentrations such as density variation with pressure

Hence the uncertainty from the IR measurement in lnK is estimated to be003

42 ATTAINMENT AND RETENTION OF EQUILIBRIUM

In this section the attainment of equilibrium at the experimental temperature and

the retention during quench are examined In either of the following two scenarios the

measured species concentrations would not reflect those at equilibrium in other words Q

ne K (1) the duration for the reaction at the experimental temperature is not long enough

for it to reach equilibrium (attainment of equilibrium) or (2) species concentrations in the

melt are changed during isobarically quenching to room temperature (retention of

equilibrium)

To demonstrate the attainment of equilibrium reversal experiments have been

carried out under two sets of conditions (a GMR+2-1-R1 776 K 094 GPa and 216

wt H2Ot b KS-3-R1 877 K 283 GPa and 076 wt H2Ot Table 33) One

experiment in each reversal pair was first relaxed at a temperature above the reversal

experimental temperature and one below to obtain different Q values Hence each set of

the reversal experiments approached the same final value of Q from initially higher or

lower Q values (Fig 33) This final Q value is the equilibrium constant K These

experiments are informative for constraining the duration required for a sample to reach

equilibrium at this set of conditions Durations for all other experiments were estimated

from these experiments and from kinetic experiments under ambient pressure (Zhang et

al 1995 1997b 2000) the actual experimental duration was longer than that estimated

for reaching equilibrium at specific running condition

69

-2

-19

-18

-17

-16

-15

-14

0 5000 1 104 15 104

lnQ

time (s)

876 K 283 GPa

A

-24

-23

-22

-21

-2

-19

0 100 200 300 400 500 600 700 800time (s)

lnQ

777 K 094 GPa

B

Fig 33 Two sets of reversal experiments to examine the duration required to reach equilibrium Solid curves are schematic illustrations of Q evolution in different experiments (A) KS sample (B) GMR+2 sample The relaxation might be much faster than illustrated by the curves

70

The issue of whether or not the equilibrium state can be retained during quench

has received considerable attention during the last two decades (eg Dingwell and Webb

1990 Zhang et al 1991b 1995 Ihinger et al 1999 Withers et al 1999 Zhang 1999

Nowak and Behrens 2001 Xu and Zhang 2002 Behrens and Nowak 2003) As

reviewed in the Introduction the different sides have worked together and resolved the

debates the consensus is that species concentrations can be retained by quench if the

experimental temperature is not too high (such as le850 K depending on H2Ot see Table

33) so that it is below the glass transition temperature for the given quench rate and

pressure (Withers et al 1999 Behrens and Nowak 2003)

In summary for attainment of equilibrium the experimental temperature must be

high enough (such as 673 K depending on H2Ot and pressure see Table 33) For

retention of equilibrium species concentrations through quench the experimental

temperature must be low enough In other words the experimental temperature must

satisfy the conditions that for the time scale of the isothermal experiments the sample is

in the liquid state whereas for the time scale of quenching the sample is in the glass

state Hence there is a limited temperature window for a given H2Ot and pressure at

which equilibrium speciation can be obtained from quench experiments

43 EQUILIBRIUM CONSTANT AS A FUNCTION OF TEMPERATURE H2Ot

AND PRESSURE

Equilibrium speciation data are listed in Table 33 and results are plotted in Fig

32 as lnK versus 1000T As shown in Figs 32a 32b and 32c K is independent of

water content when H2Ot in the sample is less than 27 wt consistent with Zhang et al

71

(1997a) Some new experimental data at ambient pressure are also reported here to

extend the temperature coverage of Ihinger et al (1999) Other speciation data have been

obtained on rhyolitic or quasi-rhyolitic melts (eg Sowerby and Keppler 1999 Nowak

and Behrens 2001 Behrens and Nowak 2003) but they are based on different IR

calibrations (different molar absorptivities) and cannot be directly compared with the new

data The new 1-bar data are consistent with those of Ihinger et al (1999) as shown in

Fig 32d A simple ideal solution model (Eqn 3) can be used to describe speciation in the

rhyolitic melts with low water content (up to 27 wt H2O) at any given pressure

lnK = A +1000

TB (3)

where A and B are fitting parameters independent of chemical composition The fitting

results are shown in Figs 32 and 34a and fitting parameters at each pressure are listed in

Table 34 The high-pressure experiments show an increase of lnK with increasing

pressure systematically As shown in Fig 34a the effect of 189 GPa (from 094 to 283

GPa) on the equilibrium constant of the speciation reaction at 773 K is equivalent to that

of 67 K (from 773 K to 840 K) on the equilibrium constant at 094 GPa The enthalpy of

reaction (1) at a given pressure can be inferred from the slopes of the best-fitting lines in

Fig 34a ie from fitting parameter B As shown in Fig 34b enthalpy of reaction (1)

decreases nonlinearly with pressure from 2702 kJmol under ambient pressure to 1853

kJmol at 283 GPa (Fig 34b)

Although K for reaction (1) does not depend on H2Ot concentration for water

content less than 27 wt at higher water content (here ~ 4 wt H2Ot) it depends on

H2Ot content This result indicates either mixing between H2Om OH and O in reaction

72

18

20

22

24

26

28

0 05 1 15 2 25 3

∆H (K

Jm

ol)

P (GPa)

∆H=26975-07704P-07773P2

B

-25

-2

-15

-1

09 1 11 12 13 14 15

00001 GPa094 GPa189 GPa283 GPa

A

lnK

1000T (T in K)

7001100 1000 900 800

T (K)

change in ln K due to change in P

change in T

change in ln K due to change in T

Fig 34 (A) The dependence of K on temperature for samples with H2Ot lt27 wt at various pressures Data for 00001 GPa are from Ihinger et al (1999) and this work The curves are the best-fit linear regression results using Eqn 3 The arrow lines indicate changes in lnK and T respectively (B) The pressure dependence of enthalpy of reaction (1) for samples with H2Ot lt27 wt The solid line is the best-fit regression result with equation shown in the figure

73

(1) is non-ideal or the already complicated calibration of Zhang et al (1997a) to convert

IR band intensities to species concentrations is imperfect (Ihinger et al 1999)

In the absence of an unambiguous calibration of the molar absorptivities of two

hydrous species in high-water-content samples the simplest approximation beyond ideal

mixing of H2Om OH and O in hydrous silicate melt is a regular solution model Silver

and Stolper (1989) illustrated a way to extend the simple ideal mixing model to a regular

solution model adapted also by Silver et al (1990) Zhang et al (1991b) and Ihinger et

al (1999) The same formulation is adapted here

lnK = ln XOH2

XH2OmXO

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = A+1000

TB+C XH2Om

+ D XOH( ) (4)

where A B C and D are fitting parameters independent of H2Ot and their physical

meanings are shown in Silver and Stolper (1989) Values of these fitting parameters at

each pressure are listed in Table 34 The maximum differences for these equations to

reproduce experimental equilibrium temperature are also listed in Table 34 and they are

within 10 K at high pressures

Eqn 4 could be expanded to accommodate the dependence of K on temperature

pressure and water content if the fitting parameters A B C and D in Eqn 4 are assumed

to be functions of pressure As discussed above the dependence on pressure is not linear

After some trials the following formulation is found to fit all speciation data in rhyolitic

melt well

lnK = A0 +AP P( )+1000

T(B0 +BP P + B

P3

2P

32 ) +

⎝ ⎜

(C0 +CP P +CP

32P

32 )XH2Om

+ (D0 +DP P + DP

32P

32 )XOH

⎠ ⎟

(5)

74

Table 34 Fitting parameters for Eqns 3 4 and 6

lnK lnKrsquo

ideal mixing regular solution model regular solution model

A B A B C D ∆T (K) $ A B C D ∆T (K) $

00001 GPa 20616 -32495 18120 -30830 -74203 30437 183 27524 -28404 -12945 189

094 GPa 17636 -30599 13264 -26529 -53362 01706 79 22910 -24292 01720 -17996 77

189 GPa 14995 -27503 10359 -23199 -71853 09728 73 18976 -20068 -16630 86

283 GPa 10053 -22285 07611 -20211 -75335 18349 90 16609 -17348 -15492 102

Note Water content is less than 22 wt

$ Maximum temperature difference between experimental temperature and model predicted temperature New data reported here and literature data from Ihinger et al (1999) which include some speciation data at P le 100 MPa

75

where P is pressure in GPa T is temperature in K and X is mole fraction of species H2Om

or OH This formulation could reproduce all experimental data with a 2σ uncertainty of

0058 in lnK The best-fit parameters in Eqn 5 with 2σ errors are A0 = 18120 plusmn 01044

AP = -03832 plusmn 00418 B0 = -30830 plusmn 00796 BP = 02999 plusmn 00638 BP32 = 00507 plusmn

00386 C0 = -74203 plusmn 14953 CP = 50262 plusmn 14040 CP32 = -31271 plusmn 09076 D0 =

30437 plusmn 13731 DP = -54527 plusmn 19763 DP32 = 30464 plusmn 12441 The reproducibility of

experimental equilibrium temperature by Eqn 5 is shown in a histogram (Fig 35) which

is approximately a Gaussian distribution Fig 36 further shows how well K at some

water contents can be reproduced

44 RELATING ABSORBANCES DIRECTLY TO TEMPERATURE AND

PRESSURE

Estimating the apparent equilibrium temperature of hydrous rhyolite of a given

cooling rate for inferring viscosity is one of the most important applications of this work

(Zhang et al 2003 Zhang and Xu 2007) Owing to possible future improvement of

molar absorptivities of two hydrous species it is useful to recast speciation data directly

in terms of IR band intensities (Ihinger et al 1999 Liu et al 2004a) so that equilibrium

temperature or the apparent equilibrium temperature can be directly estimated from

infrared data Following Zhang et al (2000) K is defined below

K = A452( )2A523

where A is absorbance per mm sample thickness By analogy with the regular solution

model (Eqn 4) the following equation is used to relate K and A

76

0

10

20

30

40

50

60

-20 -10 0 10 20∆T (K)

Num

ber o

f mea

sure

men

ts

Fig 35 Histogram showing the distribution of differences between the experimental equilibrium temperature and predicted temperature by Eqn 5 Sources of data include Ihinger et al (1999) and this work

77

-24

-22

-2

-18

-16

-14

-12

773K873K973K923K823K

lnK

973 K

873 K

773 K

Š27 wt H2OtA

-32

-3

-28

-26

-24

-22

-2

-18

-16

0 05 1 15 2 25 3

lnK

P (GPa)

39 wt H2Ot

673 K

773 K

873 K

B

Fig 36 Pressure effect on lnK at some temperatures and water concentrations The curves are calculated from Eqn 5 Points are experimental data In (A) three curves are calculated at each temperature for H2Ot of 07 17 and 27 wt from top to bottom at each temperature In (B) the dashed curve means temperature is above the experimental temperature

78

lnK = lnA452( )2

A523= A +1000

TB +C A523 + D A452( ) (6)

The best-fit parameters for four different pressures are listed in Table 34 The differences

between experimental and predicted temperatures using Eqn 6 are also listed in Table

34 which are not much different from the regular solution model using species

concentrations (Eqn 4) A model was developed to directly relate K A T and P

analogous to Eqn 5 as follows

lnK = A0+APP( )+1000

T(B0+BPP + B

P3

2P

32 ) +

⎝ ⎜

(C0+CPP +CP

32P

32 )A523 + (D0+DPP + D

P3

2P

32 )A452

⎠ ⎟

(7)

where P is pressure in GPa T is temperature in K and A is absorbance per mm sample

thickness for species H2Om or OH This formulation reproduces all of the data with a 2σ

uncertainty of 0059 in lnK The best-fit parameters in Eqn 7 with 2σ errors are A0 =

27524 plusmn 00944 AP = -03890 plusmn 00395 B0 = -28404 plusmn 00809 BP = 03053 plusmn 00697

BP32 = 00531 plusmn 00433 CP = 03768 plusmn 01301 CP32 = -02261 plusmn 00836 D0 = -12945

plusmn 00893 DP = -09499 plusmn 04076 DP32 = 05121 plusmn 02573 Because Eqn 7 is

independent of molar absorptivity future improvement in molar absorptivities of these

bands will not affect the reproducibility of Eqn 7 It can reproduce experimental

temperature with a 2σ uncertainty of 13 K (similar to the reproducibility of Eqn 5 shown

in Fig 35) directly from measured absorbances

79

45 APPLICATIONS

Speciation plays an important role in H2O solubility (eg Silver et al 1990

Blank et al 1993 Zhang 1999) as well as diffusion (eg Zhang et al 1991ab Zhang

and Behrens 2000 Liu et al 2004b Zhang et al 2007) and crystal nucleation (eg

Davis et al 1997) Several models (Eqns 3-5) are provided to determine H2Om and OH

concentrations as functions of pressure temperature and H2Ot in rhyolitic melts Hence

the new results can be applied to model H2O diffusion quantify the dependence of

molecular H2O diffusivity on pressure and quantitatively understand the effect of

dissolved H2Ot on the nucleation and crystal growth in hydrous melts under high

pressure Furthermore information from this work may be useful in future models of

thermodynamic properties of hydrous silicate melts

Another application of the new results is to predict apparent equilibrium

temperature Tae (Zhang 1994) As discussed by Zhang (1994) Tae is one of the well-

defined parameters in measurements for any given cooling history and can be a good

indicator of cooling rate Because of negligible dependence of K on pressure when the

pressure is lt 1 GPa and because natural rhyolitic glasses general cool at nearly surface

pressures for naturally cooled hydrous rhyolitic glasses the equation at ambient pressure

(eg Eqn 7 in Ihinger et al 1999) is applicable to calculate apparent equilibrium

temperature For experimental glasses cooled at high pressures such as 2 GPa the

pressure effect must be considered Knowledge of Tae is critical to inferring viscosity

based on kinetic experiments of the hydrous species reaction (Zhang et al 2003 Zhang

and Xu 2007) since it is assumed that the viscosity at the apparent equilibrium

temperature is inversely proportional to the cooling rate (Dingwell and Webb 1990

80

Zhang et al 2003) Hence by conducting a controlled cooling rate experiment of a

hydrous rhyolitic melt under pressure after calculating Tae the viscosity at this

temperature (and pressure) can be estimated At present this is the only method to

estimate viscosity at P gt 1 GPa in the viscosity range of 109-1014 Pamiddots The application

for inferring viscosity is the main motivation for us to conduct this research Results from

this work are applied to infer viscosity at high pressure in Chapter IV

5 CONCLUSIONS

The equilibrium of the interconversion reaction between two dissolved water

species (H2Om and OH) was experimentally investigated as a function of pressure

(00001 094 189 and 283 GPa) temperature (624-1027 K) and H2O concentrations

(08 to 42 wt) The speciation data at total H2O content le 27 can be described by

an ideal mixing model consistent with previous results With inclusion of speciation data

at higher water contents one way to describe the speciation data is a regular solution

model The general speciation model (Eqn 5) constructed to accommodate the

dependence of H2O speciation in the rhyolitic melts on T-P-X can be used to predict

species concentrations at P le 283 GPa total H2O content le 42 wt and temperature of

624-1027 K Furthermore it can be used to calculate apparent equilibrium temperature

which can then be used to infer viscosity of hydrous rhyolitic melts under high pressure

81

REFERENCES

Akella J (1979) Quartz hArr coesite transition and the comparative friction measurements

in piston-cylinder apparatus using talc-alsimag-glass (TAG) and NaCl high-

pressure cells N Jb Miner Mh H5 217-224

Akella J and Kennedy GC (1971) Melting of gold silver and copper ndash proposal for a

new high-pressure calibration scale J Geophys Res 76 4969-4977

Behrens H and Nowak M (2003) Quantification of H2O speciation in silicate glasses

and melts by IR spectroscopy ndash in situ versus quench techniques Phase Trans 76

45-61

Behrens H and Zhang Y (2001) Ar diffusion in hydrous silicic melts implications for

volatile diffusion mechanisms and fractionation Earth Planet Sci Lett 192 363-

376

Behrens H Zhang Y Leschik M Wiedenbeck M Heide G and Frischat GH (2007)

Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts Earth

Planet Sci Lett 254 69-76

Blank JG Stolper EM and Carroll MR (1993) Solubilities of carbon dioxide and

water in rhyolitic melt at 850 ordmC and 750 bars Earth Planet Sci Lett 119 27-36

Bohlen SR and Boettcher AL (1982) The quartz hArr coesite transformation a precise

determination and the effects of other components J Geophys Res 87 7073-7078

Bose K and Ganguly J (1995) Quartz-coesite transition revisited reversed experimental

determination at 500-1200 ˚C and retrieved thermochemical properties Am

Mineral 80 231-238

82

Boyd FR and England JL (1960) The quartz-coesite transition J Geophys Res 65

749-756

Burnham CW (1975) Water and magmas a mixing model Geochim Cosmochim Acta

39 1077-1084

Davis MJ Ihinger PD and Lasaga AC (1997) The influence of water on nucleation

kinetics in silicate melt J Non-Cryst Solids 219 62-69

Dingwell DB and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

Goranson RW (1938) Silicate-water systems phase equilibria in the NaAlSi3O8-H2O

and KAlSi3O8-H2O systems at high temperatures and pressures Am J Sci 35-A

71-91

Hui H and Zhang Y (2007) Toward a general viscosity equation for natural anhydrous

and hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Ihinger PD Zhang Y and Stolper EM (1999) The speciation of dissolved water in

rhyolitic melt Geochim Cosmochim Acta 63 3567-3578

Kitahara S and Kennedy GC (1964) The quartz-coesite transition J Geophys Res 69

5395-5400

Li J Hadidiacos C Mao H Fei Y and Hemley RJ (2003) Behavior of thermocouples

under high pressure in a multi-anvil apparatus High Pressure Res 23 389-401

Liu Y Behrens H and Zhang Y (2004a) The speciation of dissolved H2O in dacitic

melt Am Mineral 89 277-284

Liu Y Zhang Y and Behrens H (2004b) H2O diffusion in dacitic melts Chem Geol

209 327-340

83

McMillan PF (1994) Water solubility and speciation models Rev Mineral 30 131-156

Mirwald PW and Massonne H-J (1980) The low-high quartz and quartz-coesite

transition to 40 kbar between 600˚ and 1600˚C and some reconnaissance data on the

effect of NaAlO2 compoenent on the low quartz-coesite transition J Geophys Res

85 6983-6990

Newman S Stolper EM and Epstein S (1986) Measurement of water in rhyolitic

glasses calibration of an infrared spectroscopic technique Am Mineral 71 1527-

1541

Ni H and Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high

pressure data Chem Geol Revised

Nowak M and Behrens H (2001) Water in rhyolitic magmas getting a grip on a slippery

problem Earth Planet Sci Lett 184 515-522

Shaw HR (1964) Theoretical solubility of H2O in silicate melts quasi-crystalline

models J Geol 72 601-617

Shaw HR (1972) Viscosities of magmatic silicate liquids an empirical method of

prediction Am J Sci 272 870-893

Silver LA and Stolper E (1989) Water in albitic glasses J Petrol 30 667-709

Silver LA Ihinger PD and Stolper E (1990) The influence of bulk composition on the

speciation of water in silicate glasses Contrib Mineral Petrol 104 142-162

Sowerby JR and Keppler H (1999) Water speciation in rhyolitic melt determined by in

situ infrared spectroscopy Am Mineral 84 1843-1849

Stolper EM (1982a) The speciation of water in silicate melts Geochim Cosmochim

Acta 46 2609-2620

Stolper EM (1982b) Water in silicate glasses an infrared spectroscopic study Contrib

Mineral Petrol 81 1-17

84

Tuttle OF and Bowen NL (1958) Origin of granite in the light of experimental studies

in the system NaAlSi3O8- KAlSi3O8- SiO2-H2O Geol Soc Am Memoir 74 1-153

Wasserburg GJ (1957) The effects of H2O in silicate systems J Geol 65 15-23

Watson EB (1991) Diffusion of dissolved CO2 and Cl in hydrous silicic to intermediate

magmas Geochim Cosmochim Acta 55 1897-1902

Withers AC and Behrens H (1999) Temperature-induced changes in the NIR spectra of

hydrous albitic and rhyolitic glasses between 300 and 100 K Phys Chem Minerals

27 119-132

Withers AC Zhang Y and Behrens H (1999) Reconciliation of experimental results on

H2O speciation in rhyolitic glass using in situ and quenching techniques Earth

Planet Sci Lett 173 343-349

Xu Z and Zhang Y (2002) Quench rates in air water and liquid nitrogen and inference

of temperature in volcanic eruption columns Earth Planet Sci Lett 200 315-330

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth Planet

Sci Lett 122 373-391

Zhang Y (1999) H2O in rhyolitic glasses and melts measurement speciation solubility

and diffusion Rev Geophys 37 493-516

Zhang Y and Behrens H (2000) H2O diffusion in rhyolitic melts and glasses Chem

Geol 169 243-262

Zhang Y Belcher R Ihinger PD Wang L Xu Z and Newman S (1997a) New

calibration of infrared measurement of dissolved water in rhyolitic glasses

Geochim Cosmochim Acta 61 3089-3100

85

Zhang Y Jenkins J and Xu Z (1997b) Kinetics of the reaction H2O + O = 2OH in

rhyolitic glasses upon cooling geospeedometry and comparison with glass

transition Geochim Cosmochim Acta 61 2167-2173

Zhang Y Solper EM and Ihinger PD (1995) Kinetics of reaction H2O + O = 2OH in

rhyolitic glasses preliminary results Am Mineral 80 593-612

Zhang Y Stolper EM and Wasserburg GJ (1991a) Diffusion of a multi-species

component and its role in oxygen and water transport in silicates Earth Planet Sci

Lett 103 228-240

Zhang Y Stolper EM and Wasserburg GJ (1991b) Diffusion of water in rhyolitic

glasses Geochim Cosmochim Acta 55 441-456

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

Improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

Zhang Y Xu Z Zhu M and Wang H (2007) Silicate melt properties and volcanic

eruptions Rev Geophys doi1010292006RG000216

86

CHAPTER IV

PRESSURE DEPENDENCE OF VISCOSITY OF RHYOLITIC MELTS

ABSTRACT

Viscosity of silicate melts is a critical property for understanding volcanic and

igneous processes in the Earth Two methods were used to study the pressure effect on

the viscosity of rhyolitic melts hydrous species reaction viscometer in a piston cylinder

and parallel plate creep viscometer in an internally-heated pressure vessel (IHPV) With

the hydrous species reaction viscometer viscosities of hydrous rhyolitic melts were

inferred based on the kinetics of hydrous species reaction in the melt upon cooling (ie

the equivalence of rheologically defined glass transition temperature and chemically

defined apparent equilibrium temperature) The cooling experiments were carried out in a

piston cylinder apparatus using hydrous rhyolitic samples with 08 to 4 wt water at

pressures up to 283 GPa Cooling rates of the experiments varied from 01 Ks to 100

Ks hence the range of viscosity inferred from this method is 3 orders of magnitude The

data from this method show that viscosity increases with increasing pressure from 1 GPa

to 3 GPa for hydrous rhyolitic melts with water content ge 08 wt Viscosity of rhyolitic

melt with 013 wt water was also measured using parallel plate viscometer at pressures

87

02 and 04 GPa in an IHPV The data show that viscosity of rhyolitic melt with 013

wt water decreaseswith increasing pressure Combining new data with literature data a

viscosity model of rhyolitic melts in the high viscosity range as a function of temperature

pressure and water content is developed

1 INTRODUCTION

Viscosity of silicate melts is a property of fundamental importance in Earth

sciences Viscosities of silicate melts under ambient pressure have been studied

extensively (eg Shaw 1972 Hui and Zhang 2007) Several experimental techniques

are available to measure viscosity directly (1) in the low viscosity range (01 to 105 Pamiddots)

concentric cylinder viscometer (eg Dingwell 1986) and falling sphere technique (eg

Shaw 1963) (2) in the high viscosity range (108 to 1014 Pamiddots) micropenetration method

(eg Hummel and Arndt 1985) parallel plate creep viscometer (eg Neuville and

Richet 1991) and fiber elongation method (eg Lillie 1931) Few viscosity data are in

the intermediate viscosity range of 105 to 108 Pamiddots (Dorfman et al 1996 1997) because

(1) the methods applicable to low viscosity cannot be used because rotation rate or falling

rate would be too slow (2) the methods applicable to high viscosities cannot be used

because the melt would flow too easily and (3) many silicate melts crystallize rapidly in

this viscosity range In most cases geologists interpolated viscosity from models

constructed using experimental data in the high and low viscosity ranges (eg Rust and

Cashman 2007)

Some of these viscometers have been adapted to high-pressure apparatus

(Dingwell 1998) In the low viscosity range viscosity data at high pressure (ge 1 GPa) are

88

obtainable with the falling sphere technique (eg Kushiro et al 1976 Liebske et al

2005) For example in situ falling sphere technique in the high-pressure apparatus such

as multi-anvil with assistance of synchrotron can reach pressures up to 13 GPa (eg

Reid et al 2003 Liebske et al 2005) On the other hand in the high viscosity range no

viscosity data exist at pressures ge 1 GPa The practical reason is the limit of the current

experimental methods For example the maximum pressure that traditional viscometers

could reach is 04 GPa (eg Behrens and Schulze 2003) Based on the equivalence of

enthalpy relaxation and viscous relaxation Rosenhauer et al (1979) used high-pressure

differential thermal analysis experiments in an internally-heated pressure vessel (IHPV)

to infer viscosities of diopside albite and trisilicate at glass transition temperatures at

elevated pressures up to 07 GPa

Many geologic processes related to silicate melts deal with elevated pressures

The pressure scales of these processes may vary from 0-200 MPa for volcanic eruptions

to a couple of GPa for crustal anatexis and mantle melting to hundreds of GPa for core-

mantle segregation This extreme range of magnitudes requires the experimental

approach of studying melt viscosities to explore a very broad spectrum of measurement

principles and technologies In this report the hydrous species viscometer is developed

for high-pressure viscosity determination

Rosenhauer et al (1979) assumed the equivalence of enthalpy relaxation and

viscous relaxation to infer viscosity Dingwell and Webb (1990) assumed the equivalence

between viscous relaxation and hydrous species equilibration (see below) Dingwell

(1998) discussed the inference of viscosity at high pressures from glass transition based

on volume relaxation enthalpy relaxation spectroscopic measurements (applied in this

89

study) and called them as ldquoone of the most important breakthroughs for the prospect of

obtaining high pressure viscosity datardquo Zhang et al (2003) and Zhang and Xu (2007)

applied the hydrous species viscometer (see section 21) to infer viscosity of hydrous

silicate melts at the glass transition temperature range This method has several

advantages and disadvantages The most important advantage here is that this method can

be adapted to high-pressure apparatus such as piston cylinder as far as glass can be

obtained by quench Because the method relies on the measurement of hydrous species

concentrations it is only applicable to hydrous silicate melts with ge 05 wt total H2O

but not to melts with less H2O With this method viscosity is inferred but not obtained

from direct measurement

In this study the hydrous species reaction viscometer was applied in a piston

cylinder to investigate viscosity of hydrous rhyolitic melts with water content from 08 to

4 wt at pressures up to 283 GPa This pressure range is aimed to cover rhyolitic

(granitic) melt generated at depth from field observations (eg Sylvester 1999) and

experimental studies (eg Rapp and Watson 1995) Furthermore as will be shown later

increasing pressure seems to have a significant effect on crystallization rate in rhyolitic

melts which seems to indicate that viscosity decreases significantly with increasing

pressure The large pressure coverage allows the evaluation of whether this is true

In addition to this new method the parallel-plate viscometer in an IHPV was also

used to directly measure viscosity of natural rhyolite from 02 GPa to 04 GPa

Combining the literature data at pressure le05 GPa a viscosity model is developed

accommodating the dependence of viscosity of rhyolitic melts on temperature pressure

and water content in the high viscosity range

90

2 EXPERIMENTAL AND ANALYTICAL METHODS

The pressure effect on melt viscosity was studied on rhyolitic melts with different

water content The concentrations of total water and hydrous species in the samples were

determined by FTIR (Fourier transform infrared spectroscopy) at the University of

Michigan following the procedure shown in Zhang et al (1997a) There are a few other

calibration methods in the literature (eg Newman et al 1986 Withers and Behrens

1999) The reason to use the calibration of Zhang et al (1997a) here is to be consistent

with the speciation study in Hui et al (2008) because their study is used to calculate the

apparent equilibrium temperature from concentrations of hydrous species retained in the

quenched glass

Starting materials include both natural rhyolitic glasses (EDF and KS) and

synthetic hydrous rhyolitic glasses prepared by hydration of natural rhyolitic glass

(GMR) Sample EDF is from Erevan Dry Fountain Armenia Sample KS is from Mono

Crater California Samples GMR+2 and GMR+4 were synthesized by adding water to a

natural obsidian (GMR) from Glass Mountain California The chemical compositions of

the samples are listed in Table 41 Hydration of rhyolitic glasses was implemented at

1473 K 05 GPa by re-melting glass powder with added H2O at University of Hannover

(Hui et al 2008) The hydrated glasses are crystal free and bubble free

21 HYDROUS SPECIES REACTION VISCOMETER

It is well known that water is present in the silicate melts as at least two species

molecular H2O (H2Om) and hydroxyl group (OH) (Stolper 1982ab) The species

reaction in the melts is

91

Table 41 Chemical compositions (oxide wt) of KS GMR and EDF rhyolite on anhydrous basis

KS GMR EDF SiO2 7594 7322 7678 TiO2 009 031 010 Al2O3 1298 1408 1277 FeO 098 145 052 MnO 005 005 009 MgO 003 026 007 CaO 056 131 056 Na2O 401 406 408 K2O 471 432 455 P2O5 029 007 - Total 9963 9913 9967

H2O 075-090

189-216 in GMR+2 354-420 in GMR+4 013

ref 1 2 1 Hui et al 2008 2 Behrens et al 2007

92

H2Om + O = 2OH (1)

where O is anhydrous bridging oxygen in the melt Total H2O content is denoted as H2Ot

The equilibrium constant K of Reaction (1) is defined as

K =XOH

2

XH2OmXO

(2)

where X means activity approximated by mole fraction The relationship between

equilibrium constant K and temperature (equilibrium line in Fig 41) can be expressed by

a regular solution model as (Silver et al 1990 Ihinger et al 1999)

lnK = A +1000

TB + CXH2Om

+ DXOH( ) (3)

where T is temperature in K and A B C and D are fitting parameters Hui et al (2008)

estimated these parameters for rhyolitic melts at high pressures During cooling at a

certain low temperature the concentrations of these two hydrous species in the melt start

to deviate from the equilibrium state In Fig 41 this is shown as curves off the straight

line (the equilibrium line) When temperature becomes too low to change species

concentrations water speciation is frozen in the melt as indicated by the horizontal

segments in Fig 41 The intersection of each horizontal line which is calculated from

the hydrous species concentrations retained in the quenched glass with the equilibrium

line defines the apparent equilibrium temperature (Zhang 1994) An equilibrated melt at

this temperature has the same water speciation as observed in the quenched glass at room

temperature This apparent equilibrium temperature depends on the cooling rate shown in

Fig 41 A higher apparent equilibrium temperature indicates a faster cooling rate

Glass transition temperature is defined rheologically as the temperature at which

viscosity is equal to 1012 Pasdots for a cooling rate of the order 10 Kmin As the cooling rate

93

ln

K

1T (K)TTT ae2ae1 e

equilibrium

rapid quench

slow quench

isothermal run rapid quench

Fig 41 Sketch of kinetics of Reaction (1) during cooling (Behrens and Nowak 2003) Tae is apparent equilibrium temperature which depends on the cooling rate Te is equilibrium temperature

94

varies the glass transition temperature also changes Based on theoretical considerations

and experimental results Moynihan et al (1976) showed the formula of dependence of

the glass transition temperature on the cooling rate

d logqd(1Tg)

= minus∆HR

(4)

where q is quench rate in Ks Tg is glass transition temperature in K R is the gas

constant and ∆H is the activation enthalpy for the relaxation times controlling the

structural enthalpy or volume relaxation which is also equal to the activation enthalpy of

the shear viscosity within experimental error Scherer (1984) generalized that viscosity is

reciprocal to the quench rate at the glass transition temperature Dingwell and Webb

(1990) advanced it further to infer viscosity from kinetics of hydrous species reaction

(ie Reaction 1) in the rhyolitic melt assuming the equivalence of the apparent

equilibrium temperature and glass transition temperature (ie time scale of Reaction 1 in

rhyolitic melt is the same as the structural relaxation time scale of rhyolitic melt because

both involve bridging oxygen in the melt structure of rhyolite) By comparing kinetic

data on Reaction (1) and viscosity data obtained by other methods (including from bubble

growth data of Liu et al 2000) Zhang et al (2003) formulated the equation below to

infer viscosity at the glass transition temperature (ie apparent equilibrium temperature)

for hydrous rhyolitic melts

logηTg= logηTae

=1145 minus logq (5)

where η is viscosity in Pasdots q is quench rate in Ks and 1145 is a constant Other

experimental studies have verified the equivalence of relaxation at the glass transition

temperature on viscosity volume and heat capacity (eg Sipp et al 1999 Toplis et al

95

2000) So the key in this method is to calculate the apparent equilibrium temperature for

a cooling experiment with known quench rate whereas viscosity at this temperature is

calculated from Eq (5)

All the cooling experiments were conducted in a piston cylinder A glass cylinder

with a diameter of about 2 mm and a height of about 2 mm was placed into a graphite

capsule which was enclosed in crushable MgO as the inner pressure medium with

graphite heater outside and then BaCO3 cell as outer pressure medium The charge was

heated to a high temperature for melt relaxation and for hydrous species in the melt to

reach equilibrium Then the sample was isobarically cooled at a desired cooling rate to

room temperature The temperature was measured with a type-S (Pt90Rh10-Pt) or type-D

(W97Re3-W75Re25) thermocouple The temperature history was recorded either by

computer or manually Pressure in the piston cylinder was calibrated using quartz-coesite

phase transition and melting of a gold wire (Hui et al 2008) The pressure of cooling

experiments ranges from 094 GPa (nominal pressure of 1 GPa) to 283 GPa (nominal

pressure of 3 GPa) Infrared spectra of the quenched glass were obtained using a Perkin-

Elmer FTIR spectrometer The baseline of IR spectra was fit by a flexicurve (Newman et

al 1986) The concentrations of hydrous species and total water content were obtained

using the calibration of Zhang et al (1997a) The apparent equilibrium temperature was

calculated from the hydrous species concentrations measured in the quenched glass using

Eqs (2) and (3) with parameters listed in Hui et al (2008) With the recorded cooling

rate viscosity was inferred from Eq (5) at the apparent equilibrium temperature The 2σ

error for viscosity inferred from this method is estimated to be 02 in terms of logη

(Zhang et al 2003)

96

In addition to the experiments in piston-cylinders at pressures below 3 GPa some

experiments at pressures above 3 GPa were also carried out in a multi-anvil device at the

University of Michigan But these experimental charges crystallized

22 PARALLEL-PLATE VISCOMETER

The parallel-plate creep viscometer in an IHPV was also used to measure

viscosity of rhyolitic melts near glass transition temperature Melt viscosity was derived

from the rate of deformation of a cylindrical sample with a diameter of 38 mm and a

height of 10 mm as a function of a constant vertically applied stress The design

operation and calibration of this viscometer are described in detail by Schulze et al

(1999) The detailed experimental procedure is explained in Behrens and Schulze (2003)

This technique can measure viscosity of the same cylinder in high viscosity range

covering three orders of magnitude from 1085 to 10115 Pasdots at pressures up to 04 GPa by

pumping in Ar (pressure media) or releasing it Effect of dehydration of the sample on the

viscosity measurements was monitored by repeated viscosity measurements at the same

P-T conditions during the whole experimental course and water content in the sample

was also checked after the experiment by infrared spectroscopy

To mitigate the effect of dehydration of the samples during measurement only the

samples with low water content was used in this method including sample EDF with

013 wt H2Ot and sample KS with 079 wt H2Ot For sample EDF viscosity was

measured at different pressures in the order of 02 04 and 02 GPa As shown in Table

42 and Fig 42 the viscosity values at the first and last 02 GPa are in good agreement

with difference within plusmn01 log units indicating that there was no significant water loss

97

or gain during viscosity measurement Temperature was corrected based on the melting

point of aluminum at 02 GPa (Lees and Williamson 1965) For sample KS dehydration

was discovered in a test run Hence only viscosity at 04 GPa was measured without

cycling back and forth to minimize the duration of the sample at high temperatures

Temperature in this measurement was corrected based on the melting point of zinc at 04

GPa (Akella et al 1973) Both samples were checked for water content by FTIR after

isobaric quench of the experimental charge Water loss or gain was negligible in both

viscosity measurement courses After experiments both samples were still in good

cylinder shapes indicating negligible temperature gradient and regular deformation

during creep experiments The reproducibility of viscosities is always within plusmn015 log

units (Behrens and Schulze 2003) However within one series of experiments the

precision is much better (within plusmn01 log units in this study)

3 EXPERIMENTAL RESULTS

Experimental results from the hydrous species reaction viscometer are

summarized in Table 43 Original IR absorbance peak heights are also reported because

there may be further improvement in the IR calibration Viscosity is plotted as a function

of 1000T at different pressures in Fig 42 Within the small temperature range of

viscosity measurements temperature dependence of viscosity of rhyolitic melts at each

pressure can be described by the Arrhenius relationship

η = η0 sdot exp Ea

RT⎛ ⎝ ⎜

⎞ ⎠ ⎟ (6)

where η0 is the pre-exponential factor and Ea is the activation energy for viscous flow

98

Table 42 Results of parallel plate creep viscometer with sample EDF at pressures of 02 and 04 GPa and sample KS at 04 GPa

EDF KS

02 GPa 04 GPa 04 GPa T logη T logη T logη K Pasdots

exp

K Pasdots exp

K Pasdots exp

103815 1142 12 102815 1119 11 84815 1151 1 104815 1128 1 103815 1103 6 85615 1135 6 104815 1121 13 103815 1101 10 86715 1114 5 106715 1083 2 105815 1078 7 88615 1060 2 106715 1074 5 108815 1025 8 90715 1030 3 108815 1052 14 111815 980 9 92515 1002 4 108715 1047 3 111815 997 4

Note means the chronological order of the measurements

99

9

95

10

105

11

115

12

125

13

EDFKS

logη

(Pasdot

s) 04 GPa

A KSGMR+2GMR+4

094 GPa

B

9

95

10

105

11

115

12

125

13

08 09 1 11 12 13 14 15

KSGMR+2GMR+4

logη

(Pasdot

s)

1000T (K)

189 GPa

C

08 09 1 11 12 13 14 15

KSGMR+2GMR+4

1000T (K)

283 GPa

D

Fig 42 Dependence of viscosities of rhyolitic melts (EDF KS GMR+2 and GMR+4) on temperature at pressures of 04 094 189 and 283 GPa All the data are from this study A is for parallel plate creep viscometer and B-D are from hydrous species reaction viscometer Straight lines are fit of the data by Arrhenius equation (ie Eq 6)

100

Table 43 Viscosity of hydrous rhyolitic melts at various pressures inferred from hydrous species reactions

Measurement P$ q Abs Abs Thickness H2Ot H2Om OH X(H2Ot) X(H2Om) X(OH) Tae logη GPa Ks 5200 4500 mm wt wt wt K Pasdots KS-1-21 094 956 00448 01608 1124 0846 0170 0677 00152 00030 00242 90603 1047 KS-1-22 094 956 00447 01604 1118 0849 0170 0679 00152 00030 00243 90711 1047 KS-1-23 094 956 00441 01610 1126 0843 0167 0677 00151 00030 00242 91123 1047 KS-1-31 094 099 00557 01717 1195 0877 0198 0678 00157 00036 00243 86261 1145 KS-1-32 094 099 00539 01689 1190 0862 0193 0669 00154 00034 00240 86308 1145 KS-1-33 094 099 00585 01748 1198 0898 0208 0690 00161 00037 00247 85979 1145 KS-1-41 094 010 00649 01883 1373 0843 0201 0642 00151 00036 00230 82961 1245 KS-1-42 094 010 00626 01857 1370 0829 0194 0634 00148 00035 00227 83131 1245 KS-1-43 094 010 00646 01883 1371 0844 0200 0643 00151 00036 00231 83140 1245 KS-1-51 094 9233 00432 01720 1163 0862 0158 0704 00154 00028 00252 95499 948 KS-1-52 094 9233 00432 01700 1150 0864 0160 0704 00155 00029 00252 95113 948 KS-1-53 094 9233 00435 01708 1164 0857 0159 0698 00153 00028 00250 94606 948 GMR+2-1-11 094 950 01720 02272 0990 1886 0747 1140 00335 00133 00405 80808 1047 GMR+2-1-12 094 950 01709 02268 0987 1886 0744 1142 00335 00132 00406 80982 1047 GMR+2-1-13 094 950 01729 02275 0991 1890 0750 1140 00336 00133 00405 80737 1047 GMR+2-1-21 094 100 01729 02048 0911 1920 0816 1104 00341 00145 00392 77482 1145 GMR+2-1-22 094 100 01750 02064 0910 1942 0827 1115 00345 00147 00396 77683 1145 GMR+2-1-23 094 100 01712 02030 0909 1905 0810 1096 00338 00144 00389 77310 1145 GMR+2-1-31 094 010 01105 01131 0502 2041 0947 1094 00362 00168 00388 74324 1245 GMR+2-1-32 094 010 01089 01118 0498 2031 0941 1090 00360 00167 00387 74289 1245 GMR+2-1-33 094 010 01097 01123 0504 2017 0937 1080 00358 00166 00383 74002 1245 GMR+4-1-21 094 968 02159 01114 0356 4116 2667 1449 00719 00466 00506 70115 1046 GMR+4-1-22 094 968 02137 01107 0351 4141 2678 1462 00723 00467 00511 70400 1046 GMR+4-1-23 094 968 02152 01107 0356 4094 2657 1437 00715 00464 00502 69869 1046 GMR+4-1-31 094 7687 01467 00859 0268 3937 2403 1534 00688 00420 00536 73394 956 GMR+4-1-32 094 7687 01540 00901 0282 3925 2397 1529 00686 00419 00534 73301 956 GMR+4-1-33 094 7687 01548 00885 0276 3989 2463 1526 00697 00430 00533 72897 956 GMR+4-1-41 094 100 01509 00789 0271 3779 2440 1339 00661 00427 00469 68409 1145

101

GMR+4-1-42 094 100 01509 00779 0267 3815 2477 1338 00668 00433 00468 68211 1145 GMR+4-1-43 094 100 01498 00792 0275 3711 2386 1325 00650 00418 00464 68296 1145 KS-2-11 189 100 00111 00396 0270 0871 0175 0696 00156 00031 00249 88340 1145 KS-2-12 189 100 00106 00397 0280 0832 0161 0671 00149 00029 00240 88552 1145 KS-2-21 189 13416 00431 01862 1201 0898 0153 0745 00161 00027 00267 98415 932 KS-2-22 189 13416 00381 01769 1192 0844 0136 0708 00151 00024 00254 98996 932 KS-2-23 189 13416 00428 01851 1202 0890 0152 0739 00159 00027 00265 97976 932 KS-2-31 189 965 00496 01892 1246 0895 0169 0726 00160 00030 00260 92376 1047 KS-2-32 189 965 00462 01842 1234 0871 0159 0712 00156 00029 00255 93137 1047 KS-2-33 189 965 00466 01848 1245 0867 0159 0707 00155 00028 00253 92731 1047 KS-2-41 189 010 00384 01244 0859 0875 0190 0685 00157 00034 00246 84743 1245 KS-2-42 189 010 00368 01219 0856 0855 0183 0672 00153 00033 00241 84746 1245 KS-2-43 189 010 00360 01203 0849 0849 0180 0668 00152 00032 00239 84782 1245 GMR+2-2-21 189 950 01595 02196 0870 2071 0789 1282 00367 00140 00455 82315 1047 GMR+2-2-22 189 950 01579 02181 0870 2052 0781 1271 00364 00139 00451 82082 1047 GMR+2-2-23 189 950 01611 02184 0860 2097 0807 1290 00372 00143 00458 82142 1047 GMR+2-2-31 189 100 02053 02498 0997 2147 0887 1259 00381 00157 00447 78631 1145 GMR+2-2-32 189 100 02008 02459 0989 2123 0875 1248 00376 00155 00443 78466 1145 GMR+2-2-33 189 100 02032 02484 0997 2129 0878 1251 00378 00156 00444 78517 1145 GMR+2-2-51 189 9072 01539 02177 0831 2142 0798 1343 00380 00142 00476 84745 949 GMR+2-2-52 189 9072 01526 02165 0825 2144 0797 1347 00380 00141 00478 84947 949 GMR+2-2-53 189 9072 01530 02180 0825 2158 0799 1359 00383 00142 00482 85415 949 GMR+4-2-31 189 100 04415 02595 0797 3997 2433 1564 00698 00425 00546 71658 1145 GMR+4-2-32 189 100 04356 02573 0796 3954 2402 1552 00691 00420 00543 71502 1145 GMR+4-2-33 189 100 04453 02581 0797 4002 2454 1548 00699 00429 00541 71181 1145 GMR+4-2-41 189 10700 02441 01593 0465 4004 2306 1698 00700 00403 00593 75759 942 GMR+4-2-42 189 10700 02370 01551 0457 3957 2277 1680 00692 00398 00587 75455 942 GMR+4-2-43 189 10700 02484 01621 0473 4005 2307 1698 00700 00403 00593 75754 942 GMR+4-2-51 189 967 03797 02294 0677 4115 2467 1648 00718 00431 00576 73632 1046 GMR+4-2-52 189 967 03914 02307 0677 4195 2545 1650 00732 00444 00576 73318 1046 GMR+4-2-53 189 967 03914 02320 0680 4188 2534 1655 00731 00442 00577 73481 1046 KS-3-11 286 100 00491 02066 1408 0847 0148 0699 00152 00027 00250 91618 1145 KS-3-12 286 100 00493 02064 1408 0847 0149 0698 00152 00027 00250 91316 1145

102

KS-3-13 286 100 00489 02064 1407 0846 0148 0698 00152 00027 00250 91667 1145 KS-3-21 283 099 00534 02252 1535 0846 0148 0698 00152 00027 00250 91666 1145 KS-3-22 283 099 00538 02256 1533 0850 0149 0701 00152 00027 00251 91589 1145 KS-3-23 283 099 00563 02289 1530 0871 0157 0714 00156 00028 00256 91206 1145 KS-3-91 283 010 00479 01785 1221 0861 0167 0694 00154 00030 00249 86565 1245 KS-3-92 283 010 00490 01803 1225 0870 0170 0700 00156 00030 00251 86401 1245 KS-3-93 283 010 00472 01765 1218 0852 0165 0687 00153 00030 00246 86242 1245 KS-3-81 283 956 00546 02581 1760 0831 0132 0699 00149 00024 00251 96821 1047 KS-3-82 283 956 00638 02732 1756 0903 0155 0748 00162 00028 00268 95734 1047 KS-3-83 283 956 00628 02723 1757 0897 0152 0744 00161 00027 00267 96032 1047 KS-3-111 283 11166 00332 01907 1389 0751 0102 0649 00135 00018 00233 102191 940 KS-3-112 283 11166 00335 01925 1395 0755 0102 0653 00135 00018 00234 102681 940 KS-3-113 283 11166 00335 01929 1395 0757 0102 0655 00136 00018 00235 102921 940 KS-3-114 283 11166 00336 01925 1392 0757 0103 0655 00136 00018 00235 102615 940 GMR+2-3-21 283 907 01210 02070 0823 1925 0632 1293 00342 00112 00459 85132 1049 GMR+2-3-22 283 907 01260 02089 0818 1977 0662 1315 00351 00118 00467 84823 1049 GMR+2-3-23 283 907 01263 02093 0823 1968 0660 1308 00349 00117 00464 84558 1049 GMR+2-3-31 283 100 01726 02538 1004 2030 0740 1290 00360 00131 00458 80291 1145 GMR+2-3-32 283 100 01740 02539 1004 2035 0746 1289 00361 00132 00458 80063 1145 GMR+2-3-33 283 100 01664 02503 1004 1983 0713 1270 00352 00127 00451 80350 1145 GMR+2-3-41 283 10430 00852 01523 0594 1944 0617 1327 00345 00110 00471 87819 943 GMR+2-3-42 283 10430 00849 01485 0572 1984 0638 1346 00352 00113 00478 87698 943 GMR+2-3-43 283 10430 00823 01449 0558 1981 0634 1347 00352 00113 00478 87944 943 GMR+4-3-41 283 100 02215 01709 0518 3540 1869 1671 00621 00328 00586 73953 1145 GMR+4-3-42 283 100 02256 01729 0516 3614 1913 1702 00633 00335 00597 74470 1145 GMR+4-3-43 283 100 02210 01673 0503 3605 1922 1683 00632 00337 00590 73843 1145 GMR+4-3-51 283 10700 01838 01477 0417 3766 1931 1835 00659 00338 00642 78153 942 GMR+4-3-52 283 10700 01812 01464 0410 3793 1938 1855 00664 00339 00649 78693 942 GMR+4-3-53 283 10700 01873 01509 0422 3803 1946 1857 00666 00341 00650 78673 942

Note A few points (two to four) were measured by IR for each experimental sample they are listed here as xxx1 2 3 or 4 $ P has been corrected based on pressure calibration q was calculated from the thermal history recorded by computer or manually

103

which depends on water content of the sample and experimental pressure Viscosity of

rhyolitic melts decreases with increasing water content systematically at a given pressure

and temperature as shown in Fig 42

Viscosities of samples EDF and KS obtained from the parallel plate creep

viscometer are listed in Table 42 including chronological order of measurements and

shown in Figs 43a and 43b Temperature dependence of viscosity of each sample at

each pressure can also be described by the Arrhenius relationship (ie Eq 6) within the

small temperature range of measurements

The pressure dependence of viscosity is more complicated For the ldquodryrdquo sample

(EDF) viscosity does not change significantly from 01 MPa to 02 GPa From 02 to 04

GPa the viscosity of sample EDF decreases by about 02 log units For hydrous samples

with 08 and 2 wt H2Ot (KS and GMR+2) viscosity increases monotonically by about

1 log unit as pressure increases from 01 MPa to 28 GPa For hydrous sample with about

4 wt H2Ot (GMR+4) viscosity first decreases as pressure increases from 01 MPa to

09 GPa and then increases from 09 to 28 GPa

At the experimental petrology laboratory of the University of Michigan a large

database has been accumulated on successful versus failed experiments in the diffusion

reaction kinetics and viscosity studies of silicate melts (Zhang et al 1997b 2000 Liu

and Zhang 2000 Zhang and Behrens 2000 Behrens and Zhang 2001 Xu and Zhang

2002 Behrens et al 2004 Liu et al 2004ab 2005 Hui et al 2008 Ni and Zhang

2008) Most of the failed experiments crystallized significantly Because these results

may be relevant to the discussion of viscosity (see Discussion) they are summarized in

Appendix D The data show

104

9

95

10

105

11

115

12

125

13

088 09 092 094 096 098

04 GPa02 GPa01 MPa (013 H2O)

logη

(Pasdot

s) A

EDF

095 1 105 11 115 12 125

283 GPa189 GPa094 GPa04 GPa01 MPa (08 H2O)

KS

B

9

95

10

105

11

115

12

125

13

11 115 12 125 13 135 14

283 GPa189 GPa094 GPa01 MPa (2 H2O)

GMR+2

logη

(Pasdot

s)

1000T (K)

C

125 13 135 14 145 15

283 GPa189 GPa094 GPa01 MPa (4 H2O)

D

GMR+4

1000T (K)

Fig 43 Comparisons of viscosities of given rhyolitic melts (EDF KS GMR+2 and GMR+4) at various pressures Data are from this study Straight lines are fit of the data by Arrhenius equation (ie Eq 6) Viscosities of various rhyolitic melts at 00001 GPa were calculated from Zhang et al (2003) as references

105

(1) It is more difficult to quench an overheated liquid into glass at high pressures than at

low pressures because of crystallization during quench at high pressures For example a

hydrous rhyolite melt containing 52 wt H2Ot quenched from 1873 K at 2 GPa (sample

239 in Appendix D) did not crystallize but a hydrous rhyolite sample containing only

09 wt H2Ot quenched from 1873 K at 4 GPa (sample 240 in Appendix D)

crystallized significantly

(2) Melts in the isothermal experiments at a temperature below the liquidus often

crystallize more easily at high pressures than at low pressures (Hui et al 2008) For

example a hydrous rhyolitic glass (09 wt H2Ot) held at 823 K and 3 GPa for 10 days

(sample 56 in Appendix D) did not crystallize significantly but a similar glass held at

the same temperature but 4 GPa for only 31 hours (sample 57 in Appendix D)

crystallized For another example a hydrous rhyolitic glass with 077 wt H2Ot held at

1123 K and 61 MPa for 72 hours (sample 172 in Appendix D) did not crystallize but

another sample with same amount of H2Ot held at 1123 K and 3 GPa for only one minute

(sample 174 in Appendix D) crystallized significantly

Fig 44 shows some more trends The findings indicate that crystallization rate

increases significantly with increasing pressure meaning crystal nucleation andor

growth rates in melts increase with increasing pressure in hydrous rhyolitic melts The

relationship with viscosity will be discussed in the next section

106

25

3

35

4

45

5

55

6

0 1 2 3 4 5

crystallizedglass

logt

(t in

s)

P (GPa)

873 plusmn 10 Κ

075-116 wt H2Ot

A

-5

-4

-3

-2

-1

0

1

2

3

0 1 2 3 4 5

crystallizedglasscritical quench 06wtcritical quench 09wtcritical quench 12wt

logq

(q in

Ks

)

P (GPa)

078-115 wt H2Ot

B

Fig 44 The effect of pressure on crystallization kinetics in the rhyolitic melt for (A) isothermal experiments and (B) controlled cooling rate experiments In (B) critical quench rates for rhyolitic melt with water contents of 06 09 and 12 wt are calculated from Eqs (8) and (9) (see text Senkov 2007) and the dashed lines are extrapolations to show the trends for 06 and 12 wt water respectively

107

4 DISCUSSION

41 PRESSURE DEPENDENCE OF VISCOSITY

Viscosities of a variety of silicate liquids in the low viscosity range have been

investigated using the falling sphere technique in high-pressure apparatus demonstrating

a complex pressure dependence of viscosities (Scarfe et al 1987 Lange 1994)

Pressure-induced viscosity change has been related to the degree of polymerization of the

melt in general (Scarfe et al 1987) Viscosities of anhydrous rhyolite melt (eg Scarfe et

al 1987) jadeite melt (eg Kushiro 1976) dacite melt (eg Tinker et al 2004)

andesite melt (eg Kushiro et al 1976) and some basalt melts (eg Scarfe et al 1987)

decrease with increasing pressure in the first several GPa whereas those of diopside melt

(eg Scarfe et al 1979) and peridotite melt (Liebske et al 2005) both highly

depolymerized increase with increasing pressure

Water dissolved in the silicate melt can depolymerize the melt by forming

hydroxyl group (Reaction 1) The negative pressure dependence of viscosity of

anhydrous melt may change to positive pressure dependence of viscosity after adding a

certain amount of water For example viscosity of anhydrous andesite melt decreases

with pressure (Kushiro et al 1976) but viscosity of andesite with 3 wt water increases

with pressure (Kushiro 1978) Also the pressure dependence of viscosity of a given melt

may change from positive to negative with further increase of pressure such as periodite

(Liebske et al 2005) or from negative to positive such as albite (Funakoshi et al

2002) In other words there may be a viscosity maximum or minimum with increasing

pressure

108

In the high viscosity range only a few studies have been conducted on the

pressure dependence of viscosity of silicate melts in a pressure range up to 04 GPa

previously Viscosity of the albite-diopside binary system shows a change in the sign of

the pressure dependence from negative for albite to positive for diopside (Schulze et al

1999 Behrens and Schulze 2003) The pressure dependence of viscosity of

haploandesite in the high viscosity range changes from negative for anhydrous melt to

positive for hydrous melt with 106 wt water or up (Liebske et al 2003) This is

consistent with pressure dependence of viscosity of andesite in the low viscosity range in

general (Kushiro et al 1976 Kushiro 1978) Moreover pressure effect on viscosity

becomes more pronounced with decreasing temperature

Due to experimental limitations viscosity of sample EDF which contained minor

amount of water was measured at pressures le 04 GPa The viscosity decreases with

increasing pressure as shown in Fig 43a in this pressure range That is it behaves as a

polymerized melt as expected But for the hydrous samples KS and GMR+2 as shown in

Figs 43b and 43c the viscosity increases with increasing pressure based on the new

data As dissolved H2O depolymerizes the melt this trend is consistent with literature

data (Kushiro et al 1976 Kushiro 1978 Liebske et al 2003) The viscosities of the

sample GMR+4 which contains about 4 wt water increase systematically from 1 GPa

to 3 GPa as shown in Fig 43d The pressure dependence of viscosity from ambient

pressure to 1 GPa is small and whether the dependence is positive or negative depends on

the temperature

109

42 MODELING THE P-T-X DEPENDENCE OF VISCOSITY

There are various models used to describe temperature dependence of viscosity of

anhydrous and hydrous natural silicate melts (eg Shaw 1972 Hui and Zhang 2007)

The pressure dependence of viscosity has been modeled for some anhydrous melts such

as peridotite liquid (Liebske et al 2005) but has not been quantified for hydrous natural

silicate melts because only limited data were available For example for hydrous

rhyolitic melt there are only two data points at pressure gt 05 GPa (one data point of

AOQ at 1173 K 1 GPa and another one at 1173 K 075 GPa Schulze et al 1996) in the

low viscosity range These new data are the first viscosity data at pressures ge 1 GPa in the

low-temperature (high viscosity) range Because data on the pressure dependence of

viscosity of rhyolitic melts in the high temperature range are limited (Schulze et al

1996) only the data in the low temperature region are considered in constructing a model

on the dependence of viscosity on temperature pressure and water content In this narrow

temperature range the Arrhenius relationship can describe the temperature dependence of

viscosity Hence parameters η0 and Ea in Eq (6) are treated as functions of water content

and pressure to construct a viscosity model The data used for the model include viscosity

data from this study and literature data in the high viscosity range (Neuville et al 1993

Stevenson et al 1995 Zhang et al 2003 Zhang and Xu 2007) Because the precision

of the parallel plate viscometer is much higher this data set was weighed 10 times more

than other data in the regression After some trials the equation below is found to fit the

data well

110

logη = a0 + aPP12

⎝ ⎜

⎠ ⎟ + b0 + bPP

12

⎝ ⎜

⎠ ⎟ 1minus exp c0 + cPP

12

⎝ ⎜

⎠ ⎟ X

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

+ d0 + dPP12

⎝ ⎜

⎠ ⎟ + e0 + ePP

12

⎝ ⎜

⎠ ⎟ 1minus exp f0 + fPP

12

⎝ ⎜

⎠ ⎟ X

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟ 1000

T

(7)

where P is pressure in GPa and X is mole fraction of total water content in the melt on a

single oxygen basis (Stolper 1982b Zhang 1999) The best-fit parameters in Eq (7)

with 2σ errors are a0 = -78470 plusmn 04972 aP = 11472 plusmn 05802 b0 = -124257 plusmn 09940

bP = 08080 plusmn 06278 c0 = -36440 plusmn 16134 cP = -101893 plusmn 17128 d0 = 213531 plusmn

05706 dP = -21722 plusmn 07371 e0 = -58335 plusmn 07198 eP = 40480 plusmn 06801 f0 = -893887

plusmn 103647 and fP = -305499 plusmn 152766 This equation can reproduce the whole database

(206 data points) with 2σ of 038 in terms of logη The dependence of viscosity as a

function of OH and molecular H2O concentrations was also examined at different

pressures but no simple relation emerged for a large range of water content Hence no

species information is included in fitting how viscosity depends on water concentration

Fig 45 shows a comparison between experimental viscosities and calculated values

using Eq (7) Although the fit is good extrapolation of the model beyond experimental

conditions is not recommended That is calculated viscosity at high pressures should be

inside the range of 109 to 1012 Pamiddots and T-P-XH2Ot conditions should be within conditions

shown in Fig 46 The calculated pressure dependence of viscosity of rhyolitic melts

with different water contents is shown in Fig 47 and it is in agreement with Figs 43b

43c and 43d

Glass transition temperature is an important rheological parameter of glass and

Eq (7) can be used to estimate glass transition temperature of rhyolitic melt under high

111

8

10

12

14

16

18

8 10 12 14 16 18

our dataliterature data11 line

measured logη

calc

ulat

ed lo

Fig 45 Comparison of measured viscosity data of rhyolitic melts with those calculated from Eq (7)

112

500

600

700

800

900

1000

1100

1200

1300

0 05 1 15 2 25 3

T (K

)

P (GPa)

0

1

2

3

4

5

6

7

8

0 05 1 15 2 25 3

H2O

t (w

t)

P (GPa)

A

B

Fig 46 P-T-XH2Ot range of all experimental data of the model ie Eq (7)

113

765

785

765755

845

815

775

794

815

845

A

9

95

10

105

11

115

12

0 005 01 015 02 025 03 035 04

logη

(Pasdot

s)

P (GPa)

750C

800C

850C

900C

750

800

850

900

469

605

575

529

577

549

512

535

502

C

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3

450C

500C

550C

600C

logη

(Pasdot

s)

P (GPa)

450

500

550

468

512483

462

441

459

428

410

477

369

D

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3

400C

450C

500C

logη

(Pasdot

s)

P (GPa)

400400

450

500

9

95

10

105

11

115

12

125

13

0 05 1 15 2 25 3P (GPa)

logη

(Pasdot

s)

550C

600C

650C

700C750C

550

600

650

700

558

678

635

589

574

689

642

591

711

654

611

753

A558

678

635

589

574

689

642

591

711

654

611

753

AB575583

594

613

634

652

Fig 47 Pressure effect on viscosity at some temperatures and water concentrations The curves (with temperature indicated by large numbers) are calculated from Eq (7) with different water concentrations (A) 013 wt (B) 08 wt (C) 2 wt and (D) 4 wt Points are experimental data at indicated temperatures (small numbers) and points at 01 MPa are calculated from the viscosity model of Zhang et al (2003)

114

pressure Fig 48 shows pressure dependence of glass transition temperatures of hydrous

rhyolitic melts containing different water contents calculated from Eq (7) with a cooling

rate of 028 Ks = 168 Kmin (at η = 1012 Pamiddots) The trend of pressure dependence of the

glass transition temperature (Fig 48) is the same as that of viscosity (Fig 47)

43 AN APPARENT PARADOX OF THE PRESSURE EFFECT ON VISCOSITY

AND ON GLASS FORMATION

Appendix 4 lists the melt compositions the experimental conditions and whether

the sample charges crystallized significantly during experiments Pressure facilitates

crystallization in both isothermal experiments and cooling experiments based on the

results in Appendix 4 as summarized in the Experimental results That is as pressure

increases crystallization is more rapid in isothermal experiments and it is also more

difficult to quench the same hydrous melt into glass from liquid One might expect that

the increased easiness of crystallization at high pressures were related to increasing

diffusivity and hence decreasing viscosity with increasing pressure However new

viscosity data show that viscosity of hydrous rhyolitic melt increases rather than

decreases with increasing pressure Hence there is an apparent paradox of increasing

viscosity as well as increased easiness of crystallization with increasing pressure

Raising the pressure increases the density of the melt and changes the structure of

the melt which might facilitate crystallization More importantly increasing the pressure

raises the liquidus of the melt Hence for a supercooled metastable liquid at a given

temperature the degree of undercooling is larger at higher pressure That is the Gibbs

free energy difference between the melt and the crystals ∆Gm-c increases with pressure

115

650

700

750

800

850

900

0 05 1 15 2 25 3

08 wt2 wt4 wt

T g (K

)

P (GPa)

Fig 48 Pressure dependence of glass transition temperatures of hydrous rhyolitic melts with different water contents (08 2 and 4 wt H2O) calculated from Eq (7) when η = 1012 Pamiddots (ie cooling rate is 028 Ks)

116

The increased easiness of crystallization at isothermal conditions may be partly attributed

to greater ∆Gm-c although quantification is not available at the moment

For cooling of a liquid from a temperature above the liquidus as the pressure

increases the liquidus is crossed at a higher temperature That is crystallization starts at a

higher temperature where kinetics is more rapid Furthermore there is a larger

temperature interval (and hence a larger time interval) for crystallization Hence more

crystallization is expected For this case the glass-forming ability (that is the degree of

difficulty of crystallization) has been proposed recently using the concept of fragility

(eg Martinez and Angell 2001 Senkov 2007) If the temperature dependence of

viscosity is Arrhenian from low to high viscosity (001 to 1015 Pamiddots) the liquid is said to

be strong If the temperature dependence of viscosity deviates from Arrhenian behavior

more the liquid is said to be more fragile It is easier for strong liquids to quench to

glass Senkov (2007) defined a dimensionless glass forming ability (GFA) parameter F1

which can be expressed as follows

F1 =2(Tg minus T0 )

2(Tg minus T0 ) + (TL minus Tg ) (8)

where TL is the liquidus Tg is the temperature at which the viscosity is 1012 Pamiddots and T0

(related to fragility) is the temperature in the VFT equation of logη = A + B(T-T0)

Senkov (2007) further related the critical cooling rate required for glass formation to the

GFA parameter as follows

qc = 10(054-F1)0047 (9)

If the cooling rate is above qc the liquid would be cooled into a glass Otherwise there

would be significant crystallization In order to apply the above approach TL as a

117

function of H2Ot and P was estimated from the MELTS program (Ghiorso and Sack

1995 Asimow and Ghiorso 1998) and Tg from the viscosity model developed in this

work (ie Eq 7) For T0 at low pressures the viscosity model of Zhang et al (2003) is

used which resulted in T0 of 300plusmn30 K for H2Ot gt 06 wt For viscosities of hydrous

rhyolitic melt at high pressures there are not enough data in the low-viscosity range to

estimate T0 Hence a constant T0 of 300 K was assumed to roughly estimate F1 and qc

The critical cooling rate as a function of pressure for a few H2Ot contents is plotted in

Fig 44b It can be seen that the limited experimental data are in agreement with this

approach Hence it appears that the paradox of increased easiness of crystallization at

high pressures and increasing viscosity with pressure can be reconciled by the GFA

parameter of Senkov (2007)

5 CONCLUDING REMARKS

Viscosity of hydrous rhyolitic melts containing 08 to 4 wt water was inferred

using the hydrous species reaction viscometer at pressures up to 283 GPa This

represents the first viscosity data at low temperature (high viscosity) and pressures above

1 GPa Viscosity of rhyolitic melts with 013 wt and 08 wt water was also measured

using the parallel plate creep viscometer at pressures up to 04 GPa No experimental

method is available to determine viscosity of ldquodryrdquo melt at higher pressures Combining

the data of this study with literature data a viscosity model is constructed as a function of

temperature pressure and water content in the high viscosity range The model (ie Eq

7) can be utilized for interpolation within the range of available data (Fig 46) but is not

recommended for extrapolation

118

REFERENCES

Akella J Ganguly J Grover R and Kennedy G (1973) Melting of lead and zinc to

60 kbar J Phys Chem Solids 34 631-636

Asimow PD and Ghiorso MS (1998) Algorithmic modifications extending MELTS to

calculate subsolidus phase relations Am Mineral 83 1127-1131

Behrens H and Nowak M (2003) Quantification of H2O speciation in silicate glasses

and melts by IR spectroscopy ndash in situ versus quench techniques Phase Trans 76

45-61

Behrens H and Schulze F (2003) Pressure dependence of melt viscosity in the system

NaAlSi3O8-CaMgSi2O6 Am Mineral 88 1351-1363

Behrens H and Zhang Y (2001) Ar diffusion in hydrous rhyolitic and albitic

glassesmelts Earth Planet Sci Lett 192 363-376

Behrens H Zhang Y and Xu Z (2004) H2O diffusion in dacitic and andesitic melts

Geochim Cosmochim Acta 68 5139-5150

Behrens H Zhang Y Leschik M Wiedenbeck M Heide G and Frischat GH

(2007) Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts

Earth Planet Sci Lett 254 69-76

Dingwell D (1986) Viscosity-temperature relationships in the system Na2Si2O5-

Na4Al2O5 Geochim Cosmochim Acta 50 1261-1265

Dingwell DB (1998) Melt viscosity and diffusion under elevated pressures Rev

Mineral 37 397-422

Dingwell DB and Webb SL (1990) Relaxation in silicate melts Eur J Mineral 2

427-449

119

Dorfman A Dingwell DB and Bagdassarov NS (1997) A rotating autoclave for

centrifuge studies Falling sphere viscometry Eur J Mineral 9 345-350

Dorfman A Hess K-U and Dingwell DB (1996) Centrifuge-assisted falling sphere

viscometry Eur J Mineral 8 507-514

Funakoshi K-i Suzuki A and Terasaki H (2002) In situ viscosity measurements of

albite melt under high pressure J Phys Condensed Matt 14 11343-11347

Ghiorso MS and Sack RO (1995) Chemical mass transfer in magmatic processes IV

A revised and internally consistent thermodynamic model for the interpolation and

extrapolation of liquid-solid equilibria in magmatic systems at elevated

temperatures and pressures Contrib Mineral Petrol 119 197-212

Hui H and Zhang Y (2007) Toward a general viscosity equation for natural anhydrous

and hydrous silicate melts Geochim Cosmochim Acta 71 403-416

Hui H Zhang Y Xu Z and Behrens H (2008) Pressure dependence of the speciation

of dissolved water in rhyolitic melts Geochim Cosmochim Acta In revision

Hummel W and Arndt J (1985) Variation of viscosity with temperature and

composition in the plagioclase system Contrib Mineral Petrol 90 83-92

Ihinger PD Zhang Y and Stolper EM (1999) The speciation of dissolved water in

rhyolitic melt Geochim Cosmochim Acta 63 3567-3578

Kushiro I (1976) Changes in viscosity and structure of melt of NaAlSi2O6 composition

at high pressures J Geophys Res 81 6347-6350

Kushiro I (1978) Density and viscosity of hydrous calc-alkalic andesite magma at high

pressures Carnegie Inst Washington Year Book 77 675-677

120

Kushiro I Yoder HS Jr and Myson BO (1976) Viscosities of basalt and andesite

melts at high pressures J Geophys Res 81 6351-6356

Lange RA (1994) The effect of H2O CO2 and F on the density and viscosity of silicate

melts Rev Mineral 30 331-365

Lees J and Williamson BHJ (1965) Combined very high pressurehigh temperature

calibration of the tetrahedral anvil apparatus fusion curves of zinc aluminium

germanium and silicon to 60 kilobars Nature 208 278-279

Liebske C Behrens H Holtz F and Lange RA (2003) The influence of pressure and

composition on the viscosity of andesitic melts Geochim Cosmochim Acta 67

473-485

Liebske C Schmickler B Terasaki H Poe BT Suzuki A Funakoshi K-i Ando

R and Rubie DC (2005) Viscosity of peridotite liquid up to 13 GPa Implications

for magma ocean viscosities Earth Planet Sci Lett 240 589-604

Lillie HR (1931) Viscosity of glass between the strain point and melting temperature J

Am Ceram Soc 14 502-512

Liu Y and Zhang Y (2000) Bubble growth in rhyolitic melt Earth Planet Sci Lett

181 251-264

Liu Y Behrens H and Zhang Y (2004a) The speciation of dissolved H2O in dacitic

melt Am Mineral 89 277-284

Liu Y Zhang Y and Behrens H (2004b) H2O diffusion in dacitic melt Chem Geol

209 327-340

Liu Y Zhang Y and Behrens H (2005) Solubility of H2O in rhyolitic melts at low

pressures J Volcanol Geotherm Res 143 219-235

121

Martinez L-M and Angell CA (2001) A thermodynamic connection to the fragility of

glass-forming liquids Nature 410 663-667

Moynihan CT Easteal AJ Wilder J and Tucker J (1976) Dependence of the glass

transition temperature on heating and cooling rate J Phys Chem 78 2673-2677

Neuville DR and Richet P (1991) Viscosity and mixing in molten (Ca Mg) pyroxenes

and garnets Geochim Cosmochim Acta 55 1011-1019

Neuville DR Courtial P Dingwell DB and Richet P (1993) Thermodynamic and

rheological properties of rhyolite and andesite melts Contrib Mineral Petrol 113

572-581

Newman S Stolper EM and Epstein S (1986) Measurement of water in rhyolitic

glasses calibration of an infrared spectroscopic technique Am Mineral 71 1527-

1541

Ni H and Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high

pressure data Chem Geol Revised

Rapp RP and Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar

Implications for continental growth and crust-mantle recycling J Petrol 36 891-

931

Reid J E Suzuki A Funakoshi K Terasaki H Poe BT Rubie DC and Ohtani

E (2003) The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa Phys

Earth Planet Inter 139 45-54

Richet P Lejeune A-M Holtz F and Roux J (1996) Water and the viscosity of

andesite melts Chem Geol 128 185-197

122

Rosenhauer M Scarfe CM and Virgo D (1979) Pressure dependence of the glass

transition temperature in glasses of diopside albite and sodium trisilicate

composition Carnegie Inst Washington Year Book 78 556-559

Rust AC and Cashman KV (2007) Multiple origins of obsidian pyroclasts and

implications for changes in the dynamics of the 1300 BP eruption of Newberry

Volcano USA Bull Volcanol 69 825-845

Scarfe CM Mysen BO and Virgo D (1979) Changes in viscosity and density of

melts of sodium disilicate sodium metasilicate and diopside composition with

pressure Carnegie Inst Washington Year Book 78 547-551

ScarfeCM Mysen BO and Virgo D (1987) Pressure dependence of the viscosity of

silicate melts In Mysen BO (ed) Magmatic Processes Physicochemical

Principles Geochem Soc Spec Pub 1 59-67

Scherer GW (1984) Use of the Adam-Gibbs equation in the analysis of structural

relaxation J Am Ceram Soc 67 504-511

Schulze F Behrens H and Hurkuck W (1999) Determination of the influence of

pressure and dissolved water on the viscosity of highly viscous melts Application

of a new parallel-plate viscometer Am Mineral 84 1512-1520

Schulze F Behrens H Holtz F Roux J and Johannes W (1996) The influence of

H2O on the viscosity of a haplogranitic melt Am Mineral 81 1155-1165

Senkov ON (2007) Correlation between fragility and glass-forming ability of metallic

alloys Phys Rev B 76 104202 DOI 101103PhysRevB76104202

Shaw HR (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature

range 700deg to 900degC J Geophys Res 68 6337-6343

123

Shaw HR (1972) Viscosities of magmatic silicate liquids An empirical method of

prediction Am J Sci 272 870-893

Silver LA Ihinger PD and Stolper E (1990) The influence of bulk composition on

the speciation of water in silicate glasses Contrib Mineral Petrol 104 142-162

Stevenson RJ Dingwell DB Webb SL and Bagdassarov NS (1995) The

equivalence of enthalpy and shear stress relaxation in rhyolitic obsidians and

quantification of the liquid-glass transition in volcanic processes J Volcanol

Geotherm Res 68 297-306

Stolper EM (1982a) The speciation of water in silicate melts Geochim Cosmochim

Acta 46 2609-2620

Stolper EM (1982b) Water in silicate glasses an infrared spectroscopic study Contrib

Mineral Petrol 81 1-17

Sylvester PJ (1998) Post-collisional strongly peraluminous granites Lithos 45 29-44

Tinker D Lesher CE Baxter GM Uchida T and Wang Y (2004) High-pressure

viscometry of polymerized silicate melts and limitations of the Eyring equation

Am Mineral 89 1701-1708

Withers AC and Behrens H (1999) Temperature-induced changes in the NIR spectra

of hydrous albitic and rhyolitic glasses between 300 and 100 K Phys Chem

Minerals 27 119-132

Xu Z and Zhang Y (2002) Quench rates in air water and liquid nitrogen and

inference of temperature in volcanic eruption columns Earth Planet Sci Lett 200

315-330

124

Zhang Y (1994) Reaction kinetics geospeedometry and relaxation theory Earth

Planet Sci Lett 122 373-391

Zhang Y (1999) H2O in rhyolitic glasses and melts Measurement speciation solubility

and diffusion Rev Geophys 37 493-516

Zhang Y and Behrens H (2000) H2O diffusion in rhyolitic melts and glasses Chem

Geol 169 243-262

Zhang Y Belcher R Ihinger PD Wang L Xu Z and Newman S (1997a) New

calibration of infrared measurement of dissolved water in rhyolitic glasses

Geochim Cosmochim Acta 61 3089-3100

Zhang Y Jenkins J and Xu Z (1997b) Kinetics of the reaction H2O + O hArr 2OH in

rhyolitic glasses upon cooling Geospeedometry and comparison with glass

transition Geochim Cosmochim Acta 61 2167-2173

Zhang Y Xu Z and Behrens H (2000) Hydrous species geospeedometer in rhyolite

Improved calibration and application Geochim Cosmochim Acta 64 3347-3355

Zhang Y Xu Z and Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from

kinetic experiments and a new viscosity model Am Mineral 88 1741-1752

ZhangY and Xu Z (2007) A long-duration experiment on hydrous species

geospeedometer and hydrous melt viscosity Geochim Cosmochim Acta 71 5226-

5232

125

CHAPTER V

CONCLUSIONS

The goal of this dissertation is to understand viscosity of natural silicate melts A

two-pronged approach is used One is to construct a general viscosity model using

available viscosity data (mostly at pressures below 05 GPa) to predict viscosity of all

natural silicate melts in all experimental temperature range at low pressures The second

is to experimentally investigate viscosity at high pressures and in the low temperature

range (high viscosity range) because such data are lacking Concerted effort on viscosity

measurements at high pressures will allow an even more general viscosity model

accounting for the effect of composition temperature and pressure

A new empirical viscosity equation for all natural and nearly natural silicate melts

at all experimentally covered temperature conditions is presented in Chapter II using the

following formulation

logη = A +BT

+ exp C +DT

⎛ ⎝ ⎜

⎞ ⎠ ⎟

where η is viscosity in Pamiddots T is temperature in K and A B C and D are linear functions

of mole fractions of oxide components except for H2O The formulation is first applied

successfully to fit the temperature and compositional dependence of viscosity for four

binary systems Then a simpler version of the model with eight parameters is found to fit

126

the compositional and temperature dependence of the viscosity data of anhydrous natural

silicate melts better than the best model in literature A general viscosity equation with 37

parameters using this empirical formulation can fit the entire high- and low-temperature

viscosity database (1451 data points) of all ldquonaturalrdquo anhydrous and hydrous silicate

melts

logη = minus683XSiO2minus17079XTiO2

minus1471XAl2O3exminus1801XMgO minus1976XCaO[

+3431X(Na K)2 Oexminus14038Z +15926XH2O minus 843X(Na K)AlO2 ]

+ 1814XSiO2+ 24893XTiO2

+ 3261XAl2O3ex+ 2596XMgO + 2264XCaO[

minus6829X(Na K)2 Oex+ 3884Z minus 4855XH2O +1612X(Na K)AlO2 ]1000 T +

exp 2173XAl2O3exminus 6198X(Fe Mn)O minus10553XMgO minus 6992XCaO[

minus8567X(Na K)2 Oex+ 33201Z minus 43222XH2O minus 316X(Na K)AlO2 ]

+ 216XSiO2minus14305XTiO2

minus 2210XAl2O3ex+ 3856X(Fe Mn)O +11083XMgO + 6712XCaO[

+5801X(Na K)2 Oex+ 38477XP2O5

minus 40497Z + 51375XH2O]1000 T

where η is viscosity in Pamiddots T is temperature in K Xi means mole fraction of oxide

component i and Z=(XH2O)1[1+(185797T)] Al2O3ex or (Na K)2Oex mean excess oxide after

forming (Na K)AlO2 The 2σ deviation of the fit is 061 logη units This general model

can be used to calculate viscosity for modeling magma chamber processes and volcanic

eruptions It also can be used to calculate glass transition temperature for different silicate

melts

Temperature and melt composition affect melt viscosity but pressure can also

affect the viscosity of silicate melt The pressure dependence of hydrous melt viscosity in

the high viscosity range is not known Hence the pressure dependence of rhyolitic melts

in the high viscosity range has been investigated in this dissertation (Chapters III and IV)

Hydrous species reaction viscometer in piston cylinder and parallel-plate creep

viscometer in internally heated pressure vessel were used to investigate viscosity under

127

high pressure In order to use hydrous species reaction viscometer under high pressure it

is necessary to study the speciation of dissolved water in rhyolitic melt under high

pressure first

The equilibrium of reaction between two dissolved water species (H2Om and OH)

as a function of pressure (00001 094 189 and 283 GPa) temperature (624-1027 K)

and H2O concentrations (08 to 42 wt) was investigated in this study The speciation

data with total H2O content le 22 can be described by an ideal mixing model consistent

with previous results With inclusion of speciation data at higher water contents one way

to describe the speciation data is a regular solution model A speciation model was

constructed to accommodate the dependence of H2O speciation in the rhyolitic melts on

T-P-X

( )

2 m

32

3 32 2

H O OH

1000ln 18120 03832 ( 30830+02999 +00507 )+

( 74203+50262 31271 ) (30437 54527 +30464 )

K P P PT

P P X P P X

⎛= minus + minus⎜

⎝⎞

minus minus + minus ⎟⎠

where P is pressure in GPa T is temperature in K and X is mole fraction of species H2Om

or OH This formulation can be used to predict species concentrations at P le 283 GPa

total H2O content le 42 wt and temperature of 624-1027 K Furthermore it can be used

to calculate apparent equilibrium temperature which can then be used to infer viscosity

of hydrous rhyolitic melts under high pressure The results of Chapter III provide basis

for the study of Chapter IV

With the study of the speciation of dissolved water in rhyolitic melt under high

pressure viscosity of hydrous rhyolitic melts containing 08 to 4 wt water was inferred

using the hydrous species reaction viscometer at pressures up to 283 GPa Viscosity of

128

rhyolitic melts with 013 wt and 08 wt water was also measured using the parallel

plate creep viscometer at pressures up to 04 GPa but no experiment method is available

to determine viscosity of ldquodryrdquo melt at pressures gt 05 GPa Combining the data of this

study with previous data an Arrhenian viscosity model in high viscosity range is

constructed

logη = minus78470 +11472P12

⎝ ⎜

⎠ ⎟ +

minus124257 + 08080P12

⎝ ⎜

⎠ ⎟ 1minus exp minus36440 minus101893P

12

⎝ ⎜

⎠ ⎟ x

⎝ ⎜ ⎜

⎠ ⎟ ⎟ +

213531minus 21722P12

⎝ ⎜

⎠ ⎟ +

⎝ ⎜ ⎜

minus58335 + 40480P12

⎝ ⎜

⎠ ⎟ 1minus exp minus893887 minus 305499P

12

⎝ ⎜

⎠ ⎟ x

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ⎞

⎠ ⎟ ⎟ 1000

T

where P is pressure in GPa and X is mole fraction of total water content in the melt This

model can be utilized for interpolation but is not recommended for extrapolation beyond

the range of available data (Figure 46 in Chapter IV)

129

APPENDICES

130

APPENDIX A

VISCOSITY DATA OF NATURAL SILICATE MELTS

The viscosity data on the following pages are used to fit Eqn 11 in Chapter II The reference numbers of all the viscosity data

points is the same as the ones in Table 23

Table A1 Viscosity database used to fit Eqn 11

measured calculated SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O K2O P2O5 H2O T logη logη ∆

Comp wt wt wt wt wt wt wt wt wt wt wt K Pas Pas ref

1 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 1573 041 002 -039 12 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9774 916 917 001 13 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9829 894 903 009 14 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9927 866 877 011 15 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8865 137 1368 -002 16 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8923 134 1307 -033 17 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 8992 1299 1247 -052 18 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9121 1222 116 -062 19 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9136 1216 1151 -065 1

10 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9187 1183 1124 -059 111 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9242 1156 1097 -059 1

131

12 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9292 1126 1075 -051 113 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9341 1104 1055 -049 114 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9409 1075 103 -045 115 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9447 1051 1016 -035 116 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9528 1017 989 -028 117 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9582 993 972 -021 118 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9595 988 968 -02 119 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 9664 957 948 -009 120 Bn3 4357 297 1018 0 0 917 2607 759 096 0 002 972 935 932 -003 121 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8458 122 119 -03 122 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8511 1195 1158 -037 123 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 856 1164 1131 -033 124 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8671 1113 1076 -037 125 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8721 1091 1053 -038 126 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8773 1066 1032 -034 127 Bn3 4357 297 1018 0 0 917 2607 759 096 0 068 8878 1025 991 -034 128 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8193 1215 123 015 129 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8269 1176 1182 006 130 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8342 1135 1141 006 131 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8409 1108 1106 -002 132 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8456 1084 1084 0 133 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8516 1055 1057 002 134 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8563 1035 1037 002 135 Bn3 4357 297 1018 0 0 917 2607 759 096 0 1 8615 1013 1016 003 136 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 800 1238 1259 021 137 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8032 1207 1237 03 138 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8095 1188 1198 01 139 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8141 1159 1171 012 140 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8206 1136 1136 0 141 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8253 1111 1112 001 142 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8305 1086 1088 002 143 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8359 106 1063 003 1

132

44 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 841 1039 1042 003 145 Bn3 4357 297 1018 0 0 917 2607 759 096 0 126 8457 1018 1023 005 146 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 7945 1233 1262 029 147 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8051 1192 1195 003 148 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8204 1102 1114 012 149 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8284 1076 1076 0 150 Bn3 4357 297 1018 0 0 917 2607 759 096 0 135 8362 1034 1043 009 151 Bn3 4357 297 1018 0 0 917 2607 759 096 0 188 7617 123 1297 067 152 Bn3 4357 297 1018 0 0 917 2607 759 096 0 188 8023 1072 1083 011 153 Bn3 4357 297 1018 0 0 917 2607 759 096 0 196 7794 1157 1175 018 154 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14139 196 294 098 155 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14635 165 239 074 156 Te2 5056 235 1403 0 0 879 15 704 301 0 002 14975 145 203 058 157 Te2 5056 235 1403 0 0 879 15 704 301 0 002 15132 138 187 049 158 Te2 5056 235 1403 0 0 879 15 704 301 0 002 1565 113 136 023 159 Te2 5056 235 1403 0 0 879 15 704 301 0 002 16144 091 091 0 160 Te2 5056 235 1403 0 0 879 15 704 301 0 002 16662 07 047 -023 161 Te2 5056 235 1403 0 0 879 15 704 301 0 002 17186 05 004 -046 162 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9763 993 1052 059 163 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9831 971 1032 061 164 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9867 957 1021 064 165 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9921 93 1006 076 166 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9972 918 993 075 167 Te2 5056 235 1403 0 0 879 15 704 301 0 002 10081 873 964 091 168 Te2 5056 235 1403 0 0 879 15 704 301 0 002 918 1285 1294 009 169 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9307 1205 1225 02 170 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9341 1186 1209 023 171 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9464 1132 1156 024 172 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9567 1075 1117 042 173 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9606 1061 1103 042 174 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9673 1038 108 042 175 Te2 5056 235 1403 0 0 879 15 704 301 0 002 9712 1021 1068 047 1

133

76 Te2 5056 235 1403 0 0 879 15 704 301 0 012 905 127 1272 002 177 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9156 1201 1218 017 178 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9265 1177 1169 -008 179 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9374 112 1126 006 180 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9478 1067 109 023 181 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9589 1023 1054 031 182 Te2 5056 235 1403 0 0 879 15 704 301 0 012 9684 987 1025 038 183 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8684 1249 1238 -011 184 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8785 1197 1193 -004 185 Te2 5056 235 1403 0 0 879 15 704 301 0 052 8898 1157 1148 -009 186 Te2 5056 235 1403 0 0 879 15 704 301 0 052 899 1099 1114 015 187 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8342 1238 1258 02 188 Te2 5056 235 1403 0 0 879 15 704 301 0 088 844 1178 1216 038 189 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8555 1158 1171 013 190 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8665 1121 113 009 191 Te2 5056 235 1403 0 0 879 15 704 301 0 088 8761 1077 1097 02 192 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8304 1239 1262 023 193 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8416 1215 1214 -001 194 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8518 1163 1174 011 195 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8621 1143 1136 -007 196 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8695 1049 111 061 197 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8828 1041 1065 024 198 Te2 5056 235 1403 0 0 879 15 704 301 0 092 8935 995 1032 037 199 Te2 5056 235 1403 0 0 879 15 704 301 0 092 918 892 961 069 1

100 Te2 5056 235 1403 0 0 879 15 704 301 0 136 822 1251 1179 -072 1101 Te2 5056 235 1403 0 0 879 15 704 301 0 136 832 1189 1144 -045 1102 Te2 5056 235 1403 0 0 879 15 704 301 0 136 8366 1141 1128 -013 1103 Te2 5056 235 1403 0 0 879 15 704 301 0 136 8475 1112 1091 -021 1104 Te2 5056 235 1403 0 0 879 15 704 301 0 16 8255 1131 1121 -01 1105 Te2 5056 235 1403 0 0 879 15 704 301 0 16 816 1213 1153 -06 1106 Te2 5056 235 1403 0 0 879 15 704 301 0 16 847 1091 1052 -039 1107 Te2 5056 235 1403 0 0 879 15 704 301 0 227 818 1079 1046 -033 1

134

108 Te2 5056 235 1403 0 0 879 15 704 301 0 227 7827 126 1158 -102 1109 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 18155 192 15 -042 2110 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 1766 212 176 -036 2111 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 17219 233 201 -032 2112 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 16694 257 233 -024 2113 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 16174 286 266 -02 2114 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9733 1039 1004 -035 2115 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 990 997 97 -027 2116 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10051 962 94 -022 2117 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10152 938 921 -017 2118 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10268 915 9 -015 2119 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10348 897 886 -011 2120 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 10464 866 866 0 2121 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 8892 1312 1206 -106 2122 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 8982 1271 1181 -09 2123 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 911 1225 1148 -077 2124 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 920 1196 1125 -071 2125 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9322 1155 1095 -06 2126 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9415 1129 1074 -055 2127 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9523 1094 1049 -045 2128 Ph4 5882 079 1942 0 0 187 235 931 744 0 002 9625 1067 1027 -04 2129 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7308 1202 1147 -055 2130 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7406 1154 1121 -033 2131 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7501 1121 1096 -025 2132 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7617 1091 1067 -024 2133 Ph4 5882 079 1942 0 0 187 235 931 744 0 146 7823 1031 1017 -014 2134 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7303 1203 1139 -064 2135 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 741 1179 111 -069 2136 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7617 1092 1057 -035 2137 Ph4 5882 079 1942 0 0 187 235 931 744 0 152 7809 104 1011 -029 2138 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6764 1234 1201 -033 2139 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6835 1197 1179 -018 2

135

140 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 6914 1167 1155 -012 2141 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7026 1139 1123 -016 2142 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7176 1089 1081 -008 2143 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7279 1053 1053 0 2144 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7381 1022 1027 005 2145 Ph4 5882 079 1942 0 0 187 235 931 744 0 215 7479 1005 1003 -002 2146 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6541 1214 1183 -031 2147 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 664 1176 1152 -024 2148 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6751 1137 1118 -019 2149 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 6859 109 1086 -004 2150 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 7043 1035 1035 0 2151 Ph4 5882 079 1942 0 0 187 235 931 744 0 283 7164 996 1003 007 2152 Ph4 5882 079 1942 0 0 187 235 931 744 0 472 587 1237 1221 -016 2153 Ph4 5882 079 1942 0 0 187 235 931 744 0 472 6013 1177 1168 -009 2154 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 18277 186 142 -044 2155 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 17765 209 173 -036 2156 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 17258 232 205 -027 2157 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 16778 256 238 -018 2158 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 16285 283 273 -01 2159 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1578 312 312 0 2160 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 15317 341 35 009 2161 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9733 1196 1243 047 2162 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9818 1167 1212 045 2163 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9942 1123 117 047 2164 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9984 1114 1156 042 2165 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9992 1109 1153 044 2166 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10146 1059 1106 047 2167 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10361 1004 1046 042 2168 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1045 982 1023 041 2169 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10572 953 993 04 2170 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10658 934 973 039 2171 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 10826 899 935 036 2

136

172 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 1092 881 915 034 2173 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 11031 858 892 034 2174 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 11137 837 871 034 2175 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 19287 146 086 -06 2176 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 18796 164 113 -051 2177 Tr6 6445 05 1671 0 0 292 536 67 337 0 002 9511 1277 1331 054 2178 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 8792 1216 1175 -041 2179 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 8895 1178 115 -028 2180 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9099 1114 1102 -012 2181 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9309 105 1054 004 2182 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9422 1024 1029 005 2183 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9579 985 995 01 2184 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9659 96 978 018 2185 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9793 931 951 02 2186 Tr6 6445 05 1671 0 0 292 536 67 337 0 057 9893 908 93 022 2187 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8324 122 1202 -018 2188 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8362 1208 1193 -015 2189 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8371 1199 1191 -008 2190 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8426 1183 1178 -005 2191 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8472 1173 1167 -006 2192 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8582 1142 1141 -001 2193 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8698 1104 1115 011 2194 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8793 108 1093 013 2195 Tr6 6445 05 1671 0 0 292 536 67 337 0 083 8899 1049 107 021 2196 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 7944 1221 1209 -012 2197 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 7998 1201 1195 -006 2198 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8048 1186 1183 -003 2199 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8121 1166 1165 -001 2200 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8207 1137 1144 007 2201 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8286 1115 1126 011 2202 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8393 109 1101 011 2203 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8466 1066 1084 018 2

137

204 Tr6 6445 05 1671 0 0 292 536 67 337 0 119 8548 1042 1066 024 2205 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7254 1231 1238 007 2206 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 736 1193 1207 014 2207 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7436 1157 1185 028 2208 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7491 1145 117 025 2209 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7578 1119 1146 027 2210 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 769 1086 1116 03 2211 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7806 1057 1086 029 2212 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 7912 1025 106 035 2213 Tr6 6445 05 1671 0 0 292 536 67 337 0 219 8022 1001 1033 032 2214 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 6922 1223 1254 031 2215 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 7033 1189 1218 029 2216 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 713 1148 1189 041 2217 Tr6 6445 05 1671 0 0 292 536 67 337 0 29 7229 1121 1159 038 2218 Tr6 6445 05 1671 0 0 292 536 67 337 0 492 6211 123 13 07 2219 Tr6 6445 05 1671 0 0 292 536 67 337 0 492 6308 1189 1264 075 2220 H3 786 0 125 0 0 0 0 46 42 0 002 14532 679 736 057 3221 H3 786 0 125 0 0 0 0 46 42 0 002 11549 1102 1117 015 4222 H3 786 0 125 0 0 0 0 46 42 0 002 11782 1063 108 017 4223 H3 786 0 125 0 0 0 0 46 42 0 002 11989 1028 1048 02 4224 H3 786 0 125 0 0 0 0 46 42 0 002 1212 1016 1029 013 4225 H3 786 0 125 0 0 0 0 46 42 0 002 16702 49 548 058 4226 H3 786 0 125 0 0 0 0 46 42 0 002 17192 453 512 059 4227 H3 786 0 125 0 0 0 0 46 42 0 002 17682 415 478 063 4228 H3 786 0 125 0 0 0 0 46 42 0 002 18172 381 446 065 4229 H3 786 0 125 0 0 0 0 46 42 0 002 18672 358 416 058 4230 H3 786 0 125 0 0 0 0 46 42 0 002 19162 324 387 063 4231 H5 741 0 117 0 0 0 0 9 44 0 002 94765 974 1007 033 4232 H5 741 0 117 0 0 0 0 9 44 0 002 91965 1045 1063 018 4233 H5 741 0 117 0 0 0 0 9 44 0 002 90365 107 1097 027 4234 H5 741 0 117 0 0 0 0 9 44 0 002 88345 1135 1142 007 4235 H5 741 0 117 0 0 0 0 9 44 0 002 12132 601 639 038 4

138

236 H5 741 0 117 0 0 0 0 9 44 0 002 11432 684 716 032 4237 H5 741 0 117 0 0 0 0 9 44 0 002 10732 784 804 02 4238 H5 741 0 117 0 0 0 0 9 44 0 002 12932 533 564 031 4239 H5 741 0 117 0 0 0 0 9 44 0 002 17682 253 268 015 4240 H5 741 0 117 0 0 0 0 9 44 0 002 17192 272 29 018 4241 H5 741 0 117 0 0 0 0 9 44 0 002 16702 291 314 023 4242 H5 741 0 117 0 0 0 0 9 44 0 002 16212 314 34 026 4243 H5 741 0 117 0 0 0 0 9 44 0 002 15712 338 367 029 4244 H5 741 0 117 0 0 0 0 9 44 0 002 15222 361 396 035 4245 H5 741 0 117 0 0 0 0 9 44 0 002 14732 387 427 04 4246 H7 746 0 118 0 0 0 0 44 92 0 002 96935 1016 1086 07 4247 H7 746 0 118 0 0 0 0 44 92 0 002 94575 1065 1135 07 4248 H7 746 0 118 0 0 0 0 44 92 0 002 92725 1115 1175 06 4249 H7 746 0 118 0 0 0 0 44 92 0 002 18672 254 248 -006 4250 H7 746 0 118 0 0 0 0 44 92 0 002 18172 272 271 -001 4251 H7 746 0 118 0 0 0 0 44 92 0 002 17682 292 295 003 4252 H7 746 0 118 0 0 0 0 44 92 0 002 17192 314 32 006 4253 H7 746 0 118 0 0 0 0 44 92 0 002 16702 336 347 011 4254 H7 746 0 118 0 0 0 0 44 92 0 002 16212 357 376 019 4255 H7 746 0 118 0 0 0 0 44 92 0 002 15712 382 407 025 4256 H2 779 0 1189 0 0 0 0 453 417 0 002 12424 977 978 001 5257 H2 779 0 1189 0 0 0 0 453 417 0 002 11765 109 1076 -014 5258 H2 779 0 1189 0 0 0 0 453 417 0 002 11174 115 1173 023 5259 H2 779 0 1189 0 0 0 0 453 417 0 002 19652 298 353 055 5260 H1 7612 0 1353 0 0 0 0 465 568 0 003 16732 491 502 011 6261 H1 7612 0 1353 0 0 0 0 465 568 0 003 16732 492 502 01 6262 H1 7612 0 1353 0 0 0 0 465 568 0 105 14732 421 505 084 6263 H1 7612 0 1353 0 0 0 0 465 568 0 105 15732 377 435 058 6264 H1 7612 0 1353 0 0 0 0 465 568 0 155 14732 385 437 052 6265 H1 7612 0 1353 0 0 0 0 465 568 0 155 15732 345 371 026 6266 H1 7612 0 1353 0 0 0 0 465 568 0 155 16732 298 308 01 6267 H1 7612 0 1353 0 0 0 0 465 568 0 209 14732 361 377 016 6

139

268 H1 7612 0 1353 0 0 0 0 465 568 0 209 15732 32 313 -007 6269 H1 7612 0 1353 0 0 0 0 465 568 0 258 15732 307 272 -035 6270 H1 7612 0 1353 0 0 0 0 465 568 0 322 14732 327 288 -039 6271 H1 7612 0 1353 0 0 0 0 465 568 0 322 15732 288 232 -056 6272 H1 7612 0 1353 0 0 0 0 465 568 0 375 15732 254 208 -046 6273 H1 7612 0 1353 0 0 0 0 465 568 0 5 12732 337 332 -005 6274 H1 7612 0 1353 0 0 0 0 465 568 0 5 14232 275 246 -029 6275 H1 7612 0 1353 0 0 0 0 465 568 0 5 11732 395 398 003 6276 H1 7612 0 1353 0 0 0 0 465 568 0 59 12732 318 307 -011 6277 H1 7612 0 1353 0 0 0 0 465 568 0 59 11732 371 37 -001 6278 H1 7612 0 1353 0 0 0 0 465 568 0 59 11732 363 37 007 6279 H1 7612 0 1353 0 0 0 0 465 568 0 59 10732 425 441 016 6280 H1 7612 0 1353 0 0 0 0 465 568 0 703 10732 403 414 011 6281 H1 7612 0 1353 0 0 0 0 465 568 0 703 11732 346 346 0 6282 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 368 394 026 6283 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 367 394 027 6284 H1 7612 0 1353 0 0 0 0 465 568 0 821 10732 372 394 022 6285 H1 7612 0 1353 0 0 0 0 465 568 0 821 11732 313 33 017 6286 H1 7612 0 1353 0 0 0 0 465 568 0 821 11732 312 33 018 6287 H3 786 0 125 0 0 0 0 46 42 0 041 97675 1076 112 044 7288 H3 786 0 125 0 0 0 0 46 42 0 042 92185 118 1184 004 7289 H3 786 0 125 0 0 0 0 46 42 0 042 96045 114 1134 -006 7290 H3 786 0 125 0 0 0 0 46 42 0 095 93975 942 992 05 7291 H3 786 0 125 0 0 0 0 46 42 0 096 86685 1098 1098 0 7292 H3 786 0 125 0 0 0 0 46 42 0 096 88455 1045 1068 023 7293 H3 786 0 125 0 0 0 0 46 42 0 099 88425 1048 1062 014 7294 H3 786 0 125 0 0 0 0 46 42 0 099 92275 968 1005 037 7295 H3 786 0 125 0 0 0 0 46 42 0 128 88565 983 1004 021 7296 H3 786 0 125 0 0 0 0 46 42 0 13 89455 96 986 026 7297 H3 786 0 125 0 0 0 0 46 42 0 131 87595 988 1015 027 7298 H3 786 0 125 0 0 0 0 46 42 0 132 85605 1038 1048 01 7299 H3 786 0 125 0 0 0 0 46 42 0 133 82255 1096 1112 016 7

140

300 H3 786 0 125 0 0 0 0 46 42 0 135 80155 1139 1154 015 7301 H3 786 0 125 0 0 0 0 46 42 0 137 84055 1058 1069 011 7302 H3 786 0 125 0 0 0 0 46 42 0 18 84975 969 987 018 7303 H3 786 0 125 0 0 0 0 46 42 0 185 78015 113 1127 -003 7304 H3 786 0 125 0 0 0 0 46 42 0 188 81975 1009 1035 026 7305 H3 786 0 125 0 0 0 0 46 42 0 225 81845 962 992 03 7306 H3 786 0 125 0 0 0 0 46 42 0 229 77505 1049 1082 033 7307 H3 786 0 125 0 0 0 0 46 42 0 261 82185 912 946 034 7308 H3 786 0 125 0 0 0 0 46 42 0 335 78825 993 943 -05 7309 A4 624 055 2001 003 002 322 908 352 093 012 0 9962 1276 1295 019 8310 A4 624 055 2001 003 002 322 908 352 093 012 0 10079 1232 1243 011 8311 A4 624 055 2001 003 002 322 908 352 093 012 0 10114 1218 1229 011 8312 A4 624 055 2001 003 002 322 908 352 093 012 0 10185 1195 12 005 8313 A4 624 055 2001 003 002 322 908 352 093 012 0 10249 1174 1176 002 8314 A4 624 055 2001 003 002 322 908 352 093 012 0 10335 1141 1145 004 8315 A4 624 055 2001 003 002 322 908 352 093 012 0 10437 1109 1111 002 8316 A4 624 055 2001 003 002 322 908 352 093 012 0 10538 1076 1079 003 8317 A4 624 055 2001 003 002 322 908 352 093 012 0 10589 1057 1064 007 8318 A4 624 055 2001 003 002 322 908 352 093 012 0 10689 1033 1035 002 8319 A4 624 055 2001 003 002 322 908 352 093 012 0 1073 1019 1024 005 8320 A4 624 055 2001 003 002 322 908 352 093 012 0 10846 987 993 006 8321 A4 624 055 2001 003 002 322 908 352 093 012 0 10941 96 969 009 8322 A4 624 055 2001 003 002 322 908 352 093 012 0 11077 93 936 006 8323 A4 624 055 2001 003 002 322 908 352 093 012 0 11138 912 922 01 8324 A4 624 055 2001 003 002 322 908 352 093 012 0 11238 892 9 008 8325 A4 624 055 2001 003 002 322 908 352 093 012 0 15137 335 367 032 8326 A4 624 055 2001 003 002 322 908 352 093 012 0 15366 317 346 029 8327 A4 624 055 2001 003 002 322 908 352 093 012 0 15755 29 312 022 8328 A4 624 055 2001 003 002 322 908 352 093 012 0 16011 273 29 017 8329 A4 624 055 2001 003 002 322 908 352 093 012 0 16224 259 273 014 8330 A4 624 055 2001 003 002 322 908 352 093 012 0 16504 242 25 008 8331 A4 624 055 2001 003 002 322 908 352 093 012 0 16731 228 233 005 8

141

332 A4 624 055 2001 003 002 322 908 352 093 012 0 16986 215 214 -001 8333 A4 624 055 2001 003 002 322 908 352 093 012 0 17286 197 192 -005 8334 A4 624 055 2001 003 002 322 908 352 093 012 0 17531 185 175 -01 8335 A4 624 055 2001 003 002 322 908 352 093 012 0 17762 174 159 -015 8336 A4 624 055 2001 003 002 322 908 352 093 012 0 18017 162 142 -02 8337 A4 624 055 2001 003 002 322 908 352 093 012 0 18039 16 141 -019 8338 A4 624 055 2001 003 002 322 908 352 093 012 0 18295 148 125 -023 8339 A4 624 055 2001 003 002 322 908 352 093 012 0 18522 139 11 -029 8340 A4 624 055 2001 003 002 322 908 352 093 012 0 18746 128 097 -031 8341 A4 624 055 2001 003 002 322 908 352 093 012 0 19041 116 079 -037 8342 A4 624 055 2001 003 002 322 908 352 093 012 0 19294 105 065 -04 8343 A4 624 055 2001 003 002 322 908 352 093 012 0 1952 096 052 -044 8344 A4 624 055 2001 003 002 322 908 352 093 012 0 19779 086 038 -048 8345 A4 624 055 2001 003 002 322 908 352 093 012 027 9357 127 1279 009 8346 A4 624 055 2001 003 002 322 908 352 093 012 027 9461 1232 1242 01 8347 A4 624 055 2001 003 002 322 908 352 093 012 027 9654 1164 1178 014 8348 A4 624 055 2001 003 002 322 908 352 093 012 027 9824 1109 1125 016 8349 A4 624 055 2001 003 002 322 908 352 093 012 027 9989 1054 1077 023 8350 A4 624 055 2001 003 002 322 908 352 093 012 027 10108 1023 1045 022 8351 A4 624 055 2001 003 002 322 908 352 093 012 027 10218 993 1016 023 8352 A4 624 055 2001 003 002 322 908 352 093 012 027 10416 946 967 021 8353 A4 624 055 2001 003 002 322 908 352 093 012 027 10614 903 921 018 8354 A4 624 055 2001 003 002 322 908 352 093 012 027 10813 856 878 022 8355 A4 624 055 2001 003 002 322 908 352 093 012 1 8645 1219 118 -039 8356 A4 624 055 2001 003 002 322 908 352 093 012 1 8776 1173 1147 -026 8357 A4 624 055 2001 003 002 322 908 352 093 012 1 8984 1103 1097 -006 8358 A4 624 055 2001 003 002 322 908 352 093 012 1 9114 1062 1066 004 8359 A4 624 055 2001 003 002 322 908 352 093 012 1 9223 1033 1041 008 8360 A4 624 055 2001 003 002 322 908 352 093 012 1 9423 978 996 018 8361 A4 624 055 2001 003 002 322 908 352 093 012 1 9632 928 951 023 8362 A4 624 055 2001 003 002 322 908 352 093 012 1 9861 874 903 029 8363 A4 624 055 2001 003 002 322 908 352 093 012 2 7937 1187 1166 -021 8

142

364 A4 624 055 2001 003 002 322 908 352 093 012 2 804 1148 1139 -009 8365 A4 624 055 2001 003 002 322 908 352 093 012 2 8245 1072 1088 016 8366 A4 624 055 2001 003 002 322 908 352 093 012 2 8251 1075 1087 012 8367 A4 624 055 2001 003 002 322 908 352 093 012 2 8252 1073 1087 014 8368 A4 624 055 2001 003 002 322 908 352 093 012 2 8255 1074 1086 012 8369 A4 624 055 2001 003 002 322 908 352 093 012 2 8257 107 1085 015 8370 A4 624 055 2001 003 002 322 908 352 093 012 2 8461 1008 1038 03 8371 A4 624 055 2001 003 002 322 908 352 093 012 2 8664 949 992 043 8372 A4 624 055 2001 003 002 322 908 352 093 012 266 7215 1342 1288 -054 8373 A4 624 055 2001 003 002 322 908 352 093 012 266 7426 1266 1223 -043 8374 A4 624 055 2001 003 002 322 908 352 093 012 266 7537 122 119 -03 8375 A4 624 055 2001 003 002 322 908 352 093 012 266 7651 117 1158 -012 8376 A4 624 055 2001 003 002 322 908 352 093 012 266 7867 109 11 01 8377 A4 624 055 2001 003 002 322 908 352 093 012 266 7992 1049 1068 019 8378 A4 624 055 2001 003 002 322 908 352 093 012 266 823 975 1011 036 8379 A4 624 055 2001 003 002 322 908 352 093 012 266 8438 923 964 041 8380 A4 624 055 2001 003 002 322 908 352 093 012 266 864 875 921 046 8381 A4 624 055 2001 003 002 322 908 352 093 012 346 723 1249 1195 -054 8382 A4 624 055 2001 003 002 322 908 352 093 012 346 7331 121 1165 -045 8383 A4 624 055 2001 003 002 322 908 352 093 012 346 7445 116 1132 -028 8384 A4 624 055 2001 003 002 322 908 352 093 012 346 7552 1121 1102 -019 8385 A4 624 055 2001 003 002 322 908 352 093 012 346 7644 1078 1077 -001 8386 A4 624 055 2001 003 002 322 908 352 093 012 346 7911 995 1009 014 8387 A4 624 055 2001 003 002 322 908 352 093 012 346 7978 976 993 017 8388 A4 624 055 2001 003 002 322 908 352 093 012 346 8123 942 959 017 8389 A4 624 055 2001 003 002 322 908 352 093 012 346 8348 875 909 034 8390 R6 7379 005 1511 042 005 007 097 471 402 001 88 97315 511 469 -042 9391 R6 7379 005 1511 042 005 007 097 471 402 001 88 10732 414 392 -022 9392 R6 7379 005 1511 042 005 007 097 471 402 001 88 11732 345 327 -018 9393 R14 7692 01 1292 089 005 011 086 389 425 003 008 12212 864 885 021 10394 R14 7692 01 1292 089 005 011 086 389 425 003 008 12062 881 906 025 10395 R14 7692 01 1292 089 005 011 086 389 425 003 008 11792 92 945 025 10

143

396 R14 7692 01 1292 089 005 011 086 389 425 003 008 11512 965 987 022 10397 R14 7692 01 1292 089 005 011 086 389 425 003 008 11382 982 1007 025 10398 R15 7699 003 1302 071 01 004 048 431 431 0 149 72315 1318 1326 008 10399 R15 7699 003 1302 071 01 004 048 431 431 0 149 73715 1285 1286 001 10400 R15 7699 003 1302 071 01 004 048 431 431 0 149 74815 1245 1256 011 10401 R15 7699 003 1302 071 01 004 048 431 431 0 149 75815 1214 123 016 10402 R15 7699 003 1302 071 01 004 048 431 431 0 149 77415 1191 1189 -002 10403 R15 7699 003 1302 071 01 004 048 431 431 0 149 78415 1145 1165 02 10404 R15 7699 003 1302 071 01 004 048 431 431 0 149 79415 1155 1141 -014 10405 R15 7699 003 1302 071 01 004 048 431 431 0 149 80415 1092 1119 027 10406 R15 7699 003 1302 071 01 004 048 431 431 0 149 81415 1105 1097 -008 10407 R15 7699 003 1302 071 01 004 048 431 431 0 149 82215 106 108 02 10408 R15 7699 003 1302 071 01 004 048 431 431 0 149 83215 1058 1059 001 10409 R15 7699 003 1302 071 01 004 048 431 431 0 149 84215 1039 1039 0 10410 R15 7699 003 1302 071 01 004 048 431 431 0 149 85115 1026 1022 -004 10411 R15 7699 003 1302 071 01 004 048 431 431 0 149 86215 101 1001 -009 10412 R17 7701 003 1314 071 01 004 051 428 418 0 001 12332 964 922 -042 10413 R17 7701 003 1314 071 01 004 051 428 418 0 001 12052 993 963 -03 10414 R17 7701 003 1314 071 01 004 051 428 418 0 001 11582 1069 1038 -031 10415 R17 7701 003 1314 071 01 004 051 428 418 0 001 11352 112 1077 -043 10416 R17 7701 003 1314 071 01 004 051 428 418 0 001 11112 1127 1119 -008 10417 R17 7701 003 1314 071 01 004 051 428 418 0 001 10882 1195 1162 -033 10418 R17 7701 003 1314 071 01 004 051 428 418 0 001 10642 1238 1209 -029 10419 R19 7708 009 1244 13 002 002 036 449 42 0 004 12312 884 869 -015 10420 R19 7708 009 1244 13 002 002 036 449 42 0 004 12067 916 902 -014 10421 R19 7708 009 1244 13 002 002 036 449 42 0 004 11792 951 942 -009 10422 R19 7708 009 1244 13 002 002 036 449 42 0 004 11612 971 968 -003 10423 R19 7708 009 1244 13 002 002 036 449 42 0 004 11422 998 997 -001 10424 R21 7717 008 124 13 002 001 035 45 42 0 012 10702 1016 1064 048 10425 R21 7717 008 124 13 002 001 035 45 42 0 012 10922 1008 103 022 10426 R21 7717 008 124 13 002 001 035 45 42 0 012 11002 993 1018 025 10427 R21 7717 008 124 13 002 001 035 45 42 0 012 11292 953 976 023 10

144

428 R21 7717 008 124 13 002 001 035 45 42 0 012 11582 896 935 039 10429 R21 7717 008 124 13 002 001 035 45 42 0 012 11872 857 896 039 10430 R26 7748 017 122 13 005 017 114 39 36 0 013 11882 85 872 022 10431 R26 7748 017 122 13 005 017 114 39 36 0 013 11522 91 923 013 10432 R26 7748 017 122 13 005 017 114 39 36 0 013 11272 951 96 009 10433 R26 7748 017 122 13 005 017 114 39 36 0 013 10932 1005 1013 008 10434 R26 7748 017 122 13 005 017 114 39 36 0 013 10932 1025 1013 -012 10435 R26 7748 017 122 13 005 017 114 39 36 0 013 10612 1062 1065 003 10436 R27 7753 017 1217 13 005 017 113 389 36 0 004 11342 1007 996 -011 10437 R27 7753 017 1217 13 005 017 113 389 36 0 004 11522 981 967 -014 10438 R27 7753 017 1217 13 005 017 113 389 36 0 004 11592 962 956 -006 10439 R27 7753 017 1217 13 005 017 113 389 36 0 004 11782 934 926 -008 10440 R27 7753 017 1217 13 005 017 113 389 36 0 004 11872 909 912 003 10441 R27 7753 017 1217 13 005 017 113 389 36 0 004 11962 904 899 -005 10442 R27 7753 017 1217 13 005 017 113 389 36 0 004 12247 862 858 -004 10443 R28 7788 007 1273 076 004 006 05 393 403 001 002 11852 1012 998 -014 10444 R28 7788 007 1273 076 004 006 05 393 403 001 002 12082 979 963 -016 10445 R31 78 009 1215 054 007 006 05 408 448 002 006 12382 866 895 029 10446 R31 78 009 1215 054 007 006 05 408 448 002 006 12232 889 915 026 10447 R31 78 009 1215 054 007 006 05 408 448 002 006 12042 906 942 036 10448 R31 78 009 1215 054 007 006 05 408 448 002 006 11852 948 969 021 10449 R31 78 009 1215 054 007 006 05 408 448 002 006 11712 951 99 039 10450 R31 78 009 1215 054 007 006 05 408 448 002 006 11657 969 998 029 10451 R31 78 009 1215 054 007 006 05 408 448 002 006 11369 1004 1042 038 10452 R31 78 009 1215 054 007 006 05 408 448 002 006 11199 1029 1069 04 10453 R31 78 009 1215 054 007 006 05 408 448 002 006 10778 1089 114 051 10454 R31 78 009 1215 054 007 006 05 408 448 002 006 10403 1165 1207 042 10455 R32 78 009 1215 054 007 007 05 408 448 0 013 11712 92 95 03 10456 R32 78 009 1215 054 007 007 05 408 448 0 013 11202 999 1022 023 10457 R32 78 009 1215 054 007 007 05 408 448 0 013 10782 1049 1084 035 10458 R32 78 009 1215 054 007 007 05 408 448 0 013 10242 1154 117 016 10459 R32 78 009 1215 054 007 007 05 408 448 0 013 99215 12 1224 024 10

145

460 A3 6117 084 1729 539 0 335 583 385 139 0 002 9811 1133 1117 -016 11461 A3 6117 084 1729 539 0 335 583 385 139 0 002 9922 1083 1089 006 11462 A3 6117 084 1729 539 0 335 583 385 139 0 002 10118 1025 1042 017 11463 A3 6117 084 1729 539 0 335 583 385 139 0 002 10255 99 1012 022 11464 A3 6117 084 1729 539 0 335 583 385 139 0 002 10368 967 987 02 11465 A3 6117 084 1729 539 0 335 583 385 139 0 002 1670 219 23 011 11466 A3 6117 084 1729 539 0 335 583 385 139 0 002 1719 197 196 -001 11467 A3 6117 084 1729 539 0 335 583 385 139 0 002 1768 174 164 -01 11468 A3 6117 084 1729 539 0 335 583 385 139 0 002 1818 152 133 -019 11469 A3 6117 084 1729 539 0 335 583 385 139 0 002 1867 133 104 -029 11470 A3 6117 084 1729 539 0 335 583 385 139 0 002 9393 1266 1235 -031 11471 A3 6117 084 1729 539 0 335 583 385 139 0 002 9506 123 1201 -029 11472 A3 6117 084 1729 539 0 335 583 385 139 0 002 9617 1185 1169 -016 11473 A3 6117 084 1729 539 0 335 583 385 139 0 002 9718 1164 1141 -023 11474 R30 779 007 1205 076 0 005 052 401 406 0 0 1670 479 473 -006 11475 R30 779 007 1205 076 0 005 052 401 406 0 0 1719 441 438 -003 11476 R30 779 007 1205 076 0 005 052 401 406 0 0 1768 409 404 -005 11477 R30 779 007 1205 076 0 005 052 401 406 0 0 1817 381 373 -008 11478 R30 779 007 1205 076 0 005 052 401 406 0 0 1867 35 343 -007 11479 R30 779 007 1205 076 0 005 052 401 406 0 0 1051 121 1259 049 11480 R30 779 007 1205 076 0 005 052 401 406 0 0 10706 1192 1217 025 11481 R30 779 007 1205 076 0 005 052 401 406 0 0 10813 1181 1194 013 11482 R30 779 007 1205 076 0 005 052 401 406 0 0 11006 1134 1156 022 11483 R30 779 007 1205 076 0 005 052 401 406 0 0 10984 1127 116 033 11484 R30 779 007 1205 076 0 005 052 401 406 0 0 11111 1105 1136 031 11485 R30 779 007 1205 076 0 005 052 401 406 0 0 11269 1089 1106 017 11486 R30 779 007 1205 076 0 005 052 401 406 0 0 11272 1073 1106 033 11487 R30 779 007 1205 076 0 005 052 401 406 0 0 11674 1019 1035 016 11488 R30 779 007 1205 076 0 005 052 401 406 0 0 11935 978 992 014 11489 R30 779 007 1205 076 0 005 052 401 406 0 0 10969 1137 1163 026 11490 R30 779 007 1205 076 0 005 052 401 406 0 0 10976 1134 1162 028 11491 R30 779 007 1205 076 0 005 052 401 406 0 0 11068 1118 1144 026 11

146

492 R30 779 007 1205 076 0 005 052 401 406 0 0 11203 1092 1118 026 11493 R30 779 007 1205 076 0 005 052 401 406 0 0 11261 1081 1108 027 11494 R30 779 007 1205 076 0 005 052 401 406 0 0 11305 1077 1099 022 11495 R30 779 007 1205 076 0 005 052 401 406 0 0 11345 1066 1092 026 11496 R30 779 007 1205 076 0 005 052 401 406 0 0 11347 1063 1092 029 11497 R30 779 007 1205 076 0 005 052 401 406 0 0 11469 1042 107 028 11498 R30 779 007 1205 076 0 005 052 401 406 0 0 11551 1031 1056 025 11499 R30 779 007 1205 076 0 005 052 401 406 0 0 11563 103 1054 024 11500 R30 779 007 1205 076 0 005 052 401 406 0 0 11671 1015 1035 02 11501 R30 779 007 1205 076 0 005 052 401 406 0 0 11771 999 1018 019 11502 R30 779 007 1205 076 0 005 052 401 406 0 0 11941 973 991 018 11503 R30 779 007 1205 076 0 005 052 401 406 0 0 12133 936 961 025 11504 R30 779 007 1205 076 0 005 052 401 406 0 0 10983 1156 116 004 11505 R30 779 007 1205 076 0 005 052 401 406 0 0 11106 1137 1137 0 11506 R30 779 007 1205 076 0 005 052 401 406 0 0 11203 1121 1118 -003 11507 R30 779 007 1205 076 0 005 052 401 406 0 0 11344 1093 1092 -001 11508 R30 779 007 1205 076 0 005 052 401 406 0 0 11513 1065 1062 -003 11509 R30 779 007 1205 076 0 005 052 401 406 0 0 11661 1036 1037 001 11510 R30 779 007 1205 076 0 005 052 401 406 0 0 11757 1018 1021 003 11511 R30 779 007 1205 076 0 005 052 401 406 0 0 11902 995 997 002 11512 R30 779 007 1205 076 0 005 052 401 406 0 0 12045 974 974 0 11513 R30 779 007 1205 076 0 005 052 401 406 0 0 12191 954 952 -002 11514 R30 779 007 1205 076 0 005 052 401 406 0 0 12308 936 934 -002 11515 R30 779 007 1205 076 0 005 052 401 406 0 0 988 1377 1408 031 11516 R30 779 007 1205 076 0 005 052 401 406 0 0 1063 1249 1233 -016 11517 R30 779 007 1205 076 0 005 052 401 406 0 0 1068 1226 1222 -004 11518 R30 779 007 1205 076 0 005 052 401 406 0 0 1091 1187 1175 -012 11519 R30 779 007 1205 076 0 005 052 401 406 0 0 1094 1151 1169 018 11520 R30 779 007 1205 076 0 005 052 401 406 0 0 1128 1102 1104 002 11521 R30 779 007 1205 076 0 005 052 401 406 0 0 1129 1102 1102 0 11522 R30 779 007 1205 076 0 005 052 401 406 0 0 1131 1092 1099 007 11523 R30 779 007 1205 076 0 005 052 401 406 0 0 1135 1087 1091 004 11

147

524 R30 779 007 1205 076 0 005 052 401 406 0 0 1136 109 1089 -001 11525 R30 779 007 1205 076 0 005 052 401 406 0 0 1138 1084 1086 002 11526 R30 779 007 1205 076 0 005 052 401 406 0 0 1157 1062 1052 -01 11527 R30 779 007 1205 076 0 005 052 401 406 0 0 1186 1007 1004 -003 11528 R30 779 007 1205 076 0 005 052 401 406 0 0 1219 955 952 -003 11529 R30 779 007 1205 076 0 005 052 401 406 0 0 1221 957 949 -008 11530 R30 779 007 1205 076 0 005 052 401 406 0 0 1253 919 902 -017 11531 R30 779 007 1205 076 0 005 052 401 406 0 0 920 1508 1601 093 11532 R30 779 007 1205 076 0 005 052 401 406 0 0 1916 322 315 -007 11533 R20 7715 009 1282 056 007 007 052 411 461 001 012 12313 868 874 006 12534 R20 7715 009 1282 056 007 007 052 411 461 001 012 1219 889 89 001 12535 R20 7715 009 1282 056 007 007 052 411 461 001 012 1201 912 913 001 12536 R20 7715 009 1282 056 007 007 052 411 461 001 012 11765 947 946 -001 12537 R20 7715 009 1282 056 007 007 052 411 461 001 012 11493 991 983 -008 12538 R22 7718 009 1291 061 007 007 051 405 452 001 01 12382 866 874 008 12539 R22 7718 009 1291 061 007 007 051 405 452 001 01 12232 889 893 004 12540 R22 7718 009 1291 061 007 007 051 405 452 001 01 12042 906 919 013 12541 R22 7718 009 1291 061 007 007 051 405 452 001 01 11852 948 944 -004 12542 R22 7718 009 1291 061 007 007 051 405 452 001 01 11662 969 971 002 12543 R22 7718 009 1291 061 007 007 051 405 452 001 01 11372 1004 1012 008 12544 R29 7788 016 1203 119 005 005 106 364 388 001 011 11882 888 897 009 12545 R29 7788 016 1203 119 005 005 106 364 388 001 011 11782 913 911 -002 12546 R29 7788 016 1203 119 005 005 106 364 388 001 011 11642 931 931 0 12547 R29 7788 016 1203 119 005 005 106 364 388 001 011 11532 954 947 -007 12548 R29 7788 016 1203 119 005 005 106 364 388 001 011 11488 948 953 005 12549 R29 7788 016 1203 119 005 005 106 364 388 001 011 11412 975 965 -01 12550 R29 7788 016 1203 119 005 005 106 364 388 001 011 11212 1003 995 -008 12551 R29 7788 016 1203 119 005 005 106 364 388 001 011 11162 1021 1003 -018 12552 R29 7788 016 1203 119 005 005 106 364 388 001 011 10922 105 104 -01 12553 R29 7788 016 1203 119 005 005 106 364 388 001 011 10742 1073 107 -003 12554 R10 7638 006 1159 103 005 036 325 244 466 0 002 10482 1161 1168 007 13555 R10 7638 006 1159 103 005 036 325 244 466 0 002 10732 1101 1109 008 13

148

556 R10 7638 006 1159 103 005 036 325 244 466 0 002 10982 1048 1054 006 13557 R10 7638 006 1159 103 005 036 325 244 466 0 002 11232 1002 1003 001 13558 R10 7638 006 1159 103 005 036 325 244 466 0 002 11482 957 955 -002 13559 R10 7638 006 1159 103 005 036 325 244 466 0 002 10732 11 1109 009 13560 R10 7638 006 1159 103 005 036 325 244 466 0 002 11232 997 1003 006 13561 R10 7638 006 1159 103 005 036 325 244 466 0 002 11732 912 91 -002 13562 R10 7638 006 1159 103 005 036 325 244 466 0 002 11982 875 868 -007 13563 R11 7657 006 1165 104 007 036 323 246 462 0 017 99815 1165 1158 -007 13564 R11 7657 006 1165 104 007 036 323 246 462 0 017 10232 1091 1107 016 13565 R11 7657 006 1165 104 007 036 323 246 462 0 017 10232 1094 1107 013 13566 R11 7657 006 1165 104 007 036 323 246 462 0 017 10482 1036 1059 023 13567 R11 7657 006 1165 104 007 036 323 246 462 0 017 10732 987 1012 025 13568 R11 7657 006 1165 104 007 036 323 246 462 0 017 10982 942 968 026 13569 R11 7657 006 1165 104 007 036 323 246 462 0 017 11232 906 926 02 13570 R16 77 006 1177 1 006 036 329 248 468 0 055 94815 1146 1069 -077 13571 R16 77 006 1177 1 006 036 329 248 468 0 055 97315 1085 1029 -056 13572 R16 77 006 1177 1 006 036 329 248 468 0 055 97315 1088 1029 -059 13573 R16 77 006 1177 1 006 036 329 248 468 0 055 99815 105 99 -06 13574 R16 77 006 1177 1 006 036 329 248 468 0 055 10232 996 952 -044 13575 R16 77 006 1177 1 006 036 329 248 468 0 055 10232 994 952 -042 13576 R16 77 006 1177 1 006 036 329 248 468 0 055 10732 905 88 -025 13577 R18 7707 006 1167 099 007 035 328 242 462 0 027 97315 1154 115 -004 13578 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1128 1103 -025 13579 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1123 1103 -02 13580 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1057 1058 001 13581 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1083 1058 -025 13582 R18 7707 006 1167 099 007 035 328 242 462 0 027 10482 1002 1014 012 13583 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 957 972 015 13584 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 981 972 -009 13585 R18 7707 006 1167 099 007 035 328 242 462 0 027 10982 937 931 -006 13586 R18 7707 006 1167 099 007 035 328 242 462 0 027 99815 1151 1103 -048 13587 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1083 1058 -025 13

149

588 R18 7707 006 1167 099 007 035 328 242 462 0 027 10232 1089 1058 -031 13589 R18 7707 006 1167 099 007 035 328 242 462 0 027 10732 984 972 -012 13590 R23 7727 003 1175 105 005 036 331 243 473 0 058 97315 1071 102 -051 13591 R23 7727 003 1175 105 005 036 331 243 473 0 058 99815 1029 982 -047 13592 R23 7727 003 1175 105 005 036 331 243 473 0 058 10232 986 944 -042 13593 R23 7727 003 1175 105 005 036 331 243 473 0 058 10482 943 908 -035 13594 R23 7727 003 1175 105 005 036 331 243 473 0 058 10732 902 873 -029 13595 R23 7727 003 1175 105 005 036 331 243 473 0 058 10982 866 838 -028 13596 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1016 1014 -002 13597 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1042 1014 -028 13598 R24 7738 005 117 103 005 036 324 244 48 0 037 10482 969 974 005 13599 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 932 934 002 13600 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 947 934 -013 13601 R24 7738 005 117 103 005 036 324 244 48 0 037 10982 896 896 0 13602 R24 7738 005 117 103 005 036 324 244 48 0 037 11232 875 859 -016 13603 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1014 1014 0 13604 R24 7738 005 117 103 005 036 324 244 48 0 037 10232 1034 1014 -02 13605 R24 7738 005 117 103 005 036 324 244 48 0 037 10482 974 974 0 13606 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 935 934 -001 13607 R24 7738 005 117 103 005 036 324 244 48 0 037 10732 951 934 -017 13608 R24 7738 005 117 103 005 036 324 244 48 0 037 10982 903 896 -007 13609 R24 7738 005 117 103 005 036 324 244 48 0 037 11232 879 859 -02 13610 R25 7746 005 1164 104 007 035 323 245 47 0 031 99815 1095 1082 -013 13611 R25 7746 005 1164 104 007 035 323 245 47 0 031 10232 1044 1039 -005 13612 R25 7746 005 1164 104 007 035 323 245 47 0 031 10482 997 997 0 13613 R25 7746 005 1164 104 007 035 323 245 47 0 031 10732 953 956 003 13614 R25 7746 005 1164 104 007 035 323 245 47 0 031 10982 912 916 004 13615 R25 7746 005 1164 104 007 035 323 245 47 0 031 11232 882 878 -004 13616 R25 7746 005 1164 104 007 035 323 245 47 0 031 94815 1244 1173 -071 13617 R25 7746 005 1164 104 007 035 323 245 47 0 031 97315 117 1127 -043 13618 R25 7746 005 1164 104 007 035 323 245 47 0 031 99815 1131 1082 -049 13619 R9 7603 006 1148 105 006 036 321 242 46 0 0 10732 1148 1135 -013 13

150

620 R9 7603 006 1148 105 006 036 321 242 46 0 0 10982 1086 1076 -01 13621 R9 7603 006 1148 105 006 036 321 242 46 0 0 11232 104 1022 -018 13622 R9 7603 006 1148 105 006 036 321 242 46 0 0 11482 991 972 -019 13623 R9 7603 006 1148 105 006 036 321 242 46 0 0 11732 946 926 -02 13624 R9 7603 006 1148 105 006 036 321 242 46 0 0 11982 913 882 -031 13625 R12 7659 008 1267 1 0 003 052 398 488 0 168 738 1235 1252 017 14626 R12 7659 008 1267 1 0 003 052 398 488 0 173 710 1322 1324 002 14627 R12 7659 008 1267 1 0 003 052 398 488 0 157 671 152 1476 -044 14628 R12 7659 008 1267 1 0 003 052 398 488 0 182 709 1323 1313 -01 14629 R12 7659 008 1267 1 0 003 052 398 488 0 186 731 1234 1244 01 14630 R12 7659 008 1267 1 0 003 052 398 488 0 188 755 1153 1177 024 14631 R12 7659 008 1267 1 0 003 052 398 488 0 237 729 1162 118 018 14632 R12 7659 008 1267 1 0 003 052 398 488 0 255 804 968 98 012 14633 R12 7659 008 1267 1 0 003 052 398 488 0 184 845 963 982 019 14634 R12 7659 008 1267 1 0 003 052 398 488 0 263 678 1322 1296 -026 14635 R12 7659 008 1267 1 0 003 052 398 488 0 306 682 1242 1233 -009 14636 R12 7659 008 1267 1 0 003 052 398 488 0 3 710 1171 1158 -013 14637 R12 7659 008 1267 1 0 003 052 398 488 0 142 730 1322 1317 -005 14638 R12 7659 008 1267 1 0 003 052 398 488 0 143 757 123 1241 011 14639 R12 7659 008 1267 1 0 003 052 398 488 0 142 787 1157 1168 011 14640 R12 7659 008 1267 1 0 003 052 398 488 0 093 769 1323 1305 -018 14641 R12 7659 008 1267 1 0 003 052 398 488 0 112 780 1227 1238 011 14642 R12 7659 008 1267 1 0 003 052 398 488 0 116 810 1149 116 011 14643 R12 7659 008 1267 1 0 003 052 398 488 0 239 643 152 1446 -074 14644 R12 7659 008 1267 1 0 003 052 398 488 0 051 841 1323 1253 -07 14645 R12 7659 008 1267 1 0 003 052 398 488 0 203 873 872 907 035 14646 R12 7659 008 1267 1 0 003 052 398 488 0 197 798 103 1062 032 14647 R12 7659 008 1267 1 0 003 052 398 488 0 197 773 1082 112 038 14648 R12 7659 008 1267 1 0 003 052 398 488 0 204 848 926 951 025 14649 R12 7659 008 1267 1 0 003 052 398 488 0 203 824 968 999 031 14650 R12 7659 008 1267 1 0 003 052 398 488 0 136 873 97 999 029 14651 R12 7659 008 1267 1 0 003 052 398 488 0 141 848 103 1038 008 14

151

652 R12 7659 008 1267 1 0 003 052 398 488 0 146 873 962 984 022 14653 R12 7659 008 1267 1 0 003 052 398 488 0 38 750 962 981 019 14654 R12 7659 008 1267 1 0 003 052 398 488 0 38 642 13 1281 -019 14655 R12 7659 008 1267 1 0 003 052 398 488 0 38 625 1423 1339 -084 14656 R12 7659 008 1267 1 0 003 052 398 488 0 56 707 96 95 -01 14657 R12 7659 008 1267 1 0 003 052 398 488 0 56 604 1324 1249 -075 14658 R12 7659 008 1267 1 0 003 052 398 488 0 56 648 1144 1107 -037 14659 R12 7659 008 1267 1 0 003 052 398 488 0 77 670 96 921 -039 14660 R12 7659 008 1267 1 0 003 052 398 488 0 77 573 1324 1211 -113 14661 R12 7659 008 1267 1 0 003 052 398 488 0 77 603 1145 1108 -037 14662 R12 7659 008 1267 1 0 003 052 398 488 0 078 825 1224 1207 -017 14663 R12 7659 008 1267 1 0 003 052 398 488 0 08 823 1224 1207 -017 14664 R12 7659 008 1267 1 0 003 052 398 488 0 082 820 1224 1209 -015 14665 R12 7659 008 1267 1 0 003 052 398 488 0 079 971 961 962 001 14666 R12 7659 008 1267 1 0 003 052 398 488 0 084 846 1153 115 -003 14667 R12 7659 008 1267 1 0 003 052 398 488 0 083 892 1064 1069 005 14668 R12 7659 008 1267 1 0 003 052 398 488 0 089 772 1323 1305 -018 14669 R12 7659 008 1267 1 0 003 052 398 488 0 081 804 1276 1246 -03 14670 R12 7659 008 1267 1 0 003 052 398 488 0 084 765 1371 1335 -036 14671 R12 7659 008 1267 1 0 003 052 398 488 0 084 752 142 137 -05 14672 R12 7659 008 1267 1 0 003 052 398 488 0 083 784 132 1289 -031 14673 R12 7659 008 1267 1 0 003 052 398 488 0 084 779 132 1299 -021 14674 R12 7659 008 1267 1 0 003 052 398 488 0 081 728 152 1446 -074 14675 R12 7659 008 1267 1 0 003 052 398 488 0 114 748 1322 1318 -004 14676 R12 7659 008 1267 1 0 003 052 398 488 0 117 897 948 991 043 14677 R13 766 01 127 117 0 002 031 41 46 0 43 1073 551 5 -051 15678 R13 766 01 127 117 0 002 031 41 46 0 43 1073 545 5 -045 15679 R13 766 01 127 117 0 002 031 41 46 0 43 1123 526 46 -066 15680 R13 766 01 127 117 0 002 031 41 46 0 43 1123 517 46 -057 15681 R13 766 01 127 117 0 002 031 41 46 0 43 1173 488 422 -066 15682 R13 766 01 127 117 0 002 031 41 46 0 62 973 552 52 -032 15683 R13 766 01 127 117 0 002 031 41 46 0 62 1023 505 475 -03 15

152

684 R13 766 01 127 117 0 002 031 41 46 0 62 1073 457 435 -022 15685 R13 766 01 127 117 0 002 031 41 46 0 62 1073 463 435 -028 15686 R13 766 01 127 117 0 002 031 41 46 0 62 1123 425 398 -027 15687 R1 6677 039 2015 431 001 072 364 137 217 0 002 15732 377 399 022 16688 R1 6677 039 2015 431 001 072 364 137 217 0 002 16232 329 359 03 16689 R1 6677 039 2015 431 001 072 364 137 217 0 002 16732 29 322 032 16690 R1 6677 039 2015 431 001 072 364 137 217 0 002 17232 267 287 02 16691 R1 6677 039 2015 431 001 072 364 137 217 0 002 17232 264 287 023 16692 R1 6677 039 2015 431 001 072 364 137 217 0 002 17732 235 254 019 16693 R1 6677 039 2015 431 001 072 364 137 217 0 002 18232 209 223 014 16694 R1 6677 039 2015 431 001 072 364 137 217 0 002 18732 186 193 007 16695 R2 6716 001 2165 281 001 073 265 285 182 0 002 17232 288 331 043 16696 R2 6716 001 2165 281 001 073 265 285 182 0 002 17732 26 298 038 16697 R2 6716 001 2165 281 001 073 265 285 182 0 002 18232 233 266 033 16698 R2 6716 001 2165 281 001 073 265 285 182 0 002 18732 209 237 028 16699 R3 7122 024 168 291 006 08 262 309 194 0 002 16232 392 379 -013 16700 R3 7122 024 168 291 006 08 262 309 194 0 002 16732 361 342 -019 16701 R3 7122 024 168 291 006 08 262 309 194 0 002 17232 328 307 -021 16702 R3 7122 024 168 291 006 08 262 309 194 0 002 17732 3 275 -025 16703 R3 7122 024 168 291 006 08 262 309 194 0 002 18232 273 244 -029 16704 R3 7122 024 168 291 006 08 262 309 194 0 002 18732 248 215 -033 16705 R4 7142 001 161 458 001 157 094 194 292 0 002 15732 419 423 004 16706 R4 7142 001 161 458 001 157 094 194 292 0 002 16232 387 385 -002 16707 R4 7142 001 161 458 001 157 094 194 292 0 002 16732 352 349 -003 16708 R4 7142 001 161 458 001 157 094 194 292 0 002 17232 322 316 -006 16709 R4 7142 001 161 458 001 157 094 194 292 0 002 17732 292 285 -007 16710 R4 7142 001 161 458 001 157 094 194 292 0 002 18232 265 255 -01 16711 R4 7142 001 161 458 001 157 094 194 292 0 002 18732 24 228 -012 16712 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 16732 385 357 -028 16713 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17132 359 328 -031 16714 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17532 337 301 -036 16715 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 17932 31 275 -035 16

153

716 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 18332 292 25 -042 16717 Tr10 7335 09 1483 238 007 0 164 187 47 0 002 18732 276 226 -05 16718 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 17532 319 311 -008 16719 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 17932 3 285 -015 16720 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18132 257 272 015 16721 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18332 242 259 017 16722 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18532 231 247 016 16723 Tr7 6695 087 2124 257 006 001 163 183 455 0 002 18732 222 235 013 16724 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16532 368 375 007 16725 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16732 355 36 005 16726 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 16932 342 346 004 16727 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17132 326 331 005 16728 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17332 311 317 006 16729 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17532 3 304 004 16730 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17732 285 291 006 16731 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 17932 275 278 003 16732 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18132 264 265 001 16733 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18332 255 252 -003 16734 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18532 242 24 -002 16735 Tr8 6871 09 1928 259 006 0 165 187 466 0 002 18732 234 228 -006 16736 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 16332 41 377 -033 16737 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 16732 371 347 -024 16738 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17132 344 319 -025 16739 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17532 318 292 -026 16740 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 17932 295 266 -029 16741 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 18332 273 241 -032 16742 Tr9 7016 092 1718 274 006 0 17 207 488 0 002 18732 259 217 -042 16743 Bl2 4781 194 1791 109 019 475 996 394 211 048 0 10202 994 956 -038 17744 Bl2 4781 194 1791 109 019 475 996 394 211 048 0 94615 1165 1134 -031 17745 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 98315 994 1008 014 17746 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 10132 869 925 056 17747 Bn2 4122 274 1212 1003 0 1126 1569 276 305 102 0 95315 1141 1117 -024 17

154

748 R8 7537 007 1284 157 007 004 072 419 513 0 014 99315 111 1146 036 17749 R8 7537 007 1284 157 007 004 072 419 513 0 014 10112 1078 1115 037 17750 R8 7537 007 1284 157 007 004 072 419 513 0 014 10432 1018 1062 044 17751 R8 7537 007 1284 157 007 004 072 419 513 0 014 10842 956 997 041 17752 R8 7537 007 1284 157 007 004 072 419 513 0 014 11142 915 952 037 17753 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 785 792 007 18754 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 782 792 01 18755 R7 747 008 1328 165 0 0 077 43 522 0 0 12732 787 792 005 18756 R7 747 008 1328 165 0 0 077 43 522 0 0 13232 726 73 004 18757 R7 747 008 1328 165 0 0 077 43 522 0 0 13732 679 673 -006 18758 R7 747 008 1328 165 0 0 077 43 522 0 0 13732 677 673 -004 18759 R7 747 008 1328 165 0 0 077 43 522 0 0 14232 625 62 -005 18760 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 1744 -022 -068 -046 19761 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 17194 -016 -049 -033 19762 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16948 -009 -029 -02 19763 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16702 -002 -009 -007 19764 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 16456 007 012 005 19765 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 1621 016 034 018 19766 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 97515 1026 1014 -012 19767 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 98275 981 991 01 19768 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 98315 1005 99 -015 19769 Bn1 4115 274 121 1011 0 1124 1566 276 304 102 002 965 1077 1048 -029 19770 Ph1 512 067 186 61 013 25 73 375 79 04 002 18179 097 092 -005 19771 Ph1 512 067 186 61 013 25 73 375 79 04 002 17933 107 107 0 19772 Ph1 512 067 186 61 013 25 73 375 79 04 002 17687 117 121 004 19773 Ph1 512 067 186 61 013 25 73 375 79 04 002 1744 128 136 008 19774 Ph1 512 067 186 61 013 25 73 375 79 04 002 17194 138 152 014 19775 Ph1 512 067 186 61 013 25 73 375 79 04 002 16948 15 168 018 19776 Ph1 512 067 186 61 013 25 73 375 79 04 002 16702 163 184 021 19777 Ph1 512 067 186 61 013 25 73 375 79 04 002 16456 175 201 026 19778 Ph1 512 067 186 61 013 25 73 375 79 04 002 1621 188 219 031 19779 Ph1 512 067 186 61 013 25 73 375 79 04 002 97815 1066 1034 -032 19

155

780 Ph1 512 067 186 61 013 25 73 375 79 04 002 9975 1015 985 -03 19781 Ph1 512 067 186 61 013 25 73 375 79 04 002 10164 975 942 -033 19782 Ph5 597 046 1852 36 017 065 28 389 845 015 002 1744 245 23 -015 19783 Ph5 597 046 1852 36 017 065 28 389 845 015 002 17194 258 245 -013 19784 Ph5 597 046 1852 36 017 065 28 389 845 015 002 16948 272 261 -011 19785 Ph5 597 046 1852 36 017 065 28 389 845 015 002 1621 316 311 -005 19786 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15964 332 329 -003 19787 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15718 348 348 0 19788 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15472 366 367 001 19789 Ph5 597 046 1852 36 017 065 28 389 845 015 002 15226 383 386 003 19790 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14979 402 407 005 19791 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14733 42 428 008 19792 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14487 44 45 01 19793 Ph5 597 046 1852 36 017 065 28 389 845 015 002 14241 46 472 012 19794 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10346 103 996 -034 19795 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10477 1011 971 -04 19796 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10675 973 934 -039 19797 Ph5 597 046 1852 36 017 065 28 389 845 015 002 10838 955 905 -05 19798 Ph5 597 046 1852 36 017 065 28 389 845 015 002 11041 911 871 -04 19799 Te1 492 083 164 72 013 51 102 27 65 072 002 18179 053 038 -015 19800 Te1 492 083 164 72 013 51 102 27 65 072 002 17933 062 052 -01 19801 Te1 492 083 164 72 013 51 102 27 65 072 002 17687 071 068 -003 19802 Te1 492 083 164 72 013 51 102 27 65 072 002 1744 081 083 002 19803 Te1 492 083 164 72 013 51 102 27 65 072 002 17194 09 099 009 19804 Te1 492 083 164 72 013 51 102 27 65 072 002 16948 101 116 015 19805 Te1 492 083 164 72 013 51 102 27 65 072 002 16702 112 133 021 19806 Te1 492 083 164 72 013 51 102 27 65 072 002 16456 124 15 026 19807 Te1 492 083 164 72 013 51 102 27 65 072 002 1621 136 169 033 19808 Te1 492 083 164 72 013 51 102 27 65 072 002 9806 1055 1041 -014 19809 Te1 492 083 164 72 013 51 102 27 65 072 002 99335 1017 997 -02 19810 Te1 492 083 164 72 013 51 102 27 65 072 002 10023 978 969 -009 19811 Te1 492 083 164 72 013 51 102 27 65 072 002 10179 951 925 -026 19

156

812 Te1 492 083 164 72 013 51 102 27 65 072 002 10294 913 895 -018 19813 Te1 492 083 164 72 013 51 102 27 65 072 002 10401 879 87 -009 19814 Te1 492 083 164 72 013 51 102 27 65 072 002 96995 1098 1084 -014 19815 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18671 214 198 -016 19816 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18425 225 211 -014 19817 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 18179 237 225 -012 19818 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17933 25 239 -011 19819 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17687 263 253 -01 19820 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1744 276 268 -008 19821 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 17194 291 283 -008 19822 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16948 305 299 -006 19823 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16702 32 315 -005 19824 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 16456 336 331 -005 19825 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1621 352 348 -004 19826 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15964 368 366 -002 19827 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15718 385 384 -001 19828 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15472 4 403 003 19829 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 15226 421 423 002 19830 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 14979 44 443 003 19831 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 14733 459 464 005 19832 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 99603 1077 1091 014 19833 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10103 1053 1062 009 19834 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10117 1041 106 019 19835 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10163 1049 1051 002 19836 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10229 1019 1038 019 19837 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10338 995 1018 023 19838 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 1055 963 979 016 19839 Tr5 6399 045 1696 255 014 032 083 633 637 009 002 10797 911 937 026 19840 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17692 237 248 011 20841 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17442 249 263 014 20842 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 17192 263 279 016 20843 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16952 277 294 017 20

157

844 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16702 292 31 018 20845 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16462 308 327 019 20846 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 16212 324 344 02 20847 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15962 34 363 023 20848 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15722 358 381 023 20849 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15472 376 4 024 20850 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 15222 394 42 026 20851 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14982 414 44 026 20852 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14732 434 462 028 20853 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 14492 454 483 029 20854 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 11342 932 857 -075 20855 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 11092 984 898 -086 20856 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 10762 1044 954 -09 20857 Tr1 6074 027 1922 337 018 028 211 528 632 006 0 10562 1083 991 -092 20858 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 83515 1112 1122 01 20859 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 84215 1094 1107 013 20860 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 85215 1075 1086 011 20861 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 86815 1044 1052 008 20862 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 86915 103 105 02 20863 Tr1 6074 027 1922 337 018 028 211 528 632 006 081 87715 1009 1034 025 20864 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 80215 1086 1065 -021 20865 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 81915 1036 1027 -009 20866 Tr1 6074 027 1922 337 018 028 211 528 632 006 154 82615 1014 1011 -003 20867 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 78115 1052 1048 -004 20868 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 77915 1044 1053 009 20869 Tr1 6074 027 1922 337 018 028 211 528 632 006 201 81115 994 98 -014 20870 Tr1 6074 027 1922 337 018 028 211 528 632 006 296 73215 1076 1058 -018 20871 Tr1 6074 027 1922 337 018 028 211 528 632 006 296 74015 1027 1038 011 20872 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 69115 1128 1123 -005 20873 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 71515 1045 1057 012 20874 Tr1 6074 027 1922 337 018 028 211 528 632 006 341 73015 988 1018 03 20875 Tr4 6388 031 171 29 013 024 182 567 682 005 002 17687 25 245 -005 20

158

876 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1744 262 259 -003 20877 Tr4 6388 031 171 29 013 024 182 567 682 005 002 17194 275 274 -001 20878 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16948 289 29 001 20879 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16702 303 306 003 20880 Tr4 6388 031 171 29 013 024 182 567 682 005 002 16456 318 322 004 20881 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1621 333 339 006 20882 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15964 349 357 008 20883 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15718 365 375 01 20884 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15472 382 394 012 20885 Tr4 6388 031 171 29 013 024 182 567 682 005 002 15226 397 413 016 20886 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14979 417 434 017 20887 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14733 436 454 018 20888 Tr4 6388 031 171 29 013 024 182 567 682 005 002 14487 455 476 021 20889 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1017 1003 1046 043 20890 Tr4 6388 031 171 29 013 024 182 567 682 005 002 97925 1071 1124 053 20891 Tr4 6388 031 171 29 013 024 182 567 682 005 002 1090 876 913 037 20892 Tr4 6388 031 171 29 013 024 182 567 682 005 002 10425 956 997 041 20893 Tr4 6388 031 171 29 013 024 182 567 682 005 002 9586 1108 1169 061 20894 Tr4 6388 031 171 29 013 024 182 567 682 005 1 83915 1064 1066 002 20895 Tr4 6388 031 171 29 013 024 182 567 682 005 1 84815 1047 1047 0 20896 Tr4 6388 031 171 29 013 024 182 567 682 005 1 86215 1022 1019 -003 20897 Tr4 6388 031 171 29 013 024 182 567 682 005 1 87015 1008 1003 -005 20898 Tr4 6388 031 171 29 013 024 182 567 682 005 139 78815 1097 1113 016 20899 Tr4 6388 031 171 29 013 024 182 567 682 005 139 81815 1031 1044 013 20900 Tr4 6388 031 171 29 013 024 182 567 682 005 139 84315 99 99 0 20901 Tr4 6388 031 171 29 013 024 182 567 682 005 241 74515 1059 1077 018 20902 Tr4 6388 031 171 29 013 024 182 567 682 005 241 78815 967 974 007 20903 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67415 1085 1118 033 20904 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67315 108 112 04 20905 Tr4 6388 031 171 29 013 024 182 567 682 005 386 67115 1079 1126 047 20906 Tr4 6388 031 171 29 013 024 182 567 682 005 386 65815 116 1166 006 20907 A1 5856 064 1898 745 0 348 617 324 092 0 083 14732 275 259 -016 21

159

908 A1 5856 064 1898 745 0 348 617 324 092 0 083 15732 222 185 -037 21909 A1 5856 064 1898 745 0 348 617 324 092 0 083 15732 215 185 -03 21910 A1 5856 064 1898 745 0 348 617 324 092 0 083 16232 176 152 -024 21911 A1 5856 064 1898 745 0 348 617 324 092 0 072 14732 237 27 033 21912 A1 5856 064 1898 745 0 348 617 324 092 0 1 14232 25 283 033 21913 A1 5856 064 1898 745 0 348 617 324 092 0 1 14732 225 244 019 21914 A1 5856 064 1898 745 0 348 617 324 092 0 1 13732 364 326 -038 21915 A1 5856 064 1898 745 0 348 617 324 092 0 1 14732 201 244 043 21916 A1 5856 064 1898 745 0 348 617 324 092 0 46 13732 18 174 -006 21917 A1 5856 064 1898 745 0 348 617 324 092 0 46 14732 145 118 -027 21918 Bl3 4821 125 155 1064 0 908 1192 24 008 014 022 13732 286 319 033 21919 Bl3 4821 125 155 1064 0 908 1192 24 008 014 022 15232 23 174 -056 21920 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 13732 174 183 009 21921 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 15732 091 048 -043 21922 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 13732 142 183 041 21923 Bl4 5354 105 1729 782 0 546 832 359 164 02 25 15732 08 048 -032 21924 Bl4 5354 105 1729 782 0 546 832 359 164 02 636 12732 13 177 047 21925 Bl4 5354 105 1729 782 0 546 832 359 164 02 636 15732 027 021 -006 21926 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 14732 36 339 -021 21927 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 15732 216 25 034 21928 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 14732 34 339 -001 21929 Bl4 5354 105 1729 782 0 546 832 359 164 02 0 15732 294 25 -044 21930 R5 7323 019 136 278 0 017 169 378 411 013 21 10732 61 619 009 21931 R5 7323 019 136 278 0 017 169 378 411 013 21 13732 325 356 031 21932 R5 7323 019 136 278 0 017 169 378 411 013 3 10732 48 548 068 21933 R5 7323 019 136 278 0 017 169 378 411 013 33 14732 225 229 004 21934 R5 7323 019 136 278 0 017 169 378 411 013 52 10732 397 444 047 21935 R5 7323 019 136 278 0 017 169 378 411 013 52 14732 167 188 021 21936 R5 7323 019 136 278 0 017 169 378 411 013 123 11232 32 325 005 21937 R5 7323 019 136 278 0 017 169 378 411 013 123 12232 24 281 041 21938 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17732 22 213 -007 22939 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17482 232 226 -006 22

160

940 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 17232 244 24 -004 22941 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16982 257 254 -003 22942 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16732 27 268 -002 22943 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16482 283 283 0 22944 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 16232 297 298 001 22945 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15982 311 314 003 22946 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15732 326 331 005 22947 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15482 342 348 006 22948 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 15232 357 365 008 22949 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14982 374 383 009 22950 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14732 391 402 011 22951 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14482 407 421 014 22952 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 14232 427 441 014 22953 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 13982 446 462 016 22954 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 13732 465 484 019 22955 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 10104 899 925 026 22956 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 88785 1163 1164 001 22957 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 92395 1085 1086 001 22958 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 94585 1031 1042 011 22959 Ph6 6046 056 1881 331 02 036 067 976 545 006 002 96475 10 1006 006 22960 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 86705 879 925 046 22961 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 80455 1033 1052 019 22962 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 79395 1059 1075 016 22963 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 78045 1105 1107 002 22964 Ph6 6046 056 1881 331 02 036 067 976 545 006 085 82175 99 1015 025 22965 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 76375 1084 1126 042 22966 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 77495 1082 1099 017 22967 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 77845 1045 1091 046 22968 Ph6 6046 056 1881 331 02 036 067 976 545 006 095 78565 1025 1074 049 22969 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 74215 1016 994 -022 22970 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 72835 1055 1027 -028 22971 Ph6 6046 056 1881 331 02 036 067 976 545 006 21 75905 959 955 -004 22

161

972 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 70335 957 912 -045 22973 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 66285 11 1017 -083 22974 Ph6 6046 056 1881 331 02 036 067 976 545 006 375 67535 105 983 -067 22975 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 16702 228 201 -027 23976 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 1621 254 235 -019 23977 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 15718 283 271 -012 23978 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 15226 315 31 -005 23979 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 14733 348 351 003 23980 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 14241 387 395 008 23981 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 13749 429 443 014 23982 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 13257 475 494 019 23983 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 9804 1066 1019 -047 23984 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 99985 102 977 -043 23985 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10295 978 917 -061 23986 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10443 958 888 -07 23987 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 10783 881 828 -053 23988 Ph2 5314 059 1984 472 013 177 675 477 828 0 002 9621 1105 1062 -043 23989 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 84825 94 967 027 23990 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 83675 971 993 022 23991 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 81535 1035 1043 008 23992 Ph2 5314 059 1984 472 013 177 675 477 828 0 126 78315 1129 1124 -005 23993 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 79515 916 977 061 23994 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 77905 962 1017 055 23995 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 75945 1016 1067 051 23996 Ph2 5314 059 1984 472 013 177 675 477 828 0 204 73445 11 1136 036 23997 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 73605 984 101 026 23998 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 71765 1033 106 027 23999 Ph2 5314 059 1984 472 013 177 675 477 828 0 307 70885 1061 1085 024 23

1000 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 16702 196 203 007 231001 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 1621 225 237 012 231002 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 15718 256 274 018 231003 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 15226 291 312 021 23

162

1004 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 14733 329 354 025 231005 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 14241 372 398 026 231006 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 13749 422 446 024 231007 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 13257 477 497 02 231008 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 98165 1026 1022 -004 231009 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 9961 997 99 -007 231010 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10254 944 93 -014 231011 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10283 901 924 023 231012 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 10432 898 895 -003 231013 Ph3 5352 06 1984 48 014 176 676 466 791 0 002 96235 1068 1067 -001 231014 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 86735 917 947 03 231015 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 86005 92 963 043 231016 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 84065 984 1006 022 231017 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 81885 1032 1057 025 231018 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 80555 1064 109 026 231019 Ph3 5352 06 1984 48 014 176 676 466 791 0 117 78955 1105 113 025 231020 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 75375 932 947 015 231021 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 74875 946 96 014 231022 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 72775 982 1015 033 231023 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 71765 1025 1042 017 231024 Ph3 5352 06 1984 48 014 176 676 466 791 0 332 70435 1082 108 -002 231025 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 79995 89 952 062 231026 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 77855 94 1003 063 231027 Ph3 5352 06 1984 48 014 176 676 466 791 0 221 74675 1029 1086 057 231028 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 17692 249 21 -039 231029 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 17192 274 24 -034 231030 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 16702 301 272 -029 231031 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 16212 33 305 -025 231032 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 15722 362 341 -021 231033 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 15222 396 379 -017 231034 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 14732 433 42 -013 231035 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 14242 473 463 -01 23

163

1036 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10873 845 881 036 231037 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10385 932 968 036 231038 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 10097 977 1024 047 231039 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 98515 1056 1076 02 231040 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 97335 1075 1102 027 231041 Tr2 6086 039 1827 388 012 09 296 412 85 0 002 95695 1129 114 011 231042 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 72365 99 995 005 231043 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 70935 1031 1032 001 231044 Tr2 6086 039 1827 388 012 09 296 412 85 0 375 68885 1105 1089 -016 231045 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 79455 97 962 -008 231046 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 77665 1005 1003 -002 231047 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 76125 1065 104 -025 231048 Tr2 6086 039 1827 388 012 09 296 412 85 0 238 74385 1097 1085 -012 231049 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 82165 955 943 -012 231050 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 79545 102 1001 -019 231051 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 77575 108 1047 -033 231052 Tr2 6086 039 1827 388 012 09 296 412 85 0 204 76385 1104 1077 -027 231053 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 91745 904 881 -023 231054 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 88545 972 94 -032 231055 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 86505 1008 98 -028 231056 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 84985 1042 1012 -03 231057 Tr2 6086 039 1827 388 012 09 296 412 85 0 115 81965 1124 1078 -046 231058 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 17194 279 244 -035 231059 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 16702 306 275 -031 231060 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 1621 335 309 -026 231061 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 15718 367 345 -022 231062 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 15226 402 383 -019 231063 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 14733 439 424 -015 231064 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 14241 48 468 -012 231065 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10056 1039 1039 0 231066 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10414 941 968 027 231067 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 10579 906 938 032 23

164

1068 Tr3 6126 038 1838 35 014 074 297 458 804 0 002 96708 1118 1122 004 231069 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 87285 933 949 016 231070 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 85375 974 988 014 231071 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 83085 1009 1036 027 231072 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 81415 1056 1074 018 231073 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 81125 1062 1081 019 231074 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 79915 1085 1109 024 231075 Tr3 6126 038 1838 35 014 074 297 458 804 0 126 79465 1119 112 001 231076 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 72425 985 993 008 231077 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 71805 1005 1009 004 231078 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 69875 1052 1061 009 231079 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 69335 1095 1076 -019 231080 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 67945 1133 1116 -017 231081 Tr3 6126 038 1838 35 014 074 297 458 804 0 378 67735 1143 1122 -021 231082 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 86275 954 981 027 231083 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 84505 1001 1018 017 231084 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 82755 1024 1056 032 231085 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 80285 1074 1113 039 231086 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 79825 1102 1124 022 231087 Tr3 6126 038 1838 35 014 074 297 458 804 0 119 78645 1156 1153 -003 231088 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 95945 883 875 -008 231089 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 90155 988 979 -009 231090 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 85905 107 1065 -005 231091 Tr3 6126 038 1838 35 014 074 297 458 804 0 079 84075 1135 1105 -03 231092 D2 66 036 1523 408 01 221 501 384 216 014 002 1744 209 216 007 241093 D2 66 036 1523 408 01 221 501 384 216 014 002 17194 221 231 01 241094 D2 66 036 1523 408 01 221 501 384 216 014 002 16948 234 248 014 241095 D2 66 036 1523 408 01 221 501 384 216 014 002 16702 248 264 016 241096 D2 66 036 1523 408 01 221 501 384 216 014 002 16456 262 281 019 241097 D2 66 036 1523 408 01 221 501 384 216 014 002 1621 276 299 023 241098 D2 66 036 1523 408 01 221 501 384 216 014 002 15964 292 317 025 241099 D2 66 036 1523 408 01 221 501 384 216 014 002 15718 308 336 028 24

165

1100 D2 66 036 1523 408 01 221 501 384 216 014 002 15472 325 355 03 241101 D2 66 036 1523 408 01 221 501 384 216 014 002 15226 343 376 033 241102 D2 66 036 1523 408 01 221 501 384 216 014 002 14979 361 396 035 241103 D2 66 036 1523 408 01 221 501 384 216 014 002 14733 38 418 038 241104 D2 66 036 1523 408 01 221 501 384 216 014 002 14487 4 44 04 241105 D2 66 036 1523 408 01 221 501 384 216 014 002 14241 421 463 042 241106 D2 66 036 1523 408 01 221 501 384 216 014 002 13995 444 488 044 241107 D2 66 036 1523 408 01 221 501 384 216 014 002 13749 466 513 047 241108 D2 66 036 1523 408 01 221 501 384 216 014 002 10342 105 1034 -016 241109 D2 66 036 1523 408 01 221 501 384 216 014 002 10578 985 979 -006 241110 D2 66 036 1523 408 01 221 501 384 216 014 002 10742 928 944 016 241111 D2 66 036 1523 408 01 221 501 384 216 014 002 10912 891 91 019 241112 D2 66 036 1523 408 01 221 501 384 216 014 131 86205 1056 1017 -039 241113 D2 66 036 1523 408 01 221 501 384 216 014 131 83505 1118 1076 -042 241114 D2 66 036 1523 408 01 221 501 384 216 014 164 77205 1195 1173 -022 241115 D2 66 036 1523 408 01 221 501 384 216 014 164 80795 1112 1084 -028 241116 D2 66 036 1523 408 01 221 501 384 216 014 164 80845 1093 1083 -01 241117 D2 66 036 1523 408 01 221 501 384 216 014 164 83855 986 1015 029 241118 D2 66 036 1523 408 01 221 501 384 216 014 198 80395 1048 1045 -003 241119 D2 66 036 1523 408 01 221 501 384 216 014 198 81505 999 102 021 241120 D2 66 036 1523 408 01 221 501 384 216 014 198 83355 963 979 016 241121 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 84835 116 1193 033 251122 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 87035 108 1123 043 251123 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 87505 1074 1109 035 251124 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 88475 105 1081 031 251125 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 89165 1042 1061 019 251126 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 05 89255 1033 1059 026 251127 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 82635 1099 112 021 251128 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 83105 1089 1106 017 251129 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 83765 1073 1087 014 251130 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 103 84845 1037 1057 02 251131 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 80545 112 1093 -027 25

166

1132 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 81775 1088 1059 -029 251133 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82235 1057 1046 -011 251134 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82485 1054 1039 -015 251135 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 82995 1025 1026 001 251136 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 15 84995 975 974 -001 251137 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 79775 1016 1005 -011 251138 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 80795 977 978 001 251139 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 229 81805 957 952 -005 251140 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 18179 018 01 -008 251141 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17933 026 026 0 251142 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17687 034 042 008 251143 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17441 043 059 016 251144 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 17395 052 062 01 251145 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 16949 062 094 032 251146 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 16703 072 112 04 251147 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 98505 1082 993 -089 251148 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 98905 107 983 -087 251149 Bl1 4703 161 1628 1088 02 517 1047 375 194 059 002 10042 1023 949 -074 251150 A2 5869 001 2157 002 002 538 949 33 157 0 0 1036 1158 1151 -007 261151 A2 5869 001 2157 002 002 538 949 33 157 0 0 1054 1077 1074 -003 261152 A2 5869 001 2157 002 002 538 949 33 157 0 0 1065 1045 1034 -011 261153 A2 5869 001 2157 002 002 538 949 33 157 0 0 1075 1016 10 -016 261154 A2 5869 001 2157 002 002 538 949 33 157 0 0 1084 987 972 -015 261155 A2 5869 001 2157 002 002 538 949 33 157 0 0 1096 955 938 -017 261156 A2 5869 001 2157 002 002 538 949 33 157 0 0 1106 93 911 -019 261157 A2 5869 001 2157 002 002 538 949 33 157 0 0 1116 906 886 -02 261158 A2 5869 001 2157 002 002 538 949 33 157 0 0 1036 1132 1151 019 261159 A2 5869 001 2157 002 002 538 949 33 157 0 0 1054 1083 1074 -009 261160 A2 5869 001 2157 002 002 538 949 33 157 0 0 1062 103 1044 014 261161 A2 5869 001 2157 002 002 538 949 33 157 0 0 1065 1044 1034 -01 261162 A2 5869 001 2157 002 002 538 949 33 157 0 0 1074 1015 1003 -012 261163 A2 5869 001 2157 002 002 538 949 33 157 0 0 1083 974 975 001 26

167

1164 A2 5869 001 2157 002 002 538 949 33 157 0 0 1088 963 96 -003 261165 A2 5869 001 2157 002 002 538 949 33 157 0 0 1094 948 943 -005 261166 A2 5869 001 2157 002 002 538 949 33 157 0 0 1103 925 919 -006 261167 A2 5869 001 2157 002 002 538 949 33 157 0 0 1113 899 893 -006 261168 A2 5869 001 2157 002 002 538 949 33 157 0 0 1123 875 87 -005 261169 A2 5869 001 2157 002 002 538 949 33 157 0 0 1081 1002 981 -021 261170 A2 5869 001 2157 002 002 538 949 33 157 0 0 1091 972 952 -02 261171 A2 5869 001 2157 002 002 538 949 33 157 0 0 1100 944 927 -017 261172 A2 5869 001 2157 002 002 538 949 33 157 0 0 1110 917 901 -016 261173 A2 5869 001 2157 002 002 538 949 33 157 0 0 1120 891 877 -014 261174 A2 5869 001 2157 002 002 538 949 33 157 0 0 1130 867 854 -013 261175 A2 5869 001 2157 002 002 538 949 33 157 0 106 917 1055 1067 012 261176 A2 5869 001 2157 002 002 538 949 33 157 0 106 928 1044 1035 -009 261177 A2 5869 001 2157 002 002 538 949 33 157 0 106 937 1007 101 003 261178 A2 5869 001 2157 002 002 538 949 33 157 0 106 935 997 1016 019 261179 A2 5869 001 2157 002 002 538 949 33 157 0 106 954 954 964 01 261180 A2 5869 001 2157 002 002 538 949 33 157 0 106 976 9 908 008 261181 A2 5869 001 2157 002 002 538 949 33 157 0 106 985 874 887 013 261182 A2 5869 001 2157 002 002 538 949 33 157 0 106 996 854 861 007 261183 A2 5869 001 2157 002 002 538 949 33 157 0 106 1013 813 823 01 261184 A2 5869 001 2157 002 002 538 949 33 157 0 106 908 1103 1093 -01 261185 A2 5869 001 2157 002 002 538 949 33 157 0 106 918 1065 1064 -001 261186 A2 5869 001 2157 002 002 538 949 33 157 0 106 938 1007 1007 0 261187 A2 5869 001 2157 002 002 538 949 33 157 0 106 948 981 98 -001 261188 A2 5869 001 2157 002 002 538 949 33 157 0 106 948 978 98 002 261189 A2 5869 001 2157 002 002 538 949 33 157 0 106 957 957 956 -001 261190 A2 5869 001 2157 002 002 538 949 33 157 0 106 977 904 906 002 261191 A2 5869 001 2157 002 002 538 949 33 157 0 106 987 877 882 005 261192 A2 5869 001 2157 002 002 538 949 33 157 0 196 840 108 1057 -023 261193 A2 5869 001 2157 002 002 538 949 33 157 0 196 849 1052 1036 -016 261194 A2 5869 001 2157 002 002 538 949 33 157 0 196 851 1043 1032 -011 261195 A2 5869 001 2157 002 002 538 949 33 157 0 196 859 102 1013 -007 26

168

1196 A2 5869 001 2157 002 002 538 949 33 157 0 196 870 985 988 003 261197 A2 5869 001 2157 002 002 538 949 33 157 0 196 879 957 968 011 261198 A2 5869 001 2157 002 002 538 949 33 157 0 196 889 932 945 013 261199 A2 5869 001 2157 002 002 538 949 33 157 0 196 844 108 1048 -032 261200 A2 5869 001 2157 002 002 538 949 33 157 0 196 853 1051 1027 -024 261201 A2 5869 001 2157 002 002 538 949 33 157 0 196 863 1017 1004 -013 261202 A2 5869 001 2157 002 002 538 949 33 157 0 196 864 1015 1002 -013 261203 A2 5869 001 2157 002 002 538 949 33 157 0 196 873 986 981 -005 261204 A2 5869 001 2157 002 002 538 949 33 157 0 196 883 956 959 003 261205 A2 5869 001 2157 002 002 538 949 33 157 0 196 893 927 936 009 261206 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1006 1073 1124 051 271207 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1013 1052 103 -022 271208 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1013 1043 103 -013 271209 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1017 1025 989 -036 271210 Pr 4583 018 487 863 0 3163 637 032 0 0 0 1018 1013 98 -033 271211 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18669 -097 -101 -004 271212 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18571 -094 -095 -001 271213 Pr 4583 018 487 863 0 3163 637 032 0 0 0 18473 -09 -089 001 271214 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 18732 -006 -093 -086 281215 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 18232 008 -056 -064 281216 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 17732 023 -018 -04 281217 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 17232 039 023 -016 281218 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 16732 055 066 011 281219 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 16232 073 111 038 281220 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 15732 094 16 066 281221 Bl5 4961 427 1101 1473 0 446 1004 281 047 251 002 15232 117 212 094 281222 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 18672 -005 -069 -063 281223 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 18182 009 -033 -042 281224 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 17692 024 004 -02 281225 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 17192 04 044 004 281226 Bl6 5066 395 1135 139 0 394 96 298 051 24 002 16702 057 085 028 281227 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 18732 -005 -089 -084 28

169

1228 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 18232 008 -052 -06 281229 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 17732 022 -014 -035 281230 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 17232 037 027 -01 281231 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 16732 053 07 017 281232 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 16232 072 116 044 281233 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 15732 092 164 073 281234 Bl8 5084 426 1138 1505 0 442 1018 301 055 004 002 15232 116 216 101 281235 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 18672 -002 -073 -071 281236 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 18182 011 -037 -049 281237 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 17692 026 0 -026 281238 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 17192 042 041 -002 281239 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 16702 059 083 024 281240 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 16212 077 127 051 281241 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 15722 098 175 077 281242 Bl9 5087 405 1136 142 0 423 962 306 052 009 002 15222 122 226 105 281243 A5 5946 073 179 518 013 371 645 423 147 0 0 16232 222 262 04 291244 A5 5946 073 179 518 013 371 645 423 147 0 0 15232 274 344 07 291245 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 17732 009 -004 -013 291246 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 16732 035 074 039 291247 Bl7 5001 26 1256 1079 033 939 1088 233 048 0 002 15232 103 211 108 291248 D1 6528 059 1705 402 008 182 47 434 129 013 002 15712 322 343 021 301249 D1 6528 059 1705 402 008 182 47 434 129 013 002 16202 291 305 014 301250 D1 6528 059 1705 402 008 182 47 434 129 013 002 16702 261 269 008 301251 D1 6528 059 1705 402 008 182 47 434 129 013 002 17192 235 235 0 301252 D1 6528 059 1705 402 008 182 47 434 129 013 002 17682 211 204 -007 301253 D1 6528 059 1705 402 008 182 47 434 129 013 002 18172 187 174 -013 301254 D1 6528 059 1705 402 008 182 47 434 129 013 002 18672 166 145 -021 301255 D1 6528 059 1705 402 008 182 47 434 129 013 002 10091 106 1099 039 301256 D1 6528 059 1705 402 008 182 47 434 129 013 002 10235 1025 1065 04 301257 D1 6528 059 1705 402 008 182 47 434 129 013 002 10377 10 1033 033 301258 D1 6528 059 1705 402 008 182 47 434 129 013 002 10571 953 991 038 301259 D1 6528 059 1705 402 008 182 47 434 129 013 002 10759 925 953 028 30

170

1260 R33 7312 019 1356 319 0 018 168 386 42 0 21 12732 385 419 034 311261 R33 7312 019 1356 319 0 018 168 386 42 0 21 13732 332 343 011 311262 R33 7312 019 1356 319 0 018 168 386 42 0 21 14732 273 275 002 311263 R33 7312 019 1356 319 0 018 168 386 42 0 52 11732 369 357 -012 311264 R33 7312 019 1356 319 0 018 168 386 42 0 52 12732 305 289 -016 311265 R33 7312 019 1356 319 0 018 168 386 42 0 52 13732 251 232 -019 311266 R33 7312 019 1356 319 0 018 168 386 42 0 52 14732 203 184 -019 311267 R33 7312 019 1356 319 0 018 168 386 42 0 56 11732 36 347 -013 311268 R33 7312 019 1356 319 0 018 168 386 42 0 56 12732 297 281 -016 311269 R33 7312 019 1356 319 0 018 168 386 42 0 56 13732 242 227 -015 311270 R33 7312 019 1356 319 0 018 168 386 42 0 56 14732 185 181 -004 311271 R33 7312 019 1356 319 0 018 168 386 42 0 88 11732 3 304 004 311272 R33 7312 019 1356 319 0 018 168 386 42 0 88 14732 147 181 034 311273 A6 6215 076 168 496 025 326 508 502 172 0 0 16232 26 277 017 321274 A6 6215 076 168 496 025 326 508 502 172 0 0 16232 252 277 025 321275 H4 736 0 156 0 0 0 21 44 38 0 21 88045 897 899 002 331276 H4 736 0 156 0 0 0 21 44 38 0 21 83595 979 98 001 331277 H4 736 0 156 0 0 0 21 44 38 0 21 79595 1085 1065 -02 331278 H4 736 0 156 0 0 0 21 44 38 0 21 79495 1099 1067 -032 331279 H4 736 0 156 0 0 0 21 44 38 0 089 95135 962 984 022 331280 H4 736 0 156 0 0 0 21 44 38 0 089 97615 915 952 037 331281 H4 736 0 156 0 0 0 21 44 38 0 089 93835 103 1002 -028 331282 H4 736 0 156 0 0 0 21 44 38 0 089 91675 1081 1034 -047 331283 R34 7389 006 1577 075 0 014 058 462 419 0 666 12282 3 321 022 341284 R34 7389 006 1577 075 0 014 058 462 419 0 666 10862 386 419 033 341285 R34 7389 006 1577 075 0 014 058 462 419 0 398 13732 31 302 -008 341286 R34 7389 006 1577 075 0 014 058 462 419 0 398 12742 378 367 -011 341287 R34 7389 006 1577 075 0 014 058 462 419 0 398 11802 445 435 -01 341288 R34 7389 006 1577 075 0 014 058 462 419 0 666 11332 358 384 027 341289 R34 7389 006 1577 075 0 014 058 462 419 0 666 11832 324 35 026 341290 R34 7389 006 1577 075 0 014 058 462 419 0 666 11282 354 388 034 341291 R34 7389 006 1577 075 0 014 058 462 419 0 666 10732 394 429 035 34

171

1292 R34 7389 006 1577 075 0 014 058 462 419 0 666 11382 354 381 027 341293 R34 7389 006 1577 075 0 014 058 462 419 0 666 11332 352 384 033 341294 H5 741 0 117 0 0 0 0 9 44 0 29 62235 1005 1014 009 351295 H5 741 0 117 0 0 0 0 9 44 0 29 66145 869 915 046 351296 H5 741 0 117 0 0 0 0 9 44 0 29 59965 1094 108 -014 351297 H5 741 0 117 0 0 0 0 9 44 0 29 64375 908 958 05 351298 H5 741 0 117 0 0 0 0 9 44 0 181 65365 1082 1073 -009 351299 H5 741 0 117 0 0 0 0 9 44 0 181 69845 944 964 02 351300 H5 741 0 117 0 0 0 0 9 44 0 181 68515 968 994 026 351301 H5 741 0 117 0 0 0 0 9 44 0 697 49345 1068 1093 025 351302 H5 741 0 117 0 0 0 0 9 44 0 697 51745 91 999 089 351303 H5 741 0 117 0 0 0 0 9 44 0 697 52495 87 972 102 351304 H5 741 0 117 0 0 0 0 9 44 0 092 74475 1003 1014 011 351305 H5 741 0 117 0 0 0 0 9 44 0 092 71685 1094 1074 -02 351306 H5 741 0 117 0 0 0 0 9 44 0 129 74535 928 944 016 351307 H5 741 0 117 0 0 0 0 9 44 0 129 70725 1038 1026 -012 351308 H5 741 0 117 0 0 0 0 9 44 0 129 68655 1062 1074 012 351309 H5 741 0 117 0 0 0 0 9 44 0 063 77645 1017 1017 0 351310 H5 741 0 117 0 0 0 0 9 44 0 063 75635 1096 1057 -039 351311 H5 741 0 117 0 0 0 0 9 44 0 063 80445 931 966 035 351312 H5 741 0 117 0 0 0 0 9 44 0 077 77405 948 988 04 351313 H5 741 0 117 0 0 0 0 9 44 0 077 74415 108 1048 -032 351314 H6 741 0 122 0 0 0 52 44 4 0 002 10323 1091 1187 096 361315 H6 741 0 122 0 0 0 52 44 4 0 002 10535 1034 113 096 361316 H6 741 0 122 0 0 0 52 44 4 0 002 1076 964 1075 111 361317 H6 741 0 122 0 0 0 52 44 4 0 002 14732 449 488 039 361318 H6 741 0 122 0 0 0 52 44 4 0 002 15222 415 443 028 361319 H6 741 0 122 0 0 0 52 44 4 0 002 15712 383 401 018 361320 H6 741 0 122 0 0 0 52 44 4 0 002 16212 352 362 01 361321 H6 741 0 122 0 0 0 52 44 4 0 002 16702 326 326 0 361322 H6 741 0 122 0 0 0 52 44 4 0 002 17192 3 292 -008 361323 H6 741 0 122 0 0 0 52 44 4 0 002 17682 277 261 -016 36

172

1324 H6 741 0 122 0 0 0 52 44 4 0 002 18172 255 231 -024 361325 H6 741 0 122 0 0 0 52 44 4 0 002 18672 233 203 -03 361326 H9 756 0 12 0 0 49 0 45 4 0 002 10788 11 1145 045 361327 H9 756 0 12 0 0 49 0 45 4 0 002 10969 1066 1085 019 361328 H9 756 0 12 0 0 49 0 45 4 0 002 11136 1014 1035 021 361329 H9 756 0 12 0 0 49 0 45 4 0 002 11301 971 99 019 361330 H9 756 0 12 0 0 49 0 45 4 0 002 15224 441 431 -01 361331 H9 756 0 12 0 0 49 0 45 4 0 002 15716 406 391 -015 361332 H9 756 0 12 0 0 49 0 45 4 0 002 16208 372 353 -019 361333 H9 756 0 12 0 0 49 0 45 4 0 002 1670 34 318 -022 361334 H9 756 0 12 0 0 49 0 45 4 0 002 17192 312 285 -027 361335 H9 756 0 12 0 0 49 0 45 4 0 002 17684 286 254 -032 361336 H9 756 0 12 0 0 49 0 45 4 0 002 18176 261 225 -036 361337 H9 756 0 12 0 0 49 0 45 4 0 002 18668 235 197 -038 361338 H11 772 0 139 0 0 0 0 45 43 0 0 11761 113 1109 -021 371339 H11 772 0 139 0 0 0 0 45 43 0 0 11981 1108 1074 -034 371340 H11 772 0 139 0 0 0 0 45 43 0 0 12172 1048 1044 -004 371341 H11 772 0 139 0 0 0 0 45 43 0 0 12344 1014 1019 005 371342 H11 772 0 139 0 0 0 0 45 43 0 0 12574 1007 986 -021 371343 H11 772 0 139 0 0 0 0 45 43 0 107 86935 11 1075 -025 371344 H11 772 0 139 0 0 0 0 45 43 0 107 90875 1055 1012 -043 371345 H11 772 0 139 0 0 0 0 45 43 0 218 81505 1064 1014 -05 371346 H11 772 0 139 0 0 0 0 45 43 0 254 76725 1058 1078 02 371347 H11 772 0 139 0 0 0 0 45 43 0 254 79455 1019 1016 -003 371348 H11 772 0 139 0 0 0 0 45 43 0 254 74705 112 1127 007 371349 H8 754 0 161 0 0 0 0 47 43 0 0 12529 1012 996 -016 371350 H8 754 0 161 0 0 0 0 47 43 0 0 12339 1035 1023 -012 371351 H8 754 0 161 0 0 0 0 47 43 0 0 12161 107 1049 -021 371352 H8 754 0 161 0 0 0 0 47 43 0 0 12679 985 976 -009 371353 H8 754 0 161 0 0 0 0 47 43 0 0 1213 1058 1053 -005 371354 H8 754 0 161 0 0 0 0 47 43 0 117 89155 1052 1022 -03 371355 H8 754 0 161 0 0 0 0 47 43 0 117 86975 1085 106 -025 37

173

1356 H8 754 0 161 0 0 0 0 47 43 0 117 85655 1112 1084 -028 371357 H8 754 0 161 0 0 0 0 47 43 0 203 81945 1042 1029 -013 371358 H8 754 0 161 0 0 0 0 47 43 0 203 83285 984 1002 018 371359 H8 754 0 161 0 0 0 0 47 43 0 203 80135 107 1068 -002 371360 H8 754 0 161 0 0 0 0 47 43 0 203 79265 108 1088 008 371361 H8 754 0 161 0 0 0 0 47 43 0 277 76475 1014 1066 052 371362 H8 754 0 161 0 0 0 0 47 43 0 277 75555 106 1088 028 371363 H8 754 0 161 0 0 0 0 47 43 0 277 79285 991 1002 011 371364 H8 754 0 161 0 0 0 0 47 43 0 277 74785 1075 1107 032 371365 H10 7688 0 1145 0 0 0 0 36 56 0 002 12772 915 898 -017 381366 H10 7688 0 1145 0 0 0 0 36 56 0 002 12435 957 943 -014 381367 H10 7688 0 1145 0 0 0 0 36 56 0 002 12107 999 989 -01 381368 H10 7688 0 1145 0 0 0 0 36 56 0 002 11559 1085 1073 -012 381369 H10 7688 0 1145 0 0 0 0 36 56 0 002 11232 1135 1127 -008 381370 H12 7814 0 1164 0 0 0 0 126 911 0 002 12612 96 941 -019 381371 H12 7814 0 1164 0 0 0 0 126 911 0 002 1244 986 965 -021 381372 H12 7814 0 1164 0 0 0 0 126 911 0 002 12161 1031 1005 -026 381373 H12 7814 0 1164 0 0 0 0 126 911 0 002 11953 1075 1036 -039 381374 H12 7814 0 1164 0 0 0 0 126 911 0 002 11232 1212 1153 -059 381375 H13 7821 0 1169 0 0 0 0 241 743 0 002 12635 972 934 -038 381376 H13 7821 0 1169 0 0 0 0 241 743 0 002 1245 992 959 -033 381377 H13 7821 0 1169 0 0 0 0 241 743 0 002 11994 1052 1025 -027 381378 H13 7821 0 1169 0 0 0 0 241 743 0 002 11965 1072 103 -042 381379 H13 7821 0 1169 0 0 0 0 241 743 0 002 11232 118 1148 -032 381380 H14 7828 0 1192 0 0 0 0 591 223 0 002 12478 902 96 058 381381 H14 7828 0 1192 0 0 0 0 591 223 0 002 12253 934 992 058 381382 H14 7828 0 1192 0 0 0 0 591 223 0 002 12048 96 1021 061 381383 H14 7828 0 1192 0 0 0 0 591 223 0 002 11838 994 1053 059 381384 H14 7828 0 1192 0 0 0 0 591 223 0 002 11732 1013 107 057 381385 H14 7828 0 1192 0 0 0 0 591 223 0 002 11232 1092 1152 06 381386 H15 786 0 1199 0 0 0 0 457 42 0 002 11549 1102 1112 01 381387 H15 786 0 1199 0 0 0 0 457 42 0 002 11782 1063 1074 011 38

174

1388 H15 786 0 1199 0 0 0 0 457 42 0 002 11989 1028 1043 015 381389 H15 786 0 1199 0 0 0 0 457 42 0 002 1212 1016 1023 007 381390 H15 786 0 1199 0 0 0 0 457 42 0 002 11232 1153 1165 012 381391 H16 8103 0 991 0 0 0 0 124 739 0 002 12668 1025 985 -04 381392 H16 8103 0 991 0 0 0 0 124 739 0 002 12567 1036 999 -037 381393 H16 8103 0 991 0 0 0 0 124 739 0 002 1236 1056 1029 -027 381394 H16 8103 0 991 0 0 0 0 124 739 0 002 12375 1063 1027 -036 381395 H16 8103 0 991 0 0 0 0 124 739 0 002 12225 1097 1049 -048 381396 H16 8103 0 991 0 0 0 0 124 739 0 002 12243 11 1046 -054 381397 H16 8103 0 991 0 0 0 0 124 739 0 002 12137 1127 1062 -065 381398 H16 8103 0 991 0 0 0 0 124 739 0 002 11232 1308 1212 -096 381399 H17 8174 0 1003 0 0 0 0 247 566 0 002 12637 997 986 -011 381400 H17 8174 0 1003 0 0 0 0 247 566 0 002 12416 1023 1017 -006 381401 H17 8174 0 1003 0 0 0 0 247 566 0 002 12173 1059 1053 -006 381402 H17 8174 0 1003 0 0 0 0 247 566 0 002 11941 11 1089 -011 381403 H17 8174 0 1003 0 0 0 0 247 566 0 002 11232 1216 1208 -008 381404 H18 8222 0 1017 0 0 0 0 366 389 0 002 12708 986 984 -002 381405 H18 8222 0 1017 0 0 0 0 366 389 0 002 12538 1015 1008 -007 381406 H18 8222 0 1017 0 0 0 0 366 389 0 002 12262 1044 1048 004 381407 H18 8222 0 1017 0 0 0 0 366 389 0 002 1197 1095 1093 -002 381408 H18 8222 0 1017 0 0 0 0 366 389 0 002 11232 1212 1217 005 381409 H19 8231 0 1016 0 0 0 0 589 07 0 002 12425 986 1004 018 381410 H19 8231 0 1016 0 0 0 0 589 07 0 002 12268 1018 1027 009 381411 H19 8231 0 1016 0 0 0 0 589 07 0 002 12033 1054 1062 008 381412 H19 8231 0 1016 0 0 0 0 589 07 0 002 11768 1091 1104 013 381413 H19 8231 0 1016 0 0 0 0 589 07 0 002 11232 1187 1196 009 381414 H20 8294 0 103 0 0 0 0 468 241 0 001 12605 973 1005 032 381415 H20 8294 0 103 0 0 0 0 468 241 0 001 12367 101 104 03 381416 H20 8294 0 103 0 0 0 0 468 241 0 001 12155 1059 1072 013 381417 H20 8294 0 103 0 0 0 0 468 241 0 001 12173 106 1069 009 381418 H20 8294 0 103 0 0 0 0 468 241 0 001 11915 1114 111 -004 381419 H20 8294 0 103 0 0 0 0 468 241 0 001 11232 1272 1227 -045 38

175

1420 H21 7349 0 1326 0 0 0 0 24 898 0 003 12463 986 908 -078 381421 H21 7349 0 1326 0 0 0 0 24 898 0 003 12213 1022 941 -081 381422 H21 7349 0 1326 0 0 0 0 24 898 0 003 12025 1049 967 -082 381423 H21 7349 0 1326 0 0 0 0 24 898 0 003 1177 1089 1004 -085 381424 H21 7349 0 1326 0 0 0 0 24 898 0 003 11232 1177 1088 -089 381425 H22 749 0 1352 0 0 0 0 364 722 0 002 12679 946 891 -055 381426 H22 749 0 1352 0 0 0 0 364 722 0 002 12403 99 927 -063 381427 H22 749 0 1352 0 0 0 0 364 722 0 002 12266 101 946 -064 381428 H22 749 0 1352 0 0 0 0 364 722 0 002 11914 106 996 -064 381429 H22 749 0 1352 0 0 0 0 364 722 0 002 11232 1176 1101 -075 381430 H23 7552 0 139 0 0 0 0 477 553 0 002 12652 936 915 -021 381431 H23 7552 0 139 0 0 0 0 477 553 0 002 12364 996 954 -042 381432 H23 7552 0 139 0 0 0 0 477 553 0 002 1223 1012 972 -04 381433 H23 7552 0 139 0 0 0 0 477 553 0 002 11884 1066 1022 -044 381434 H23 7552 0 139 0 0 0 0 477 553 0 002 11232 1192 1125 -067 381435 H24 7608 0 1389 0 0 0 0 596 384 0 002 12174 954 976 022 381436 H24 7608 0 1389 0 0 0 0 596 384 0 002 11923 1013 1013 0 381437 H24 7608 0 1389 0 0 0 0 596 384 0 002 11769 105 1036 -014 381438 H24 7608 0 1389 0 0 0 0 596 384 0 002 11513 109 1075 -015 381439 H24 7608 0 1389 0 0 0 0 596 384 0 002 11232 1159 1121 -038 381440 H25 7652 0 1405 0 0 0 0 714 219 0 002 12188 964 972 008 381441 H25 7652 0 1405 0 0 0 0 714 219 0 002 11976 999 1002 003 381442 H25 7652 0 1405 0 0 0 0 714 219 0 002 1175 1034 1036 002 381443 H25 7652 0 1405 0 0 0 0 714 219 0 002 1150 108 1074 -006 381444 H25 7652 0 1405 0 0 0 0 714 219 0 002 11232 1127 1118 -009 381445 H26 7898 0 1211 0 0 0 0 704 062 0 001 12711 915 935 02 381446 H26 7898 0 1211 0 0 0 0 704 062 0 001 12586 945 952 007 381447 H26 7898 0 1211 0 0 0 0 704 062 0 001 12394 965 979 014 381448 H26 7898 0 1211 0 0 0 0 704 062 0 001 12099 1035 1022 -013 381449 H26 7898 0 1211 0 0 0 0 704 062 0 001 11893 1074 1053 -021 381450 H26 7898 0 1211 0 0 0 0 704 062 0 001 11686 1124 1086 -038 381451 H26 7898 0 1211 0 0 0 0 704 062 0 001 11232 1224 1162 -062 38

176

APPENDIX B

FTIR SPECTRA FOR EQUILIBRIUM SPECIATION EXPERIMENTS

The FTIR spectra on the following pages are for the measurements listed in Table

33 in Chapter III All spectra were normalized to the sample thickness (mm)

Fig B1 FTIR spectra for equilibrium speciation experiments

053

058

063

068

073

40004500500055006000

KS-1-21

wavenumber (cm-1)

A (1

mm

)

049

054

059

064

069

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-22

055

06

065

07

075

40004500500055006000

KS-1-23

wavenumber (cm-1)

A (1

mm

)

025

027

029

031

033

035

037

039

041

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-31

177

022

024

026

028

03

032

034

036

038

40004500500055006000

KS-1-32

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-33

035

037

039

041

043

045

047

049

051

40004500500055006000

KS-1-41

A (1

mm

)

wavenumber (cm-1)

034

036

038

04

042

044

046

048

05

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-42

027

029

031

033

035

037

039

041

043

40004500500055006000

KS-1-43

A (1

mm

)

wavenumber (cm-1)

038

042

046

05

054

058

062

066

40004500500055006000

GMR+2-1-11

A (1

mm

)

wavenumber (cm-1)

178

034

038

042

046

05

054

058

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-12

035

039

043

047

051

055

059

063

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-13

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-21

045

05

055

06

065

07

075

08

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-22

045

05

055

06

065

07

075

08

40004500500055006000

GMR+2-1-23

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-31

179

033

038

043

048

053

058

063

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-32

033

038

043

048

053

058

063

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-1-33

045

05

055

06

065

07

075

08

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-1-R11

04

045

05

055

06

065

07

075

40004500500055006000

GMR+2-1-R12

A (1

mm

)

wavenumber (cm-1)

045

05

055

06

065

07

075

08

40004500500055006000

GMR+2-1-R13

wavenumber (cm-1)

A (1

mm

)

12

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-21

180

11

13

15

17

19

21

23

25

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-22

11

13

15

17

19

21

23

25

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-23

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-31

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-32

04

05

06

07

08

09

1

11

12

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-33

04

05

06

07

08

09

1

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-41

181

04

05

06

07

08

09

1

40004500500055006000

GMR+4-1-42A

(1m

m)

wavenumber (cm-1)

04

05

06

07

08

09

1

40004500500055006000

GMR+4-1-43

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

40004500500055006000

KS-2-11

wavenumber (cm-1)

A (1

mm

)

033

038

043

048

053

40004500500055006000

KS-2-12

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

40004500500055006000

KS-2-13

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

40004500500055006000

KS-2-21

wavenumber (cm-1)

A (1

mm

)

182

023

028

033

038

043

40004500500055006000

KS-2-22

A (1

mm

)

wavenumber (cm-1)

022

027

032

037

042

40004500500055006000

KS-2-23

wavenumber (cm-1)

A (1

mm

)

033

038

043

048

053

40004500500055006000

KS-2-41

wavenumber (cm-1)

A (1

mm

)

029

034

039

044

049

40004500500055006000

wavenumber (cm-1)

KS-2-42

A (1

mm

)

028

033

038

043

048

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-43

045

05

055

06

065

07

075

08

085

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-11

183

055

06

065

07

075

08

085

09

095

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-12

055

06

065

07

075

08

085

09

095

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-13

032

037

042

047

052

057

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-21

032

037

042

047

052

057

062

40004500500055006000

GMR+2-2-22

A (1

mm

)

wavenumber (cm-1)

032

037

042

047

052

057

062

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-23

055

06

065

07

075

08

085

09

40004500500055006000

GMR+2-2-41

A (1

mm

)

wavenumber (cm-1)

184

05

055

06

065

07

075

08

085

40004500500055006000

GMR+2-2-42

wavenumber (cm-1)

A (1

mm

)

045

05

055

06

065

07

075

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-43

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-11

08

1

12

14

16

18

40004500500055006000

GMR+4-2-12

A (1

mm

)

wavenumber (cm-1)

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-13

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-21

A (1

mm

)

wavenumber (cm-1)

185

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-22A

(1m

m)

wavenumber (cm-1)

06

07

08

09

1

11

12

13

14

40004500500055006000

GMR+4-2-23

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-31

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-32

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

12

13

40004500500055006000

GMR+4-2-33

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

40004500500055006000

KS-3-11

A (1

mm

)

wavenumber (cm-1)

186

04

045

05

055

06

40004500500055006000

KS-3-12

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

40004500500055006000

KS-3-13

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

KS-3-21

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-22

025

03

035

04

045

40004500500055006000

KS-3-23

wavenumber (cm-1)

A (1

mm

)

025

03

035

04

045

40004500500055006000

KS-3-24

wavenumber (cm-1)

A (1

mm

)

187

023

025

027

029

031

033

035

037

039

40004500500055006000

KS-3-31

wavenumber (cm-1)

A (1

mm

)

023

025

027

029

031

033

035

037

039

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-32

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-3-33

A (1

mm

)

wavenumber (cm-1)

025

027

029

031

033

035

037

039

041

40004500500055006000

KS-3-41

wavenumber (cm-1)

A (1

mm

)

026

028

03

032

034

036

038

04

042

40004500500055006000

KS-3-42

A (1

mm

)

wavenumber (cm-1)

026

028

03

032

034

036

038

04

042

40004500500055006000

KS-3-43

wavenumber (cm-1)

A (1

mm

)

188

027

029

031

033

035

037

039

041

043

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-44

045

047

049

051

053

055

057

059

061

40004500500055006000

KS-3-R11

wavenumber (cm-1)

A (1

mm

)

036

038

04

042

044

046

048

05

052

40004500500055006000

KS-3-R12

wavenumber (cm-1)

A (1

mm

)

033

035

037

039

041

043

045

047

049

40004500500055006000

KS-3-R13

wavenumber (cm-1)

A (1

mm

)

032

037

042

047

052

057

062

067

40004500500055006000

GMR+2-3-11

A (1

mm

)

wavenumber (cm-1)

032

037

042

047

052

057

062

067

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-12

189

032

037

042

047

052

057

062

067

40004500500055006000

GMR+2-3-13A

(1m

m)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-3-21

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-22

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-23

wavenumber (cm-1)

A (1

mm

)

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-31

wavenumber (cm-1)

A (1

mm

)

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-32

A (1

mm

)

wavenumber (cm-1)

190

028

033

038

043

048

053

058

063

40004500500055006000

GMR+2-3-33

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-11

wavenumber (cm-1)

A (1

mm

)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-12

A (1

mm

)

wavenumber (cm-1)05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-13

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-31

A (1

mm

)

wavenumber (cm-1)

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-32

wavenumber (cm-1)

A (1

mm

)

191

04

05

06

07

08

09

1

40004500500055006000

GMR+4-3-33A

(1m

m)

wavenumber (cm-1)

04

05

06

07

08

09

1

11

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+4-3-41

04

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-42

A (1

mm

)

wavenumber (cm-1)

04

05

06

07

08

09

1

11

40004500500055006000

GMR+4-3-43

A (1

mm

)

wavenumber (cm-1)

023

028

033

038

043

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-11

045

05

055

06

065

40004500500055006000

KS-1b-12

A (1

mm

)

wavenumber (cm-1)

192

027

032

037

042

047

40004500500055006000

KS-1b-13

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-1b-21

wavenumber (cm-1)

A (1

mm

)

021

023

025

027

029

031

033

035

037

40004500500055006000

KS-1b-22

A (1

mm

)

wavenumber (cm-1)

024

026

028

03

032

034

036

038

04

40004500500055006000

KS-1b-23

A (1

mm

)

wavenumber (cm-1)

028

031

034

037

04

043

046

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1b-31

031

034

037

04

043

046

049

40004500500055006000

KS-1b-32

A (1

mm

)

wavenumber (cm-1)

193

033

036

039

042

045

048

051

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-33

024

026

028

03

032

034

036

038

04

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-R11

027

029

031

033

035

037

039

041

043

40004500500055006000

KS-1b-R12

A (1

mm

)

wavenumber (cm-1)

031

033

035

037

039

041

043

045

047

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1b-R13

063

065

067

069

071

073

075

077

079

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1b-R21

054

056

058

06

062

064

066

068

07

40004500500055006000

KS-1b-R22

A (1

mm

)

wavenumber (cm-1)

194

058

06

062

064

066

068

07

072

074

40004500500055006000

KS-1b-R23

A (1

mm

)

wavenumber (cm-1)

195

APPENDIX C

FTIR SPECTRA FOR COOLING EXPERIMENTS

The FTIR spectra on the following pages are for the measurements listed in Table

43 in Chapter IV All spectra were normalized to the sample thickness (mm)

Fig C1 FTIR spectra for cooling experiments

042

044

046

048

05

052

054

056

058

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-21

036

038

04

042

044

046

048

05

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-22

05

052

054

056

058

06

062

064

40004500500055006000

KS-1-23

A (1

mm

)

wavenumber (cm-1)

048

05

052

054

056

058

06

062

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-1-31

196

044

046

048

05

052

054

056

058

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-32

036

038

04

042

044

046

048

05

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-33

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-41

024

026

028

03

032

034

036

038

04

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-1-42

022

024

026

028

03

032

034

036

038

40004500500055006000

KS-1-43

wavenumber (cm-1)

A (1

mm

)

028

032

036

04

044

048

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-1-51

197

028

032

036

04

044

048

40004500500055006000

KS-1-52

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

40004500500055006000

KS-1-53

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-11

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-12

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-13

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-21

wavenumber (cm-1)

A (1

mm

)

198

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-22

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-1-23

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-31

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-32

wavenumber (cm-1)

A (1

mm

)

1

15

2

25

3

40004500500055006000

GMR+2-1-33

wavenumber (cm-1)

A (1

mm

)

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-21

199

14

16

18

2

22

24

26

40004500500055006000

A (1

mm

)

GMR+4-1-22

wavenumber (cm-1)

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-23

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-31

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-32

wavenumber (cm-1)

A (1

mm

)

22

24

26

28

3

32

34

36

40004500500055006000

GMR+4-1-33

wavenumber (cm-1)

A (1

mm

)

14

16

18

2

22

24

26

28

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-1-41

200

14

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-42

A (1

mm

)

wavenumber (cm-1)

14

16

18

2

22

24

26

28

40004500500055006000

GMR+4-1-43

wavenumber (cm-1)

A (1

mm

)

-065

-06

-055

-05

-045

-04

40004500500055006000

KS-2-11

A (1

mm

)

wavenumber (cm-1)

-025

-02

-015

-01

-005

0

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-2-12

032

036

04

044

048

052

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-21

028

032

036

04

044

048

40004500500055006000

KS-2-22

A (1

mm

)

wavenumber (cm-1)

201

025

029

033

037

041

045

40004500500055006000

KS-2-23

wavenumber (cm-1)

A (1

mm

)

026

031

036

041

046

40004500500055006000

KS-2-31

wavenumber (cm-1)

A (1

mm

)

024

029

034

039

044

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-32

03

035

04

045

05

40004500500055006000

KS-2-33

wavenumber (cm-1)

A (1

mm

)

-008

-0044

-0008

0028

0064

01

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-41

-02

-0164

-0128

-0092

-0056

-002

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-2-42

202

-006

-0024

0012

0048

0084

012

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-2-43

03

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-21

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-22

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-23

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-31

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-32

A (1

mm

)

wavenumber (cm-1)

203

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-33

A (1

mm

)

wavenumber (cm-1)

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-51

wavenumber (cm-1)

A (1

mm

)

035

04

045

05

055

06

065

07

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-2-52

035

04

045

05

055

06

065

07

40004500500055006000

GMR+2-2-53

wavenumber (cm-1)

A (1

mm

)

01

02

03

04

05

06

07

08

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-31

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-32

wavenumber (cm-1)

A (1

mm

)

204

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-33

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-41

A (1

mm

)

wavenumber (cm-1)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-42

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

1

40004500500055006000

GMR+4-2-43

wavenumber (cm-1)

A (1

mm

)

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-51

A (1

mm

)

wavenumber (cm-1)

01

02

03

04

05

06

07

08

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-2-52

205

01

02

03

04

05

06

07

08

40004500500055006000

GMR+4-2-53A

(1m

m)

wavenumber (cm-1)

025

03

035

04

045

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-11

025

03

035

04

045

40004500500055006000

KS-3-12

A (1

mm

)

wavenumber (cm-1)

023

028

033

038

043

40004500500055006000

KS-3-13

A (1

mm

)

wavenumber (cm-1)

028

031

034

037

04

043

046

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

KS-3-21

029

032

035

038

041

044

047

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-22

206

031

034

037

04

043

046

049

40004500500055006000wavenumber (cm-1)

A (1

mm

)KS-3-23

025

03

035

04

045

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-81

03

035

04

045

05

40004500500055006000

KS-3-82

A (1

mm

)

wavenumber (cm-1)

026

031

036

041

046

40004500500055006000wavenumber (cm-1)

A (1

mm

)

KS-3-83

04

045

05

055

06

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-91

036

04

044

048

052

056

40004500500055006000

KS-3-92

A (1

mm

)

wavenumber (cm-1)

207

038

043

048

053

058

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-93

039

041

043

045

047

049

051

053

055

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-111

04

042

044

046

048

05

052

054

056

40004500500055006000

KS-3-112

A (1

mm

)

wavenumber (cm-1)

041

043

045

047

049

051

053

055

057

40004500500055006000

KS-3-113

A (1

mm

)

wavenumber (cm-1)

033

035

037

039

041

043

045

047

049

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

KS-3-114

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-21

wavenumber (cm-1)

A (1

mm

)

208

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-22A

(1m

m)

wavenumber (cm-1)03

035

04

045

05

055

06

065

40004500500055006000

wavenumber (cm-1)

A (1

mm

)

GMR+2-3-23

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-31

wavenumber (cm-1)

A (1

mm

)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-32

A (1

mm

)

wavenumber (cm-1)

03

035

04

045

05

055

06

065

40004500500055006000

GMR+2-3-33

A (1

mm

)

wavenumber (cm-1)

04

045

05

055

06

065

07

075

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-41

209

04

045

05

055

06

065

07

075

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+2-3-42

04

045

05

055

06

065

07

075

40004500500055006000wavenumber (cm-1)

A (1

mm

)

GMR+2-3-43

08

1

12

14

16

18

40004500500055006000

GMR+4-3-41

A (1

mm

)

wavenumber (cm-1)

08

1

12

14

16

18

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-3-42

08

1

12

14

16

18

40004500500055006000

GMR+4-3-43

wavenumber (cm-1)

A (1

mm

)

03

04

05

06

07

08

09

40004500500055006000

A (1

mm

)

wavenumber (cm-1)

GMR+4-3-51

210

03

04

05

06

07

08

09

40004500500055006000wavenumber (cm-1)

A (1

mm

)GMR+4-3-52

03

04

05

06

07

08

09

40004500500055006000

GMR+4-3-53

wavenumber (cm-1)

A (1

mm

)

211

APPENDIX D

DATABASE FOR EASINESS OF CRYSTALLIZATION FOR DIFFERENT MELTS AT DIFFERENT P-T CONDITION

Experimental database for easiness of crystallization for different melts at

different P-T condition has been accumulated at the experimental petrology laboratory

the University of Michigan The references are listed at the end of the table

Table D1 Pressure dependence of easiness of crystallization for different melts at

different temperatures

Composition H2Ot P T t q Crystallization Refloz wt GPa K s Ks

1 rhyolite 653 05 613 7200 50 N 42 rhyolite 653 05 613 1260 50 N 43 rhyolite 46 03 623 18000 50 N 134 rhyolite 389 1 623 261360 50 N 115 rhyolite 653 05 643 300 0017 N 46 rhyolite 533 05 673 300 0017 N 47 rhyolite 389 1 673 46800 50 N 118 rhyolite 389 2 673 172800 50 N 119 rhyolite 518 2 673 720000 50 N 12

10 rhyolite 371 3 673 259200 50 N 1111 rhyolite 365 05 678 300 00017 N 412 rhyolite 365 05 678 600 59 N 413 rhyolite 364 05 703 300 0017 N 414 rhyolite 263 00001 723 600 0017 N 115 rhyolite 365 05 723 300 1 N 416 rhyolite 18 1 723 183600 50 N 1117 rhyolite 389 1 723 10800 50 N 1118 rhyolite 389 2 723 14400 50 N 1119 rhyolite 389 3 723 21600 50 N 1120 rhyolite 389 3 723 21600 50 N 1121 rhyolite 527 05 733 300 1 N 422 rhyolite 239 00001 735 600 0000177 N 1

212

23 rhyolite 653 05 743 300 50 N 424 rhyolite 1571 00001 752 600 0000177 N 125 rhyolite 306 00001 753 600 0108 N 126 rhyolite 365 05 753 600 1 N 427 rhyolite 527 05 753 240 50 N 428 rhyolite 087 05 753 1067900 30 N 329 rhyolite 389 2 753 1260 50 N 1130 rhyolite 51 2 753 172800 50 Y 1231 rhyolite 085 3 763 36000 50 Y 1132 rhyolite 149 00001 773 176220 427 N 233 rhyolite 46 03 773 300 50 N 1334 rhyolite 18 1 773 600 50 N 1135 rhyolite 389 1 773 600 50 N 1136 rhyolite 18 2 773 86400 50 N 1137 rhyolite 591 2 773 54000 50 Y 1238 rhyolite 18 3 773 172800 50 N 1139 rhyolite 389 3 773 960 50 N 1140 rhyolite 09 4 773 10800 50 Y 1141 rhyolite 09 62 773 10800 50 Y 1142 rhyolite 3 00001 783 600 055 N 143 rhyolite 365 05 793 300 52 N 444 rhyolite 177 00001 798 26820 1259 N 245 rhyolite 371 05 803 68520 30 N 346 rhyolite 0809 00001 813 600 00002 N 147 rhyolite 08 1 813 187200 54 N 1148 rhyolite 1729 00001 823 600 0017 N 149 rhyolite 1824 00001 823 600 0017 N 150 rhyolite 1681 00001 823 600 0125 N 151 rhyolite 1855 00001 823 600 013 N 152 rhyolite 1879 00001 823 600 082 N 153 rhyolite 18 1 823 600 55 N 1154 rhyolite 18 2 823 7200 55 N 1155 rhyolite 09 3 823 176400 55 N 1156 rhyolite 09 3 823 864000 55 N 1157 rhyolite 09 4 823 11100 55 Y 1158 rhyolite 18 3 823 7200 55 N 1159 rhyolite 181 00001 824 10800 59 N 260 rhyolite 0186 00001 825 3628800 20 N 1061 rhyolite 76 05 828 9065 70 N 362 rhyolite 073 05 836 236800 30 N 363 rhyolite 0839 00001 843 600 0002 N 164 rhyolite 1421 00001 843 600 0017 N 165 rhyolite 1433 00001 843 600 0141 N 166 rhyolite 0928 00001 847 600 0017 N 167 rhyolite 192 00001 848 2700 84 N 268 rhyolite 131 00001 848 16800 141 N 269 rhyolite 18 2 853 600 58 N 1170 rhyolite 142 00001 863 600 0762 N 1

213

71 rhyolite 082 081 865 252900 30 N 372 rhyolite 081 005 868 167700 30 N 373 rhyolite 0811 00001 872 600 0049 N 174 rhyolite 0839 00001 873 600 00055 N 175 rhyolite 085 00001 873 21600 65 N 1176 rhyolite 085 3 873 7200 60 Y 1177 rhyolite 087 1 873 14400 60 N 1178 rhyolite 088 3 873 2400 60 N 1179 rhyolite 09 2 873 14400 60 N 1180 rhyolite 09 4 873 10800 60 Y 1181 rhyolite 09 4 873 10800 60 Y 1182 rhyolite 1118 00001 873 600 015 N 183 rhyolite 1155 00001 873 600 0915 N 184 rhyolite 116 00001 873 5760 20 N 285 rhyolite 139 00001 873 3900 20 N 286 rhyolite 187 00001 873 1215 20 N 287 rhyolite 2 2 873 600 60 N 1188 rhyolite 2 3 873 600 60 N 1189 rhyolite 226 2 873 43200 60 N 1290 rhyolite 228 2 873 86400 60 N 1291 rhyolite 361 3 873 60 1 N 1392 rhyolite 396 2 873 14400 60 Y 1293 rhyolite 51 1 873 36000 60 N 1294 rhyolite 079 02 874 227760 30 N 395 rhyolite 0892 00001 875 600 0017 N 196 rhyolite 079 05 875 263650 30 N 397 rhyolite 077 00001 876 93160 30 N 398 rhyolite 186 05 878 144300 30 N 399 rhyolite 0802 00001 880 600 0161 N 1

100 rhyolite 085 3 883 3600 001 Y 13101 rhyolite 0831 00001 893 600 0018 N 1102 rhyolite 084 00001 893 600 0018 N 1103 rhyolite 085 3 903 3600 001 Y 13104 rhyolite 08 00001 923 600 75 N 11105 rhyolite 08 00001 923 7200 75 N 11106 rhyolite 084 00001 923 2400 75 N 11107 rhyolite 085 1 923 600 65 N 11108 rhyolite 089 2 923 600 65 N 11109 rhyolite 085 3 923 600 33 Y 13110 rhyolite 085 3 923 600 033 Y 13111 rhyolite 201 1 923 600 01 N 13112 rhyolite 382 1 923 120 1 N 13113 rhyolite 0513 00001 941 600 0017 N 1114 rhyolite 087 2 953 600 68 N 11115 rhyolite 76 05 969 720 30 N 3116 rhyolite 0124 00001 971 1450800 20 N 10117 rhyolite 137 0011 973 259200 05 N 10118 rhyolite 218 00249 973 172800 05 N 10

214

119 rhyolite 389 2 973 60 1 N 13120 rhyolite 389 3 973 60 10 N 13121 rhyolite 08 00001 973 600 50 N 11122 rhyolite 082 1 973 480 70 N 11123 rhyolite 08 1 973 300 01 N 13124 rhyolite 08 2 973 300 01 N 13125 rhyolite 085 3 973 600 70 Y 11126 rhyolite 082 3 973 300 01 Y 13127 rhyolite 09 4 973 3600 70 Y 11128 rhyolite 0836 00001 993 300 127 N 6129 rhyolite 09 4 993 600 05 Y 13130 rhyolite 0805 00001 1000 300 20 N 6131 rhyolite 0784 00001 1003 600 79 N 6132 rhyolite 088 00001 1013 60 127 N 6133 rhyolite 08 00001 1021 300 65 N 6134 rhyolite 0116 00001 1023 1292400 20 N 10135 rhyolite 068 00001 1023 300 178 N 6136 rhyolite 0766 00001 1023 300 84 N 6137 rhyolite 08 3 1023 600 0333 Y 13138 rhyolite 082 1 1023 120 1 N 13139 rhyolite 082 2 1023 120 1 N 13140 rhyolite 082 3 1023 120 10 N 13141 rhyolite 083 3 1023 120 1 N 13142 rhyolite 084 00001 1023 450 130 N 6143 rhyolite 085 3 1023 120 75 N 11144 rhyolite 085 3 1023 120 1 N 13145 rhyolite 0855 00001 1023 600 174 N 6146 rhyolite 18 2 1023 120 10 N 13147 rhyolite 18 2 1023 120 1 N 13148 rhyolite 18 3 1023 120 10 N 13149 rhyolite 18 3 1023 120 1 N 13150 rhyolite 183 1 1023 120 1 N 13151 rhyolite 389 2 1023 60 10 N 13152 rhyolite 389 3 1023 60 75 Y 13153 rhyolite 08 00001 1024 600 14 N 6154 rhyolite 07 1 1073 60 10 N 13155 rhyolite 08 1 1073 120 80 N 13156 rhyolite 08 2 1073 120 10 N 13157 rhyolite 082 02 1073 300 0167 N 4158 rhyolite 083 01 1073 600 0167 N 4159 rhyolite 085 2 1073 300 0167 N 13160 rhyolite 178 02 1073 600 80 N 4161 rhyolite 181 1 1073 60 10 N 13162 rhyolite 182 2 1073 60 80 N 13163 rhyolite 241 01 1073 600 80 N 4164 rhyolite 25 02 1073 600 80 N 4165 rhyolite 389 1 1073 60 10 N 13166 rhyolite 389 1 1073 60 80 N 13

215

167 rhyolite 389 2 1073 60 80 N 13168 rhyolite 389 3 1073 60 80 Y 13169 rhyolite 09 4 1103 300 4 Y 13170 rhyolite 0103 00001 1123 219600 20 N 10171 rhyolite 0105 00001 1123 867600 20 N 10172 rhyolite 077 00061 1123 259200 05 N 10173 rhyolite 077 2 1123 120 85 N 13174 rhyolite 077 3 1123 60 85 Y 13175 rhyolite 085 2 1123 300 85 N 13176 rhyolite 11 00112 1123 338400 05 N 10177 rhyolite 111 00114 1123 172800 05 N 10178 rhyolite 176 00253 1123 176400 05 N 10179 rhyolite 18 3 1123 120 85 Y 13180 rhyolite 241 02 1123 3600 067 N 4181 rhyolite 389 3 1123 60 85 Y 13182 rhyolite 0106 00001 1124 1134000 20 N 10183 rhyolite 76 05 1126 240 30 N 3184 rhyolite 6 025 1135 1800 2 N 3185 rhyolite 76 05 1173 0 2 N 3186 rhyolite 76 05 1173 1800 2 N 3187 rhyolite 23 05 1173 7200 167 N 5188 rhyolite 0225 05 1180 36000 30 N 3189 rhyolite 07 00061 1268 173160 05 N 10190 rhyolite 0102 00001 1272 1083600 20 N 10191 rhyolite 0099 00001 1273 691200 20 N 10192 rhyolite 012 01 1273 1800 167 N 5193 rhyolite 012 01 1273 14400 167 N 5194 rhyolite 012 03 1273 14400 167 N 5195 rhyolite 078 02 1273 300 100 N 4196 rhyolite 081 02 1273 300 67 N 4197 rhyolite 083 02 1273 300 083 N 4198 rhyolite 09 4 1273 120 100 Y 13199 rhyolite 099 00114 1275 88200 05 N 10200 rhyolite 115 05 1273 600 0017 N 4201 rhyolite 115 05 1273 600 100 N 4202 rhyolite 155 00252 1273 86400 05 N 10203 rhyolite 157 0025 1273 86400 05 N 10204 rhyolite 5 05 1273 600 100 N 5205 rhyolite 5 1 1273 600 100 N 5206 rhyolite 5 15 1273 600 100 N 5207 rhyolite 0219 05 1298 14400 30 N 3208 rhyolite 09 05 1298 14400 167 N 5209 rhyolite 024 05 1307 5400 167 N 5210 rhyolite 22 05 1307 5400 167 N 5211 rhyolite 22 05 1307 5400 167 N 5212 rhyolite 2 05 1307 5400 167 N 5213 rhyolite 078 01 1373 300 100 N 4214 rhyolite 371 2 1373 60 100 N 13

216

215 rhyolite 51 2 1373 624 100 N 12216 rhyolite 51 2 1373 613 100 N 12217 rhyolite 024 05 1375 1800 167 N 5218 rhyolite 09 05 1375 1800 167 N 5219 rhyolite 22 05 1375 1800 167 N 5220 rhyolite 38 05 1375 1800 167 N 5221 rhyolite 2 05 1375 1800 167 N 5222 rhyolite 09 05 1471 1200 167 N 5223 rhyolite 24 05 1471 1200 167 N 5224 rhyolite 41 05 1471 1200 167 N 5225 rhyolite 064 00061 1473 144000 05 N 10226 rhyolite 089 0011 1473 86400 05 N 10227 rhyolite 144 0025 1473 79200 05 N 10228 rhyolite 147 0025 1473 82800 05 N 10229 rhyolite 148 0025 1473 86400 05 N 10230 rhyolite 361 3 1473 60 100 N 13231 rhyolite 64 05 1478 900 2 N 3232 rhyolite 6 025 1488 1200 2 N 3233 rhyolite 51 1 1573 248 100 N 12234 rhyolite 397 2 1573 252 100 N 12235 rhyolite 227 2 1573 587 100 N 12236 rhyolite 09 41 1673 120 100 Y 13237 rhyolite 591 2 1773 120 100 N 12238 rhyolite 002 05 1873 7200 100 N 13239 rhyolite 517 2 1873 128 100 N 12240 rhyolite 09 4 1873 60 100 Y 13241 andesite 157 1 1523 0 100 N 7242 andesite 32 1 1573 300 100 N 7243 andesite 157 1 1573 300 100 N 7244 andesite 56 1 1573 120 100 N 7245 andesite 35 05 1673 90 100 N 7246 andesite 35 15 1673 90 100 N 7247 andesite 21 1 1773 60 100 N 7248 andesite 151 1 1773 60 100 N 7249 andesite 159 1 1813 126 100 N 7250 dacite 2517 00001 753 3000 20 N 8251 dacite 1453 00001 773 4202 20 N 8252 dacite 2513 00001 773 1800 20 N 8253 dacite 245 01 776 172200 30 N 9254 dacite 2354 00001 791 270 20 N 8255 dacite 1463 00001 792 1200 20 N 8256 dacite 1453 00001 792 2100 20 N 8257 dacite 2314 00001 810 484 20 N 8258 dacite 074 00001 824 1744680 20 N 9259 dacite 1425 00001 833 600 20 N 8260 dacite 245 01 834 689315 30 N 9261 dacite 1518 00001 845 180 20 N 8262 dacite 1525 00001 845 180 20 N 8

217

263 dacite 1411 00001 863 180 20 N 8264 dacite 245 01 878 103975 30 N 9265 dacite 145 0097 881 180900 100 N 9266 dacite 075 00975 881 413880 100 N 9267 dacite 245 014 881 40878 100 N 9268 dacite 245 013 910 19660 100 N 9269 dacite 073 0099 911 484260 100 N 9270 dacite 47 1 1423 300 100 N 7271 dacite 46 1 1473 300 100 N 7272 dacite 35 05 1573 73 100 N 7273 dacite 29 1 1573 480 100 N 7274 dacite 62 05 1673 120 100 N 7275 dacite 63 15 1673 120 100 N 7276 dacite 31 1 1773 90 100 N 7

ldquoNrdquo means no crystallization in the quenched glass and ldquoYrdquo means significant crystallization The crystallized samples were classified as failed experiments and were not discussed in the respective papers even though the samples were part of the respective study loz references 1 Zhang et al 1997b 2 Liu and Zhang 2000 3 Zhang and Behrens 2000 4 Zhang et al 2000 5 Behrens and Zhang 2001 6 Xu and Zhang 2002 7 Behrens et al 2004 8 Liu et al 2004a 9 Liu et al 2004b 10 Liu et al 2005 11 Hui et al in revision 12 Ni and Zhang revised 13 this study

Page 7: VISCOSITY OF SILICATE MELTS
Page 8: VISCOSITY OF SILICATE MELTS
Page 9: VISCOSITY OF SILICATE MELTS
Page 10: VISCOSITY OF SILICATE MELTS
Page 11: VISCOSITY OF SILICATE MELTS
Page 12: VISCOSITY OF SILICATE MELTS
Page 13: VISCOSITY OF SILICATE MELTS
Page 14: VISCOSITY OF SILICATE MELTS
Page 15: VISCOSITY OF SILICATE MELTS
Page 16: VISCOSITY OF SILICATE MELTS
Page 17: VISCOSITY OF SILICATE MELTS
Page 18: VISCOSITY OF SILICATE MELTS
Page 19: VISCOSITY OF SILICATE MELTS
Page 20: VISCOSITY OF SILICATE MELTS
Page 21: VISCOSITY OF SILICATE MELTS
Page 22: VISCOSITY OF SILICATE MELTS
Page 23: VISCOSITY OF SILICATE MELTS
Page 24: VISCOSITY OF SILICATE MELTS
Page 25: VISCOSITY OF SILICATE MELTS
Page 26: VISCOSITY OF SILICATE MELTS
Page 27: VISCOSITY OF SILICATE MELTS
Page 28: VISCOSITY OF SILICATE MELTS
Page 29: VISCOSITY OF SILICATE MELTS
Page 30: VISCOSITY OF SILICATE MELTS
Page 31: VISCOSITY OF SILICATE MELTS
Page 32: VISCOSITY OF SILICATE MELTS
Page 33: VISCOSITY OF SILICATE MELTS
Page 34: VISCOSITY OF SILICATE MELTS
Page 35: VISCOSITY OF SILICATE MELTS
Page 36: VISCOSITY OF SILICATE MELTS
Page 37: VISCOSITY OF SILICATE MELTS
Page 38: VISCOSITY OF SILICATE MELTS
Page 39: VISCOSITY OF SILICATE MELTS
Page 40: VISCOSITY OF SILICATE MELTS
Page 41: VISCOSITY OF SILICATE MELTS
Page 42: VISCOSITY OF SILICATE MELTS
Page 43: VISCOSITY OF SILICATE MELTS
Page 44: VISCOSITY OF SILICATE MELTS
Page 45: VISCOSITY OF SILICATE MELTS
Page 46: VISCOSITY OF SILICATE MELTS
Page 47: VISCOSITY OF SILICATE MELTS
Page 48: VISCOSITY OF SILICATE MELTS
Page 49: VISCOSITY OF SILICATE MELTS
Page 50: VISCOSITY OF SILICATE MELTS
Page 51: VISCOSITY OF SILICATE MELTS
Page 52: VISCOSITY OF SILICATE MELTS
Page 53: VISCOSITY OF SILICATE MELTS
Page 54: VISCOSITY OF SILICATE MELTS
Page 55: VISCOSITY OF SILICATE MELTS
Page 56: VISCOSITY OF SILICATE MELTS
Page 57: VISCOSITY OF SILICATE MELTS
Page 58: VISCOSITY OF SILICATE MELTS
Page 59: VISCOSITY OF SILICATE MELTS
Page 60: VISCOSITY OF SILICATE MELTS
Page 61: VISCOSITY OF SILICATE MELTS
Page 62: VISCOSITY OF SILICATE MELTS
Page 63: VISCOSITY OF SILICATE MELTS
Page 64: VISCOSITY OF SILICATE MELTS
Page 65: VISCOSITY OF SILICATE MELTS
Page 66: VISCOSITY OF SILICATE MELTS
Page 67: VISCOSITY OF SILICATE MELTS
Page 68: VISCOSITY OF SILICATE MELTS
Page 69: VISCOSITY OF SILICATE MELTS
Page 70: VISCOSITY OF SILICATE MELTS
Page 71: VISCOSITY OF SILICATE MELTS
Page 72: VISCOSITY OF SILICATE MELTS
Page 73: VISCOSITY OF SILICATE MELTS
Page 74: VISCOSITY OF SILICATE MELTS
Page 75: VISCOSITY OF SILICATE MELTS
Page 76: VISCOSITY OF SILICATE MELTS
Page 77: VISCOSITY OF SILICATE MELTS
Page 78: VISCOSITY OF SILICATE MELTS
Page 79: VISCOSITY OF SILICATE MELTS
Page 80: VISCOSITY OF SILICATE MELTS
Page 81: VISCOSITY OF SILICATE MELTS
Page 82: VISCOSITY OF SILICATE MELTS
Page 83: VISCOSITY OF SILICATE MELTS
Page 84: VISCOSITY OF SILICATE MELTS
Page 85: VISCOSITY OF SILICATE MELTS
Page 86: VISCOSITY OF SILICATE MELTS
Page 87: VISCOSITY OF SILICATE MELTS
Page 88: VISCOSITY OF SILICATE MELTS
Page 89: VISCOSITY OF SILICATE MELTS
Page 90: VISCOSITY OF SILICATE MELTS
Page 91: VISCOSITY OF SILICATE MELTS
Page 92: VISCOSITY OF SILICATE MELTS
Page 93: VISCOSITY OF SILICATE MELTS
Page 94: VISCOSITY OF SILICATE MELTS
Page 95: VISCOSITY OF SILICATE MELTS
Page 96: VISCOSITY OF SILICATE MELTS
Page 97: VISCOSITY OF SILICATE MELTS
Page 98: VISCOSITY OF SILICATE MELTS
Page 99: VISCOSITY OF SILICATE MELTS
Page 100: VISCOSITY OF SILICATE MELTS
Page 101: VISCOSITY OF SILICATE MELTS
Page 102: VISCOSITY OF SILICATE MELTS
Page 103: VISCOSITY OF SILICATE MELTS
Page 104: VISCOSITY OF SILICATE MELTS
Page 105: VISCOSITY OF SILICATE MELTS
Page 106: VISCOSITY OF SILICATE MELTS
Page 107: VISCOSITY OF SILICATE MELTS
Page 108: VISCOSITY OF SILICATE MELTS
Page 109: VISCOSITY OF SILICATE MELTS
Page 110: VISCOSITY OF SILICATE MELTS
Page 111: VISCOSITY OF SILICATE MELTS
Page 112: VISCOSITY OF SILICATE MELTS
Page 113: VISCOSITY OF SILICATE MELTS
Page 114: VISCOSITY OF SILICATE MELTS
Page 115: VISCOSITY OF SILICATE MELTS
Page 116: VISCOSITY OF SILICATE MELTS
Page 117: VISCOSITY OF SILICATE MELTS
Page 118: VISCOSITY OF SILICATE MELTS
Page 119: VISCOSITY OF SILICATE MELTS
Page 120: VISCOSITY OF SILICATE MELTS
Page 121: VISCOSITY OF SILICATE MELTS
Page 122: VISCOSITY OF SILICATE MELTS
Page 123: VISCOSITY OF SILICATE MELTS
Page 124: VISCOSITY OF SILICATE MELTS
Page 125: VISCOSITY OF SILICATE MELTS
Page 126: VISCOSITY OF SILICATE MELTS
Page 127: VISCOSITY OF SILICATE MELTS
Page 128: VISCOSITY OF SILICATE MELTS
Page 129: VISCOSITY OF SILICATE MELTS
Page 130: VISCOSITY OF SILICATE MELTS
Page 131: VISCOSITY OF SILICATE MELTS
Page 132: VISCOSITY OF SILICATE MELTS
Page 133: VISCOSITY OF SILICATE MELTS
Page 134: VISCOSITY OF SILICATE MELTS
Page 135: VISCOSITY OF SILICATE MELTS
Page 136: VISCOSITY OF SILICATE MELTS
Page 137: VISCOSITY OF SILICATE MELTS
Page 138: VISCOSITY OF SILICATE MELTS
Page 139: VISCOSITY OF SILICATE MELTS
Page 140: VISCOSITY OF SILICATE MELTS
Page 141: VISCOSITY OF SILICATE MELTS
Page 142: VISCOSITY OF SILICATE MELTS
Page 143: VISCOSITY OF SILICATE MELTS
Page 144: VISCOSITY OF SILICATE MELTS
Page 145: VISCOSITY OF SILICATE MELTS
Page 146: VISCOSITY OF SILICATE MELTS
Page 147: VISCOSITY OF SILICATE MELTS
Page 148: VISCOSITY OF SILICATE MELTS
Page 149: VISCOSITY OF SILICATE MELTS
Page 150: VISCOSITY OF SILICATE MELTS
Page 151: VISCOSITY OF SILICATE MELTS
Page 152: VISCOSITY OF SILICATE MELTS
Page 153: VISCOSITY OF SILICATE MELTS
Page 154: VISCOSITY OF SILICATE MELTS
Page 155: VISCOSITY OF SILICATE MELTS
Page 156: VISCOSITY OF SILICATE MELTS
Page 157: VISCOSITY OF SILICATE MELTS
Page 158: VISCOSITY OF SILICATE MELTS
Page 159: VISCOSITY OF SILICATE MELTS
Page 160: VISCOSITY OF SILICATE MELTS
Page 161: VISCOSITY OF SILICATE MELTS
Page 162: VISCOSITY OF SILICATE MELTS
Page 163: VISCOSITY OF SILICATE MELTS
Page 164: VISCOSITY OF SILICATE MELTS
Page 165: VISCOSITY OF SILICATE MELTS
Page 166: VISCOSITY OF SILICATE MELTS
Page 167: VISCOSITY OF SILICATE MELTS
Page 168: VISCOSITY OF SILICATE MELTS
Page 169: VISCOSITY OF SILICATE MELTS
Page 170: VISCOSITY OF SILICATE MELTS
Page 171: VISCOSITY OF SILICATE MELTS
Page 172: VISCOSITY OF SILICATE MELTS
Page 173: VISCOSITY OF SILICATE MELTS
Page 174: VISCOSITY OF SILICATE MELTS
Page 175: VISCOSITY OF SILICATE MELTS
Page 176: VISCOSITY OF SILICATE MELTS
Page 177: VISCOSITY OF SILICATE MELTS
Page 178: VISCOSITY OF SILICATE MELTS
Page 179: VISCOSITY OF SILICATE MELTS
Page 180: VISCOSITY OF SILICATE MELTS
Page 181: VISCOSITY OF SILICATE MELTS
Page 182: VISCOSITY OF SILICATE MELTS
Page 183: VISCOSITY OF SILICATE MELTS
Page 184: VISCOSITY OF SILICATE MELTS
Page 185: VISCOSITY OF SILICATE MELTS
Page 186: VISCOSITY OF SILICATE MELTS
Page 187: VISCOSITY OF SILICATE MELTS
Page 188: VISCOSITY OF SILICATE MELTS
Page 189: VISCOSITY OF SILICATE MELTS
Page 190: VISCOSITY OF SILICATE MELTS
Page 191: VISCOSITY OF SILICATE MELTS
Page 192: VISCOSITY OF SILICATE MELTS
Page 193: VISCOSITY OF SILICATE MELTS
Page 194: VISCOSITY OF SILICATE MELTS
Page 195: VISCOSITY OF SILICATE MELTS
Page 196: VISCOSITY OF SILICATE MELTS
Page 197: VISCOSITY OF SILICATE MELTS
Page 198: VISCOSITY OF SILICATE MELTS
Page 199: VISCOSITY OF SILICATE MELTS
Page 200: VISCOSITY OF SILICATE MELTS
Page 201: VISCOSITY OF SILICATE MELTS
Page 202: VISCOSITY OF SILICATE MELTS
Page 203: VISCOSITY OF SILICATE MELTS
Page 204: VISCOSITY OF SILICATE MELTS
Page 205: VISCOSITY OF SILICATE MELTS
Page 206: VISCOSITY OF SILICATE MELTS
Page 207: VISCOSITY OF SILICATE MELTS
Page 208: VISCOSITY OF SILICATE MELTS
Page 209: VISCOSITY OF SILICATE MELTS
Page 210: VISCOSITY OF SILICATE MELTS
Page 211: VISCOSITY OF SILICATE MELTS
Page 212: VISCOSITY OF SILICATE MELTS
Page 213: VISCOSITY OF SILICATE MELTS
Page 214: VISCOSITY OF SILICATE MELTS
Page 215: VISCOSITY OF SILICATE MELTS
Page 216: VISCOSITY OF SILICATE MELTS
Page 217: VISCOSITY OF SILICATE MELTS
Page 218: VISCOSITY OF SILICATE MELTS
Page 219: VISCOSITY OF SILICATE MELTS
Page 220: VISCOSITY OF SILICATE MELTS
Page 221: VISCOSITY OF SILICATE MELTS
Page 222: VISCOSITY OF SILICATE MELTS
Page 223: VISCOSITY OF SILICATE MELTS
Page 224: VISCOSITY OF SILICATE MELTS
Page 225: VISCOSITY OF SILICATE MELTS
Page 226: VISCOSITY OF SILICATE MELTS
Page 227: VISCOSITY OF SILICATE MELTS
Page 228: VISCOSITY OF SILICATE MELTS