44
1 Preprint: Please note that this article has not completed peer review. Virome of riverside phytocommunity ecosystem of an ancient canal CURRENT STATUS: POSTED Shixing Yang Jiangsu University Tongling Shan Chinese Academy of Agricultural Sciences Yan Wang Jiangsu University Jie Yang Jiangsu University Xu Chen Jiangsu University Yuqing Xiao Jiangsu University Zhenqiang You Hangzhou Medical College Yumin He Jiangsu University Min Zhao Jiangsu University Juan Lu Jiangsu University Zijun Yang Jiangsu University Ziyuan Dai Jiangsu University

Virome of riverside phytocommunity ecosystem of an ancient ... › publication › 341096013...The Zhenjiang ancient canal was created during the Qin Dynasty over 20 centuries ago,

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Preprint:Pleasenotethatthisarticlehasnotcompletedpeerreview.

    ViromeofriversidephytocommunityecosystemofanancientcanalCURRENTSTATUS:POSTED

    ShixingYangJiangsuUniversity

    TonglingShanChineseAcademyofAgriculturalSciences

    YanWangJiangsuUniversity

    JieYangJiangsuUniversity

    XuChenJiangsuUniversity

    YuqingXiaoJiangsuUniversity

    ZhenqiangYouHangzhouMedicalCollege

    YuminHeJiangsuUniversity

    MinZhaoJiangsuUniversity

    JuanLuJiangsuUniversity

    ZijunYangJiangsuUniversity

    ZiyuanDaiJiangsuUniversity

    https://www.researchsquare.com/browse?journal=researchsquare

  • 2

    QiLiuJiangsuUniversity

    YuxinYaoJiangsuUniversity

    XiangLuJiangsuUniversity

    HongLiJiangsuUniversity

    RuiZhouJiangsuUniversity

    WangLiJiangsuTaizhouPeople'sHospital

    ChenglinZhouJiangsuTaizhouPeople'sHospital

    XiaochunWangJiangsuUniversity

    QuanShenJiangsuUniversity

    HuiXuTheAffiliatedHospitalofJiangsuUniversity

    XutaoDengVitalantResearchInstitute

    EricDelwartUniversityofCaliforniaSanFrancisco

    WenZhangJiangsuUniversity

    [email protected]:https://orcid.org/0000-0002-9352-6153

    DOI:

    mailto:[email protected]

  • 3

    10.21203/rs.3.rs-25620/v1SUBJECTAREASGeneralMicrobiology

    KEYWORDSPlantvirome;Phytocommunity;Virushostswitching;Cross-speciesinfection;co-infection.

    https://dx.doi.org/10.21203/rs.3.rs-25620/v1https://www.researchsquare.com/browse?subjectArea=General%20Microbiology

  • 4

    AbstractBackground

    Theviruscommunityinplantsinalocalplantecosystemhasremainedlargelyunknown.Inthisstudy,

    weinvestigatedtheviruscommunityinthesewildandcultivatedplantsinZhenjiangancientcanal

    ecosystem.

    Results

    usingviralmetagenomicapproach,weinvestigatedtheviralcommunityinleaftissuesof161plant

    speciesbelongingin38differentordersinalocalriversideplantecosystem.Wediscovered251

    differentplant-associatedvirusgenomeswhichincluded88DNAand163RNAvirusesbelongingto27

    differentvirusfamilies,ordersorunclassifiedvirusgroups.Theidentifiedvirusesincludesomethat

    aresufficientlydivergenttocomprisenewgenera,families,orevenorders.Ourdataindicatedthat

    somegroupsofvirusesknowntoinfectnon-plantorganismshadhostswitchingtoinfectingplants.

    Cross-speciesinfectionandco-infectionofviruseswerecommoninthisplantecosystem.

    Conclusions

    thesedatapresentaviewoftheviralcommunityinplantspresentinalocalplantecosystemwhichis

    morediversethanthatdepictedincurrentclassificationofplantvirusesandprovideasolid

    foundationforstudiesinvirusecologyandevolutioninplants.

    BackgroundMuchefforthasbeendevotedtostudyingvirusesassociatedwitheconomicallyimportantor

    symptomaticplantswhichonlycompriseaminutefractionofallplantspecies,suggestingthatalarge

    gapexistsinouroverallunderstandingofviraldiversity,evolution,andecologyinuncultivated

    plants[1].Itisthereforenecessarytostudyvirusesexistinginwildplants,whethersymptomaticor

    asymptomatic,togainamoreobjectiveviewofviruspopulationsinplant,whichwillundoubtedly

    discovernovelorevenso-callunclassifiedvirusesandprovidemoreinformationonviralevolution

    anddiversity.High-throughputDNAsequencingcoupledwithviralmetagenomicsapproachesalso

    makesitpossibletoidentifyhighlydivergentviralgenomesinwildplants.Comparingvirusesin

    differentplantspecieswithinanaturalplantecosystemcanalsoimproveourunderstandingofvirus

  • 5

    transmissionamongstdifferentplantspecies.

    TheZhenjiangancientcanalwascreatedduringtheQinDynastyover20centuriesago,andis16

    kilometerslongwithanaveragewidthof40meters.TheDingmaosectionofthecanalis2kmlong

    withlotsofwildplants,somelandscapeplantsandcropsonbothsides.Inthisstudy,weinvestigated

    theviruscommunityinthesewildandcultivatedplantsinthisecosystem.

    ResultsOverallviewofthevirome.Weperformedalarge-scaleviralmetagenomicssurveyofpotential

    plantleaf-associatedvirusesin161plantspeciesbelongingin38differentorders,7classes

    (Coniferopsida,Cycadopsida,Dicotyledoneae,Filicopsida,Ginkgopsida,Magnoliopsida,and

    Monocotyledoneae),and4phyla(Angiospermae,Gymnospermae,Pteridophyta,andTracheophyta)

    existinginariversideplantecosystem(Fig.1a,SupplementaryTable1,andSupplementaryData1

    and2).Amongthe161speciessampled,89belongtowildplant,and72arecultivatedtypes.For

    eachspeciesthreeleaftissuesamplesfromthreedifferentindividualplantswerecollected.After

    crushingmaterialwithamortarandpestle,supernatantsofthe3leavesfrom3differentindividual

    plantsinthesameplantspeciesweremixedintoasamplepoolforviralmetagenomicslibrary

    construction.Aftervirusnucleicacidparticlesenrichmentusingfiltration(removingeukaryoticand

    bacterialcell-sizedparticles)andDNaseandRNasetreatment(digestingunprotectednucleicacid),

    totalnucleicacidwerethenextractedandthenorganizedinto161librariesforIlluminaHiseq2500

    sequencing(SupplementaryTable1).Intotal,50,586,188paired-endreadsweregeneratedand

    binnedbybarcodesandquality-filtered,leavinghigh-qualitysequencereadswhichwerede

    novoassembledwithineachbarcode.Theresultingsequencecontigsandunassembledreadswere

    comparedwiththeviralreferencedatabaseandtheGenBanknon-redundantproteindatabaseusing

    aBLASTxsearchwithanEvaluecut-offof50%ofviralsequencereads(Fig.1a,

    SupplementaryTable1).Fromtheseplants,34differentgroupsofvirusesweredetected,including

    virusesbelongingin26families,1genus(Botybirnavirus)unclassifiedinfamily,and7unclassified

  • 6

    groupsincludingcircularreplication-associatedproteinencodingsingle-strandedDNAvirus(CRESS

    DNAvirus),Parvo-likevirus,Hepe-likevirus,Noda-likevirus,Permutotetra-likevirus,Rhabdo-like

    virus,Sobemo-likevirus,unclassifiedmembersofPicornaviralesorder,andunclassifiedmembersof

    theRiboviriadomain(Fig.1b,SupplementaryTable1).Comparisonofthepercentageofviralreads

    againstthetotaluniquereadsandthenumbervirustypesineachlibraryshowednosignificant

    differencebetweenwildandcultivatedplantsamples(SupplementaryData3and4,Supplementary

    Table1),suggestingthatinthelocalplantecosystemdifferentcultivationmodesofplantshadno

    discernableeffectonsusceptibilitytovirusinfection.Fromtheseviralsequences,251virusstrains

    generatedcompetegenome(n=202)ornearlycompletegenomesequences(n=49),including5RNA

    virusstrainsbelongingtosegmentedviruses(Fig.1b).BLASTxsearchusingnucleotidesequencesof

    the251virusstrainsrevealedthat61ofthemshared

  • 7

    strainsweregroupedintothreepreviouslyclassifiedgenerawhiletheother16strainswereclustered

    intoaseparategroupgeneticallyfarfromthethreeknowngenera(Fig2,SupplementaryTable1,see

    SupplementaryData5).Thesedicistrovirusesintheseparategroupshowedtypicalgenome

    organizationsofdicistrovirusesexceptthat10ofthe14strainsshowednocricketparalysisvirus

    (CRPV)capsidsuperfamilydomaininthecapsidprotein(SupplementaryData6).BasedonRdRp

    proteinsequencesofthe16strainsintheseparatecluster,theyshared

  • 8

    withinMarnaviridae,whichindicatedthemarnavirusesgroupincludescloselyrelatedvirusesfrom

    plantsandtwostrainsfromfishandmollusk(Fig.2,SupplementaryData9),respectively.

    MarnaviridaeisanewlydefinedvirusfamilyinorderPicornavirales,thecurrentlycharacterized

    representativememberbeingHeterosigmaakashiwoRNAvirus,isolatedfromHeterosigmaakashiwo

    algaeinoceanwater[6].Closelyrelatedviruseshavebeenidentifiedinoceanmarineenvironments

    [7].OurdatasuggestthatplantsarecapableofhostingsomemembersinfamilyMarnaviridaeor

    theircellularhosts.

    In3differentplantspecies,weacquired6virusstainswithcompletegenomesshowingsignificant

    sequencesimilaritytoparvovirus-likehybridvirus(PHV)and2virusesshowingcloserelationshipto

    densovirus(Fig.2,SupplementaryData10).TheseplantPHVgenomeswerelinearwithlengthof3.6-

    4.0-kbcontainingtwomajorforward-directionORFsencodingthereplicationandcapsidproteins

    (SupplementaryData11),whichischaracteristicofvirusesinfamilyParvoviridae.The6PHVs

    detectedinplantsweregroupedintwodifferentclusters,sharingsequencesimilaritiesof50%-67%

    tootherPHVsbasedreplicationproteinsequence.PHVisatypeofhighlydivergentDNAviruswhich

    wasrecentlydiscoveredandphylogeneticallylocatedattheinterfacebetweentheParvoviridaeand

    Circoviridae[8,9].AlthoughthisviruswasfirstdetectedinChinesepatientswithseronegative(non-A-

    E)hepatitisandsubsequentlydiscoveredinawiderangeofclinicalsamples,sharing∼99%

    nucleotideandaminoacididentitywitheachother[8],itwaseventuallytracedtocontaminatedsilica-

    bindingspincolumnsusedfornucleicacidextraction[9].Thesilicamatrixisgenerallygeneratedby

    diatoms(algae),belongingtomicroscopicwaterplants,detectingPHVinsilica-bindingspincolumns

    mightbetheinitialevidencethatplantscanserveasthehostsofPHV.Ourdatafurtherconfirmthat

    plants(ordiatomswithinthem)arecapableofhostingPHVs.

    Besidestheabovefourgroupsofviruseswithmultipledivergentstainsfoundhereinplanttissues,

    another4groupsofviruses,notpreviouslyreportedinplants,includingnoda-likevirus,Permutotetra-

    likevirus,Yanvirus-likevirus,andChuvirus-likevirus,werealsodetectedhere(Fig.2,Supplementary

    Data12-15).Theseviralgroupswererecentlyreportedfrominvertebratesmeta-transcriptomes,and

    vertebratesandenvironmentsamples[10–12].Discoveringthesevirusesinplantleafsamples

  • 9

    suggeststhatplantsmayalsobethenaturalhostsforsomemembersoftheserecentlydescribed

    clades.Bastroviruswaspreviouslyonlydetectedinfecesofmammals(includinghuman)and

    mosquito,showsadistantrelationshiptoastroviruses[13,14].Here,aspeciesofplant(Solanum

    melongena)waspositiveforvirusgenomesequenceshowing25%RdRpsequencesimilaritytothatof

    bastrovirus(Fig.2,SupplementaryData16).Detectingthisdivergentbastrovirus-likevirusinplants

    mayimplybastrovirusoriginatesfromplantand/orthatitsdiversememberscaninfectwidely

    differenthostsincludingvertebrates,invertebratesandplants.Anotherspeciesofplantwaspositive

    forhepe-likevirus,whichhavebeenreportedinmammals,invertebrates,protists,anddifferent

    environments[12,15–17].Thishepe-likevirusstrainfromplantwaswellgroupedwithotherhepe-like

    virusesfromdifferenttypeoforganismandenvironmentsamplesandsharedsimilargenome

    organization(Fig.2,SupplementaryData17),suggestingthistypevirusmayalsoparasitizeplants.

    Twotypesofviruses,botybirnavirusandnarna-likevirus,whichwereconsideredtobevirusesof

    fungi[18,19]andmorerecentlyCaenorhabditisnematodes[20],weredetectedintwospeciesof

    plants,respectively(Fig.2,SupplementaryData18and19).Thebotybirnavirusshowedhigh

    sequenceidentity(96.4%)tofungibatybirnavirusbasedonRdRpproteinsequence.Thetwonarna-

    likevirusstrainsfrom2differentspeciesofplantsshared99.9%nucleotidesequenceidentityand

    identicalbasedonRdRpproteinsequence,andweredivergentfrompreviousnarna-likeviruses.

    Divergentvirusesinplants.Forthese12groupsofviruses,firstreportedinplantshere,some

    genomesweresodivergentfromtheirclosestidentifiablerelativesusingBLASTxtheymayultimately

    qualifyasmembersofnewgeneraorevennewfamilies(Fig.2).Forexample,forthe23dicistrovirus

    genomes,7ofwhichgroupedwellintopreviouslydefinedgenera,theother16strainsseemtoforma

    separatecladewhichcouldbedesignatedanewgenusintheDicistroviridaefamily.Thesame

    conclusioncouldalsoapplytosomegenomesinthegroupsofnoda-like,hepe-like,andbastrovirus-

    likevirusesandintheMarnaviridaefamily.

    Another23divergentRNAviralgenomeswhoseclosestrelativesareinthePicornaviralesorderwere

    characterized.PhylogeneticanalysisbasedonRdRpsequencesofthe6definedfamiliesandthebest

    matchesofthe23strainsinGenBankshowedthattheyweregroupedinto8differentclusterswhich

  • 10

    weregeneticallydistinctfromthedefined6familiesintheorderPicornavirales(Fig3,Supplementary

    Data20).

    Tombusviridaeisalargefamilyofplantvirusesthatiscurrentlycomposedofmorethan76species

    dividedamong3subfamiliesand16genera.Here,weacquired21genomesshowingsequence

    similaritytomembersoftheTombusviridae.Sevengenomesweregeneticallyclosetodefinedgenera

    whiletheother14werehighlydivergentandseemedtoformseveraldistinctgenera(Fig3,

    SupplementaryData21).FourdifferentvirusstrainsbelongingtofamilyLuteoviridaewerealso

    detectedinplantshere,3ofwhichcloselyclusteredwithdifferentdefinedgenera,withtheremaining

    formingasingledeeplyrootedseparatebranch,whichmaybelongtoaputativenewgenusclustering

    outsidethegenusluteovirus(Fig3,SupplementaryData22).Fourpartitivirusstrainswere

    characterizedinthreedifferentspeciesofplants,allofthemwereputativenewspecieswithinthree

    differentgeneraofPartitiviridae(Fig3,SupplementaryData23).Sevenvirusgenomesidentifiedhere

    alsoshowedsequencesimilaritytosobemo-likeviruseswhichwererecentlydiscoveredfrom

    arthropodsusingmeta-transcriptomics[15].Althoughtheseplantssobemo-likeviruses

    phylogeneticallygroupedtogetherwithinvertebratesobemo-likevirusestheyweregenetically

    distinctandsharing30%-62%aminoacidsequencesimilaritiestoeachother(Fig3,Supplementary

    Data24).Twoplantrhabdo-likevirusesalsoshowedacloserelationshiptorecentlydiscovered

    invertebratederivedrhabdo-likeviruses(Fig3,SupplementaryData25).LastonedivergentRNA

    genomeshowedadistantrelationshiptothreegenomesbelongingtoanunclassifiedmemberofthe

    Riboviriadomain,allfromwastewaterorsoilsamples,consistentwithaplantorigin(Fig3,

    SupplementaryData26).

    PlantCRESSvirus.CRESSDNAvirusistheinformalnameofseveralgroupsofsingle-stranded(ss)

    DNAvirusesthathavecircularandreplication-associatedproteinencodinggenome,whichshowhigh

    diversityandabundanceinvarioushabitats[21,22].Althoughtherearecurrentlyseveralestablished

    CRESSDNAvirusfamiliesincludingBacillidnaviridae,Circoviridae,Geminiviridae,Genomoviridae,

    Microviridae,NanoviridaeandSmacoviridae,alargenumberofnovelCRESSDNAviruseshavebeen

    discoveredrecentlyandhavenotbeenformallyclassified,forwhichthehostsarecurrentlyunknown

  • 11

    [22–24].Amongthesewell-definedCRESSDNAvirusfamilies,GeminiviridaeandNanoviridaearetwo

    plant-infectingmembers,whichalsohelpthereplicationandpackageofasatellitevirus:

    Alphasatellitidae,anothertypeofcircularssDNAgenome[25].Here,fromplantleavesweacquired79

    circulargenomes,amongwhich7weregeneticallyclosetoGeminiviridae,9groupedwellintothe

    familyGenomoviridae,7clusteredcloselytoknownsequencesofAlphasatellitidae,15belongtonew

    divergentmembersinfamilyMicroviridaepresumablyfrombacteria,withtheremaining41showing

    significantsequencesimilaritytounclassifiedCRESSDNAviruses(Fig.4).

    Amongthe7CRESSDNAvirusesbelonginginfamilyGeminiviridae,2ofthemfeltwellintothecluster

    ofthegenusbegomovirus,beingcloselytosweetpotatoleafcurlvirus,amonopartitegeminivirus.

    Theother5werenotgroupedintoanyknowngenusinfamilyGeminiviriaebutdeeplyclustered

    outsideofallknowngeminiviruses,suggestingthese5novelgeminivirusesmightbelongtonew

    genus(genera)inGeminiviridae(Fig.4,SupplementaryData27).VirusesinthefamilyGenomoviridae

    havebeenfrequentlyfoundtobeassociatedwithavarietyofsamplesrangingfromfungitoanimal

    sera[26],indicatingthatgenomovirusesarewidespreadaswellasabundantintheenvironment.

    Here,9completegenomesofgenomovirus,divergentfrompreviousknownmembersinthatfamily,

    werecharacterizedin7differentplantspecies,whichphylogeneticallyclusteredinto5different

    groups,includingtwoidenticalgenomesdetectedintwodifferentplantspecies(Fig4,Supplementary

    Data28).Currently,thehostsofthelargemajorityofCRESS-DNAvirusesremainunknownexceptfor

    onereplicatinginbothfungi[27]andaninsect[28].Detectinggenomovirusesinleafsamplesfrom

    differentspeciesofplantmaysuggestplantsoraninternalplant-dwellingorganism,mayhostsome

    membersinthefamilyGenomoviridae.

    Wealsodiscovered7divergentcompletecirculargenomesinasinglespeciesofplant,whichshowed

    sequenceidentitiesof38%-58%topreviousknowngenomesofmembersinAlphasatellitidaebased

    onaminoacidsequenceofencodedRepprotein.The7alphasatelliteshadgenomesizesrangingfrom

    1309to1503nucleotides,whichweredivergentfromeachotherandgroupedinto4differentclusters

    composedofpreviousdefinedalphasatellitesbasedonphylogeneticanalysisoftheirRepprotein(Fig

    4,SupplementaryData29).AlphasatellitesarecircularssDNAcomponentswhicharegenerally

  • 12

    associatedwithNanoviridaeorsomemembersinGeminiviridae,however,wedidnotdetect

    geminivirusornanovirussequenceinthisspeciesofplant,butdiscoveredadivergentCRESSDNA

    virusgenomethatshowedthehighestRepproteinsequencesimilarityof60.7%toanunclassified

    CRESSDNAvirus,temperatefruitdecay-associatedvirus[29],suggestingthistypeofCRESSDNA

    virusmayinfectsplantandservesashelpervirusforalphasatellites.

    Apartfromthe3groupsofviruseswithinclassifiedCRESSDNAvirusfamilies,other41unclassified

    CRESSDNAviruseswerealsodiscoveredfromdifferentspeciesofplant.TheseCRESSDNAviruses

    weresodivergentfromeachother,wephylogeneticallyanalyzedthemin6differentphylogenetic

    trees(Fig4,SupplementaryData30-35),whereeachofthemincludesstrainsidentifiedhere,their

    bestmatchesinGenBank,andtherepresentativemembersinknownCRESSDNAvirusfamiliesand

    otherunclassifiedCRESSDNAviruses,usingfewersequencesineachsequencealignmentsoasto

    includeaslargeaspossiblenumberofconservedaminoacidsitesinthephylogeneticanalysis.Based

    onRepproteinssequences,theseunclassifiedCRESSDNAvirusessharedsequencesimilarities

    26%-61%totheirbestmatches,where6ofthemgroupedwithCRESSDNAvirusesfromfecesof

    mammals,3ofthemwithCRESSDNAvirusesfrominvertebrates,13sequenceswithCRESSDNA

    virusesidentifiedfromenvironmentalsamples(mainlywastewater),8strainswithCRESSDNAvirus

    fromfishspecies,onewithplant-associatedCRESSDNAvirus,whiletheremaining10sequenceswere

    toodivergenttoclusterwithanyknownvirusesandwereincludedinCRESSVgroup6inFig.4(Fig4,

    SupplementaryData30-35).ConsideringthatmostoftheCRESSDNAvirusescharacterizedinthe

    presentstudybestmatchedunclassifiedCRESSDNAgenomesfromenvironmentalsamples,

    mammalianfeces,andarthropods,itispossiblethatmostoftheseunclassifiedCRESSDNAviruses

    infectplantsandwerecontaminantsinfecesorthegutcontentofarthropods.

    FifteengenomesshowingsequencesimilaritytovirusesinfamilyMicroviridaeweredetectedinthree

    differentspeciesofplants,12ofwhichwerefromasinglespeciesofwildplant,Kummerowiastriat

    (SupplementaryData36).ManystudieshavedemonstratedtheubiquityofMicroviridaegenomes

    acrosshabitats(marine,freshwater,wastewater,sediment)andglobalregions(Antarcticto

    subtropical),especiallythoserelatedtotheGokushovirinaelineage[30–33],whichinfectobligate

  • 13

    intracellularparasites,membersofthebacterialgeneraChlamydia,BdellovibrioandSpiroplasma

    [34].

    Cross-speciesinfectionandco-infectionofplantviruses.Otherthanthroughseeddispersal

    mostplantsareimmobile;henceplantvirustransmissionisoftenassistedbyothersorganisms

    [35,36].Here,weinvestigatedtheviromeinplantleavescollectedinasingleecosystem,which

    includesinteractionsamongstplants,water,soil,air,insectsandamultitudeofmicro-organisms

    providingfavorableconditionsforcross-speciestransmission.Usingviralmetagenomics,wedetected

    theviralnucleicacidsanddetermined251(nearly)completeviralgenomes,allowingustocompare

    genomesequencesfromdifferentspeciesofplantsandestimatewhethercross-speciestransmission

    mightoccurforsomeviruses.Ourresultsindicatedcross-speciestransmissionmighthaveoccurred

    for9groupsofviruses.24genomesbelonginginfamilyPotyviridaewerefoundin17differentspecies

    ofplant,allinthegenuspotyvirus(SupplementaryTable1,Supplementarydata37).Amongthe9

    groupsofpotyviruses,2groupswerecomposedof10and5genomes,respectively,sharing

    99%-100%sequenceRdRpproteinidentitieswithineachgroup,suggestingpossiblecross-species

    transmission(Supplementarydata37).Wethencomparedthe10and5genomesequences

    respectivelyinthese2groupsandfoundthatthe10genomesshared94.6%-100%andthe5

    genomesshared94.8%-100%sequenceidentities(includingseveralpairsofidenticalsequences)

    (Fig.5),suggestingsomestrainsofthesepotyvirusesmaybecapableofcross-speciestransmission.

    Ourdataalsoshowedthatsomedicistrovirusesmightbeplant-infectingvirus.Hereweacquired22

    completegenomesofdicistrovirusfrom10differentspeciesofplants,ofwhich6pairspresented

    possiblecross-speciestransmissioninplantsaspairofgenomesequencesshared>94.9%identity,

    includingonepairofidenticalsequences(Fig5,Supplementarydata5).Putativecross-species

    transmissionswerealsoobservedwithunclassifiedCRESSvirusincluding5pairsofidenticalgenomes

    derivedfromdifferentspeciesofplants(SupplementaryData38).Twogroupsofmarnaviruses

    showing>99%genomicsequenceidentity,andother5pairsofdifferentvirusesincluding

    geminivirus,genomovirus,luteovirus,parvo-likevirus,andsobemo-likevirus,fromdifferentputative

    hostspeciesshowed92.5%-99.8%sequenceidentitiesbasedoncompletegenomesequence

  • 14

    (SupplementaryData38).

    Wemarkedtheaccuratesamplingsitesforeachplantspecieswhichmakesitpossibletomeasurethe

    geographicaldistanceofdifferentspeciesofplantsinvolvedinthecross-speciestransmissionofa

    certainvirussoastoinferwhethergeographicaldistanceofthehostplantshaveeffectonthecross-

    speciestransmission.Ourdataindicatedthatcross-speciestransmissionofpotyvirusesmightbe

    associatedwiththeirgeographicaldistanceasthegeneticallyveryclosegenomesweremainlyfrom

    thesamesamplingsite(Fig.5).Thesamephenomenawerealsoobservedforthemarnavirus,

    unclassifiedCRESSDNAvirusgenomes,luteovirus,andparvo-likevirus.Forexample,allthe5

    marnavirusgenomesinvolvedinputativecross-speciestransmissionwerefromasinglesamplingsite

    and9ofthe11CRESSDNAgenomeswerefromthesamesamplinglocation(Fig.5,Supplementary

    Data38).However,theremainingseveralgroupsofviruseswithpropertiesofcross-species

    transmission(closelyrelatedgenomesfromdifferentplants)includingdicistrovirus,geminivirus,

    genomovirus,andsobemo-likevirusseemtohavenorelationshiptothegeographicaldistanceof

    theirhosts’location(SupplementaryData38).Thedifferenteffectofgeographicaldistanceonthe

    cross-speciestransmissionmayreflectthedifferenttransmissionpotentialoftheseviruses,for

    example,geographicaldistancehadnoeffectonthecross-speciestransmissionofdicistroviruses

    suggestedthatthespreadofthisvirusmightbeassistedbyarthropods.Ourdataalsoindicatedthat

    mostoftheputativeviralcross-speciesinfectioninthisecosystemoccurredacrossdifferentlevelsof

    plantclassification.Forinstances,the10closelyrelatedpotyvirusgenomeswerecharacterizedfrom

    plantsbelongingto7differentorderswithin2differentclasses(Fig.5),suggestingawidehostrange.

    Co-infectionofhostsbytwoormoreplantvirusesiscommoninbothagriculturalcrops[37,38]and

    naturalplantcommunities[39].Inthepresentstudy,apartfromcross-speciesinfection,co-infectionof

    plantviruseswasalsocommonlyobserved,where73outof161(45.3%)librariescontained>3

    differentvirustypes(orfamilies)(SupplementaryTable1),suggestingco-infectionofvirusesexisted

    innearlyhalfoftheplantsinthisecosystemaseachlibraryconsistedofsamplesfromthreedifferent

    individualplant.Consideringthesamevirusfamiliesortypeinasinglelibrarymaycontaindifferent

  • 15

    virusstrainortype,therateofco-infectionislikelytobehigherthan45.3%.Amongthe251genomes

    weacquiredfromtheseplants,somegenomeswerefromthesamelibrarieswhichallowsus

    investigatetheco-infectionofcertainvirusesinspecificspeciesofplants.AsshowninFig.6,PCR

    screeningofdifferentvirusgenomesin7differentspeciesofplantsrevealedthatmostof(20/21)the

    individualplantcontained>2differenttypesofvirus,whereoneplantspeciesofForsythiasuspensab

    evencarried16virusesbelongingin12differentfamilies.Thewidepresenceofapparentviralco-

    infectionsintheseplantsinasingleecosystemmayleadtointeractionsbetweenvirusesthatcould

    influencediseasedevelopmentinindividualplants.

    Otherplantviruses.Apartfromthesevirusesmentionedabove,manytypesoftypicalplantviruses

    belongingintheBromoviridae,Closteroviridae,Comoviridae,andBotourmiaviridaefamiliesand

    Tymoviralesorderwerealsodetectedinseveralspeciesofplants.Theseplantviruseswere

    geneticallyclosetopreviouslydescribedviruses(Supplementarydata39-43),indicatingtypicalplant

    virusinfectionswerereadilydetectedinthisplantecosystem.

    DiscussionThecommonperceptionthatplantvirusesareprimarilypathogensresultsfromthefocusgivento

    agriculturalplanthealth.Emergingdiseaseshavegarneredmostattentionbecauseofdamageto

    economicallyimportantfoodandornamentalplantspecies.Importantexamplesofvirusesthatare

    responsibleforwell-studiedemergingdiseasesincludecassava-infectingbegomoviruses(inthe

    Geminiviridaefamily)[40],closterovirusescausinggrapevineleafrolldisease[41],luteovirusessuchas

    barleyyellowdwarfvirus[42]andsobemovirusessuchasriceyellowmottlevirus[43].Relativesofall

    thesepathogenicvirusesweredetectedinthisstudyinapparentlyhealthyplantsfromdiverse

    familiesororders.Therelativelyunbiasedsequencingofviralgenomeswithinentireenvironmentsas

    performedhereischangingtheperspectiveofvirusesfromagentsofdiseasetocommoncomponents

    ofecosystems,astheplanttissuesamplesstudiedwereallfromapparentlyhealthyplants.

    Thedatainthepresentstudyalsorevealedthatseveralvirusessuchasdicistrovirus,iflavirus,

    marnavirus,noda-like,andparvo-likeviruses,whichhavenotbeenreportedinplantsweredetected

    hereinleaftissues.Amongtheseviruses,dicistrovirus,iflavirus,andnoda-likevirusaregenerally

  • 16

    hostedbyarthropods[44,45].Detectionofthesegenomesinplantsindicatedthatinsectsmaymight

    vectoredthembetweenplants.Theclosestnon-plant-infectingrelativesofsomegenomesfromplants

    reportedheretendedtoinfectarthropodsorfungi.Currentlyplant-infectingvirusesmaytherefore

    haveevolvedfromvirusesthatonceinfectednon-plantorganisms(orvideversa).Further,the

    hypothesisthatmanyplantandvertebratevirusesmayhaveoriginatedfromarthropodvirusesisalso

    plausibleassomevirusesinfectarthropodscanalsoinfectplants.Forexample,flockhousevirus(in

    theNodaviridaefamily)infectsarthropodsbutcanalsosystemicallyinfectplantswhenitis

    complementedwiththemovementproteinsofeithertobaccomosaicvirusorredclovernecrotic

    mosaicvirus(bothofwhichareplantviruses)[46].

    Thecross-speciestransmissionofvirusesfromonehostspeciestoanotherisresponsibleforthe

    majorityofemerginginfections,bothinanimalandplantpopulations[47–49].Decadesof

    inventorying,trackingandanalyzingofplantvirusesshowedthattheemergenceofnewdiseasesis

    drivenbyadaptiveviralevolutioninresponsetonovelecologicalconditions[50,51],includingthe

    introductionofvirusesandvectorstonewareas,theintensificationofagricultureandurbanization,

    andecologicalchangesinresponsetochangingclimaticconditions.Ourdatashowedthatanumber

    ofgenomesfromviralfamiliesnotknowntoinfectplantsareindeedpresentinplants.Furthermore

    severalgeneticallycloseoridenticalvirusesweredetectedinplantsfromindifferentspecies,

    suggestingcross-plantspeciestransmission.Inaddition,itisnoteworthythatasmallnumberof

    virusesshowinggeneticrelationshiptovirusespreviouslyfoundinmammalianfeces(e.g.bastrovirus

    andhepe-likevirus)werealsodetectedinplanttissues,possiblyindicatingtheirplanttropism.

    ConclusionsOurstudypresentsanoverviewoftheviruscommunityexistinginleaftissuesfromplantsinalocal

    plantecosystem,whichismorediversethanthatdepictedincurrentclassificationofplantviruses.

    Virustypesandviralreadsinwildandcultivatedplantswerecompared,showingnodifferent

    betweentwogroups.Cross-speciesinfectionandco-infectionofviruseswerecommoninthisplant

    ecosystem.251differentplant-associatedvirusgenomeswerefullycharacterizedand

    phylogeneticallyclassifiedinto27differentvirusfamilies,ordersorunclassifiedvirusgroups.This

  • 17

    studyprovidesasolidfoundationforstudiesinvirusecologyandevolutioninplantsandwillbe

    helpfulforidentificationofnewlyemerging,possiblypathogenic,virusesofplants.

    MaterialsAndMethodsSamplecollectionandpreparation

    Thegoalofthisstudywastoinvestigatetheviromeofplantspeciesinanancientcanalecosystemin

    ZhenjiangCity,JiangsuProvince,China.TheZhenjiangAncientCanalhasahistoryofmorethan2000

    years.ItrunsthroughthewholetownofZhenjiangfromsoutheasttonorthwestandis16kilometers

    longwithanaveragewidthof40meters.Byinvestigatingtheriparianvegetationoftheancient

    canal,theDingmaosectionofthecanalwaschosentostudyasarepresentativesection.Itis2km

    longwithlotsofwildplants,somelandscapeplantsandcropsonbothriversides.Intotalof161plant

    speciesbelongingto38differentorder,6classes(Coniferopsida,Cycadopsida,Dicotyledoneae,

    Filicopsida,Ginkgopsida,andMonocotyledoneae),and3phyla(Angiospermae,Gymnospermae,

    andPteridophyta)werecollectedinthisareaforthisstudy.Thesamplingsitesforeachplantspecies

    arelabeledonthemapwithnumberscorrespondingtoplantlibrarynumbers(SupplementaryTable1,

    SupplementaryData1and2).Amongthoseplantspecies,72arewildplantsand89arecultivated

    plantsincludinglandscapeplantsandcrops.Duringsampling,3leavesfromthree

    differentindividualplantsbelongingtothesamespecieswererespectivelycollectedintodisposable

    materials,beforethisstep,distilledwater(ddH2O)wasusedtocleanthedustandothernon-plant

    organismsontheleafsurface.Beforeviralmetagenomicanalysis,about0.1gleaftissuesampleof

    eachplantwasgroundedusingsteelballsandre-suspendedin1mLofphosphate-bufferedsaline

    (PBS)andvigorouslyvortexedfor5min.Thegroundedsampleswerethenfrozenandthawedthree

    timesondryice.Thesupernatantswerethencollectedaftercentrifugation(10min,15,000×g)and

    storedat-80℃untiluse.HostspeciesidentificationwasinitiallyidentifiedusingAPP“PictureThis”

    whichisonlineplantencyclopediaandplantidentifier,andfutureconfirmedbyexperiencedfield

    biologists.

    Viralmetagenomicanalysis

    About300μLsupernatantfromeachofthethreedifferentplantsamplesinthesamespecieswas

  • 18

    mixedintoonesamplepoolandfilteredthrougha0.45-μmfilterandcentrifugedat120,000gfor20

    minutesat4℃toremoveeukaryoticandbacterialcell-sizedparticles.Un-encapsidatednucleicacids

    werethendigestedbyDNaseandRNaseat37°Cfor60min[52–55].Totalnucleicacidswere

    extractedasamixedRNA/DNAsolutionusingQiaAmpMiniViralRNAkit(Qiagen)accordingtothe

    manufacturer’sprotocol.161librarieswereconstructedusingNexteraXTDNASamplePreparationKit

    (Illumina).Forbioinformaticsanalysis,paired-endreadsof250bpgeneratedbyMiSeqwere

    debarcodedusingvendorsoftwarefromIllumina.Anin-houseanalysispipelinerunningona32-node

    Linuxclusterwasusedtoprocessthedata.Readswereconsideredduplicatesifbases5to55were

    identicalandonlyonerandomcopyofduplicateswaskept.Clonalreadswereremovedandlow

    sequencingqualitytailsweretrimmedusingPhredqualityscoretenasthethreshold.Theuniqueread

    numberofeachlibrarywasshowninTable1.Adaptorsweretrimmedusingthedefaultparametersof

    VecScreenwhichisNCBIBLASTnwithspecializedparametersdesignedforadapterremoval.The

    cleanedreadsweredenovoassembledwithineachbarcodeusingtheENSEMBLEassembler[56].

    Contigsandsingletsreadsarethenmatchedagainstacustomizedviralproteomedatabaseusing

    BLASTxwithanEvaluecutoffof

  • 19

    usingthesoftwareGeneiousv11.1.2andprimersbridgecontigswerethendesigned[61].Gapswere

    filledby(RT–)PCRandSangersequencing.Toconfirmtheassemblyresultsofafullgenome,reads

    weredenovoassemblebacktothefulllengthgenomeusingthelowsensitivity/fastestparameterin

    Geneious11.1.2.Forgenomeswithnovelstructures,weverifiedthecompleteornearcompleteviral

    genomebydesigningoverlappingprimersbasedontheassembledsequences.Forthosevirusesthat

    firstlyisolatedfromplants,weusedPCRandSangersequencingtoverifyit’saccuratebasedonthe

    assembledsequences.

    Confirmationofviralco-infection

    In7librariesincludingpt065,pt067,pt110,pt111,pt112,pt119andpt151,whichhavefarmorethan

    threedifferentvirusstrains,showedevidentco-infectioninindividualplant.Toinvestigatethe

    presencestatusofdifferentviralstraininthreeindividualplantsfromthesamelibrary,PCRand

    Sangersequencingwereperformedusingspecificprimersdesignedbasedontheconserveddomain

    sequencesoftheseviruses.

    Phylogeneticanalysisofviruses

    Throughanalyzedtheproteinsequencesobtainedinthisstudy,wedividethemintothreecategories

    includingRNAviruses,Parvovirus-likevirusesandCRESSDNAviruses.Toinferthephylogenetic

    relationships,proteinsequencesofreferencestrainsbelongingtoRNAviruses,Parvovirus-like

    viruses,andCRESSDNAvirusesweredownloadedfromtheNCBIGenBankdatabase.ForRNAviruses,

    thephylogenetictreewasconstructedbasedontheRNA-dependentRNApolymerase(RdRp),for

    parvovirus-likeviruses,thephylogenetictreewasconstructedbasedonnonstructuralprotein(NS),

    fortheCRESSDNAviruses,thephylogenetictreewasconstructedbasedonthereplication-associated

    protein(Rep)exceptforMicroviridaeviruseswhosemajorcapsidproteinwasusedforthe

    phylogenetictreeconstruction.Therelatedproteinsequenceswerefirstlyalignedusingalignment

    programimplementedintheCLCGenomicsWorkbench10.0,thealignmentresultwasfurther

    optimizedusingMUSCLEinMEGAv7.0[62]andMAFFTv7.3.1employingtheE-INS-Ialforithm[63].

    Sitescontainingmorethan50%gapsweretemporarilyremovedfromalignments.Bayesianinference

    treeswerethenconstructedusingMrBayesv3.2[64].TheMarkovchainwasrunforamaximumof1

  • 20

    milliongenerations,inwhichevery50generationsweresampledandthefirst25%ofMarkovchain

    MonteCarlo(mcmc)sampleswerediscardedasburn-in.Theapproximatefamily/genusofvirusesthat

    obtainedinthisstudywasdeterminedthroughtheabovetree,furtherconstructedthedetailedtrees

    pointateachvirusfamilythatarerelativelycloselyrelatedtothevirusesdiscoveredhereusingthe

    samemethod.MaximumLikelihoodtreeswerealsoconstructedtoconfirmedalltheBayesian

    inferencetreesusingsoftwareMegav7.0[62]orPhyMLv3.0[65].

    Virusgenomeannotation

    Putativeviralopenreadingframes(ORFs)werepredictedbyGeneiousv11.1.2withbuilt-in

    parameters(Minimumsize:300;Geneticcode:Standard;Startcodons:ATG)[61],furtherwere

    checkedthroughcomparingtorelatedvirusesbyBlastpinNCBI.TheannotationsoftheseORFswere

    basedoncomparisonstotheConservedDomainDatabase.PotentialexonandintronofGenomovirus

    werepredictedbyNetgenes2athttp://www.cbs.dtu.dk/services/NetGene2/.

    Qualitycontrolinthenucleicacidmanipulation

    Standardprecautionswereusedforallprocedurestopreventthecross-samplecontaminationand

    nucleicaciddegradation.Mainly,aerosolfilterpipettipswereusedtoreducethepossibilityofsample

    crosscontamination,andallthematerials(includingmicrocentrifugetubes,pipettips,etc.)which

    directlycontactedwithnucleicacidsampleswereRNaseandDNasefree.Thenucleicacidsamples

    weredissolvedinDEPCtreatedwater.Inordertoexcludethepossibilityofcontaminationwithnucleic

    acidsofparvovirus-likehybridvirus(PHV)andmiciroviruspresentinthelaboratoryorfromQiagen

    nucleicacidextractionkits,thesamplespositiveforthetwotypesofviruswerechosenandthe

    nucleicacidwerere-extractedusingTrizolreagent(Invitrogen).PCRusingprimersspecifictothose

    virusesconfirmedtheirpresenceintheoriginalbiologicalsamples.Asacontrol,alibrarywasalso

    constructedusingddH2Oassamplewhichgenerated13,228rawreadsandcontainednoviralreads

    basedonBLASTxsearching.

    AbbreviationsCRESSDNAvirus:circularreplication-associatedproteinencodingsingle-strandedDNAvirus;RdRp:

    RNA-dependentRNApolymerase;Rep:replicationproteins;NS:non-structuralprotein;CRPV:cricket

    http://www.cbs.dtu.dk/services/NetGene2/

  • 21

    paralysisvirus;PHV:parvovirus-likehybridvirus

    DeclarationsAcknowledgements

    WethankYimingLiuatTropicalCropsGeneticResourcesInstituteinChineseAcademyofTropical

    AgriculturalSciencesforidentificationofplantspecies.ThisworkwassupportedbyNationalKey

    ResearchandDevelopmentProgramsofChinaNo.2017YFC1200201,JiangsuProvincialKeyResearch

    andDevelopmentProjectsNo.BE2017693andIndependentProjectofChengduResearchBaseof

    GiantPandaBreedingNo.2020CPB-C11.

    Authors'contributions

    WZconceived,designedandsupervisedthestudy.SY,YH,MZ,JL,ZY,ZD,andXLcollectedplant

    samples.SY,YW,JY,andXCperformedexperiments.SY,XD,andTSanalyseddata.YW,JY,XC,YX,

    HL,RZ,QL,andWLtookpartindatasortingandanalysis.WZandSYwrotethemanuscript.WZ,ED,

    ZY,CZ,XW,QS,andHXrevisedandeditedthemanuscript.Allauthorsreadthemanuscriptand

    agreedtoitscontents.

    Availabilityofdataandmaterials

    AllcompleteorpartialviralgenomeobtainedinthisstudyweredepositedinGenBankwiththe

    accessionnumbersMN722411-MN722420,MN723593-MN723599,MN729612-MN729623,MN728806-

    MN728814,MN724250-MN724258,MN814305-MN814321,MN831436-MN831448,MN823661-

    MN823692,MN841281-MN841303,MN832441-MN832474,MN862333-MN862357,MN891787-

    MN891825,MT067617-MT067623andMT134328(SeedetailedinformationinSupplementaryTable

    2).TherawsequencereadsgeneratedhereweredepositedintotheSequenceReadArchiveof

    GenBankdatabaseandtheaccessionnos.areshownSupplementaryTable2.

    Ethicsapprovalandconsenttoparticipate

    Notapplicable.

    Consentforpublication

    Notapplicable.

    Competinginterests

  • 22

    Theauthorsdeclarethattheyhavenocompetinginterests.

    References1. RoossinckMJ.Symbiosisversuscompetitioninplantvirusevolution.Nat.Rev.

    Microbiol.2005;3:917–24.

    2. VallesSM,ChenY,FirthAE,GuérinDMA,HashimotoY,HerreroS,etal.ICTVVirus

    TaxonomyProfile:Dicistroviridae.J.Gen.Virol.2017;98:355–6.

    3. BonningBC,MillerWA.Dicistroviruses.Annu.Rev.Entomol.2010;55:129–50.

    4. GengP,LiW,deMirandaJR,QianZ,AnL,TereniusO.Studiesonthetransmission

    andtissuedistributionofAntheraeapernyiiflavirusintheChineseoaksilkmoth

    Antheraeapernyi.Virology.2017;502:171–5.

    5. RyabovEV.,FannonJM,MooreJD,WoodGR,EvansDJ.TheIflavirusesSacbroodvirus

    andDeformedwingvirusevokedifferenttranscriptionalresponsesinthehoneybee

    whichmayfacilitatetheirhorizontalorverticaltransmission.PeerJ.2016;4:e1591.

    6. TaiV,LawrenceJE,LangAS,ChanAM,CulleyAI,SuttleCA.CHARACTERIZATIONOF

    HaRNAV,ASINGLE-STRANDEDRNAVIRUSCAUSINGLYSISOFHETEROSIGMA

    AKASHIWO(RAPHIDOPHYCEAE)1.J.Phycol.JohnWiley&Sons,Ltd;2003;39:343–52.

    7. CulleyAI,LangAS,SuttleCA.Highdiversityofunknownpicorna-likevirusesinthe

    sea.Nature.2003;424:1054–7.

    8. XuB,ZhiN,HuG,WanZ,ZhengX,LiuX,etal.HybridDNAvirusinChinesepatients

    withseronegativehepatitisdiscoveredbydeepsequencing.Proc.Natl.Acad.Sci.

    2013;110:10264–9.

    9. NaccacheSN,GreningerAL,LeeD,CoffeyLL,PhanT,Rein-WestonA,etal.ThePerils

    ofPathogenDiscovery:OriginofaNovelParvovirus-LikeHybridGenomeTracedto

    NucleicAcidExtractionSpinColumns.J.Virol.2013;87:11966–77.

    10. ShiM,LinX-D,TianJ-H,ChenL-J,ChenX,LiC-X,etal.Redefiningtheinvertebrate

  • 23

    RNAvirosphere.Nature.2016;540:539–43.

    11. ZhangY-Z,ShiM,HolmesEC.UsingMetagenomicstoCharacterizeanExpanding

    Virosphere.Cell.2018;172:1168–72.

    12. ShiM,LinX-D,ChenX,TianJ-H,ChenL-J,LiK,etal.Theevolutionaryhistoryof

    vertebrateRNAviruses.Nature.2018;556:197–202.

    13. OudeMunninkBB,CottenM,CanutiM,DeijsM,JebbinkMF,vanHemertFJ,etal.A

    NovelAstrovirus-LikeRNAVirusDetectedinHumanStool.VirusEvol.2016;2:vew005.

    14. BauermannFV.,HauseB,BuysseAR,JoshiLR,DielDG.Identificationandgenetic

    characterizationofaporcinehepe-astrovirus(bastrovirus)intheUnitedStates.Arch.

    Virol.2019;164:2321–6.

    15. ShiM,LinX-D,TianJ-H,ChenL-J,ChenX,LiC-X,etal.Redefiningtheinvertebrate

    RNAvirosphere.Nature.2016;540:539–43.

    16. WuN,ZhangP,LiuW,WangX.Sogatellafurciferahepe-likevirus:Firstmemberofa

    novelHepeviridaecladeidentifiedinaninsect.VirusRes.2018;250:81–6.

    17. PurdyMA,HarrisonTJ,JameelS,MengX-J,OkamotoH,VanderPoelWHM,etal.ICTV

    VirusTaxonomyProfile:Hepeviridae.J.Gen.Virol.2017;98:2645–6.

    18. ZhaiL,YangM,ZhangM,HongN,WangG.CharacterizationofaBotybirnavirus

    ConferringHypovirulenceinthePhytopathogenicFungusBotryosphaeriadothidea.

    Viruses.2019;11:266.

    19. SahinE,AkataI.Virusesinfectingmacrofungi.VirusDisease.2018;29:1–18.

    20. RichaudA,FrézalL,TahanS,JiangH,BlatterJA,ZhaoG,etal.Verticaltransmission

    inCaenorhabditisnematodesofRNAmoleculesencodingaviralRNA-dependentRNA

    polymerase.Proc.Natl.Acad.Sci.U.S.A.2019;116:24738–47.

    21. ZhaoL,RosarioK,BreitbartM,DuffyS.EukaryoticCircularRep-EncodingSingle-

    StrandedDNA(CRESSDNA)Viruses:UbiquitousVirusesWithSmallGenomesanda

  • 24

    DiverseHostRange.Adv.VirusRes.2019;103:71–133.

    22. KazlauskasD,VarsaniA,KooninEV,KrupovicM.Multipleoriginsofprokaryoticand

    eukaryoticsingle-strandedDNAvirusesfrombacterialandarchaealplasmids.Nat.

    Commun.2019;10:3425.

    23. KrupovicM.Networksofevolutionaryinteractionsunderlyingthepolyphyleticorigin

    ofssDNAviruses.Curr.Opin.Virol.2013;3:578–86.

    24. TiszaMJ,PastranaDV,WelchNL,StewartB,PerettiA,StarrettGJ,etal.Discoveryof

    severalthousandhighlydiversecircularDNAviruses.Elife.eLifeSciences

    Publications,Ltd;2020;9.

    25. BriddonRW,MartinDP,RoumagnacP,Navas-CastilloJ,Fiallo-OlivéE,MorionesE,et

    al.Alphasatellitidae:anewfamilywithtwosubfamiliesfortheclassificationof

    geminivirus-andnanovirus-associatedalphasatellites.Arch.Virol.2018;163:2587–

    600.

    26. KrupovicM,GhabrialSA,JiangD,VarsaniA.Genomoviridae:anewfamilyof

    widespreadsingle-strandedDNAviruses.Arch.Virol.2016;161:2633–43.

    27. YuX,LiB,FuY,JiangD,GhabrialSA,LiG,etal.Ageminivirus-relatedDNA

    mycovirusthatconfershypovirulencetoaplantpathogenicfungus.Proc.Natl.Acad.

    Sci.U.S.A.2010;107:8387–92.

    28. LiuS,XieJ,ChengJ,LiB,ChenT,FuY,etal.FungalDNAvirusinfectsa

    mycophagousinsectandutilizesitasatransmissionvector.Proc.Natl.Acad.Sci.U.

    S.A.2016;113:12803–8.

    29. BassoMF,daSilvaJCF,FajardoTVM,FontesEPB,ZerbiniFM.Anovel,highly

    divergentssDNAvirusidentifiedinBrazilinfectingapple,pearandgrapevine.Virus

    Res.2015;210:27–33.

    30. RouxS,KrupovicM,PouletA,DebroasD,EnaultF.Evolutionanddiversityofthe

  • 25

    Microviridaeviralfamilythroughacollectionof81newcompletegenomesassembled

    fromviromereads.DutilhBE,editor.PLoSOne.2012;7:e40418.

    31. QuaiserA,DufresneA,BallaudF,RouxS,ZivanovicY,ColombetJ,etal.Diversity

    andcomparativegenomicsofMicroviridaeinSphagnum-dominatedpeatlands.Front.

    Microbiol.2015;6:375.

    32. TuckerKP,ParsonsR,SymondsEM,BreitbartM.Diversityanddistributionofsingle-

    strandedDNAphagesintheNorthAtlanticOcean.ISMEJ.2011;5:822–30.

    33. HopkinsM,KailasanS,CohenA,RouxS,TuckerKP,ShevenellA,etal.Diversityof

    environmentalsingle-strandedDNAphagesrevealedbyPCRamplificationofthe

    partialmajorcapsidprotein.ISMEJ.2014;8:2093–103.

    34. BrentlingerKL,HafensteinS,NovakCR,FaneBA,BorgonR,McKennaR,etal.

    Microviridae,afamilydivided:isolation,characterization,andgenomesequenceof

    phiMH2K,abacteriophageoftheobligateintracellularparasiticbacterium

    Bdellovibriobacteriovorus.J.Bacteriol.2002;184:1089–94.

    35. RoossinckMJ.Plants,virusesandtheenvironment:Ecologyandmutualism.Virology.

    2015;479–480:271–7.

    36. ChenY,EvansJ,FeldlauferM.Horizontalandverticaltransmissionofvirusesinthe

    honeybee,Apismellifera.J.Invertebr.Pathol.AcademicPress;2006;92:152–9.

    37. BernardoP,Charles-DominiqueT,BarakatM,OrtetP,FernandezE,FillouxD,etal.

    Geometagenomicsilluminatestheimpactofagricultureonthedistributionand

    prevalenceofplantvirusesattheecosystemscale.ISMEJ.2018;12:173–84.

    38. MuthukumarV,MelcherU,PierceM,WileyGB,RoeBA,PalmerMW,etal.Non-

    cultivatedplantsoftheTallgrassPrairiePreserveofnortheasternOklahoma

    frequentlycontainvirus-likesequencesinparticulatefractions.VirusRes.

    2009;141:169–73.

  • 26

    39. NasirA,Caetano-AnollésG.Aphylogenomicdata-drivenexplorationofviralorigins

    andevolution.Sci.Adv.2015;1:e1500527.

    40. McCallumEJ,AnjanappaRB,GruissemW.Tacklingagriculturallyrelevantdiseasesin

    thestaplecropcassava(Manihotesculenta).Curr.Opin.PlantBiol.2017;38:50–8.

    41. AlmeidaRPP,DaaneKM,BellVA,BlaisdellGK,CooperML,HerrbachE,etal.Ecology

    andmanagementofgrapevineleafrolldisease.Front.Microbiol.2013;4:94.

    42. WallsJ,RajotteE,RosaC.ThePast,Present,andFutureofBarleyYellowDwarf

    Management.Agriculture.MultidisciplinaryDigitalPublishingInstitute;2019;9:23.

    43. Pinel-GalziA,TraoréO,SéréY,HébrardE,FargetteD.Thebiogeographyofviral

    emergence:riceyellowmottlevirusasacasestudy.Curr.Opin.Virol.2015;10:7–13.

    44. JunglenS,DrostenC.Virusdiscoveryandrecentinsightsintovirusdiversityin

    arthropods.Curr.Opin.Microbiol.2013;16:507–13.

    45. CalisherCH,HiggsS.TheDiscoveryofArthropod-SpecificVirusesinHematophagous

    Arthropods:AnOpenDoortoUnderstandingtheMechanismsofArbovirusand

    ArthropodEvolution?Annu.Rev.Entomol.AnnualReviews;2018;63:87–103.

    46. DasguptaR,GarciaBH,GoodmanRM.SystemicspreadofanRNAinsectvirusin

    plantsexpressingplantviralmovementproteingenes.Proc.Natl.Acad.Sci.U.S.A.

    2001;98:4910–5.

    47. WuF,ZhaoS,YuB,ChenY-M,WangW,SongZ-G,etal.Anewcoronavirus

    associatedwithhumanrespiratorydiseaseinChina.Nature.2020;579:265–9.

    48. NgLFP,HiscoxJA.Coronavirusesinanimalsandhumans.BMJ.2020;368:m634.

    49. OhshimaK,AkaishiS,KajiyamaH,KogaR,GibbsAJ.Evolutionarytrajectoryofturnip

    mosaicviruspopulationsadaptingtoanewhost.J.Gen.Virol.2010;91:788–801.

    50. FargetteD,KonatéG,FauquetC,MullerE,PeterschmittM,ThreshJM.Molecular

    EcologyandEmergenceofTropicalPlantViruses.Annu.Rev.Phytopathol.

  • 27

    2006;44:235–60.

    51. JonesRAC.Plantvirusemergenceandevolution:origins,newencounterscenarios,

    factorsdrivingemergence,effectsofchangingworldconditions,andprospectsfor

    control.VirusRes.2009;141:113–30.

    52. ZhangW,LiL,DengX,KapusinszkyB,PesaventoPA,DelwartE.Faecalviromeof

    catsinananimalshelter.J.Gen.Virol.2014;95:2553–64.

    53. ZhangW,LiL,DengX,BlümelJ,NüblingCM,HunfeldA,etal.Viralnucleicacidsin

    humanplasmapools.Transfusion.2016;56:2248–55.

    54. SiqueiraJD,Dominguez-BelloMG,ContrerasM,LanderO,Caballero-AriasH,XutaoD,

    etal.ComplexviromeinfecesfromAmerindianchildreninisolatedAmazonian

    villages.Nat.Commun.NaturePublishingGroup;2018;9:4270.

    55. ZhangW,YangS,ShanT,HouR,LiuZ,LiW,etal.Viromecomparisonsinwild-

    diseasedandhealthycaptivegiantpandas.Microbiome.2017;5:90.

    56. DengX,NaccacheSN,NgT,FedermanS,LiL,ChiuCY,etal.Anensemblestrategy

    thatsignificantlyimprovesdenovoassemblyofmicrobialgenomesfrom

    metagenomicnext-generationsequencingdata.NucleicAcidsRes.2015;

    57. Skewes-CoxP,SharptonTJ,PollardKS,DeRisiJL.ProfilehiddenMarkovmodelsfor

    thedetectionofviruseswithinmetagenomicsequencedata.TseH,editor.PLoSOne.

    2014;9:e105067.

    58. JohnsonLS,EddySR,PortugalyE.HiddenMarkovmodelspeedheuristicanditerative

    HMMsearchprocedure.BMCBioinformatics.2010;11:431.

    59. EddySR.Anewgenerationofhomologysearchtoolsbasedonprobabilistic

    inference.GenomeInform.2009;23:205–11.

    60. FinnRD,ClementsJ,EddySR.HMMERwebserver:interactivesequencesimilarity

    searching.NucleicAcidsRes.2011;39:W29-37.

  • 28

    61. KearseM,MoirR,WilsonA,Stones-HavasS,CheungM,SturrockS,etal.Geneious

    Basic:anintegratedandextendabledesktopsoftwareplatformfortheorganization

    andanalysisofsequencedata.Bioinformatics.OxfordUniversityPress;

    2012;28:1647–9.

    62. KumarS,StecherG,TamuraK.MEGA7:MolecularEvolutionaryGeneticsAnalysis

    Version7.0forBiggerDatasets.Mol.Biol.Evol.2016;33:1870–4.

    63. KurakuS,ZmasekCM,NishimuraO,KatohK.aLeavesfacilitateson-demand

    explorationofmetazoangenefamilytreesonMAFFTsequencealignmentserverwith

    enhancedinteractivity.NucleicAcidsRes.2013;41:W22-8.

    64. RonquistF,TeslenkoM,vanderMarkP,AyresDL,DarlingA,HöhnaS,etal.MrBayes

    3.2:efficientBayesianphylogeneticinferenceandmodelchoiceacrossalargemodel

    space.Syst.Biol.OxfordUniversityPress;2012;61:539–42.

    65. GuindonS,GascuelO.ASimple,Fast,andAccurateAlgorithmtoEstimateLarge

    PhylogeniesbyMaximumLikelihood.RannalaB,editor.Syst.Biol.OxfordAcademic;

    2003;52:696–704.

    Figures

  • 29

    Figure1

    Identificationofvirusesindifferentspeciesofplants.a,Theabundanceofplant-associated

    virusesindifferentspeciesofplant.Thetopgraphshowsthetotalnumberofuniquereads

    ineachlibrary.ThelibraryIDsareshownontopofeachbar,whilethehostOrdersare

    shownabovethebargraph.ThebottomgraphshowsthenumberofvirushitspassedNR

    filterinviralmetagenomicbioinformaticanalysis.Theredasteriskshowsthoselibraries

    fromwhichwehaveacquiredcompleteornearlycompletegenomeofviruses.b,The

    numberanddiversityofplant-associatedviruses.Thelefthistogramshowsthenumbersof

    DNAviruses(bluebar)andRNAviruses(redbar).Therightpiechartsshowthevirus

    classificationidentifiedinthisstudy.c,Theaminoacidsequenceidentityandcoverageof

    plant-associatedviruseswiththebestmatchedvirusstrainsinBLASTxsearchingbasedon

    the251completegenomesequenceacquiredinplantspecies.

  • 30

    Figure1

    Identificationofvirusesindifferentspeciesofplants.a,Theabundanceofplant-associated

    virusesindifferentspeciesofplant.Thetopgraphshowsthetotalnumberofuniquereads

    ineachlibrary.ThelibraryIDsareshownontopofeachbar,whilethehostOrdersare

    shownabovethebargraph.ThebottomgraphshowsthenumberofvirushitspassedNR

    filterinviralmetagenomicbioinformaticanalysis.Theredasteriskshowsthoselibraries

    fromwhichwehaveacquiredcompleteornearlycompletegenomeofviruses.b,The

    numberanddiversityofplant-associatedviruses.Thelefthistogramshowsthenumbersof

    DNAviruses(bluebar)andRNAviruses(redbar).Therightpiechartsshowthevirus

    classificationidentifiedinthisstudy.c,Theaminoacidsequenceidentityandcoverageof

    plant-associatedviruseswiththebestmatchedvirusstrainsinBLASTxsearchingbasedon

    the251completegenomesequenceacquiredinplantspecies.

  • 31

    Figure2

    Phylogeniesofviralgenomesidentifiedfromplants.TwelveBayesianinferencetreeswere

    constructedusingMrBayesv3.2basedonvirusRdRpdomainofRNAvirusesorNSproteinof

    parvovirus-likeviruses,withineachtree,thevirusesfoundinthisstudyaremarkedwithred

  • 32

    line.Hostsareindicatedwithdifferentsilhouetteofmammal,bird,arthropod,plantleaf,or

    wavesstandingforvirusenvironmentalsource.Thenameofthevirusfamilyorgenusis

    shownontherightsideofeachcluster.Eachscalebarindicates0.5aminoacid

    substitutionspersite.

  • 33

    Figure2

    Phylogeniesofviralgenomesidentifiedfromplants.TwelveBayesianinferencetreeswere

    constructedusingMrBayesv3.2basedonvirusRdRpdomainofRNAvirusesorNSproteinof

    parvovirus-likeviruses,withineachtree,thevirusesfoundinthisstudyaremarkedwithred

    line.Hostsareindicatedwithdifferentsilhouetteofmammal,bird,arthropod,plantleaf,or

    wavesstandingforvirusenvironmentalsource.Thenameofthevirusfamilyorgenusis

    shownontherightsideofeachcluster.Eachscalebarindicates0.5aminoacid

    substitutionspersite.

  • 34

    Figure3

    Thephylogeniesofpotentiallynewviruses.SevenBayesianinferencetreeswere

    constructedusingMrBayesv3.2basedonvirusRdRpdomains,withineachtree,theviruses

    foundinthisstudyaremarkedwithredline.InthephylogenetictreeofPicornaviralesthe

    bestmatchedvirusbasedBLASTpsearchingusingRdRpsequenceofeachnovelvirusare

    labeledwithbluecolor.Thenameofthevirusfamilyorgenusisshownontherightsideof

    eachcluster.Eachscalebarindicates0.2aminoacidsubstitutionspersite.

  • 35

    Figure3

    Thephylogeniesofpotentiallynewviruses.SevenBayesianinferencetreeswere

    constructedusingMrBayesv3.2basedonvirusRdRpdomains,withineachtree,theviruses

    foundinthisstudyaremarkedwithredline.InthephylogenetictreeofPicornaviralesthe

    bestmatchedvirusbasedBLASTpsearchingusingRdRpsequenceofeachnovelvirusare

    labeledwithbluecolor.Thenameofthevirusfamilyorgenusisshownontherightsideof

    eachcluster.Eachscalebarindicates0.2aminoacidsubstitutionspersite.

  • 36

    Figure4

    ThephylogeniesofpotentiallynewCRESSDNAviruses.NineBayesianinferencetreeswere

    establishedusingMrBayesv3.2basedonREPproteins,withineachtree,thevirusesfound

    inthisstudyaremarkedwithredline.Hostsareindicatedwithdifferentsilhouetteof

    mammal,arthropod,plantleaf,orwavesstandingforvirusenvironmentalsource.Thename

    ofthevirusfamilyorgenusisshownontherightofeachcluster.Eachscalebarindicates

    0.2aminoacidsubstitutionspersite.

  • 37

    Figure4

    ThephylogeniesofpotentiallynewCRESSDNAviruses.NineBayesianinferencetreeswere

    establishedusingMrBayesv3.2basedonREPproteins,withineachtree,thevirusesfound

    inthisstudyaremarkedwithredline.Hostsareindicatedwithdifferentsilhouetteof

    mammal,arthropod,plantleaf,orwavesstandingforvirusenvironmentalsource.Thename

    ofthevirusfamilyorgenusisshownontherightofeachcluster.Eachscalebarindicates

    0.2aminoacidsubstitutionspersite.

  • 38

    Figure5

    Potentialcross-speciesinfectionofvirusesamongdifferentspeciesofplants.Neighbor-

  • 39

    joiningtreesbasedonnucleotidesequenceofcompletegenomesofvirusesbelongingin

    thefamilyPotyviridaeorDicistroviridaeareshownhere.Virusstrainnamesarelabeledon

    eachbranchfollowedbypercentageofviralreadsnumberagainsttotaluniquereads

    numberincorrespondinglibrary.Virushostplantspeciesnameareshown,dottedlinesare

    usedheretoindicatethesamplingsitesofdifferentspeciesofplant.Thecollectingplants

    anditsgeographicallocationareconnectedbydottedlinesofdifferentcolors.Inthesame

    phylogeneticcluster,thecolorofdottedlinesbehindvirushostsarethesame.Sequence

    identitybasedoncompletegenomebetweenneighboringsequencesinthesameclusterare

    labeledbetweenbranchesinphylogenetictree.Thephylogenyandclassificationofhost

    speciesofdicistrovirusstrainsinthelargerclusterareshownbelowthedicistrovirustreeto

    indicatedthelevelsoverwhichthecross-speciesinfectionoccurred.

  • 40

    Figure5

    Potentialcross-speciesinfectionofvirusesamongdifferentspeciesofplants.Neighbor-

  • 41

    joiningtreesbasedonnucleotidesequenceofcompletegenomesofvirusesbelongingin

    thefamilyPotyviridaeorDicistroviridaeareshownhere.Virusstrainnamesarelabeledon

    eachbranchfollowedbypercentageofviralreadsnumberagainsttotaluniquereads

    numberincorrespondinglibrary.Virushostplantspeciesnameareshown,dottedlinesare

    usedheretoindicatethesamplingsitesofdifferentspeciesofplant.Thecollectingplants

    anditsgeographicallocationareconnectedbydottedlinesofdifferentcolors.Inthesame

    phylogeneticcluster,thecolorofdottedlinesbehindvirushostsarethesame.Sequence

    identitybasedoncompletegenomebetweenneighboringsequencesinthesameclusterare

    labeledbetweenbranchesinphylogenetictree.Thephylogenyandclassificationofhost

    speciesofdicistrovirusstrainsinthelargerclusterareshownbelowthedicistrovirustreeto

    indicatedthelevelsoverwhichthecross-speciesinfectionoccurred.

  • 42

    Figure6

    Co-infectingvirusesinplants.Piechartsdescribetheviruseswithcompletegenomein

    thoselibrariescontainingmorethan3differentviruses.Sectorareaineachpiechart

    representstheproportionofthenumberofreadsmappedtothecompleteviralgenomein

    thelibrary.ThreeindividualplantinthesameplantspeciesaremarkedwithS1,S2andS3,

    respectively.Checkmarksbelowvirusstrainsnamesshowpositiveofvirusin(RT-)PCR

    screening.

  • 43

    Figure6

    Co-infectingvirusesinplants.Piechartsdescribetheviruseswithcompletegenomein

    thoselibrariescontainingmorethan3differentviruses.Sectorareaineachpiechart

    representstheproportionofthenumberofreadsmappedtothecompleteviralgenomein

    thelibrary.ThreeindividualplantinthesameplantspeciesaremarkedwithS1,S2andS3,

    respectively.Checkmarksbelowvirusstrainsnamesshowpositiveofvirusin(RT-)PCR

    screening.

    SupplementaryFilesThisisalistofsupplementaryfilesassociatedwiththispreprint.Clicktodownload.

  • 44

    SupplementaryTable1.xlsxSupplementaryTable2.xlsxSupplementaryinformation.pdfSupplementaryinformation.pdfSupplementaryTable1.xlsxSupplementaryTable2.xlsx

    https://assets.researchsquare.com/files/rs-25620/v1/SupplementaryTable1.xlsxhttps://assets.researchsquare.com/files/rs-25620/v1/SupplementaryTable2.xlsxhttps://assets.researchsquare.com/files/rs-25620/v1/Supplementaryinformation.pdfhttps://assets.researchsquare.com/files/rs-25620/v1/Supplementaryinformation.pdfhttps://assets.researchsquare.com/files/rs-25620/v1/SupplementaryTable1.xlsxhttps://assets.researchsquare.com/files/rs-25620/v1/SupplementaryTable2.xlsx