VIP Vakonomic Applied to The

Embed Size (px)

Citation preview

  • 8/13/2019 VIP Vakonomic Applied to The

    1/31

    The geometrical theory of constraints applied to thedynamics of vakonomic mechanical systems:The vakonomic bracket

    Sonia Martı́nez,a)

    Jorge Cortés,b)

    and Manuel de Leónc)

     Instituto de Matemá ticas y Fı́ sica Fundamental, Consejo Superior de InvestigacionesCientı́  ficas, Serrano 123, 28006 Madrid, Spain

    Received 2 August 1999; accepted for publication 14 September 1999

    A vakonomic mechanical system can be alternatively described by an extended

    Lagrangian using the Lagrange multipliers as new variables. Since this extended

    Lagrangian is singular, the constraint algorithm can be applied and a Dirac bracket

    giving the evolution of the observables can be constructed. ©   2000 American

     Institute of Physics. S0022-24880002802-4

    I. INTRODUCTION

    There are two different approaches to Lagrangian systems subjected to nonholonomic con-straints. The first one is based on the d’Alembert principle1– 5 and the corresponding equations of 

    motion are termed nonholonomic. The second approach is purely variational and was proposed by

    Kozloz.6 Arnold, Kozlov, and Neishtadt1 coined the name of vakonomic  mechanics of variational

    axiomatic kind   to refer to that sort of mechanics. Interesting comparisons between both ap-

    proaches can be found in Refs. 3, 7, and 8.

    Both topics have received a lot of attention in recent years in the context of geometric

    mechanics. Nonholonomic mechanics has been studied from a Hamiltonian point of view,9–11

    from a Lagrangian one,12–17 and even from a Poisson one.18–20 Several papers are devoted to

    highlighting the equivalence among these viewpoints.21–23 Indeed, nonholonomic mechanics has

    many applications to engineering robotics, control of satellites, etc., since it seems appropriate to

    model the dynamical behavior of phenomena like rolling, etc.  see Ref. 2, and references therein.

    On the other hand, vakonomic mechanics is applied to study problems of optimal control theory

    being related to sub-Riemannian geometry,24,25 economic growth theory,26 motion of microor-

    ganisms at low Reynolds number,27 etc. A geometric unified approach was recently developed in

    Ref. 28.

    The aim of this paper is to study the equations of motion of vakonomic mechanical systems in

    the framework of singular Lagrangian theories. As is well known, a vakonomic system given by

    a Lagrangian function  L L(q A, q̇ A) and constraints   i(q A, q̇ A)0, can be equivalently described

    by the extended Lagrangian   LL(q A, i, q̇ A,̇ i) L(q A, q̇ A) i i   see Ref. 1. This new La-

    grangian is obviously singular, and its dynamics can be studied using Dirac’s machinery of 

    constraints.29 A first step in this direction is due to Cariñena and Rañada,30 where they considered

    a global constraint function and treated the problem in the Lagrangian formalism.

    Our program here is to apply the geometric version of the Dirac–Bergmann constraint algo-

    rithm due to Gotay and Nester31–33 to the extended Lagrangian   L. For that purpose, we first

    enlarge the original space of velocities   Q   to   PQRm

    , and then we apply Gotay–Nester’sprocedure to L. We assume that  L  is a natural Lagrangian, that is,  LT U  where T  is the kinetic

    energy derived from a Riemannian metric on   Q, and   U   is the potential energy. In addition, the

    constraints are supposed to be linear in the velocities. With these assumptions, we find that the

    algorithm stabilizes at the second step or, in other words, there are only secondary constraints.

    aElectronic mail: [email protected] mail: [email protected] mail: [email protected]

    JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 4 APRIL 2000

    20900022-2488/2000/41(4)/2090/31/$17.00 © 2000 American Institute of Physics

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    2/31

    Moreover, all the constraints are second class in according with Dirac’s terminology. This last fact

    implies that the final constraint submanifold   M 2   is symplectic with respect to the canonical

    symplectic structure on   T *P   and the symplectic structure induced there provides a Poisson

    bracket that is just the same induced by the ambient Dirac bracket.29,34 A first result is that this

    procedure ‘‘reduces’’ the phase space from  T *P   to   M 2 .Furthermore, the final constraint submanifold is diffeomorphic with  M ¯ Rm, where  M ¯   is the

    image in  T *Q   by the Legendre transformation of  M . An interesting consequence of this identifi-

    cation is the possibility of defining a Poisson bracket on functions on   M ¯    which produces a

    function on  M 2 since we have to take account of the Lagrange multipliers. We are then impelled

    to call this bracket the vakonomic bracket, in distinction with the so-called nonholonomic bracket

    in nonholonomic mechanics.19,20,21,23,35 Indeed, the vakonomic bracket gives the evolution of the

    observables of the vakonomic system.

    If we consider a more general kind of constraints or Lagrangian not necessarily regular

    situations which are more common in applications, the process is of course very much involved,

    since tertiary and higher order constraints will appear. We leave this problem for further research.

    The paper is organized as follows. In Sec. II, we review the two kinds of mechanics, non-

    holonomic and vakonomic mechanics, from a unified variational approach. The constraint algo-

    rithm in its geometric version is described in Sec. III and applied to vakonomic mechanics in Secs.IV and V. In Sec. VI, we study the second-order differential problem and in Sec. VII, we classify

    the constraints according to Dirac. In Sec. VIII, we discuss what happens if the constraints are not

    globally defined on  TQ.

    II. VARIATIONAL METHODS IN MECHANICS

    In this section we shall give a brief account of the variational principles involved in the

    derivation of the equations of motion in classical mechanics. For a more extended discussion see,

    for instance, Refs. 3, 8, 28 and 36.

    Let Q  be an  n-dimensional configuration manifold, and L :TQ→R an autonomous Lagrangian

    function. If (q A) are coordinates on  Q, we denote by ( q A, q̇ A) the natural bundle coordinates on

    TQ   such that the tangent bundle projection   Q : TQ →Q  reads as   Q(q

     A

    , q̇

     A

    )

    (q

     A

    ).Given two points  x , yQ  we define the manifold of twice differentiable curves joining  x  and

     y  as

    C 2 x , y c : 0,1→Q   /   c   is   C 2,   c 0  x   and   c 1  y .

    Let  c  be a curve in  C 2( x, y ). As is well known, the tangent space of  C 2( x , y ) at  c   is given by

    T cC 2 x, y  X : 0,1→TQ   /   X   is   C 1,   X  t T c t Q , X  0 0 and   X  1 0.

    We will assume here that  L   is subjected to nonholonomic linear constraints given by a submani-

    fold   M   of   TQ. Alternatively, the submanifold   M   can be viewed as the total space of a vector

    subbundle of  TQ, or, equivalently, as a distribution on Q  which will be denoted by the same letter.

    Therefore, if the annihilator   M ° of   M   is locally spanned by   m   independent one-forms

     1 , . . . , m, where   i iA dq A, we have that the constraint functions   1 , . . . , m  are just theevaluation functions of this basis, that is,   i(vq)vq , i(q)  for all   vqT qQ , 1im . Now,we introduce the submanifold of   C 2( x, y ) which consists of those curves which are compatible

    with the constraint submanifold  M ,

    C ˜ 2 x , y c̃ C 2 x , y   /   c8  t  M c̃  t  ,   t  0,1.

    Given a curve   c̃ C ˜ 2( x, y ), the constraints allow us to consider a special vector subspace of 

    T c̃ C 2( x , y),

    V c̃  X T c̃ C 2 x , y   /   i X 0, 1i m,

    2091J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    3/31

    which are the allowed variations. Then, if  X  X  A(  /  q A), we deduce that  X V c̃   if and only if 

     iA X  A0,   1im ,   1

    along the curve   c̃ .

    Next, define a functional  J  by

    J :C 2 x, y →R

    c0

    1

     L ċ t dt .

    A direct computation using integration by parts shows that   see Ref. 8

    d J  c  X 0

    1     L q A

    dt       L q̇ A

     X  Adt for  cC 2( x , y ) and  X T cC 

    2( x, y ).

    A. Unconstrained systems

    In this case, M TQ . The Hamilton principle states that a curve cC 2( x, y ) is a motion of the

    Lagrangian system defined by   L   if and only if   c   is a critical point of   J ; that is, iff   d J (c)( X )

    0 for all  X T cC 2( x, y ), or

    0

    1     L q A

    dt       L q̇ A

     X  Adt 0,    X  A.This condition is equivalent to the Euler–Lagrange equations

    dt      L

     q̇ A  L

     q A0, 1 An.

    B. Nonholonomic mechanics

    In this case, a curve   c̃ C ˜ 2( x , y) is a motion if and only if it satisfies   d J ( c̃ )( X )0, for all

     X V c̃  , that is,

    0

    1     L q A

    dt       L q̇ A

     X  Adt 0,for all  X  A satisfying Eq.   1.

    As before, we deduce that   c̃   is a motion if and only if 

        L q A

    dt       L q̇ A

     X  A0,   2for all X  A satisfying Eq. 1, which is just the statement of d’Alembert’s principle. Therefore, c̃   is

    a motion for the nonholonomic system if and only if 

    dt       L q̇ A

      L q A

    i iA , 1 An ,   3

    for some Lagrange multipliers   1, . . . , m.

    2092 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    4/31

    C. Vakonomic mechanics

    In vakonomic mechanics, a curve  c̃ C ˜ 2( x , y) is a motion if and only if  d J ( c̃ )( X ˜ )0, for all

     X ˜ T c̃ C ˜ 2( x , y), i.e., the motions are the extremals of the restriction of the functional to the curves

    satisfying the constraints.

    Now, using the Lagrange multipliers theorem in an infinite dimensional context, we deduce

    see Refs. 1, 3, 8, and 36   that   c̃   is an admissible regular motion if and only if there exist   m

    functions  1, . . . , m,   i:0,1→R   such that

    dt       L q̇ A

      L q A

    i   iA q B

      q̇ B  iB

     q A  q̇ B d 

    i

    dt    iA , 1 A n.   4

    An alternative approach to vakonomic mechanics is the following. From   4   we deduce that a

    curve   c̃ (q A( t )) in   C ˜ 2( x, y ) is a solution of the vakonomic equations if and only if there exist

    local functions   1, . . . , m on   R   such that   c̄ (t )(q A(t ), i( t )) is an extremal for the extended

    Lagrangian

    L:T  QRm→R,   L L i i ,

    i.e., it satisfies the Euler–Lagrange equations

    dt     L q̇ A

     L q A

    0, 1 An ,

    dt     L ̇ i

     L  i

    i q A, q̇ A0, 1im

    see Refs. 1, 3, 8, and 36 for details.

    III. THE CONSTRAINT ALGORITHM

    First of all, let us recall the geometric formulation for Lagrangian mechanics   see Ref. 37.

    Let   S   /  q̇ Adq A be the canonical almost tangent structure on   TQ   and   q̇ A(  /  q̇ A) the

    Liouville vector field on  TQ. From the Lagrangian  L, we construct the Poincaré –Cartan two-form

      LdS *(dL) and the energy  E  L( L) L .

    Then, the equations of motion can be equivalently written as

    i x  LdE  L .   5

    Indeed, if the Lagrangian   L   is regular, i.e., its Hessian matrix Hess( L)( 2 L /  q̇ A q̇ B) is not

    singular, then    L   is symplectic, and  5  has a unique solution   L   which is a second-order differ-

    ential equation SODE. The solutions of   L  are just the ones of the Euler–Lagrange equations. If 

     L   is not regular, then   5  has no solution in general, and even if a solution exists, it will not be

    unique or a SODE.

    In order to treat with this kind of system, Gotay and Nester31–33 developed a constraintalgorithm a geometrization of the Dirac– Bergmann algorithm, applicable in the general frame-

    work of presymplectic manifolds as is described in the following. A presymplectic system is a

    triple, M,  ,  , that consists of a smooth manifold  M, a closed two-form    with constant rank,

    and a closed one-form   .

    We are interested in searching the possible solutions of 

    i x  .   6

    Let   :T M→T *M   be the map defined by  ( X )i X  . If     is not symplectic, then    is not

    surjective and, consequently,  6  has no global solution on  M   in general.

    2093J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    5/31

    Consider the points of  M  where  6  has a solution and assume that this set is a submanifold

    M2   of  M1M  this will be our case, since we are assuming that    has constant rank . It could

    still happen that the solutions on  M2  are not tangent to M2 . In consequence, we take a submani-

    fold  M3  of  M2  where the solutions are tangent to  M2 . Continuing with this process repeatedly,

    we generate a sequence of submanifolds

    ¯Mi¯M2¯M1M,

    in such a way that if the algorithm stabilizes for some  k , i.e., Mk Mk 1M f  , then there exists

    a vector field    on  M f   such that

    i    / M f .

    Notice that if we finish the process at the step  k 1, it will mean that there is a global solution  

    on the whole of  M.

    Alternatively, the above submanifolds can be obtained as follows:

    Mi xM   /    x  z 0,  zT  xMi1

    ,

    where

    T  xMi1 zT  xM   /    x v , z 0, vT  xMi1.

    We call M2  the secondary constraint submanifold, M3  the tertiary constraint submanifold, and in

    general Mi  will be the  i-ary constraint submanifold. If the algorithm stabilizes, then  M f  will be

    the final constraint submanifold. Accordingly, the   local   functions defining these submanifolds

    will be termed secondary constraints, ternary constraints, and so on.

    IV. THE LAGRANGIAN FORMALISM

    Let   Q   be an   n-dimensional manifold representing the configuration space of a mechanical

    system described by a Lagrangian function   L:TQ→R   and subjected to linear nonholonomic

    constraints given by a submanifold  M  of  TQ.

    We shall assume that the Lagrangian is of natural type, that is   LT U , where   T   is the

    kinetic energy of a Riemannian metric  g  on  Q, and  U :Q→R  is a potential energy.

    In bundle coordinates  L  reads as

     L q A, q̇ A12 g AB q q̇

     Aq̇ BU  q .

    As we have seen earlier, the constraint submanifold   M   is locally defined as the zero set of   m

    independent linear nonholonomic constraints   i(q A, q̇ A) iA (q)q̇

     A.

    For the sake of simplicity, we shall assume that the constraints  i are globally defined on the

    whole  TQ. Later, we shall consider the general case.

    Consider the product manifold  PQRm with local coordinates ( q A, i). As we have seen in

    Sec. II, the equations of motion corresponding to the vakonomic problem given by L  and  M  can be

    formulated in terms of the extended lagrangian  L:T P→R,   L L i i .

    In what follows, we will identify  TP  with  T QT Rm, and denote by   1 :TQT Rm→TQ  and

     2 :TQT Rm→T Rm the canonical projections of  TQT Rm onto  TQ  and  T Rm, respectively.

    The Poincaré–Cartan two-form  L  associated to  L   is

     L  g AC  q B   q̇ C  i   iA

     q B  dq A∧dq B iA dq A∧d  ig BA dq A∧dq̇ B.

    2094 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    6/31

    Notice that    L   is not symplectic because of the singular character of   L. Indeed,    L /  ̇i0.

    However, it still has constant rank as shows its Hessian matrix

    Hess L   2L

     q̇ A q̇ B

     2L

     ̇ i q̇ B

     2L

     q̇ A ̇ j

     2L

     ̇ i ̇ j  Hess L   0

    0 0 .

    Therefore, we have

    rank  Lrank Hess L)rank Hess L )rank   L 2n .

    We deduce that the triple ( T P , L ,dE L) is a presymplectic system, with   E L(L)L   the

    energy of  L.

    In this presymplectic framework the equations of motion are written as

    i X  LdE L .   7

    Next, we will apply Gotay and Nester’s algorithm described in Sec. III to find a solution of  7.

    Put   P 1T P , then

    P 2 xP 1 / dE L , Z  x 0, Z  T  x P 1,

    where

    T  x P 1 Z T  x P 1 /  L Z ,W 0,W T  x P1 Z T  x P1 / L Z 0.

    Thus, to obtain  P 2  we need first to calculate kerL .

    A direct computation shows that

     ̇ i L0.

    Moreover, we also have

    i Z i L0,

    where

     Z i 

      ig BC  iC 

     

     q̇ B , 1 im .

    Therefore, since the vector fields     /  ̇ i, Z i   are linearly independent and rank    L2n , wededuce that they generate ker L , that is,

    ker Lspan Z i ,   ̇ i

     . Remark IV.1:  It is not difficult to see that

    dimker L)2 dim V  T P ker L,

    2095J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    7/31

    where   V (T P) is the vertical bundle over   P. Therefore,   L   is a singular Lagrangian of Type II

    according to the classification in Refs. 38 and 39.

    Notice that   E L( 1)*( E  L), where   E  L  is the energy corresponding to the Lagrangian  L. In

    what follows, we will write  E  L   instead of ( 1)*( E  L), for brevity.

    Now, in order to compute the constraint functions which define   P 2 , we calculate(dE L) x(  /  ̇

    i) and (dE L) x( Z i), 1im ,

    dE L     ̇ i

      E  L ̇ i

    0,

    dE L Z i Z i E L      ig BC  iC 

     

     q̇ B     L

     q̇ A q̇ A L

    g BC  iC   L

     q̇ Bg BC  iC 

      L

     q̇ Bg BC  iC g AB q̇

     A iA q̇

     A,

    which are the original constraints.Thus, we have

    P 2 xP 1 /  i 1 x 0,1im.

    Next, we shall compute  T P 2 . Take  X  a vector field tangent to   P 2 , that is, if 

     X  X 1 A   

     q A X 2

    i   

      i X 3

     A   

     q̇ A X 4

    i   

     ̇ i,

    we have

     X  i X 1 Aq̇ B   

    iB q A

       X 3 A iA0,   i .   8

    The matrix ( iA ) has rank  m, so we can assume that the submatrix ( i j), 1i , j m  is invertible,

    with inverse matrix (  ji ). Equation  8  can be written as

     X 3 j  i j X 3

    a ia X 1 A

    q̇ B   iB

     q A  ,

    where 1i ,   jm   and  m1an . Now, multiplying by (  ji ) we obtain that

     X 3 j  ji X 1

     Aq̇ B

       iB

     q A   ji X 3

    a ia  .

    Consequently, we deduce that  T P 2  is spanned by the vector fields

         i

     , 

     ̇ i,

     

     q Aq̇ B

       iB

     q A    ji

       

     q̇ j ,

     

     q̇a  ji ia

     

     q̇ j .

    Next, we want to compute  T P 2 . Consider a vector field  Y ,

    Y Y 1 A   

     q AY 2

    i   

      iY 3

     A   

     q̇ AY 4

    i   

     ̇ i,

    2096 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    8/31

    such that  Y T P 2 . After some calculations, we obtain that

    Y 1 A0,

    Y 3

     Ag EA 

    iE Y 

    2

    i .

    Then

    dE  L Y g AB q̇ BY 3

     Ag AB q̇

     Bg EA iE Y 2i q̇ E  iE Y 2

    i iY 2

    i0,   9

    on  P 2  and, therefore,  P 3P 2 . This means that the algorithm stabilizes at  P 2 , and  P 2  is the final

    constraint submanifold.

    Our aim in the rest of this section is to get explicit expressions for the solutions of Eq. 7. For

    that purpose, take an arbitrary vector field    on  TP   locally written as

    A A   

     q AB i

       

      iC  A

       

     q̇ ADi

       

     ̇ i,

    and assume that it satisfies

    i LdE L .

    A straightforward computation shows that

    i  LA B   g BC  q A  g AC 

     q B  q̇ C  i   iB

     q A

      iA

     q B  B i iAC  Bg AB dq A

    A A iA d iA Ag AB dq̇

     B,

    dE L12 g BC 

     q A  q̇ C q̇ B

     U 

     q Adq Ag AB q̇ Bdq̇ A.

    Comparing the coefficients of  d q̇ B and  d  i we deduce that

    A Bg ABq̇ Bg BA ,   A

     A iA0,

    which implies  A Aq̇ A, 1 An , and

     iA q̇ A0, 1im .   10

    Comparing now the coefficients of  d q A, we find that  B i and  C  B are related as follows:

    B i iAC  Bg AB

    iq̇ D   iD q A

      iA

     q D  1

    2

     g DC 

     q A 

     g AC 

     q D  q̇ C q̇ D  U 

     q A ,

    or, equivalently,

    C  Bg AB q̇ D i   iD q A

      iA

     q D  1

    2

     gCD

     q A 

     g AC 

     q D  q̇ C g AB   U 

     q Ag AB iA B 

    i.   11

    Moreover, since    has to be tangent to   P 2 , we get

    C  B  jBq̇ Aq̇ B

        jB

     q A  0.   12

    Introducing the expression for  C  B obtained in  11   into   12, we have

    2097J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    9/31

  • 8/13/2019 VIP Vakonomic Applied to The

    10/31

    The obstacle for the above-mentioned splitting to be ‘‘clean,’’ that is,  X  being independent of 

      and   Z   being independent of (q, q̇), is the coupling of the coordinates (q , q̇) and     in the

    vakonomic equations, a fact that can also be seen in the explicit expressions for  B iB i(q , , q̇)

    and C  BC  B(q , , q̇)  see 14 and 15. A look to these local expressions shows that if the crossed

    terms    iB /  q

     A  iA /  q

     B

    vanish, then we will be able to project ‘‘cleanly’’    onto a vectorfield   X   independent of parameters. Of course, this is just the case when the constraints are

    holonomic.8

    On the other hand, this can also be done for some mechanical systems subjected to nonholo-

    nomic constraints: for example, whenever we can get an expression for the Lagrange multipliers

    ( i(t )) along solutions ( q A(t ), q̇ A(t )). This is the case of the vertical rolling disk   see Example

    VII.4. In fact, we have that  X 0( t ) L, M   , where ( 0i (t )) is a special curve of Lagrange multi-

    pliers and    L, M   is the nonholonomic vector field along   M . Consequently, the solutions of the

    nonholonomic problem may be regarded as a subset of the vakonomic ones.8,24 As a by-product of 

    the application of the Gotay and Nester algorithm, we have found a geometric characterization of 

    this fact. However, it will not be true in general as pointed out in Ref. 8 and the question of when

    this can be done is still unanswered.

    V. THE HAMILTONIAN FORMALISM

    In this section, we will discuss the vakonomic system within the framework of the cotangent

    bundle   T *P . First of all, note that the Lagrangian  L   is almost regular, so we are just in the

    assumptions of Gotay and Nester.31,32

    Our interest in developing this formulation is to classify the constraints appeared in the

    process following Dirac’s criterion and, then, to define a Dirac bracket giving the evolution of 

    dynamical variables.

    Consider the Legendre transformation of  L,

    FL:T P→T *P .

    As is well known, the Legendre mapping is a fibered mapping over  P, i.e.,   PFL P , where P : T *P→ P   is the canonical projection. In local coordinates the Legendre transformation reads

    as

    FL q A, i, q̇ A,̇ i q A, i,     L q̇ A qA, q̇A

    i   i q̇ A

    qA, q̇A

    ,0 .Therefore, if (q A, i, p̂  A , p̂ i) are bundle coordinates in  T *P  we have

     p̂  Ag AB q̇ B i iA ,   p̂ i0,

    along the image of  FL.

    Next we will prove that  L  is almost regular according to the definition in Refs. 31 and 32.

    Proposition V.1: The following statements are true(i) FL(T P) M 1   is a submanifold of T *P .

    (ii) F L  is a submersion on its image and its fibers are connected submanifolds of TP. There-

     fore,  L  is almost regular .

    Proof: The Jacobian matrix of  FL   is

     I n   0   K    0

    0   I m   K ¯    0

    0 0 Hess L   0

    0 0 0 0

     ,

    2099J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    11/31

    where   K  q̇C ( g BC  /  q A) i(  iB /  q

     A)   and   K ¯ ( iA ). Then, rank  FL2nm   at every   x

    T P , and from the rank theorem we deduce that  M 1  is a submanifold of  T *P . Moreover, with

    this differentiable structure the mapping  FL:T P→ M 1   is a submersion.

    Next, we will prove that FL1( y )span(  /   i) P( y), for all y M 1 . In this case, the fibers

    of  FL  would be connected. Indeed, let  x1 , x2FL1

    ( y). Then both are in the same fiber of  TP,i.e.,   P( x 1) P( x 2), and from the definition of  FL  we deduce that  F  L( 1( x 1))F  L( 1( x2)).

    Therefore  1( x 1) 1( x2) since  F  L   is a diffeomorphism. Consequently,  x 1  and x 2  differ only in

    their components   ̇ i. Thus, we have completed the proof.  

    Notice that   M 1   is locally defined by the equations   p̂ i0 for all   i. Denote by   1 j 1* P ,

    where   Pdq A∧d p̂  Ad 

    i∧d p̂ i  is the canonical symplectic form on   T *P   and   j 1 : M 1→T *P   is

    the canonical inclusion. Then

     1dq A∧d p̂  A

    is a closed two-form on   M 1  with constant rank 2ndim M 1 .

    Since  L  is almost regular, the energy  E L  is constant along the fibers of  FL  and it induces a

    well-defined function  h 1 : M 1→R  by the relation  h 1FL E L . In fact,

    h 1 q A, i, p̂  A,0

    12 g

     AB  p̂  Ai iA  p̂  B

     j  jB U  q .

    Thus, the system ( M 1 , 1 ,dh1) is presymplectic and we can apply to it the constraint algorithm.

    It should be noticed that Gotay and Nester’s equivalence theorem   see Refs. 31 and 32  implies

    that this algorithm will stabilize at a submanifold   M 2   of   M 1  so that the following diagram

    P1T P →FL

    T *P

    i 1↑ FL1 ↑ j 1

    P2

      M 1

    FL2 ↑ j 2

     M 2

    is conmutative. Here,  i 1  and   j 2  are the canonical inclusions, and  FLk FL Pk are submersions on

    their images   M k   for  k 1,2.

    The primary constraints are those defining   M 1 , that is,   p̂ i0. In order to calculate the sec-

    ondary constraints which in turn define  M 2 , we first compute

    ker  1  y T  y M 1 T  y M 1 /  1  y , 0, T  y M 1.

    In terms of the induced coordinate system on  M 1 , the tangent space of  M 1  at  y  is locally generatedby

          q A y

    ,      i

     y

    ,      p̂  A

     y .

    If 

      1 A    

     q A

     y

     2i      i

     y

     3 A    

      p̂  A

     y

    T  y M 1 ,

    2100 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    12/31

      1 A    

     q A

     y

     2i      i

     y

     3 A    

      p̂  A

     y

    T  y M 1 ,

    then we have

     1  y ,  dq A∧d p̂  A  y ,  1

     A 3 A 3

     A 1 A0,    1

     A , 3 A .

    Thus   1 A 3

     A0, which implies that

    T  y M 1span       i  y .

    Then  dh1(  /  i)( h1 /  

    i) i   provides the new constraints

     i iA g AB  p̂  B

     j  j B , 1im .

    Consequently, M 2  is defined by the constraints   p̂ i( y )0 and   i( y)0,1im .

    One can directly check that   M 2FL( P 2). As we already know,   M 2   is the final constraint

    submanifold, that is,   M 2 M  f   with the usual notations. Observe that we can introduce local

    coordinates in   M 2  as follows. Since   i0, for all   i, we have

    i D i j  jA g AB p̂  B , 1im .

    Thus, we can take local coordinates ( q A, p̂  A) in  M 2 . More precisely, the mapping

    q A, p̂  A q A, D i j  jA g

     AB p̂  B , p̂  A,0

    defines  M 2  as a submanifold of  T *P .

    We summarize the above results in the following diagram:

    P 1

    T P

    T  QR

    m

      →

    FL

    T *P

    i1↑ FL1

    ↑ j 1

    P 2 i0   M 1 p̂ i0

    FL2

    ↑ j 2

     M 2 p̂ i0, i0.

     Remark V.2:  Observe that   2 j 2* P   is in fact a symplectic form on  M 2  since

    rank  22ndim M 2 .

    Then, we have that ( M 2 , 2 ,h 2) is a symplectic Hamiltonian system, where   h 2   denotes the

    restriction of  h 1   to   M 2 . In local coordinates,

    h212 g

     AB p̂  B p̂  A Dik  kC  iA g

    CD p̂  DU .

    Let us denote by   M ¯ F  L( M ) the submanifold of   T *Q   obtained by means of the Legendre

    transformation associated to   L. Indeed,   M ¯   is defined by the linear constraints  iA g AB p B , where

    (q A, p A) stand for the bundle coordinates in   T *Q . Notice that   M ¯   is a vector subbundle of   T *Q

    since FL  is a vector bundle isomorphism over  Q.

    2101J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    13/31

    To end this section, we will investigate the relation between  M 2  and  M ¯  , and will compare  2with   Q , the canonical symplectic form on  T *Q .

    Let    : M T Rm→ P 2   be the global diffeomorphism between   M T Rm and   P 2 , which is

    induced from the canonical diffeomorphism   TQT Rm→T (QRm). By means of   , we define

    the global mapping

     :   M ¯ Rm→ M 2

     ȳ , FL  F  L1 ȳ , ,0.

    In local coordinates we have

      q A, p A , i q A, i, p A

    i iA ,0.

    Proposition V.3:   is a diffeomorphism.

    Proof: Indeed, it is differentiable and its inverse is

     M 2→ M ¯ Rm,

    q A, p̂  A q A, p̂  A

    i iA , i,

    where   i D i j  jA g AB p̂  B . Obviously,   

    1 is differentiable, too.  

    Via    one obtains that

     * 2 Qd  i iA ∧dq

     A.

    VI. THE SODE PROBLEM

    In this section we will discuss the problem of finding a vector field ˜  satisfying the equations

    i ˜  LdE L S ,

    S ̃  S ,

    on some submanifold   S   of   P 2 . That is, we are looking for a solution satisfying the SODE

    condition, since our problem is variational and it requires second-order equations.

    First of all, let us recall that points in the same fiber of  FL2  only differ one from each other

    in their components  ̇ i. Indeed, if  y 0  is a point in  M 2  with local coordinates (q0 A , 0

    i , p̂ 0 A,0) then

    we have

    FL21

     y 0 q 0 A , 0

    i ,g0 AB

     p̂ 0 B0i  0iB , ̇

    i  / ̇ iRP 2 .

    This fact implies that, if 

    D0iq̇ A    

     q AB i q , , q̇  

      iC  A q , , q̇  

     q̇ AD0

    i    

     ̇ i

    is an arbitrary solution of Eq. 17, then it is projectable by FL onto a vector field ̄   tangent to  M 2defined by

    ̄  y FL*

     D0i  x ,   xFL1 y ,

    since B i and  C  A do not depend on  ̇ i.

    Moreover, since  ¯   is such that ( i¯  1dh1)  M 2, we deduce

    2102 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    14/31

    i¯  2dh2 ,

    and ¯   is the Hamiltonian vector field associated to  h 2 , i.e.,  ̄  h2. For each  y M 2 , with local

    coordinates (q A, i, p̂  A,0) we have

    ̄  y FL*

    D0i  x

    g AB  p̂  Bi iB     q A

     y

    B i x      i

     y

       g AD q B   q̇ D i   iA

     q B 

     y

    g BC  p̂ C i iC  B 

    i iA  x C  Bg AB  x        p̂  A  y

    g AB  p̂  Bi iB     q A

     y

    B i x      i

     y

     L

     q A       p̂  A

     y

    ,

    where  x  is an arbitrary point in  FL1( y).

    Now, we define the mapping  s: M 2→ P2   by putting

    s y s q A, i, p̂  A,0 q A, i,g AB  p̂  B

    i iB ,B i x ,   y M 2 ,   xFL

    1 y ,

    where  i D i j  jA g AB p̂  B . It is not difficult to see that  s  is well defined and that it does not depend

    on the choice of the local coordinates on  M 2 . In fact, one can define  s  by taking the value of   D0i

    at x  and then project the result by the canonical projection from  TP  onto  P  see Refs. 31 and 33.

    Moreover, we have that  s ( y )FL21( y), for each  y M 2  so  s  is a differentiable section of  FL2 .

    Then,   S s( M 2)P 2   is a submanifold of   P 2 , and hence of   TP  as well. Observe that on this

    submanifold,  D  satisfies the SODE condition: indeed, we have

    S  D S  B i̇ i   ̇ i

    0.

    However, in general, one cannot ensure that   D  is tangent to  S .

    This problem is solved by transporting the vector field  ̄   from  M 2   to  S  by using the global

    diffeomorphism s: M 2→S , that is, we define

    ̃ s*

    ̄ .

    Therefore,   ̃   will verify the SODE condition because of the form of   s   and, in addition, the

    equation

    i˜  LdE L S .

    Next, we will obtain a local expression for  ̃ . Let  x  be a point in  S ; since  s  is injective, there

    is a unique point  y M 2   such that  s( y) x. Then,

    ̃  x s* y

    ̄  y .

    As we know from the above discussion,  q̇ x Ag AB ( p̂  B

    i iB ) y   and ̇ xiB  x

    i , so that we have

    2103J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    15/31

    ˜  xq̇ x A    

     q A

     x

    ̇ xi      i

     x

     q̇ x Aq̇ x D g CD  g BC  q A

      x

    q̇ x A x

    i g x BC    iC 

     q A 

     x

    ̇ ig BC  iC  x

    g x BA  g EA

     q D  q̇ E  i

       iA

     q D   xq̇ x D ̇ i iA  x C  Dg AD  x  

       

     q̇ B  x q̇ x A   B i

     q A

     x

    ̇ x j   B i

      j

     x

     L

     q A    B i  p̂  A

     x

          ̇ i

     x

    .

    This expression can be simplified as follows:

    ˜  xq̇ x A    

     q A

     x

    ̇ xi      i

     x

    C  x B    

     q̇ B

     x

     q̇ x A   B i q A

     x

    ̇ x j   B i

      j

     x

     p̂ ˙  A   B i  p̂  A

     x

        ̇ i

     x

    q̇ x

     A

       

     q A  x

    ˙

     x

    i

       

      i  x

    C  x B

       

     q̇ B  x

    B ˙

     x

    i

       

     ̇ i ,taking into account that

    q̇ Ag CD q̇ D  g BC 

     q A  q̇ Dq̇ E g BA

      g EA

     q D  q̇ Dq̇ E 

       

     q D g BC gCE 0.

     Remark VI.1:  We have obtained a vector field ¯   on M 2 , and a vector field ˜   on S , both vector

    fields solving the dynamics of the singular Lagrangian   L. It should be noticed that, since the

    equations of motion for L are the same as the equations of motion for the vakonomic problem, we

    have obtained a sort of reduction of the latter problem. Indeed, the integral curves of   ¯   or

    equivalently, of  ˜ ) give the vakonomic dynamics. But  M 2   or, if we want,  S   has dimension 2 n

    and we have started with a state system  TP   with dimension 2n2m .

    Recall that we have proved  ¯  h2. In addition, the vector field  ˜   on S  is also a Hamiltonian

    vector field. In fact,  ˜  is the Hamiltonian vector field corresponding to the restriction of   E  L   and

    with respect to the restriction of    L   to   S . Both Hamiltonian vector fields are related by the

    symplectomorphism s.

    VII. CLASSIFICATION OF THE CONSTRAINTS ACCORDING TO DIRAC

    The application of the Dirac–Bergmann–Gotay–Nester algorithm has produced the following

    constraints:

    i   the primary constraints,  p̂  j

    0, 1 jm ,ii   and the secondary constraints,   j0, 1 jm ,

    which together define the final constraint submanifold   M 2 .

    In according with Dirac’s terminology,29 the constraints can be classified into first class and

    second class constraints. Let us recall that a constraint is said to be first class if its brackets with

    all the other constraints vanish; otherwise, it is said to be second class.

    Here the bracket is the canonical one provided by the canonical symplectic form   P  on T *P ,

     f ̄ , ḡ   f ̄ 

     q A ḡ 

      p̂  A

      f ̄ 

      i ḡ 

      p̂ i

      f ̄ 

      p̂ i

     ḡ 

      i

      f ̄ 

      p̂  A

     ḡ 

     q A ,

    2104 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    16/31

    for all pair of functions   f ̄ , ḡ :T *P→R.

    We construct the matrix  C (C  ), with  C     ,  , where 1 2m   and     p̂    for1 m   and      m   if  m1 2m . Then we have

    C    p̂ i , p̂  j  p̂ i ,  j

     i , p̂  j  i ,  j   0   Di j

     D i j   N i j ,with

     N i j i ,  j p̂ C g AB   jA   iD g

    CD

     q B   iA

       jD gCD

     q B  g AB k  iA   D k j q B    jA

      D ki

     q B  .

    A straightforward computation shows that the matrix  C   is invertible with inverse

    C 1 C   D1 ND1  D1

     D1 0  .

    Therefore, all the constraints are second class.Thus, the Dirac bracket is

     f ̄ , ḡ  D f ̄ , ḡ  f ̄ ,  C     , ḡ ,

    for all pair of functions   f ̄   and   ḡ   on  T *P .

    An important observation is the following. Since the constraints become Casimir functions

    with respect to the Dirac bracket, then it can be restricted to  M 2 . Indeed, for all pairs of functions

     f ,gC ( M 2) the bracket  f ̄ , ḡ  D M 2 does not depend on the choice of the extensions   f ̄ , ḡ   to T *P .

    Consequently, we will denote   f ,g* f ̄ , ḡ  D M 2.

    As Dirac proved, the bracket   , D  provides the evolution of any observable, that is,

     f ̄ 

    ˙ f ̄ , h̄  D ,

    for some convenient extension   h̄   of the projected Hamiltonian   h 1C ( M 1). In particular,

     f ,h 2*  gives the evolution of   f : M 2→R.As we have noticed in Sec. V, ( M 2 , 2) is a symplectic submanifold of  T *P . Let us denote

    by  , M 2 the Poisson bracket induced by   2 . We are interested in knowing which is the relation

    between both brackets,   ,*   and  , M 2. This is solved in the following.

    Proposition VII.1: The bracket   ,*   coincides with  , M 2,   that is, we have that 

     f ,g* f ,g M 2,

     for all f ,gC ( M 2).

    Proof: As ( M 2 , 2) is a symplectic submanifold of  T *P , we have the following decomposi-tion:

    T  M 2 T *P TM 2T M 2

    ,

    with associated projectors

    P :T  M 2 T *P →T M 2 ,

    Q:T  M 2 T *P →T M 2

    .

    2105J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    17/31

    It is proved in Ref. 34 that our Dirac bracket is precisely

     f ̄ , ḡ  D P P  X  f ¯ ,P  X ḡ 

    for   f ¯ 

    ,g¯ 

    (T *P). Let us denote by   Y  f   the Hamiltonian vector field on   M 2  associated with afunction  f : M 2→R with respect to   2 . A careful computation shows that   j 2*

    Y  f P ( X  f ¯ ), where   f ̄ 

    is an extension to  T *P   of   f C ( M 2). Consequently, we have

     f ,g* P P  X  f ¯ ,P  X ḡ  P j 2*Y  f  , j 2*

    Y g  2 Y  f  , Y g f ,g M 2.  

    If we denote by   : M ¯ Rm→ M ¯   the canonical projection, we can define a Poisson bracket along

     ˜   1 as follows:

     f ,gvak  f  ˜  , g ˜  *,

    which is a function defined on  M 2 . Therefore, we have a bracket

    ,vak :   C  M ¯   C 

     M ¯     —— →   C  M 2

     f ,g   —— →    f ,gvak ,

    which is in fact a bracket along    ˜  . This bracket   ,vak   enjoys similar properties to those of ordinary Poisson brackets.

     Definition VII.2: The bracket   ,vak   on M ¯   along    ˜   will be called the vakonomic bracket .

    The vakonomic bracket produces a function on   M 2  from two functions defined on   M ¯   , since we

    need to specify the corresponding Lagrange multipliers   i in the equations by means of the

    above-mentioned diffeomorphism between  M 2   and  M ¯ Rm.

    A careful computation shows that, in local coordinates, the expression for the vakonomic

    bracket is

     f ,gvak  f  ˜  , g ˜  *  f  ˜ 

     q A  g ˜ 

      p̂  A

      f  ˜ 

      p̂  A

      g ˜ 

     q A 

      f ̄ 

      i D ik  N  jl D

    l j  ḡ 

      j ,   18

    where   f ̄ , ḡ C (T *P) are arbitrary extensions of   f  ˜   and  g ˜   , respectively.

    Moreover, if  ̄  is the ‘‘reduced’’ vakonomic vector field on   M 2 , then, for any   f : M ¯  → R, we

    have

     f , H  M ¯  vak  f  ˜  , H  M ¯  ˜  *̄  f  ˜  f ˙ ,

    where  H :T *Q→R  is the Hamiltonian defined by  E  L , that is,  H F  L E  L .

     Remark VII.3: It should be noticed that M 2  has a vector bundle structure over  M ¯   with rank  m.

    Indeed, it is a vector subbundle of   pr 1 :T *P T *QR2m→T *Q , that is,

    2106 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    18/31

    In this way, a vakonomic motion ( q(t ),(t )) in  M 2  can be viewed as a motion in the total space

    of that vector bundle, with base components  q ( t ) in M ¯  and fiber components (t ) in Rm. Roughly

    speaking, the Lagrange multipliers can be considered as a sort of internal variables in addition to

    position variables.

     Example VII.4: The vertical rolling disk . Let us consider the following problem for a disk of radius R  and unit mass  m1 which rolls on a horizontal plane.

    The configuration space for this system can be identified with   QR2S 1S 1. B y ( x, y )

    R2 we denote the coordinates of the point of contact of the disk with the plane and ( , )

    S 1S 1 give, respectively, the angle between the disk and the  x  axis, and the angle of rotation

    between a fixed diameter in the disk and the  y  axis.

    Given  q 0 ,q 1Q , i.e., initial and final position variables, we want to find the trajectories of 

    the disk connecting such points that minimize the energy expenditure. Of course, we want the disk 

    to roll without slipping. This situation can be seen as an optimal control problem. 36 A problem of 

    optimal control is described by the following data: a configuration space   B   giving the states

    variables of the system, a fiber bundle   : N → B   whose fibers describe the control variables, a

    vector field  Y : N →TB   along the projection   , and a ‘‘Lagrangian’’ function   L: N →R. Now the

    solutions of the optimal control problem will be those paths   : I → N   such that     has fixed end

    points, which extremize the action

      L  t dt 

    and satisfy the differential equation

    dt   Y  ,

    which rules the evolution of the state variables.

    It is easy to show that this is indeed a vakonomic problem on the manifold  N . The constraint

    submanifold  M TN , given by the above-mentioned differential equation is

     M vnTN  /  *vnY  n .

    In the problem under consideration, we identify   BQ ,   N TQ , and   :TQ→Q   as the natural

    projection  Q . The Lagrangian  L:TQ→R   is given by

     L12  ẋ

    2 ẏ 2 I 1 ˙

    2 I 1 ˙

     2 ,

    with   I 1 ,   I 2   the moments of inertia   notice that the potential energy is not included since it is

    constant. The vector field along   Q   is

    Y :   TQ   —— →   TQ

     x , y , , ,d 1 ,d 2 ,d 3 ,d 4   →    x, y , , , R cos  d 4 , R sin  d 4 ,d 3 ,d 4.

    Notice that  Y  is simply a tensor  1, 1  on the manifold  Q.

    In fact, in this framework, we are considering the velocities as the ‘‘control’’ variables.

    Solving this optimal control problem is precisely the same as considering the vakonomic problem

    associated with the vertical rolling disk for the extended Lagrangian  L:T (QR2)→R,

    L L  .

    where

      ẋ sin   ẏ cos  ,

    2107J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    19/31

      ẋ cos   ẏ sin   R ˙

    are the constraint functions determining  M . Note that we have chosen a linear combination of the

    usual constraints

     ¯  ẋ R ˙   cos  ,

     ¯  ẏ R ˙   sin  .

    In Sec. VIII, we will discuss how this change of constraints affects the final result. In addition,

    as is stated in Refs. 8 and 24, the vakonomic solutions for this problem are also solutions of the

    nonholonomic problem if the initial conditions for the Lagrange multipliers are properly chosen.

    We have that

     Ldx∧dẋsin   d x∧d cos   d x∧d   cos    sin  dx∧d  d y∧dẏcos   d y∧d 

    sin   d y∧d   sin    cos  dy∧d   I 1 d  ∧d  ˙ I 2d  ∧d  ˙ R d  ∧d  ,

    is the Poincaré-Cartan two-form in local coordinates.The final constraint submanifold is

    P 2 x , y , , , , , ẋ , ẏ , ˙ , ˙ , ̇, ˙ T  QR2  /  0, 0.

    Let    be a general solution of equation   i  LdE  L  and tangent to   P 2 . In local coordinates, we

    have

     ẋ 

      x ẏ

     

      y ˙

       

       ˙

     

     B 

     

     B  

     

      C  x

     

      ẋC  y

     

      ẏC  

     

      ˙C  

     

     ˙D

     

     ̇D 

     

      ˙.

    The coefficients satisfy the following equations:

    C  xB  sin  B   cos   ˙ cos    sin  ,

    C  yB  cos  B   sin   ˙ sin    cos  ,

    C   R

     I 1 ˙ ,

    C   R

     I 2B   ,

    and the tangency conditions

     C  x sin  C  y cos   R ˙ ˙0,

     C  x cos  C  y sin   RC  0.

    Therefore, we get

     1 0

    0 1 R2

     I 2   B B    ˙  R ˙  ˙   ,

    which leads to

    2108 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    20/31

    B  R ˙ ˙ ˙ ,

    B  a ˙ ,

    where  a (1( R 2 /  I 2))

    1. In turn, the expressions for the other coefficients of    become

    C  x 1a  ˙  cos   R ˙  ˙   sin  ,

    C  y 1a  ˙   sin   R ˙  ˙  cos  ,

    C   R

     I 1 ˙ ,

    C   Ra

     I 2 ˙ .

    Continuing with the described process, we have that the submanifold  S   is given by

    S  x , y , , ,, , ẋ, ẏ , ˙ , ˙ , ̇ , ˙ T  QR2 /  0, 0,B ̇ ,B   ˙  ,

    and ˜   is

    ˜  ẋ 

      x ẏ

     

      y ˙

       

       ˙

     

     ̇

       

      ˙

     

      C  x

     

      ẋC  y

     

      ẏC  

     

      ˙C  

     

     ˙D

     

     ̇D 

     

      ˙,

    with

    D ˙ 2

     R 2

     I 1 ˙  2

     R

     I 1  ˙ ,

    D aR ˙  ˙2a ˙ 2

    aR

     I 1 2 ˙ .

    Observe that the equations for the Lagrange multipliers

    ̇ ˙  R ˙ ˙  ,

     ˙ a ˙ ,

    can be integrated to give

     A sin   B cos  ,

      A cos   B sin   R ˙ ,

    where A  and  B  are constants which depend on the initial conditions  0,   0. This allows us to

    project ˜ ( A, B)   to a vector field  X ( A, B)   on  M  giving different vakonomic solutions for each choice

    of   A, B. In particular

     X  0,0 ẋ 

      x ẏ

     

      y ˙

       

       ˙

     

      R ˙  ˙  sin  

     

      ẋ R ˙  ˙  cos  

     

      ẏ

    2109J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    21/31

    is just the nonholonomic vector field,    L, M   , corresponding to the vertical rolling disk   see the

    discussion at the end of Sec. IV.

    Now, the Legendre transformation  FL:T (QR2)→T *(QR2) is given by

    FL x , y , , ,, , ẋ, ẏ , ˙

    , ˙ , ˙

    , ˙ 

     x , y , , , , , p̂  x , p̂  y , p̂   , p̂   , p̂  , p̂  ,

    where

     p̂  x ẋ sin    cos  ,

     p̂  y ẏ cos    sin  ,

     p̂   I 1 ˙ ,

     p̂   I 2 ˙ R ,

     p̂ 0,

     p̂  0.

    So the presymplectic system ( M 1 , 1 ,h1) becomes

     M 1FL T  QR2 R10,

     1dx∧d p̂  xdy∧d p̂  yd  ∧d p̂  d  ∧ p̂   ,

    h 11

    2   p̂  x sin    cos  2 p̂  y cos    sin  2 1 I 1  p̂  2

    1

     I 2 p̂   R 

    2 .Applying Gotay–Nester’s algorithm we get the secondary constraints

      p̂  y cos   p̂  x sin  ,

      a1  p̂  y sin   p̂  x cos  

     R

     I 2 p̂    ,

    through which we obtain the symplectic Hamiltonian system ( M 2 , 2 ,h2)

     M 2FL P 2 R8,

     2dx∧d p̂  xdy∧d p̂  yd  ∧d p̂  d  ∧d p̂   ,

    h 21

    2  1a cos2   p̂  x

    2 1a sin2   p̂  y

    2

    1

     I 1 p̂  

    2

    a

     I 2 p̂  

    2

    1a sin 2  p̂  x p̂  y2 Ra

     I 2cos   p̂  x p̂  2

     Ra

     I 2sin   p̂  y p̂   .

    As we have said, the natural bracket associated with the two-form   2  allows us to construct the

    vakonomic bracket. This is, for any   f ,g: M ¯  → R  we have

     f ,gvak  f  ˜  , g ˜   M 2,

    where   ˜  : M 2→ M ¯   is

    2110 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    22/31

     ˜  z  x, y , , , 1a cos2   p̂  x 1a sin   cos   p̂  y Ra I 2 cos   p̂   ,

    1a sin   cos   p̂  x 1a sin2   p̂  y

     Ra

     I 2sin   p̂   ,   p̂   ,a R cos   p̂  x R sin   p̂  y p̂  

    .

    If  H  M ¯   is the restriction of  H   to  M ¯   , since  H  M ¯  ˜ h2  we have

     f , H  M ¯   vak  f  ˜  , h 2*

      f  ˜ 

      x  1a cos2   p̂  x 1a sin   cos   p̂  y 2 Ra I 2 cos   p̂  

      f  ˜ 

      y  1a sin2   p̂  y 1a sin   cos   p̂  x 2 Ra I 2 sin   p̂  

      f  ˜ 

      

     p̂  

     I 1

      f  ˜ 

        a

     I 2 p̂   

     Ra

     I 2cos   p̂  x

     Ra

     I 2sin   p̂  y

    1

    2

      f  ˜ 

      p̂   1a sin2  p̂  x2 1a sin 2  p̂  y2 1a 2 cos 2  p̂  x p̂  y

    2 Ra

     I 2sin   p̂  x p̂  

    2 Ra

     I 2cos   p̂  y p̂   .

    VIII. CONSISTENCY OF THE LOCAL CONSTRUCTION

    In the previous sections we have assumed that the constraint functions   i   were globally

    defined on the whole of  TQ. Under this assumption, we have defined the extended Lagrangian  L

    on  TP  and, by means of the constraint algorithm, we have obtained an equivalent description of 

    vakonomic dynamics in terms of the vector fields   ˜   and   ¯ , on   S   and   M 2 , respectively. An

    alternative description was provided by the bracket   ,vak .In this section, we will discuss the validity of the above results when a change of constraints

    or a change of local coordinates is performed. We accomplish the two tasks at the same time.

    Suppose that V  and V ¯  are two coordinate neighborhoods in the configuration manifold  Q  such that

    V V ¯  , and denote by (q A) and (q̄  A) the corresponding coordinate functions. Let

    i : TV →R,   i iA q̇ A,

    ¯  j : TV ¯ →R,   ¯ 

     j ¯  j Bq    B,

    be two sets of constraints defining   M TV   and   M TV ¯ , as in Sec. II. Notice that both sets of 

    constraints are obtained by taking two local basis   i  and   ¯  i  of the codistribution  M ° on V  and

    V ¯ 

    , respectively.Then, for each one, we have the extended Lagrangians

    L:T  V Rm→R,   L L i iA q̇ A,

    L̄ :T  V ¯ Rm→R,   L̄  L i ¯  i Aq    A ,

    and we can apply the constraint algorithm. In this way, we obtain the constraint submanifolds  P 2

    and   P̄ 2 ,

    P 2 TV  M T RmP 1T  V R

    m,

    2111J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    23/31

    P̄ 2 TV ¯  M T Rm P̄ 1T  V ¯ R

    m.

    Assume now that

     i iA q dq

     A

    ,    ¯ 

     i ¯ 

     i A q¯ 

    dq¯ 

     A

    .

    Then, there exist differentiable functions

    i j :V V ¯ →R2m,

    ̄  jk :V V ¯ →R2m,

    which give the matrices of the change of basis at each point in  V V ¯ ,

    i j  j ¯  i  ,   ̄  j

    k  ¯  k   j ,   i

     j̄  jk  i

    k  .

    Consequently, we have

    i j  jA ¯  i B

     q̄  B

     q A ,

    ̄  jk  ¯  k A  jB

     q B

     q̄  A .

    As a first result we deduce that

    ¯ i i j j .

    Therefore,   P 2 P̄ 2   can be glued to form a new submanifold of   P 1 P̄ 1 , which is in turn a

    submanifold of  T (QRm).

     Remark VIII.1: In spite of this, there is no way to extend  L  or  L¯ 

      to the whole of  P1P¯ 

    1 , sowe will have to consider the process for each neighborhood.

    Next, define the transformation

    ̄  :   P 1 P̄ 1→ P 1 P̄ 1

    q A, i, q̇ A,̇ i q̄  A,̄ i j i, q̄ ˙  A,̄ i

     j̇ i,

    which permits us to relate the extended Lagrangians as

    L̄  P1P¯ 

    1̄  L̄ i

     j ī  j Li iLP1P

    ¯ 1.

    This implies that on  P 1P¯ 

    1  we have

    S * ̄  *d L̄ S * d  ̄  *L̄  S * d L,

    and therefore the Poincaré–Cartan two-forms verify

     L̄  * L¯ ,

    on  P 1 P̄ 1 . Since the energy associated with both extensions is the same,  E  L  , we deduce that if 

    D is a solution on  P 2  for the constrained system defined by  L, then ̄ *( D) is a solution for the

    constrained system defined by  L̄ . In other words, if   D   satifies the equation

    2112 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    24/31

    iD LdE L P2,

    then we will have

    i ¯ 

    *D L¯ 

    dE L¯ 

    P¯ 

    2.

    In terms of their integral curves, we have that an integral curve of a fixed vector field   D0i   of the

    family of solutions   D   is transformed by   ̄   into an integral curve of   ¯ 

    D¯ 0 j   on   P2 P̄ 2 , where

    D̄ 0 j̄ ̄ i

     jD0iq̇ Ȧ i( ̄ i

     j /  q A).

    Indeed, if 

      t   A t , i t , ˜  A t , ˜ i t 

    is an integral curve of  D0i   on   P 2 P̄ 2 , then

     ¯  t 

      A t 

     q̄  B

     q A , 

    i t ̄ i

     j t , ˜  A t 

     q̄  B

     q A , ˜ 

    i t ̄ i

     j t 

    ,

    will be an integral curve of   ¯ D¯ 0 j   on   P 2 P̄ 2 . It is very important to observe that, although

    different, the projections of   (t ) and   ¯ (t ) to  M  coincide.

     Remark VIII.2:  If  S   respectively, S ¯ ) denotes as above the submanifold of   P 2   respectively,

    P̄ 2) where a SODE solution  ˜   respectively, ˜ 

    ¯ ) exists, then

    ̄ *

    ˜ ˜ ¯ ̄    19

    holds on points in  S S ¯ , that is,  ˜   and  ˜ ¯ 

    are  ̄  related on the overlapping. This can be seen as

    follows. Recall that  ˜  D0 jD  with  D0

    i D

    0 j (B i). Since  B i does not depend on   ̇ i, we have

    that   D0 j (B i) D j(B i) for all   D j D  and we can compute   D0i choosing any member of the

    family   D . The same is true for the family   ¯ 

    D¯   . Then, taking  D j   and   ¯ 

    D¯ k   such that   ̄ * D j

    ¯ D¯ k ̄  , we can check that

    D̄ 0i¯ D¯ k  B ¯ 

    i¯ D¯ k  ̇iD j ̄  j

    i ̇ j ̄  ji D0

     jq̇ Ȧ j

      ̄  ji

     q A ,

    or, in other words, Eq.  19  holds.

     Remark VIII.3:  Given a ‘‘vakonomic motion,’’   c̃ (t )(q A(t )) , there are different curves in

    P 2 P̄ 2  that project to ( c̃ (t ), c̃ ˙ (t )) M . Indeed, if we take ( q0 A , q̇ 0

     A) M TV TV ¯   and ( 0i ,̇ 0

    i )

    as initial conditions for the Lagrange multipliers, we can consider the integral curve of  ˜   starting

    from (q0 A , 0i , q̇ 0 A , ̇0i ). Now, the curve    ¯ 

    ¯    will be an integral curve of  

    ˜ ¯ 

    starting from(q 0

     A ,̄ i j(q0

     A) 0i , q̇ 0

     A ,̄ i j(q 0

     A) ̇ 0i ). Both curves project to the same solution of the vakonomic equa-

    tions of motion. Therefore, in order to determine an unique curve on  M T Rm whose projection

    is ( c̃ (t ), c̃ ˙ (t )), we are forced to specify not only the initial conditions for the Lagrange multipliers,

    but also the set of constraint functions such that (q 0 A ,0

    i , q̇0 A ,̇ 0

    i )P 2 .

    We have seen what happens in the Lagrangian formalism when changing constraint functions.

    Next, we accomplish the same task in the Hamiltonian context. As a consequence, we will give

    later a relation of the above-mentioned integral curves with the solutions of vakonomic equations

    of motion. By the Legendre transformations  FL  and  FL̄   associated to  L  and  L̄ , respectively, we

    obtain the presymplectic systems ( M 1 , 1 ,h1) and ( M ¯ 1 , ¯  1 , h̄ 1), where

    2113J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    25/31

     M 1FL P 1 ,    1 j 1* ,   h 1FL E L ,   h 112 g

     AB  p̂  Ai iA  p̂  B

     j  jB U ,

     M ¯ 1FL̄  P̄ 1,    ¯  1 ̄ 1* ,   h̄ 1FL̄  E L¯  ,   h̄ 1

    12 ḡ 

     AB  p̄ ˆ  Ai ¯  i A p̄ ˆ  B

     j ¯   jB U ,

    with the obvious notations.Notice that M 1 M ¯ 1  can be provided of a differentiable structure such that it is a submanifold

    of   T *(V V ¯ )Rm. We also have that the restriction of the standard symplectic form of   T *(Q

    Rm) to  M 1 M ¯ 1  is the natural extension of the two-forms   1 , ¯  1 . However, there is no canoni-

    cal extension to   M 1 M ¯ 1   of the projected Hamiltonians  h1   and   h̄ 1 .

    Define the transformations

    ̄  :   M 1 M ¯ 1→ M 1 M ¯ 1

    q A, i, p̂  A,0 q̄  A,̄ i j i, p̂  B  q B

     q̄  A,0 ,

    such that the following diagram is commutative:

    P 1 P̄ 1→FL

     M 1 M ¯ 1

    ̄ ↓ ↓ ̄    20

    P 1 P̄ 1→FL̄ 

     M 1 M ¯ 1

    We have

    ̄  * ¯  1

     1

    ,   h̄ 1̄ h

    1.

    Applying the algorithm to both presymplectic systems, we obtain the secondary constraint sub-

    manifolds

     M 2 y M 1 /  i y 0,    i iA g AB  p̂  B

     j  jB ,

     M ¯ 2 y M ¯ 1 /  ¯  j  y 0,    ¯  j ¯   jA ḡ  AB  p̄ ˆ  B

    k  ¯  k B.

    Observe that

     i y  h 1  i  y

      h̄ 1̄    i

     y

    ̄ ik  y  h̄ 1

     k 

    ¯  y

    ̄ ik  ¯ k  ̄  y ,

    that is,

     ji i ¯  j̄  .

    As a consequence, the set   M 2 M ¯ 2   does not define in general a submanifold of 

     M 1 M ¯ 1T *(( V V ¯ )Rm). However, we have a nice relation between both submanifolds, in-

    deed,

    ̄  M 2 M ¯ 1 M ¯ 2 M 1 .

    2114 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    26/31

    It is important to observe that   M 2 M ¯ 1  is an open submanifold of  M 2 . Therefore, on restricting

    the symplectic form   2   to  M 2 M ¯ 1 , we do not lose its symplectic character.

     Remark VIII.4: A careful computation shows that  ̄  M 2 M ¯ 

    2is just the identity. Consequently,

    we have, for example, that

    h̄ 2  M 2 M ¯ 

    2 h 2  M 2 M 

    ¯ 2.

    In addition, using  20  and the relations:

    FL D¯ 

     M 2,   FL̄  ¯ D¯ 

    ¯  M ¯ 2

    ,   ̄ *

    D¯ 

    D¯ ̄  ,

    we deduce that the vector fields  ¯  M 2 and  ¯ 

     M ¯ 2fulfill along  M 2 M ¯ 1

    ̄ *

    ¯  M 2¯ 

     M ¯ 2̄  .   21

    We see that the integral curves of   M 2 and ¯ 

     M ¯ 2 on  M 2 M 

    ¯ 2  are, in principle, different. However,

    one can easily check that their projections onto  M ¯   by

     ˜  : M 2→ M ¯  ,   q A, i, p̂  A,0 q

     A, p̂  Ai iA ,

     ¯ ˜  : M ¯ 2→ M ¯  ,   q̄  A, i, p̄ ˆ  A,0 q̄ 

     A, p̄ ˆ  Ai ¯  i A,

    coincide, since

     ¯ ˜ ̄  M 2 M ¯ 

    1 ˜   M 2 M 

    ¯ 1.

    We will now investigate the relation between the corresponding Dirac brackets, and more inter-

    esting, about the induced brackets on the final constraint submanifolds   M 2   and   M ¯ 

    2 ,

      ,   D M 2   ,     ,  C     ,    M 2,

      ,   D M ¯ 2   ,     , ¯  C ¯    ¯   ,    M ¯ 2.

    Recall that   ̄  *( ¯  1 )  M 1 M ¯ 

    1( 1)  M 1 M 

    ¯ 1. This fact implies that   ̄  *( ¯  2 )  M ¯ 2 M 1( 2)  M 2 M 

    ¯ 1.

    Consequently, we have for each pair of functions,   f ,g: M ¯ 2→R  that

     f ,g*¯ ̄  M 2 M 

    ¯ 1 f ̃ , g̃ *k ,   22

    where   k : M 2 M ¯ 

    1

     M 2   is the canonical inclusion and   f ˜ 

    ,g˜ 

    : M 2→R

      are extensions to   M 2   of ̄  M 2 M 

    ¯ 1 f  M ¯ 2 M 1

    ,̄  M 2 M ¯ 

    1g  M ¯ 2 M 1

    , respectively.

    As a consequence, when defining the vakonomic brackets for functions  f, g on  M ¯  we have the

    following two possibilities:

     f ,gvak  f  ˜  , g ˜   M 2,

     f ,gvak  f  ¯ ˜  , g ¯ ˜   M ¯ 2.

    However, the relation   ¯ ˜ ̄  M 2 M ¯ 

    1 ˜   M 2 M 

    ¯ 1

    and 22   imply that

    2115J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    27/31

     f ,gvak k  f  ˜  , g ˜   M 2k  f  ¯ ˜  , g ¯ ˜   M ¯ 2̄

      M 2 M 

    ¯ 1 f ,gvak ̄  M 2 M 

    ¯ 1,

    which is coherent with the above-mentioned formula  ̄ *

    ¯  M 2¯ 

     M ¯ 2̄  .

     Remark VIII.5:  Therefore, although different, both brackets give the same valid information

    about the evolution of a dynamical variable along ‘‘vakonomic curves’’ on   M ¯   . In fact, given a

    ‘‘vakonomic’’ curve on   M ¯   , c̄ (t )(q A( t ), p A(t ) ) , we take    ( t )(q A(t ), i(t ), p̂  A(t ),0) on

     M 2 M ¯ 1   and ̄  ( t )( q̄  A(t ), ̄ i

     j i(t ), p̄ ˆ  A(t ),0) on  M ¯ 2 M 1  projecting onto it. Then, the evolu-

    tion of   f  onto this curve on  M ¯   will be

    dt  f  q A t , p A t 

    dt  f  ¯ ˜  q̄  A t ,̄ i

     j i t , p̄ ˆ  A t ,0d 

    dt  f  ˜  q A t , i t , p̂  A t ,0,

    that is,

     f ˙̄  c̄ ¯ 

     M ¯ 2 f  ¯ ˜  ¯  

    ¯  M 2

     f  ˜    f ˙ c̄  ,

    or, equivalently,

     f ˙̄  f , H  M ¯   vak ̄  f , H  M ¯   vak  f ˙ .

     Example VIII.6: The vakonomic particle. We consider the case of a particle of unit mass

    moving through the space  QR3 subjected to the global nonholonomic constraint   ż y ẋ . In

    order to illustrate the precedent discussion, we will take, instead of  , the following constraints:

     :TU →R,  x, y , z, ẋ, ẏ , ż  x ż y ẋ ,

     :TV →R,  x , y , z, ẋ, ẏ , ż  z ż y ẋ ,

    where

    U  x , y , z R3  /   x0,

    V  x , y , z R3  /   z0.

    Here, the Lagrangian  L  is the kinetic energy  L12 ( ẋ

    2 ẏ 2 ż2), so the extended Lagrangians

    are

    L  : T  U R→R,   L 12  ẋ

    2 ẏ 2 ż 2 x ż xyẋ ,

    L  : T  V R→R,   L 12  ẋ

    2 ẏ 2 ż2  zż zy ẋ .

    Since ( x /  z)    in  TU TV , the transformation   ̄   is given by

    ̄  :   T  U V R   →   T  U V R

     x , y , z,, ẋ, ẏ , ż ,̇    x, y , z ,  x z

      , ẋ, ẏ , ż , x

     z ̇ .

    The two-forms of Poincaré–Cartan are, respectively,

     L dx∧dẋ xy dx∧d  x d x∧dydy∧d ẏdz∧dż dz∧dx x dz∧d ,

     L dx∧dẋ z y dx∧d  z dx∧d y y dx∧dzdy∧dẏdz∧dż z d z∧d  .

    2116 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    28/31

    Let     ,   be the vector fields on   P2 , P 2

      satisfying

    i   L 

    dE  L ,   i  L dE  L .

    Then, the coefficients must fulfill the following equations:

    C  x   ẏ yB 

      x ż,   C  x   ẏ yB 

      z y ż,

    C  y  xẋ ,   C  y

      zẋ ,

    C  x  ẋB 

      x,   C  z  y ẋB 

      z .

    The tangency conditions    ( )0, ( )0 are reduced to

    C  z  ẏ ẋ yC  x

     0,   C  z

      ẏ ẋ y C  x

     0.

    It is easy to see now that in each case we obtain

    B  

     ẋ

     x

     ẏ ẋ xy

     x 1 y 2   ,

    B  

     ż

     z

     ẏ ẋ zy

     z 1 y 2  ,

    so that we have

    C  x  x ẏ

     y ẏ ẋ xy

    1 y 2  ,   C  x

      y ż

     y ẏ ẋ z y

    1 y 2  ,

    C  y 

     xẋ ,   C  y 

     zẋ ,

    C  z 

     ẏ ẋ xy

    1 y 2  ,   C  z

     

     ẏ ẋ zy

    1 y 2  .

    Consequently, we have determined the families   D  and   D

      . If we denote by   S  ,S   the

    submanifolds of   P 2 , P 2

     , respectively,

    S   yT  U R3   /   ̇  ẋ x

     ẏ ẋ xy

     x 1 y 2   ,

    S  

     yT  V R3   /   ̇

     ż

     z

     ẏ ẋ z y

     z 1

     y

    2

     ,

    we have proved that there is a vector field  ˜    respectively, ˜  ) of  D

      respectively,  D ) satis-

    fying the SODE condition and tangent to S   respectively, S  ). These vector fields are determined

    by

    D  ̇ ẋ

     x

     y ẏ

    1 y 2 ẋ

     x

     2

     ẏ1 y 2

    2 y ẋ ẏ2

     x 1 y 2 2

     ẏ 2 y 21

    1 y 22C  x

        ẏ x 1 y 2

     xC  y    ẋ x 1 y 2

     y

    1 y 2 ,

    2117J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    29/31

    D ̇ ż

     z

     y ẏ

    1 y 2 ż

     z

     2

     ẏ y 1 y 2

    2 y ẏ2 ẋ zy

    1 y 22

     ẏ 2

    1 y2

    2

     z

     C  z C  x

       ẏ

     z 1 y2

    C  y 

      ẋ

     z 1 y2

     y

    1 y2

    .

    A straightforward but tedious computation shows that

    ̄ *

    ˜  ˜  ̄  .

    We pass now to the Hamiltonian description of the problem. The Legendre transformations

    are

    FL  :   T  U R   —— →   T * U R

     x, y , z , , ẋ, ẏ , ż ,̇      x , y , z, , ẋ xy , ẏ , ż x ,0,

    FL  :   T  V R   —— →   T * V R

     x , y , z, , ẋ, ẏ , ż, ̇      x, y , z , , ẋ z y , ẏ , ż z,0.

    Therefore, we have that

     M 1 FL  T  U R x0, p̂ 0R

    7 /  x0,

     M 1 FL  T  V R z0, p̂ 0R

    7 /  z0,

    with Poincaré–Cartan two-forms and Hamiltonian functions given by

      dx∧d p̂  xd y∧d p̂  ydz∧d p̂  z ,

    h 1 

    12  p̂  x x y

    2 p̂  y

    2 p̂  z x

    2,

      dx∧d p̂  xdy∧d p̂  ydz∧d p̂  z ,

    h 1 

    12  p̂  x zy

    2 p̂  y

    2 p̂  z z

    2 .

    It is inmediate to see that  h1 ̄ h 1

     . The corresponding secondary constraints are

       h1

     

        x p̂  x x y  y p̂  z x ,

       h1

     

        z p̂  x z y  y p̂  z z ,

    and, in fact, we verify that ( z /  x)    ̄   . The final constraint submanifolds in the Hamiltonian

    side are

     M 2  w M 1   /    p̂  z y p̂  x x 1 y 2 R6 /  x0,

     M 2  w M 1   /    p̂  z y p̂  x z 1 y 2 R6 /  z0,

    with two-forms and Hamiltonians

    2118 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    30/31

      dx∧d p̂  xd y∧d p̂  ydz∧d p̂  z ,

      dx∧d p̂  xdy∧d p̂  ydz∧d p̂  z ,

    h2 h 2 12   p̂  x

     y p̂  z

    2

    1 y 2   p̂  y

    2

    .Note that    and     are not the same two-form, because they are defined on different manifolds,

    that is,  M 2  and   M 2

     , respectively.

    To define the vakonomic brackets, we have

     ˜    :   M 2 

     —— →   M ¯ 

     x, y , z , p̂  x , p̂  y , p̂  z    x , y , z , p̂  x y  p̂  z y p̂  x1 y 2   , p̂  y , p̂  z p̂  z y p̂  x

    1 y 2  ,

     ˜    :   M 2 

     —— →   M ¯ 

     x , y , z, p̂  x , p̂  y , p̂  z    x, y , z , p̂  x y  p̂  z y p̂  x

    1 y 2  , p̂  y , p̂  z

     p̂  z y p̂  x

    1 y 2  .Given   f ,g: M ¯  →R, we have on  M 2

      M 1

      that

     f ,gvak   f  ˜    ,g ˜    M 

    2  f  ˜    , g ˜    M 

    2 ̄  f ,gvak 

     ̄  .

    ACKNOWLEDGMENTS

    This work has been partially supported through Grant No. DGICYT   Spain   PB97-1257. S.

    M. and J. C. wish to thank Spanish Ministerio de Educació n y Cultura for FPI and FPU grants,

    respectively. The authors wish to thank D. Martı́n de Diego for helpful comments and suggestions.

    We acknowledge the referee for his useful remarks.

    1 V. I. Arnold,   Dynamical Systems  Springer, New York, 1988, Vol. III.2 J. Neimark and N. Fufaev,   Dynamics of Nonholonomic Systems, Transactions of Mathematical Monographs Vol. 33

    American Mathematical Society, Providence, RI, 1972.3 E. J. Saletan and A. H. Cromer, ‘‘A variational principle for nonholonomic systems,’’ Am. J. Phys.  38, 892–897 1970.4 A. M. Vershik,  Classical and Non-classical Dynamics with Constraints, Global Analysis-Studies and Applications. I 

    Lect. Notes Math.  1108,  218–301  1984.5 A. M. Vershik and L. D. Faddeev, ‘‘Differential geometry and Lagrangian mechanics with constraints,’’ Sov. Phys.

    Dokl. 17, 34–36 1972.6 V. V. Kozloz, ‘‘Realization of nonintegrable constraints in classical mechanics,’’ Dokl. Akad. Nauk SSSR  272, 550–554

    1983 Russian; English transl.: Sov. Phys. Dokl.  28, 735–737  1983.7 F. Cardin and M. Favretti, ‘‘On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable

    constraints,’’ J. Geom. Phys.  18, 295–325 1996.8 A. D. Lewis and R. M. Murray, ‘‘Variational principles for constrained systems: Theory and experiment,’’ Int. J.

    Nonlinear Mech.  30, 793–815  1995.9 L. Bates and J. Śniatycki, ‘‘Nonholonomic reduction,’’ Rep. Math. Phys.  32, 99–115  1992.

    10 R. Cushman, D. Kemppainen, J. Śniatycki, and L. Bates, ‘‘Geometry of nonholonomic constraints,’’ Rep. Math. Phys.

    36, 275–286 1995.11 J. Śniatycki, ‘‘Non-holonomic Noether theorem and reduction of symmetries,’’ in   Proceedings of the Workshop on

     Non-Holonomic Constraints in Dynamics, Calgary, 26 –29 August 1997  Rep. Math. Phys.  42, 5–23  1998.12 A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and R. M. Murray, ‘‘Nonholonomic mechanical systems with sym-

    metry,’’ Arch. Ration. Mech. Anal.  136, 21–99 1996.13 F. Cantrijn, M. de León, J. C. Marrero, and D. Martı́n de Diego, ‘‘Reduction of nonholonomic mechanical systems with

    symmetries,’’ in Ref. 11, pp. 25– 45.14 F. Cantrijn, M. de León, J. C. Marrero, and D. Martı́n de Diego, ‘‘Reduction of constrained systems with symmetry,’’ J.

    Math. Phys.  40, 795–820 1999.15 J. Koiller, ‘‘Reduction of some classical non-holonomic systems with symmetry,’’ Arch. Ration. Mech. Anal.   118,

    113–148 1992.16 M. de León, J. C. Marrero, and D. M. de Diego, ‘‘Mechanical systems with non-linear constraints,’’ Int. J. Theor. Phys.

    36, 973–989 1997.

    2119J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

    Downloaded 26 Feb 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

  • 8/13/2019 VIP Vakonomic Applied to The

    31/31

    17 M. de León and D. Martı́n de Diego, ‘‘On the geometry of non-holonomic Lagrangian systems,’’ J. Math. Phys.   37,

    3389–3414  1996.18 C.-M. Marle, ‘‘Reduction of constrained mechanical systems and stability of relative equilibria,’’ Commun. Math. Phys.

    174, 295–318  1995.19 C.-M. Marle, ‘‘Various approaches to conservative and nonconservative nonholonomic systems,’’ in Ref. 11, pp. 211–

    229.20 A. J. van der Schaft and B. M. Maschke, ‘‘On the Hamiltonian formulation of nonholonomic mechanical systems,’’ Rep.

    Math. Phys.  34, 225–233 1994.21 F. Cantrijn, M. de León, and D. Martı́n de Diego, ‘‘On almost-Poisson structures in nonholonomic mechanics,’’ Non-

    linearity 12, 721–737  1999.22 W. S. Koon and J. E. Marsden, ‘‘The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic

    systems,’’ Rep. Math. Phys.  40, 21–62 1997.23 W. S. Koon and J. E. Marsden, ‘‘Poisson reduction of nonholonomic mechanical systems with symmetry,’’ in Ref. 11,

    pp. 101–134.24 A. M. Bloch and P. E. Crouch, ‘‘Nonholonomic and vakonomic control systems on Riemannian manifolds,’’  Dynamics

    and Control of Mechanical Systems, Waterloo, ON, 1992, Fields Institute Communication Vol. 1  American Mathemati-cal Society, Providence, RI, 1993, pp. 25–52.

    25 R. W. Brockett, ‘‘Control theory and singular Riemannian geometry,’’ in  New Directions in Applied Mathematics, edited

    by P. J. Hilton and G. S. Young  Springer, New York, 1982, pp. 11–27.26 M. de León and D. Martı́n de Diego, ‘‘Conservation laws and symmetry in economic growth models: A geometrical

    approach,’’ Extracta Mathematicae  13, 335–348  1998.27 J. Koiller and J. Delgado, ‘‘On efficiency calculations for nonholonomic locomotion problems: An application to

    microswimming,’’ in Ref. 11, pp. 165–183.28 M. de León, J. C. Marrero, and D. M. de Diego, ‘‘Vakonomic mechanics versus non-holonomic mechanics: A unified

    geometrical approach’’  unpublished.29 P. A. M. Dirac,   Lectures on Quantum Mechanics  Belfer Graduate School of Science, Yeshiva University, New York,

    1964.30 J. F. Cariñena and M. F. Rañada, ‘‘Comments on the presymplectic formalism and the theory of regular Lagrangians

    with constraints,’’ J. Phys. A  28, L91–L97  1995.31 M. J. Gotay, ‘‘Presymplectic manifolds, geometric constraint theory and the Dirac–Bergmann theory of constraints,’’

    Ph.D. thesis, Center for Theoretical Physics, University of Maryland, 1979.32 M. J. Gotay and J. M. Nester, ‘‘Presymplectic Lagrangian systems. I. The constraint algorithm and the equivalence

    theorem,’’ Ann. Inst. Henri Poincaré, Sect. A  30, 129–142  1979.33 M. J. Gotay and J. M. Nester, ‘‘Presymplectic Lagrangian systems. II. The second-order differential equation problem,’’

    Ann. Inst. Henri Poincaré, Sect. A  32, 1–13 1980.34 A. Ibort, M. de León, J. C. Marrero, and D. Martı́n de Diego, ‘‘Dirac brackets in constrained dynamics,’’ Fortschr. Phys.

    47, 459–492 1999.35 L. Bates, ‘‘Examples of singular nonholonomic reduction,’’ in Ref. 11, pp. 231–247.36 X. Gràcia, J. Marin-Solano, and M. Mun

    ˜oz-Lecanda, ‘‘Variational principles in mechanics: Geometric aspects,’’ Pro-

    ceedings of the Seventh Fall Workshop, Geometry and Physics, Valencia, September 1998  unpublished.37 M. de León and P. R. Rodrigues,  Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathemati-

    cal Series Vol. 152  North-Holland, Amsterdam, 1989.38 F. Cantrijn, J. F. Cariñena, M. Crampin, and L. A. Ibort, ‘‘Reduction of degenerate Lagrangian systems,’’ J. Geom. Phys.

    3, 353–400  1986.39 J. F. Cariñena and L. A. Ibort, ‘‘Geometric theory of the equivalence of Lagrangians for constrained systems,’’ J. Phys.

    A  18, 3335–3341  1985.

    2120 J. Math. Phys., Vol. 41, No. 4, April 2000 Martı́nez, Cortés, and de León