95
Ch. 3: Forced Vibration of 1-DOF System 3.0 Outline Harmonic Excitation Frequency Response Function Applications Periodic Excitation Non-periodic Excitation 3.0 Outline

Vibraciones Forzadas - Ejemplos y teoría.pdf

Embed Size (px)

Citation preview

Page 1: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.0 Outline

Harmonic ExcitationFrequency Response FunctionApplicationsPeriodic ExcitationNon-periodic Excitation

3.0 Outline

Page 2: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

Force input function of the harmonic excitation is theharmonic function, i.e. functions of sines and cosines. This type of excitation is common to many systeminvolving rotating and reciprocating motion. Moreover,many other forces can be represented as an infiniteseries of harmonic functions. By the principle ofsuperposition, the response is the sum of the individual harmonic response.

It is more convenient to use the frequency domaintechnique in solving the harmonic excitation problems.This is because the response to differentexcitation frequencies can be seen in one graph.

3.1 Harmonic Excitation

Page 3: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

( )( )

0

20 0 0

0

20

Let us focus on the particular solution ofcos

normalize the equation of motion2 cos , /

Re

solve for from 2

and the solution

n n

i t

i tn n

mx cx kx F t

x x x f t f F m

f t f e

z t z z z f e

ω

ω

ω

ζω ω ω

ζω ω

+ + =

+ + = =

⎡ ⎤= ⎣ ⎦∴ + + =

( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )

2 20

is the real part of ; Re

Assume the solution to have the same form as the forcing function same frequency as the input w/ different mag. and phase

2

i t

i t i tn n

z t x t z t

z t Z i e

i Z i e f e

fZ i

ω

ω ω

ω

ω ζωω ω ω

ω

= ⎡ ⎤⎣ ⎦

=

− + + =

=( )

( )

20 0

22 2

02

/2 1 / 2 /

1 / 2 /

n

n n n n

n n

fi i

Fk i

ωω ω ζωω ω ω ζω ω

ω ω ζω ω

=− + − +

=⎡ ⎤− +⎣ ⎦

Page 4: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

( ) ( )

( )

( ) ( )

( ) ( ) ( )

( )( ) ( )

002

02

2

0

2 22

12

1 2

Re , /1 2

1If is the frequency response1 2

cos

1where magnitude1 2

2tan phas1

i t i t

i tn

i

Fz t e H i F ek r i r

Fx t e rk r i r

H i H i ek r i r

x t F H i t

H ik r r

rr

ω ω

ω

θ

ωζ

ω ωζ

ω ωζ

ω ω θ

ωζ

ζθ −

= =⎡ ⎤− +⎣ ⎦

⎡ ⎤⎢ ⎥∴ = =

⎡ ⎤− +⎢ ⎥⎣ ⎦⎣ ⎦

= =⎡ ⎤− +⎣ ⎦

∴ = +

= =− +

−= =

( ) ( )

e

The system modulates the harmonic input by

the magnitude and phase H i H iω ω

Page 5: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

( ) ( )( ) ( ) ( ) ( )( )

1 2

0

1

total response homogeneous soln. particular soln.Recall the homogeneous solution of the underdamped system

cos or sin cos

cos cos

or

n n

n

n

t th d h d d

td

t

x Ce t x e A t A t

x t Ce t F H i t

x t e A

ζω ζω

ζω

ζω

ω φ ω ω

ω φ ω ω θ

− −

= +

= − = +

∴ = − + +

= ( ) ( ) ( )2 0

1 2

sin cos cos

The initial conditions will be used to determine , or ,They will be different from those of free responsebecause the transient term now is partly due to the excitatio

d dt A t F H i t

C A A

ω ω ω ω θ

φ

+ + +

n force

and partly due to the initial conditions

Page 6: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

Ex. 1 Compute and plot the response of a spring-masssystem to a force of magnitude 23 N, drivingfrequency of twice the natural frequency and i.c.given by x0 = 0 m and v0 = 0.2 m/s. The massof the system is 10 kg and the spring stiffnessis 1000 N/m.

Page 7: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

( )

( ) ( )( )( )

( )

32 2

31 2

31 2

2

/ 1000 /10 10 rad/s/ 2 0

2 10 20 rad/s1 1 0.333 10

1 2 1000 1 2

sin cos 23 0.333 10 cos

cos sin 23 0.333 10 sin

i.c. 0 0 23 0.333 10

n

n

n n

n n n n

k mc m

H ik r i r

x t A t A t t

x t A t A t t

x A

ωζ ωω

ωζ

ω ω ω

ω ω ω ω ω ω

= = =

= =

= × =

= = = − ×⎡ ⎤− + × −⎣ ⎦

= + − × ×

= − + × × ×

= = − × ×

( )( ) ( )

3 32

1 1

3

, 7.667 10

0 0.2 10 , 0.02

0.02sin10 7.667 10 cos10 cos 20 m

A

x A A

x t t t t

− −

= ×

= = × =

∴ = + × −

Page 8: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

Page 9: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

Ex. 2 Find the total response of a SDOF system withm = 10 kg, c = 20 Ns/m, k = 4000 N/m, x0 = 0.01 m,v0 = 0 m/s under an external force F(t) = 100cos10t.

Page 10: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

( )

( ) ( )( ) ( ) ( ) ( )

( ) ( )( )

2 2

0

21 2

1

/ 20 rad/s/ 2 0.05/ 0.5

1 1 332.6 6 0.06661 2 4000 1 0.5 2 0.05 0.5

cos 33.26 3cos 10 0.0666

sin cos , 1 19.975 rad/s

s

n

n

n

n

n

p

th d d d n

t

k mc m

r

H i Ek r i r i

x t F H i t E t

x t e A t A t

x t e A

ζω

ζω

ωζ ω

ω ω

ωζ

ω ω θ

ω ω ω ω ζ−

= =

= =

= =

= = = − −⎡ ⎤− + × − + × ×⎣ ⎦

= + = − −

= + = − =

= ( ) ( ) ( )( ) ( ) ( )

( ) ( )

2 0

1 2 1 2

0

in cos cos

sin cos cos sin

sin

n n

d d

t tn d d d d d d

t A t F H i t

x t e A t A t e A t A t

F H i t

ζω ζω

ω ω ω ω θ

ζω ω ω ω ω ω ω

ω ω ω θ

− −

+ + +

= − + + −

− +

Page 11: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

Page 12: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

ωresponse finally becomes ω, and in phase

Page 13: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

ωresponse finally becomes ω, and out of phase

Page 14: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.1 Harmonic Excitation

F0ωnt/(2k)

( ) ( )

( ) 0

In case of 0 and , the guess solution of the form

cos sin is invalid. This is becauseit has the same form as the homogeneous solution.

The correct particular solution is

ni t

np

x t X i e A t B t

Fx t

ω

ζ ω ω

ω ω ω

ω

= =

= = +

= sin .2 n

t tk

ω

Page 15: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Beat when the driving frequency is close to natural freq.

3.1 Harmonic Excitation

( ) ( )0 00 2 2

2 2 20 0 1 0 0

2 20

The total solution can be arranged in the form

sin cos cos cos

2 sin tan sin sin2 2

If the system is at rest in

n n nn n

n n n nn

n n

v fx t t x t t t

x v x ft t tv

ω ω ω ωω ω ω

ω ω ω ω ω ωωω ω ω

= + + −−

+ ⎛ ⎞ − +⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠

( ) 02 2

02 2

the beginning,2 sin sin

2 2

The response oscillates with frequency inside2

2the slowly oscillated envelope sin2

The beat frequency is

n n

n

n

n

n

n

fx t t t

f t

ω ω ω ωω ω

ω ω

ω ωω ω

ω ω

− +⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠+

−⎛ ⎞⎜ ⎟− ⎝ ⎠

∴ −

Page 16: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Beat when the driving frequency is close to natural freq.

3.1 Harmonic Excitation

Page 17: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.2 Frequency Response Function

3.2 Frequency Response Function

( ) ( )2

The core of the particular solution to the harmonic function is1 ; frequency response function

1 2

It specifies how the system responds to harmonic excitation.As a standard, we normalize the

H ik r i r

ωζ

=− +

( ) 2

frequency response function1 and then study how it varies as the

1 2excitation frequency and system parameters , vary.It is indeed more convenient since we already normalized the frequen

n

G ir i r

ωζω ζ ω

=− +

( )( )

cy;/ . So we can now study its variation to and .

For the fixed damping ratio, we plot with varies.

has both magnitude and phase magnitude and phase plot.

Then we repeatedly evaluate

nr rG i r

G i

G i

ω ω ζω

ω

=

( ) by varying .ω ζ

Page 18: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.2 Frequency Response Function

Frequency response plot(Bode diagram)

( )( ) ( )2 22

1

1 2H i

r rω

ζ=

− +

12

2tan1

rrζθ − −⎛ ⎞= ⎜ ⎟−⎝ ⎠

Page 19: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Resonance is defined to be the vibration response atω=ωn, regardless whether the damping ratio is zero.At this point, the phase shift of the response is –π/2.

The resonant frequency will give the peak amplitude for the response only when ζ=0. For ,the peak amplitude will be at , slightly before ωn.For , there is no peak but the max. value of theoutput is equal to the input for the dc signal (of course, for this normalized transfer function).

3.2 Frequency Response Function

21 2nω ω ζ= −0 1/ 2ζ< <

1/ 2ζ ≥

Page 20: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.2 Frequency Response Function

Ex. 3 Consider the pivoted mechanism with k=4x103 N/m,l1=0.05 m, l2=0.07 m, l=0.10 m, and m=40 kg.The mass of the beam is 40kg which is pivotedat point O and assumed to be rigid. Calculate cso that the damping ratio of the system is 0.2.Also determine the amplitude of vibration of thesteady-state response if a 10 N force is appliedto the mass at a frequency of 10 rad/s.

Page 21: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

( ) ( )

( )

12 2 1 1

2 212 1

2

12 2

0.1 10cos10 0.5 0.0049 59.050.004915.37, 0.2 , 627.3 Ns/m

2 0.5

O O

nn

l lM I Fl mgl Mg c l l k l l

l l l lml M M

t cc c

θ θ θ θ θ

θ

θ θ θ

ω ζω

ω

−⎛ ⎞⎡ ⎤= − − − −⎜ ⎟⎣ ⎦ ⎝ ⎠⎡ ⎤+ −⎛ ⎞= + +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦× = + +

= = = =× ×

=

( ) ( )( )

10, 0.65061 0.02677 24.268

59.05 0.5767 0.26

0.02677 cos 10 0.424ss

r

H ii

t

ω

θ

=

= = − °+

= −

3.2 Frequency Response Function

Page 22: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Ex. 4 A foot pedal for a musical instrument is modeledas in the figure. With k=2000 kg/s2, c=25 kg/s,m=25 kg, and F(t)=50cos2πt N, compute thesteady-state response assuming the system startsfrom rest. Use the small angle approximation.

3.2 Frequency Response Function

Page 23: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

( ) ( )

( ) ( )

2

2

0.15 0.05 0.05 0.05 0.1 0.15

5 1003.75 50cos 2 , positive CW6 3

Find the parameters2.98, 0.0373, 2 , 2.108

1 0.0087 177.41 2

since 0, the transie

O O

n

M I F k c m

t

r

H ik r i r

θ θ θ θ

θ θ θ π

ω ζ ω π

ωζ

ζ

⎡ ⎤= × − × − × = ×⎣ ⎦

+ + =

= = = =

= = − °− +

( ) ( ) ( )0

nt response will die out

cos 0.435cos 2 3.096ss F H i t tθ ω ω θ π= + = −

3.2 Frequency Response Function

Page 24: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

3.3 Applications

Page 25: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 26: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 27: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 28: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 29: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 30: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 31: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 32: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 33: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 34: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 35: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 36: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 37: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 38: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 39: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 40: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 41: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 42: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 43: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 44: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 45: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 46: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

Page 47: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.3 Applications

( ) ( )

( ) ( )

2

2 22

2 22

2

2

2

measured acc. 10 1actual acc. 9.81 1 2

1 2 0.962

From the problem statement, 628 rad/s, 1 628 rad/s

11

758 rad/s , 0.5621

5745.6 N/m, 8.49 Ns/

n

d n

d

dn

n

zy r r

r r

r

k cm m

k c

ω

ζ

ζ

ω ω ω ζωω ζ

ωω ζωζ

= = =− +

− + =

= = − =

= =−

= = = = =−

= = m

Page 48: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

A periodic function is any function that repeats itself in time, called period T.

It is more general than the harmonic function. Here, wewill find the response to the input that is a periodic function. The idea is to decompose that periodic inputinto the sum of many harmonics. The response, by thesuperposition principle of linear system, is then the sum of the responses of individual harmonic. The response of a harmonic function was studied in section 3.1

3.4 Periodic Excitation

( ) ( )f t f t T= +

Page 49: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Fourier found the way to decompose the periodicfunction into sum of harmonic functions (sine & cosine)whose frequencies are multiples of the fundamental frequency. The fundamental frequency is the frequency of the periodic function.

3.4 Periodic Excitation

Page 50: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Fourier series

3.4 Periodic Excitation

( ) ( )

( )

( )

( ) 0

00 0 0

1

00

00

Fourier series in real form:2cos sin ,

2Fourier coefficients:

2 cos , 0,1, 2,

2 sin , 1, 2,3,

Fourier series in complex form:

n nn

T

n

T

n

in tn

n

af t a n t b n tT

a f t n t dt nT

b f t n t dt nT

f t C e ω

πω ω ω

ω

ω

=

=−∞

= + + =

= =

= =

=

( ) 0

0

0

2,

Fourier cofficients (complex):

1 , , 2, 1,0,1, 2,T

in tn

T

C f t e dt nT

ω

πω

=

= = − −

∫ … …

Page 51: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Some properties of Fourier series

3.4 Periodic Excitation

) ( )) ( )

) ( )

) ( ) ( ) 0

0

01

1 If is an even function, 0.

2 If is an odd function, 0.

3 is the average value of over one period.2

4 If is real, 2Re

n

n

in tk k n

n

f t b

f t aa f t

f t C C f t C C e ω∞

−=

=

=

⎛ ⎞= ⇒ = + ⎜ ⎟⎝ ⎠∑

Page 52: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Frequency spectrum tells how much each harmoniccontributes to the periodic function .

Plot of the amplitude of each harmonic vs. its frequencyis the (discrete) frequency spectrum.

3.4 Periodic Excitation

( )f t

( )

2 20

0

In real form, the harmonic at has the amplitude

In complex form, the harmonic at has the amplitude 2 Re n n

n

n a b

n C

ω

ω

+

Page 53: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

Page 54: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Superposition principle of linear system

3.4 Periodic Excitation

Page 55: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Response to harmonic excitation

3.4 Periodic Excitation

Page 56: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

( )( )

( )

( )

( )

0

0

0

0

0

0 2

0 0

01

00

1

From section 3.1, 1where

1 2

2 Re

by superposition, 2Re

in tn

in tss n

n n

in tn

n

in tss n

n

mx cx kx F t C e

x C H in e

H inn nk i

mx cx kx F t C C e

Cx C H in ek

ω

ω

ω

ω

ω

ωω ωζω ω

ω

=

=

+ + = =

=

=⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟− +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞+ + = = + ⎜ ⎟⎝ ⎠⎛= +⎝

∑ ⎞⎜ ⎟

Page 57: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

response frequency spectrumexcitation frequency spectrum

system frequency response

Page 58: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Ex. Calculate the response of a damped system tothe periodic excitation f(t) depicted in the figureby means of the exponential form of the Fourierseries. The system damping ratio is 0.1 and thedriving frequency is ¼ of the system natural freq.

3.4 Periodic Excitation

Page 59: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

( )

( )

( )

( )

( )

0

0 0 0

0

/2

00 0 /2

odd

Expand as sum of harmonic series

1 1 2 ,

0, even1 1 2 , odd

2 2

in tn

n

T T Tin t in t in t

nT

nn

i nin t

n

f t

f t C e

C f t e dt Ae dt Ae dtT T T

niAC i An n

n

i A Af t e en n

ω

ω ω ω

ωω

πω

ππ

π π

=−∞

− − −

=

=

⎡ ⎤= = + − =⎢ ⎥

⎣ ⎦=⎧

⎪⎡ ⎤= − − = ⎨⎣ ⎦ − =⎪⎩

∴ = − × = ×

∫ ∫ ∫

( )

( )( )

( ) ( ) ( )

( ) ( )

0 20odd

1,3,

02

2

1222 2

01,3,

4 1 sin

1 , 0.1, 1 2 4

11 / 4 0.05

1 0.05, tan1 0.251 0.25 0.05

4 1 sin

t

nn

nn n

n

n n

ss n nn

A n tn

n nG i rr i r

G in i n

nG Gnn n

Ax t G n t Gn

π

ωπ

ωωω ζζ ω ω

ω

ωπ

⎛ ⎞ ∞−⎜ ⎟⎝ ⎠

==

=

=

= = = = =− +

=− +

−= =

−⎡ ⎤− +⎣ ⎦

∴ = +

∑ ∑

Page 60: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

Page 61: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Ex. The cam and follower impart a displacement y(t)in the form of a periodic sawtooth function to thelower end of the system. Derive an expressionfor the response x(t) by means of Fourier analysis.

3.4 Periodic Excitation

Page 62: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

( )

( )

( )

( ) ( )

( )

0

0

2 1

1 21 2 2

0

0

FBD and assume

, , 2

Write in the Fourier series expansion

2, , , 0

1 1

x x

nn

in tn

n

Tin t

n

y x

F ma mx k y x k x cx

k k cmx cx k k x k ym m

y t

Ay t C e y t B t t TT T

C y t e dt BeT T

ω

ω

ω ζω

πω∞

=−∞

− −

>

⎡ ⎤= = − − −⎣ ⎦

++ + + = = =

= = = + ≤ ≤

= =

( )

0 0

0 0

2

2 2

22

00

0

1

Integration formula: and 1

2 1 , 02 22

2

T Tin t in t

ax axax ax

TT

in t in tT T

n

Adt te dtT T

e ee dx c xe dx ax ca a

B e A e iAC in t nT T T nin inT T

AC B

ω ω

π π

ππ ππ

− −

+

= + = − +

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎛ ⎞⎢ ⎥= + − − = ≠⎢ ⎥ ⎜ ⎟⎢ ⎥⎝ ⎠⎛ ⎞⎢ ⎥− −⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎣ ⎦

= +

∫ ∫

∫ ∫

Page 63: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

( ) ( )

( )

( )( )

( )( )

( )

0 01

01

21 2

2

0 01 2

22

0 01 2

2 Re cos sin2 2

1 sin2

1Frequency response 1 2

1

1 2

1

1 2

n

n

n

n

n n

n

n n

A iAy t B n t i n tn

A Ay t B n tn

H ik k r i r

H in nk k i

Hn nk k

ω ωπ

ωπ

ωζ

ωω ωζω ω

ω ωζω ω

=

=

⎡ ⎤∴ = + + +⎢ ⎥⎣ ⎦

= + −

=⎡ ⎤+ − +⎣ ⎦

=⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥+ − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

=⎛ ⎞⎛ ⎞⎜ ⎟+ − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( ) ( )

0

12

20

2 20

11 2

2, tan

1

1 sin2

nn

n

ss n nn

n

Hn

k k AAx t B H n t Hk k n

ωζω

ωω

ωπ

=

⎛ ⎞− ⎜ ⎟

⎝ ⎠=⎛ ⎞⎛ ⎞⎛ ⎞ − ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞= + − +⎜ ⎟+ ⎝ ⎠∑

Page 64: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

Page 65: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

Page 66: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

Page 67: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

Page 68: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

Page 69: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

Page 70: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

Page 71: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

Page 72: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.4 Periodic Excitation

Page 73: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation

Harmonic and steady-state excitation and response are conveniently described in the frequency domain. Fordeterministic non-periodic excitation and response, timedomain technique is more suitable.

We cannot find the repeated pattern that lasts forever (both in the past & future) for the non-periodic excitation.

System response to the unit impulse, called the impulse response, will be first studied. Then, this fundamentalresponse will be used to synthesize the response of theLTI system to arbitrary excitation.

3.5 Non-periodic Excitation

Page 74: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation

Page 75: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Impulse

The unit impulse, or Dirac delta function, is defined as

This means that the unit impulse is zero everywhereexcept in the neighborhood of t=a. Since the areaunder the graph δ-t is 1, the value of is very large in the vicinity of t=a.The impulse of magnitude , which may represent alarge force acting over a short period, can be written as

3.5 Non-periodic Excitation

( )

( )

0 for

1

t a t a

t a dt

δ

δ∞

−∞

− = ≠

− =∫

( )t aδ −

( ) ( )ˆF t F t aδ= −

Page 76: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation

Page 77: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

The unit impulse has a useful property called the“sampling property”. Multiplying a continuous function

by , and integrating w.r.t. time:

which is just the value of f(t) at t=a. This is a way inevaluating integrals involving with impulse.

3.5 Non-periodic Excitation

( )f t ( )t aδ −

( ) ( ) ( ) ( ) ( )f t t a dt f a t a dt f aδ δ∞ ∞

−∞ −∞

− = − =∫ ∫

Page 78: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Impulse response

The impulse response, h(t), is the response to the unitimpulse, δ(t), applied at t=0 with zero initial conditions.The impulse response is very important since it contains all the system characteristics and can be used to findthe response to arbitrary excitation of LTI system via the convolution integral theorem.

The impulse response of a 1 DOF MBK system mustsatisfy

subject to i.c.

3.5 Non-periodic Excitation

( ) ( ) ( ) ( )mh t ch t kh t tδ+ + =

( ) ( )0 0, 0 0h h= =

Page 79: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation

( )

( ) ( )0 0

0

Get rid of the impulse function byintegrating over the duration 0, of the impulse

1

Take limit as 0 and apply the i.c.to evaluate the integral on the left hand side:

lim

mh ch kh dt t dt

m

ε ε

ε

ε

δ

ε

+ + = =

∫ ∫

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

000

00 00

00 00

lim 0 0, assuming is not continuous

lim lim 0 0, assuming is continuous

lim lim 0 0, assuming is continuous

0 1

h t dt mh t mh h t

ch t dt ch t ch h t

kh t dt gh t h t

mh

εε

ε

εε

ε ε

εε

ε ε

+

+

→ →

→ →

+

= = ≠

= = =

= =

∴ =

Page 80: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Therefore, the effect of a unit impulse at t=0 is toproduce equivalent initial velocity (impulse-momentum)

Now, we are ready to find the impulse response. Theequivalent system is a homogeneous system with i.c.

If the system is underdamped, the impulse response is

Note that the above i.c. is not the actual i.c.

3.5 Non-periodic Excitation

( )0 1/h m+ =

( ) ( )0 0, 0 1/h h m= =

( )1 sin , 0

0, 0

ntd

d

e t tmh t

t

ζω ωω

−⎧ ≥⎪= ⎨⎪ <⎩

Page 81: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation

Impulse response of underdamped system

Page 82: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

( )x t

Linear Time Invariant (LTI) system has the characteristic that the shape of the response will not be influenced bythe time the input is applied to the system. That is

3.5 Non-periodic Excitation

LTI system( )f t

LTI system( )f t a− ( )x t a−

Hence if the impulse is applied at t=to, the response is

( )( ) ( )0

0 0

0

1 sin ,

0,

n t td

d

e t t t tmh t

t t

ζω ωω

− −⎧ − ≥⎪= ⎨⎪ <⎩

Page 83: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Total response of underdamped MBK with i.c. x(a)=x0and v(a)=v0 subject to the impulse force

3.5 Non-periodic Excitation

( )F̂ t aδ −

( )( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 2

1 2

ˆ sin cos sin

ˆ sin cos ,

ˆsin cos

n n

n

n

h p

t a t ad d d

d

t ad d

d

t an d d

d

x t x x

Fe A t a A t a e t am

Fe A t a A t a t am

Fx t e A t a A t am

ζω ζω

ζω

ζω

ω ω ωω

ω ωω

ζω ω ωω

− − − −

− −

− −

= +

= − + − + −

⎧ ⎫⎛ ⎞⎪ ⎪= + − + − ≥⎜ ⎟⎨ ⎬⎪ ⎪⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞⎪ ⎪= − + − + −⎜ ⎟⎨ ⎬⎪ ⎪⎝ ⎠⎩ ⎭

+ ( ) ( ) ( )1 2

ˆcos sinn t a

d d d dd

Fe A t a A t am

ζω ω ω ω ωω

− − ⎧ ⎫⎛ ⎞⎪ ⎪+ − − −⎜ ⎟⎨ ⎬⎪ ⎪⎝ ⎠⎩ ⎭

Page 84: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Total response of underdamped MBK with i.c. x(a)=x0and v(a)=v0 subject to the impulse force

3.5 Non-periodic Excitation

( )F̂ t aδ −

( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 1 2

0 2

0 2 1

2 0 1 0 0

0 0 0

Apply i.c. and to solve for and :

ˆ

ˆ1 and

1 sin cos , n

n dd

nd

t an d d

d

x a x x a v A Ax A

Fv A Am

FA x A x vm

x t e x v t a x t a t aζω

ζω ωω

ζωω

ζω ω ωω

− −

= =

=

⎛ ⎞= − + +⎜ ⎟

⎝ ⎠⎛ ⎞

∴ = = + −⎜ ⎟⎝ ⎠

⎧ ⎫∴ = + − + − ≥⎨ ⎬

⎩ ⎭

Page 85: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Arbitrary Excitation

Ideally, arbitrary excitation can be expressed as linearcombinations of simpler excitations. The simplerexcitations are simple enough that the responseis readily available. This concept is exactly used byFourier.

Now, the idea is to regard the arbitrary excitation as asuperposition of impulses of varying magnitude andapplied at different times. It is used when the excitationcan be easily described in time domain.

3.5 Non-periodic Excitation

Page 86: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Consider the excitation F(t). We can imagine that it is constructed from infinite impulses at different times.

3.5 Non-periodic Excitation

Page 87: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Convolution integral theorm

3.5 Non-periodic Excitation

( )( ) ( )

( )

Focus on the time interval , at whichthe impulse of magnitude is acting. This

shifted impulse can be written as .The response of the LTI system to this particularimpulse is

,

tF

F t

x t F

τ τ ττ τ

τ τδ τ

τ

< < + Δ

Δ

Δ −

Δ = ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )0

Since by sampling property ,

and the system is linear, the response to is

In the limit as 0, .t

h t

F t F t

F t

x t F h t

x t F h t d

τ

τ

τ τ τ

τ τδ τ

τ τ τ

τ τ τ τ

Δ −

= Δ −

= Δ −

Δ → = −

Page 88: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Convolution integral theormThe response of the arbitrary excitation is thesuperposition of shifted impulse responses.

3.5 Non-periodic Excitation

Interpretationfor the wholerange of time; t

Page 89: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation

( ) ( )To obtain from , we need to carry outtwo operation; shifting and folding. This is another interpretationfor the specific time t. The figures show the steps in evaluating the convolution.

If we

h t hτ τ−

( ) ( ) ( )( ) ( ) ( )

( ) ( )

0

0

define a new variable , then and . With the change of the integration limits,

That is the convolution is symmetric in and .

To decide which formula to u

t

t

t td d

x t F t h d F t h d

F t h t

λ τ τ λτ λ

λ λ λ τ τ τ

= − = −= −

= − − = −∫ ∫

( ) ( )

( ) ( )

se depends on the nature of and .

It is obvious that if the excitation or the impulse response is too complicated, we may be unable to evaluate the closed formsolution of the convolution inte

F t h t

F t h t

gral. The excitation may not at allbe written as functions of time. In these cases, the integration mustbe carried out numerically.

Page 90: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation

Interpretation for the specific time; t

Page 91: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Ex. Determine the response of the underdamped MBKto the unit step input.

3.5 Non-periodic Excitation

u(t)1

0 t

Page 92: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )

( ) ( )

0

0

and is the system impulse responseshifted by and mirrored about the vertical axis.If 0, 0 because of no overlap

If 0,

0, 0

, 0

Let

t

t

x t F h t d

F u h tt

t F h t

t F h t h t

x t t

x t h t d t

t

τ τ τ

τ τ τ

τ τ

τ τ τ

τ τ

= −

= −

< − =

> − = −

∴ = <

∴ = − >

( ) ( )

( )

0 0

. Hence

1 sin

Substitute sin and use 2

1 1 cos sin , 0

n

d d

n

t t

dd

i i axax

d

t nd d

d

d d

x t h d e dm

e e ee dx ci a

x t e t t tk

ζω λ

ω λ ω λ

ζω

τ λ τ λ

λ λ ω λ λω

ω λ

ζωω ωω

= = −

∴ = =

−= = +

⎡ ⎤⎛ ⎞∴ = − + >⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

∫ ∫

Page 93: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

Ex. Find the undamped response for the sinusoidalpulse force shown using zero i.c.

3.5 Non-periodic Excitation

Page 94: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation

( ) ( ) ( )

( )

( )

( )

( ) ( )( )

0

0 00 0

2sin sin2

1 sin

is the system impulse response shifted by and mirrored about the vertical axis.If 0, 0 because of no overlap

0, 0

t

nn

x t F h t d

F F FT T

hm

h t t

t F h t

x t t

τ τ τ

π πτ τ τ

τ ω τω

τ

τ τ

= −

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

=

< − =

∴ = <

Page 95: Vibraciones Forzadas - Ejemplos y teoría.pdf

Ch. 3: Forced Vibration of 1-DOF System

3.5 Non-periodic Excitation

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

0 00

0

00 0

002

1If 0 , sin sin

sin sin

1using the relation sin sin cos cos and some arrangements2

sin sin , 0 where1

nn

t t

nn

n

t T F h t F tT m

Fx t F h t d t dm T

Fx t t r t t Tk r

πτ τ τ ω τω

πτ τ τ τ ω τ τω

α β α β α β

ω ω

⎛ ⎞< < − = × −⎜ ⎟

⎝ ⎠⎛ ⎞

= − = −⎜ ⎟⎝ ⎠

= − − +⎡ ⎤⎣ ⎦

∴ = − < <−

∫ ∫

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) [ ] ( ) ( ){ }

0

0

2

0

00 0

00 0 02

, ,

If ,

sin sin sin sin , 1

superposition of the out-of-phase shifted sine trains

nn

Tt t

t T

n n

r k mT

t T x t F h t d F h t d F t h d

Fx t t r t t T r t T t Tk r

π ωω ωω

τ τ τ τ τ τ τ τ τ

ω ω ω ω

= = =

> = − = − = −

∴ = − − − − − >⎡ ⎤⎣ ⎦−

∫ ∫ ∫