24
VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L” Scheme Lab Manual) S.NO Name of the Experiment Page No. 1. Study of Simulation software using simple circuits. 2. Rectifier circuits ( Half wave, Full wave, Bridge rectifier with filters) 3. Power Supply design with regulators, LM7805, LM7812 4. Waveform generator using BC147 Transistors ( Astable multivibrator ) 5. Waveform generator using BC147 Transistors ( Monostable Multivibrator ) 6. Clipper and Clambers. (Positive edge and Negative edge) 7. Op-Amp application-I. (Inverter amplifier, Integrated amplifier, difference amplifier) 8. Op-Amp applications-II (Phase shift Oscillators, sine wave generator, square wave generator) 9. Instrumentation amplifiers. 10. AM Modulation and Demodulation 11. FM Modulation and Demodulation 12. ASK Modulation and Demodulation 13. FSK Modulation and Demodulation 14. PSK Modulation and Demodulation 15. Single side PCB layout Design using CAD Tool. Drawing the schematic of simple electronic circuit and design of PCB layout using CAD Tool 16. Multilayer PCB Layout design using CAD Tool.

VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L” Scheme Lab Manual)

S.NO Name of the Experiment Page No. 1. Study of Simulation software using simple circuits.

2. Rectifier circuits ( Half wave, Full wave, Bridge rectifier with filters) 3. Power Supply design with regulators, LM7805, LM7812 4. Waveform generator using BC147 Transistors ( Astable multivibrator ) 5. Waveform generator using BC147 Transistors ( Monostable Multivibrator ) 6. Clipper and Clambers. (Positive edge and Negative edge) 7. Op-Amp application-I.

(Inverter amplifier, Integrated amplifier, difference amplifier)

8. Op-Amp applications-II (Phase shift Oscillators, sine wave generator, square wave generator)

9. Instrumentation amplifiers. 10. AM Modulation and Demodulation 11. FM Modulation and Demodulation 12. ASK Modulation and Demodulation 13. FSK Modulation and Demodulation 14. PSK Modulation and Demodulation 15. Single side PCB layout Design using CAD Tool.

Drawing the schematic of simple electronic circuit and design of PCB layout using CAD Tool

16. Multilayer PCB Layout design using CAD Tool.

Page 2: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 1. Study of Simulation software features using simple circuits. To design and verify the results of various electronic circuits using SIMULATION Software and verify the

result in the computer

AIM: To understand the design and simulation environment of simulation software, and also study the various

features of simulation through the design and simulation of common emitter amplifier.

APPARATUS REQUIRED: PC loaded with MULTISIM software.

SIMULATION PROCEDUTE:

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the common emitter amplifier using the components that are available in the tool bar and then save the circuit.

Set the Function Generator F = 1 kHz V= 200mV.

Click simulate button or press F5 key => RUN

Then double click connected in the output of the Oscilloscope and measure input and output waveforms.

Then Change input Frequency again measure

Take printout the output waveforms.

Results: The common emitter amplifier circuit is designed, simulated and analyzed through the output wave forms.

Page 3: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 2. Rectifier circuits (Half wave, full wave, Bridge rectifiers with filters).

AIM: To design and simulate the input and output characters of a half wave, Full wave and Bridge rectifiers with

and without filters.

APPARATUS REQUIRED: PC loaded with MULTISIM software.

Half-wave Rectifier.

Full wave rectifier with center tapped transformer.

Page 4: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

Bridge Rectifier Circuit.

SIMULATION PROCEDUTE:

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the above circuits using the components that are available in the tool bar and then save the circuit.

Double click AC_POWER set its value above mentioned.

Click simulate button or press F5 key => RUN

Then double click connected in the output of the Oscilloscope and measure input and output waveforms.

Then Change input Frequency and voltage, again measure and print the output waveforms. Results: The Half wave, Full wave and bridge rectifier circuits are designed, simulated and verified through the output wave forms.

Page 5: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT:3. Power Supply Design with Regulators. AIM: To design the power supply circuit using a fixed voltage (7805, and 7812). APPARATUS REQUIRED: PC loaded with MULTISIM software.

SIMULATION PROCEDURE:

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the schematic diagram of the above circuit with fixed voltage regulator.

Double click Ac_power set its value above mentioned.

Click simulate button or press F5 key => RUN

Measure the Input and output of the regulator voltage with oscilloscope.

Print the CRO waveforms.

RESULT: The regulated power supply is designed and tested with simulation software.

Page 6: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 4. Waveform generators using transistors. ( Astable multivibrator ) AIM: To design the astable multivibrator using transistor and also verify its output. APPARATUS REQUIRED: PC loaded with MULTISIM software.

SUMULATION PROCEDURE:

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the circuit diagram of astable multivibator using BC147 transistor.

Connect the CRO above mentioned circuit.

Click simulate button or press F5 key => RUN

Note down the Time period and calculate the frequencies.

Record the output waveforms. RESULT: The astable multivibrator is designed and its output is verified using MULTISIM software. Calculate the time period: R=82k, and C=150nF and F=

Page 7: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 5. Monostable Multivibrator. AIM: To design the Monostable circuit using BC147B Transistor and verify the its output. APPARATUS REQUIRED: PC loaded with MULTISIM software.

SIMULATION PROCEDURE:

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the schematic diagram of astable multivibator using transistors as shown.

Click simulate button or press F5 key => RUN.

Close the switch measure the waveforms.

Open the switch measure the waveforms.

Measure the voltage level of Q1, Q2 collector of the transistors.

Use the digital CRO from the menu.

Note down the Time period and calculate the Frequencies.

Take printout the output waveforms. RESULT: The Monostable circuit using BC147B Transistor designed and verified with the simulation software. Calculate the Time period: R=12oK. C=4.7 Mfd F=

Page 8: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 6. Clippers and Clampers. AIM: To design and verify the operation of clipper and clamper circuits using simulation software.

APPARATUS REQUIRED: PC loaded with MULTISIM software.

Two way parallel clipper with reference voltage.

Set Frequency range: F=10 Khz and 10V.

Positive Clamber.

Page 9: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

Negative Clamber

SIMULATION PROCEDURE:

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the circuit of clipper and clamber as shown above.

Set the input Sine wave frequency of 10 KHz to input and voltage =10V.

Click simulate button or press F5 key => RUN

Measure the input and output wave with CRO.

Note down the input and output voltage and waveforms.

Take printout. Result: The clipper and clamber circuits are designed and verified.

Page 10: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 7. Op-Amplifier applications. AIM: To design and verify Inverting amplifier, Differentiator, and Integrator circuits. APPARATUS REQUIRED: PC loaded with MULTISIM software.

Integrator circuit:

Differentiator circuit.

Page 11: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

Inverting Amplifier.

SIMULATION PROCEDURE:

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the schematic of all above mentioned circuit and its same value.

Set the Square wave to the input and its voltage is 5v and F=1 khz and set Frequency to inverter F= 400 Hz.

Click simulate button or press F5 key => RUN

Double click the CRO.

Measure the input and output voltage and frequencies.

Take Print to record note.

RESULT: The design of Inverting, integrated and differential amplifier was simulated and verified.

Page 12: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 8. Op-Amp applications-II. AIM: To draw Op-amp application circuits ( Hartley and Phase shift Oscillators, Sine wave Generator) and verify the Input and output voltage Frequencies. APPARATUS REQUIRED: PC loaded with MULTISIM software.

Phase Shift Oscillator:

Hartley Oscillator

Page 13: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

Sine wave Oscillator.

SIMULATION PROCEDURE:

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the schematic of op amp application circuits as shown.

Select the proper resistance values to achieve the desired gain.

Click simulate button or press F5 key => RUN.

Double click the oscilloscope.

Take printout. RESULT: Thus Op-amp application circuits, Hartley and Phase shift Oscillators, Sine wave Generator are designed and verified the outputs.

Page 14: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 9. Instrumentation Amplifier. AIM: To design, analyze and simulate the input and output characteristics of an instrumentation amplifier.

APPARATUS REQUIRED: PC loaded with MULTISIM software.

SIMULATION PROCEDURRE:

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the schematic of instrumentation amplifier as shown.

The desired magnitude are defied for V1=3v, V=5v.

Click simulate button or press F5 key => RUN

Measure the input and output waveforms.

Take printout to record.

RESULT:

The Instrumentation amplifier is designed simulated and the input and output waveforms are noted.

Page 15: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 10. AM Modulation and Demodulation using single BC107 Transistor.

AIM: To design and verify the characteristics of AM modulator and Demodulator using simulation

software.

APPARATUS REQUIRED: PC loaded with MULTISIM software.

MODEL WAVEFORMS

Page 16: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

DEMODULATION

SIMULATION PROCEDURE:

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the schematic of amplitude modulator and demodulator as shown.

Specify the values of amplitude and frequency for the carrier signal.

Carrier Signal: XFG1 F= 400 Khz / 10v, Modulating signal XFG2 F= 20khz / 5v.

Design the low pass filter.

Calculate the modulation index and note the readings.

Record the output. RESULT: The design of amplitude modulator and demodulator was done with simulation software and also the signals is retrieved from the modulated single with the modulation index.

Page 17: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 11. FM Modulation and Demodulation.

AIM: To Design and verify the characteristics of FM modulator and demodulator using MULTISIM.

APPARATUS REQUIRED: PC loaded with MULTISIM software.

Page 18: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

SIMULATION PROCEDURE:

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the schematic of frequency modulator and demodulator as shown.

Specify the values of amplitude and frequency for the given.

Modulating signal F= 10 Khz / 4v.

Select the proper values of resistances and capacitors used in the same.

Design low pass filter for the demodulation circuit. RESULT: The design of Frequency modulator and demodulator was done using multisim software and also the

message signal is retrieved from the modulated signal with the modulation index, mf=

Page 19: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 12. ASK Modulation and Demodulation. AIM: To design and verify the characteristics of Amplitude Shift Keying Modulation and Demodulation using MULTISIM software. APPARATUS REQUIRED: PC loaded with MULTISIM software ASK Modulation using NPN Transistor.

ASK Demodulation

SIMULATION PROCEDURE.

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown.

Specify the values of amplitude and frequency for the same to carrier and modulating signals.

XFG1: Square wave F=300H/V= 10, XFG2=SINE wave F=5 Khz/V=10.

Design the comparator circuit using op-amp to restore the modulating signal.

Record the output. RESULTS: Thus design of amplitude shift keying modulator and demodulator was completed and its output is verified.

Page 20: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 13. FSK Modulation and Demodulation.

AIM: To design and verify the characteristics of frequency shift keying modulation and demodulation.

APPARATUS REQUIRED: PC loaded with MULTISIM software.

FSK Modulation circuit.

FSK Demodulation

Page 21: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

SIMULATION PROCEDURE.

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the schematic of frequency shift keying modulator and demodulator as shown.

XFG1 F=150 H, XFG2 F= 200 Hz, and XFG F =2KHz

Specify the value of amplitude and frequency for the same value below mentioned.

Click simulate button or press F5 key => RUN

Design the comparator circuit using op-amp to restore the modulating signal.

Record the waveforms.

RESULT:

Thus the design of Frequency shift keying modulator and demodulator was completed and its output is verified

by the frequency deviation and modulation index using simulation software.

Page 22: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 14. PSK Modulation and Demodulation. AIM: To design and verify the characteristics of Phase shift keying Modulation and Demodulation. APPARATUS REQUIRED: PC loaded with MULTISIM software.

SIMULATION PROCEDURE.

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Draw the Schematic of Frequency shift keying modulator and demodulator as shown.

Specify the values of Amplitude and frequency for the same values of the input signals.

Set frequency of XFG1= 600 H / 12v, XFG2= 2 KHz/10v.

Design the comparator circuit using op-amp to restore the modulating signal.

Record the output waveforms.

RESULT: Thus the design of phase shift keying modulator and demodulator was completed and its output is

verified.

Page 23: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT: 15. Single side PCB Layout Design using CAD Tool.

AIM: To design the single sided PCB for a simple electronic circuit (LED Running light) with MULTISIM.

APPARATUS REQUIRED: PC loaded with MULTISIM software.

PROCEDURE:

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

Single side PCB.

RESULT: Thus the design of a single sided PCB for simple electronic circuit with MULTISIM software CAD tool was

done.

Page 24: VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma “L ... · Draw the schematic of Amplitude Shift Keying modulator and demodulator as shown. Specify the values of amplitude and

EPERIMENT:16. . Multilayer PCB Layout Design using CAD Tool.

AIM: To design multilayer PCB Layout for a circuit (Tester for remote control).

APPARATUS REQUIRED: PC loaded with MULTISIM software.

Open MULTISIM Software.

Click=> New => Design1

Click save as in Desk Top rename the Design1 to your circuit name.

Go to Component tool bar and select the components.

RESULT:

Thus Design of multilayer PCB layout for a circuit (Tester for remote control ) using CAD Tool was completed.

M.K Subramanian/ECE/SPC

For more details: www.androiderode.com