76
Very High Energy Gamma Ray Observations with the MAGIC Telescope (a biased selection) Nepomuk Otte for the MAGIC collaboration

Very High Energy Gamma Ray Observations with the MAGIC ...scipp.ucsc.edu › seminars › experimental › archive_sumq07 › MAGIC_UCSC.pdfA. Nepomuk Otte Max-Planck-Institut für

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Very High Energy Gamma Ray Observations with the MAGIC

    Telescope(a biased selection)

    Nepomuk Ottefor the MAGIC collaboration

  • 2A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    • Imaging air shower Cherenkov technique– The MAGIC telescope

    • Observation of the AGN 3c279

    • Observation of Neutron Stars with MAGIC

    • The Crab nebula and Pulsar (young pulsar) [astro-ph/0705.3244] • PSR B1951+32 (middle aged pulsar) [astro-ph/0702077]• PSR B1957+20 (millisecond pulsar)• LS I 61+303 [Science 2006]

    • Where to go next?

  • 3A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    The non-thermal universe in VHE gamma-rays

    GRBsAGNs

    Origin ofcosmic rays

    CosmologyDark matter

    Space-time& relativity

    Pulsarsand PWN

    SNRs Micro quasarsX-ray binaries

  • 4A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    VHE gamma-ray sources status ICRC 2007

    Rowell

    71 known sources

    detections from ground

  • 5A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Imaging Air Cherenkov Technique

    ~ 10 kmParticleshower

    ~ 1o

    Cher

    enko

    vlig

    ht

    ~ 120 m

    Gammaray

    Cherenkov light image of particle shower in telescope camera

    • fast light flash (nanoseconds)• 100 photons per m² (1 TeV Gamma Ray)

    reconstruct: arrival direction, energy

    reject hadron background

  • 6A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    CANGAROO III(Australia & Japan)

    4 telescopes 10 meters Ø

    Woomera, Australia

    Windhoek, NamibiaHESS

    (Germany & France)4 telescopes12 meters Ø

    Roque delos Muchachos, Canary Islands

    MAGICMAGIC(Germany, Spain, Italy)(Germany, Spain, Italy)1 telescope 17 meters 1 telescope 17 meters ØØ

    MontosaCanyon,Arizona

    VERITAS(USA & England)4 (7) telescopes

    10 meters Ø

    Current generation Current generation CherenkovCherenkov telescopestelescopes

    MAGICVeritas

    H.E.S.S.

    Cangaroo III

  • 7A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    The MAGIC site

  • 8A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    A recent view of MAGIC

    MAGIC I

    MAGIC II

    counting house

    picture by R.Wagner

  • 9A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Current Status of MAGIC

    First telescope in regular observation mode since fall 2004

    – 236 m2 mirror area (17m Ø)– Fast repositioning (40 sec) for GRB

    follow-up observations– Upgrade: 2GSamples/s FADCs

    – Trigger threshold: ~ 50 GeV– Sensitivity: 2 % Crab (5σ,50h)

    for E>200GeV– Using timing parameters after

    installation of new 2GSamples/s FADC:=> Sensitivity improved to 1.5% Crab

    MAGIC-I

    http://wwwmagic.mppmu.mpg.de/gallery/pictures/La_Palma_July_2004/MAGIC10.JPG

  • 10A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Central Pixel for Optical Measurements

    • Modified central pixel for optical measurements

    • simultaneous with Gamma-ray observations

    Crab pulsar in optical by MAGIC

    view from back

  • 11A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Event Parameterization

    muon ringhadronhadrongamma candidate

    event parameterization with principal components

    commonly known as Hillas parameters

  • 12A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Background Rejection

    hadron shower (background)

    gamma shower

    Main background:- cosmic ray (hadron)showers

    - >103 times more numerous than γ-ray showers

    - reject based on showershape (hadrons are broader)

  • 13A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Gamma / Hadron Separation

    differences between gammas and background events compressed into one variable:

    HADRONNESS

    determined with the method of Random Forests

    Breimann 2001

    analysis for Sizes < 200 phe is difficult

    background

    gamma rays

  • 14A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Extragalactic Sources: Active Galactic Nuclei

    Jet

    BlackHole

    ObscuringTorus

    LineRegion

    LineRegion

    Disk

    Narrow

    Broad

    Accretion

    Urry & Padovani (1995)

    blazar

  • 15A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    EBL CherenkovTelescope

    BL-Lac object

    Red shifted stellar light Red shifted dust light

    2.7K

    Attenuation of VHE γ-rays

    −+→ eeEBLHE γγ Eγγ ≈1.8* 2mec2( )

    • Absorption leads to cutoff in AGN spectrum

    • Measurement of spectral features allows to constrain EBL Models

  • 16A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    known extragalactic VHE-sources (19)Source Redshift Sp. Types Discovery Observation

    M 87 0.004 2.9 FR-I HEGRA HESS

    Mkn 421 0.031 2.2 HBL Whipple many

    Mkn 501 0.034 2.4 HBL Whipple many

    1ES 2344+514 0.044 2.9 HBL Whipple MAGIC

    Mkn 180 0.045 3.3 HBL MAGIC

    1ES 1959+650 0.047 2.4 HBL 7TA many

    PKS 0548-322 0.069 HBL HESS

    BL Lac 0.069 3.6 LBL MAGIC

    PKS 2005-489 0.071 4.0 HBL HESS

    PKS 2155-304 0.116 3.3 HBL Durham many

    1ES 1426+428 0.129 3.3 HBL Whipple HEGRA

    1ES 0229+200 0.139 HBL HESS

    H 2356-309 0.165 3.1 HBL HESS

    1ES 1218+304 0.182 3.0 HBL MAGIC VERITAS

    1ES 1101-232 0.186 2.9 HBL HESS

    1ES 0347-121 0.188 HBL HESS

    1ES 1011+496 0.212 4.0 HBL MAGIC

    3C 279 0.538 FSRQ MAGIC

    PG 1553 ? 4.0 HBL HESS/MAGIC

  • 17A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Detection of 3C279

    80-220 GeV

    E> 220 GeV

    PreliminaryPreliminary

    PreliminaryPreliminarySky map around 3C279Sky map around 3C279

    PreliminaryPreliminary

    PreliminaryPreliminary

    PreliminaryPreliminary

    big jump into the deep universe

    may deliver stringent constraint on EBL and acceleration models

  • Pulsars and & pulsar nebulae

    ExploringExtreme electrodynamics& GRRelativistic windsAcceleration in shocks

  • 19A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    The Pulsar Wind Nebula Complexon the example of the Crab

    magnetized, spinning neutron star (pulsar)

    energy carried away by electromagnetic radiation and particles (~1038 erg/s)

    particle acceleration in:

    1. light cylinder2. shock front

    massive object in center:

    from Aharonian et al

  • 20A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    The Crab Nebula resolved in X-Rays

    NASA/CXC/ASU/J.Hester et al.

    7 still images of Chandra observations taken between November 2000 and April 2001.

    rich and dynamic structure in X-rays:

    • wisps• knots• jets

  • 21A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    The Crab-PWN: Broadband Emission

    Aharonian & Atoyan (1998)

    synchrotron emission

    IC-emission

    • little known at energies around the peak of the IC-emission

    morphology?

    variability?

    spectrum?

    pulsar?

    studied with MAGIC at energies >60 GeV

    Pulsar

    Nebula Synchrotron IC

  • 22A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Crab Nebula: Spectral Energy Distribution

    • good agreement with other Cherenkov telescopes above 400GeV

    • spectrum well described within SSC-framework

    • first time determination of the IC-peak at 77±47statGeV

  • 23A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Crab Nebula: Morphology

    • emission region compatible with point-like source

    - emission region

  • 24A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Crab Nebula: Variability

    no variability (>200 GeV) on time scales of:

    • minutes (

  • 25A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    The Crab Pulsar Wind Nebula Complex

    from Aharonian et al

    turning to the central object

    the pulsar

  • 26A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Gamma-Ray Emission from Pulsars

    • three sites favored for particle acceleration

    • emission appears pulsed; lighthouse model

    • complex electrodynamics; challenging for theory

    spin axis magnetic dipole moment

    Harding

    • no pulsar detected above ~100 GeV

    spectral cutoff; challenging for experiment

  • 27A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Crab Pulsar in Gamma-Rays

    shaded: regions of pulsed emission defined by EGRET measurements above 100 MeV (P1, P2)

    significance of pulsed emission:no prior assumption about pulse profile: 1.2σguided by EGRET >100 MeV profile: 2.9σ

    Fierro, 1998

    events with Size

  • 28A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Upper limit on cutoff energy

    1. assume EGRET spectrum with exponential cutoff

    2. convolute spectrum with MAGIC response

    3. calculate number of expected pulsed excess events

    4. compare with upper limit on pulsed excess events

    5. reiterate with different cutoff energy until match

    MAGIC response after cuts (Size

  • 29A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Crab Pulsar II

    • no detection/hints of pulsed emission in differential bins of energy

    • upper limits compatible with results from other experiments

  • 30A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    PSR B1951+32 / CTB 80

    pulsar detected by EGRET up to 20 GeV

    at 10 GeV similar luminosity as the Crab pulsar

    A different pulsar than Crab

    • 100 times older (~105 years)• 10 times lower surface magnetic

    field (~5x1011 G)• moves 2 times faster through ISM

    (240km/s)• 100 times lower spin down

    luminosity (~1036 erg/s)

    radio

    optical

    radio and synchrotron nebula CTB80 + VHE gamma-ray predictions

    a good candidate to observe with MAGIC

  • 31A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    In the surroundings of PSR B1951+32

    No displaced gamma ray emission level of few % Crab (point source 0.1° RMS radius)

    reduced sensitivity for more extended emission region

  • 32A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    PSR B1951+32 / CTB 80

    • model calculations do not take pulsar motion into account

    emission smeared outover a larger volume?

    • magnetic field larger than assumed

    pulsar wind not particle dominated?

    • can exclude flux level predicted by Bednarek & Bartosik(2003)

  • 33A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    PSR B1951+32 Pulsar

    • no pulsed emission detected

    • constrain on the cutoff energy

  • 34A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Evolution of Pulsars in Binary systems

    Lorimer, 2005

    spin up of old pulsars by accretion of mass from companion star

    millisecond period pulsars

    Lower magnetic field:reduced screening of Gamma-rayslower acceleration voltage

  • 35A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    PSR B1957+20: The black widow

    • second fastest known pulsar (1.607 ms)

    • recycled pulsar

    • binary system (eccentricity

  • 36A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    PSR B1957+20: search for steady gamma-ray emission

    can not exclude predicted gamma-ray flux from pulsar [Bulik (2000)]

    more sensitive pulsed analysis not possible because of invalid ephemeris of the binary system

  • 37A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    PSR B1957+20: Search in orbital phase

    no evidence for gamma ray emission

    light curve flux limits

  • 38A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    LSI+61 303

    LSI+61 303:

    • high mass x-ray binary• Be star companion with

    circumstellar disc• high eccentricity (~0.7)• radio and x-ray emission

    modulation: 26.5 days (orbit)

    • radio jets (100AU)

    Massi et al 2004

  • 39A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    LSI+61 303: MAGIC observations

    Albert et al., SCIENCE 2006Albert et al., SCIENCE 2006

    • 54 h observation from November 2005 till March 2006• 9 σ detection of point-like source (E > 200 Gev)• Spectral index = -2.6 ± 0.2 (stat) ± 0.2 (syst)• Flux clearly variable• Average emission has maximum (~16% Crab) at phase 0.6.

  • 40A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    LSI+61 303: models

    • Microquasar: rel. electrons (& hadrons) from accretion powered jetsor• Binary Pulsar: rel. electrons from rotational energy of pulsar

    Mirabel 2006

  • 41A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Summary and Conclusion

    • MAGIC in full production

    • ~1 new source every two month

    • many exciting results like 3C279 or LSI 60+303

    • detailed studies possible: Crab nebula in the energy range between 60GeV and 400GeV– within experimental resolution:

    • emission region is point like;

  • 42A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Outlook into the Future

    • The gamma-ray window between 10 GeV and 100 GeVis still closed

    • GLAST will be a pathfinder mission but can not answer all questions– the strength of Cherenkov telescopes is a large collection area

    (~104 m²)high sensitivity to transients

    • short time flaring in AGNs• test stability of pulsed emission at the highest energies• ….

    • Opening the 10 GeV - 100 GeV window from ground will be necessary

    lower threshold Cherenkov telescopes are needed

  • 43A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Very near future: This Crab season

    • trigger threshold of MAGIC is limited by accidental triggers caused by PMT afterpulses

    • current trigger requires a 4 next neighbor coincidence

    • investigate new trigger idea:– analog signals are clipped above ~6phe– analog sum of ~10 pixels– discriminate sum signal at ~20 phe

    First tests on MAGIC are very encouraging

  • 44A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Trigger tests on La Palma

  • 45A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    midterm future (2008): MAGIC II

    second telescope: MAGIC-II

    ”Improved clone”– Most fundamental parameters identical

    to MAGIC-I– Use improved technology where

    available:• High QE photosensors• Fast sampling readout

    MAGIC-I

    MAGIC-II

    85m

    Aim:• Increase sensitivity (particularly below 100 GeV)• Lower energy threshold further

  • 46A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    MAGIC II Monte Carlo Studies

    Stereo Analysis:• observe shower simultaneously

    with 2 telescopes

    • 3D shower reconstruction• Additional shower parameters:

    – Impact parameter– Shower maximum (hmax)– Eliminate ambiguity on arrival

    direction

    • Better reconstruction of energy and arrival direction

    • Improved background rejection

  • 47A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Improved Reconstruction

    • Energy resolution– MAGIC-I: ~25%– MAGIC-II: 14-20%

    (2 telescopes)

    • Angular resolution– Substantial (~50%) improvement

    since source position is obtained from intersection point of both showers

  • 48A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Improved Sensitivity

    using Stereo Analysis• better background rejection down to low energies • increase sensitivity by up to factor 3

    => reduce observation time by factor 9• Large gain in sensitivity at low energies (< 100 GeV)

  • 49A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    New photon detectors: The G-APD

    a promising photon detector concept invented in Russia in the 80’s

    P. Buzhan et al. http://www.slac-stanford.edu/pubs/icfa/fall01.html

    • sensors with ~60% efficiency become available• internal gain ~105 -106• compact and robust• …

    advantages

    disadvantages

    • small sizes (

  • 50A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Test on La Palma with MAGIC

    4 MPPC-33-050C from Hamamatsu:

    sensor size: 3x3mm²single cell size: 50x50µm²nominal bias: 70.4Vdark rate at nominal bias: ~2MHzgain at nominal bias: 7.5*105crosstalk at nominal bias: 10%

    peak photon detection efficiency 55% needs to be confirmed

    Array of 4 MPPCs:light catchers with factor 4 concentration; 6x6mm² onto 3x3mm²

    MAGIC Pixel Size

  • 51A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Array mounted onto the MAGIC camera entrance window for two nights

  • 52A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    position of MPPC array

    1 phe

    MPPCs

    PMTs

    2 phe 4 phe 1 phe

    70 phe 35 phe 35 phe 15 phe

  • 53A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Shower Signals: MPPC vs PMT

    event selection:two PMTs next to MPPCs with more than 15 photoelectrons in each tube

    signals are correlated

    coun

    ts

    ~300 events from ~30 min data

    on average MPPCs detect 1.6 times more light

  • 54A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    End

  • 55A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Light recorded from Calibration Runs

    UV-LEDs 375nm

    Pedestal

    1 phe

    2 phe

    3phe

    single phe-resolution degraded due to light

    from night sky background

    easy calibration

    some recorded showers

  • 56A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Key technological elements for MAGIC

    17 m diameter parabolic reflecting surface (236 m2 )

    Analog signal transport via optical fibers IPE

    IPEIPECENET

    2-level trigger system& FADC system

    Active mirror control(PSF: 90% of light in 0.1o inner pixel)

    high reflective diamond milled aluminum mirrors Light weight Carbon fiber

    structure for fast repositioning

    - 3.5o FOV camera - 576 high QE PMTs

    (QEmax= 30%)

  • 57A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Data Set

    • October – December 2005

    • 16 hours ON source / 19 hours OFF source

    • zenith angle 500 GeV

    alpha plot for energies >200 GeV

  • 58A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    The Crab Pulsar Wind Nebula

    • standing reverse shock

    • acceleration of electrons up to 1016 eV

    • synchrotron emission (radio to gamma -rays) downstream of shock

    • inverse Compton scattering (VHE gamma-rays)

    other possible VHE gamma-ray components are pi0-decay or bremsstrahlung

    influence on VHE gamma-ray spectrum, morphology and variability

  • 59A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    3C 279

    • EGRET brightest AGN– Gamma-ray flares in 1991 and 1996– Apparent luminosity ~ 1048erg/s– First time variation △T ~ 6hr in 1996 flare

    • Typical OVV quasar (Optically violent variable)– Categorized as a FSRQ (Flat Spectrum Radio

    Quasar)

    • Superluminal motion, γ~ 20~30• z = 0.538, Ld ~ 3Gpc

  • 60A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    3C 279 Flare in 1996

  • 61A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    SSC+EC / Hadronic

    MAGIC

  • 62A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    EBL Absorption

    Pair Creation; γHE+γEBL e+ + e-

  • 63A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    MAGIC Telescope

    MAGIC-II is under construction and will becompleted in the fall of the next year

    Improve sensitivity by a factor of threeEffectively lower the threshold energy

    New technologiesto lower the threshold energy

    17m diameter world largest cherenkov tel.0.1°High resolution cameraHemispherical PMT with enhanced QEAnalogue signal fiber transmission

    Current MAGIC-I Performance

    Fast rotation for GRB < 40secsTrigger threshold ~50GeVSensitivity ~2% of Crab (50hrs)Angular resolution ~0.1 degreesEnergy Resolution 20-30%

    85m

  • 64A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Observation of 3C 279 with MAGIC

    • Observation– In the period of January - April 2006– Observation of 9.5hrs– Zenith angle range is between 32 and 40

    degrees relatively high threshold of 80GeV

    • Analysis– 4 independent analyses have been done– Standard analysis and standard quality cut– Preliminary results will be presented here

  • 65A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Sky-map and alpha ploton 23rd Feb 2007

    80-220 GeV

    E> 220 GeV

    PreliminaryPreliminary

    PreliminaryPreliminary

    Sky map around 3C279Sky map around 3C279

    PreliminaryPreliminary

    PreliminaryPreliminary

    PreliminaryPreliminary

  • 66A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    3C279 VHE gamma-ray light curve

    Intra-night LC

    PreliminaryPreliminary

    PreliminaryPreliminary

    Optical light curve

  • 67A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Extragalactic VHE-sources (19)

    Source Redshift Sp. Types Discovery ObservationM 87 0.004 2.9 FR-I HEGRA HESS

    Mkn 421 0.031 2.2 HBL Whipple many

    Mkn 501 0.034 2.4 HBL Whipple many1ES 2344+514 0.044 2.9 HBL Whipple MAGIC

    Mkn 180 0.045 3.3 HBL MAGIC1ES 1959+650 0.047 2.4 HBL 7TA manyPKS 0548-322 0.069 HBL HESS

    BL Lac 0.069 3.6 LBL MAGICPKS 2005-489 0.071 4.0 HBL HESSPKS 2155-304 0.116 3.3 HBL Durham many1ES 1426+428 0.129 3.3 HBL Whipple HEGRA1ES 0229+200 0.139 HBL HESS

    H 2356-309 0.165 3.1 HBL HESS1ES 1218+304 0.182 3.0 HBL MAGIC VERITAS1ES 1101-232 0.186 2.9 HBL HESS1ES 0347-121 0.188 HBL HESS1ES 1011+496 0.212 4.0 HBL MAGIC

    3C 279 0.538 FSRQ MAGIC

    PG 1553 ? 4.0 HBL HESS/MAGIC

    New HBL 1ES1011+496 See the presentation by D. Mazin

    Big progress in AGN studyfrom z ~ 0.2 to z = 0.538

  • 68A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Summary

    • VHE gamma-ray emission from 3C 279 was discovered by MAGIC– New class of source FSRQ, OVV-quasar

    • The VHE flare at 100GeV was observed on 23 February in 2006 – 6 sigma below 220GeV, and 5 sigma above 220GeV

    • The survey distance is extended up to z = 0.538 by MAGIC telescope– Big jump toward the deep Universe!

    • Study of Energy spectrum– may deliver a stringent constraint on EBL and acceleration model– Analysis is ongoing; We need very careful understanding of

    systematic uncertainties in the energy determination

  • 69A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Crab nebula emission region in VHE gamma-rays

    • emission region determined by:• confinement of electrons by

    magnetic fields• synchrotron cooling times

    lower energies more extended emission region (few tens of arcseconds)

    possible hadronic component (pi0 decay) could result in a more extended emission region

    Atoyan & Aharonian

  • 70A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Crab Nebula: Differential Energy Spectrum

    • gamma-ray emission measured over two decades of energy60 GeV – 9 TeV

    • simple power-law behavior disfavored; χ²: 24/8

    • spectrum is well described by a curved power law fit; χ²: 8/7

    ( )

    TeVscmGeVE

    dEdF GeVE

    ⋅⋅⎟⎠⎞

    ⎜⎝⎛⋅=

    −−−

    2

    300/log26.031.210 1

    300106

  • 71A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Crab pulsar in optical

    verifies analysis chain

    main pulse offset by -252±64 µsto position of main pulse in radio

  • 72A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Search for pulsed Gamma-ray emission

    BackgroundExcessQ =

    Q vs. upper Size cut

    Assuming exponential cutoff of the pulsar at 30 GeV

    highest sensitivity for pulsed emission if events with Size

  • 73A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Pulsar: Broadband Emission

    Thompson et al. 1999

    • synchrotron radiation• curvature radiation• inverse Compton scattering

    radiation processes

    • no pulsar detected above ~100 GeV

    MAGIC

    spectroscopy of the cutoff would help to distinguish between theories

    spectral cutoff; challenging for experiment

  • 74A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    The GeV excess

    EGRET observed Gamma-ray flux >1GeV can not be described by SSC

    possible explanations:

    • DC gamma-ray component from the pulsar

    • enhanced Bremsstrahlungemission

    SSC-model

    GeV excess

  • 75A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    The GeV excess explained by Bremsstrahlung

    Atoyan & Aharonian 1996

    amplified Bremsstrahlung in denser regions of the nebula (knots)

    can explain the GeV excess

    could result in modified spectrum between 100 GeVand several TeV

  • 76A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin

    Crab Nebula: Spectral Index

    • observation of energy dependent spectral index

    • no deviation from SSC predictions (blue line)

    • disfavor A&A 1996

    • model A&A 1998 in agreement with measurement

    Very High Energy Gamma Ray Observations with the MAGIC Telescope�(a biased selection)The non-thermal universe in VHE gamma-raysVHE gamma-ray sources �status ICRC 2007Imaging Air Cherenkov Technique The MAGIC siteA recent view of MAGICCurrent Status of MAGICCentral Pixel for Optical MeasurementsEvent ParameterizationBackground Rejection Gamma / Hadron SeparationExtragalactic Sources: Active Galactic NucleiAttenuation of VHE -rays known extragalactic VHE-sources (19)Detection of 3C279Pulsars and �& pulsar nebulaeThe Pulsar Wind Nebula Complex�on the example of the CrabThe Crab Nebula resolved in X-RaysThe Crab-PWN: Broadband EmissionCrab Nebula: �Spectral Energy DistributionCrab Nebula: MorphologyCrab Nebula: VariabilityThe Crab Pulsar Wind Nebula ComplexGamma-Ray Emission from PulsarsCrab Pulsar in Gamma-RaysUpper limit on cutoff energyCrab Pulsar II PSR B1951+32 / CTB 80In the surroundings of PSR B1951+32PSR B1951+32 / CTB 80PSR B1951+32 PulsarEvolution of Pulsars in Binary systemsPSR B1957+20: The black widowPSR B1957+20: search for steady gamma-ray emissionPSR B1957+20: Search in orbital phaseLSI+61 303 LSI+61 303: MAGIC observationsLSI+61 303: modelsSummary and ConclusionOutlook into the FutureVery near future: This Crab seasonTrigger tests on La Palmamidterm future (2008): MAGIC IIMAGIC II Monte Carlo StudiesImproved ReconstructionImproved SensitivityNew photon detectors: The G-APDTest on La Palma with MAGICShower Signals: MPPC vs PMTLight recorded from Calibration RunsKey technological elements for MAGICData SetThe Crab Pulsar Wind Nebula3C 2793C 279 Flare in 1996SSC+EC / HadronicEBL AbsorptionMAGIC TelescopeObservation of 3C 279 with MAGICSky-map and alpha plot�on 23rd Feb 20073C279 VHE gamma-ray �light curveExtragalactic �VHE-sources (19)SummaryCrab nebula emission region �in VHE gamma-raysCrab Nebula: Differential Energy SpectrumCrab pulsar in opticalSearch for pulsed Gamma-ray emissionPulsar: Broadband Emission The GeV excessThe GeV excess explained by BremsstrahlungCrab Nebula: Spectral Index