37
Topology Verification for Isosurface Extraction Tiago Etiene Luis Gustavo Nonato Carlos Scheidegger Julien Tierny Valerio Pascucci Tom Peters Mike Kirby Cláudio Silva

Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Topology Verification for Isosurface Extraction

Tiago EtieneLuis Gustavo NonatoCarlos Scheidegger

Julien TiernyValerio Pascucci

Tom PetersMike Kirby

Cláudio Silva

Page 2: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

INTRODUCTION“The need for verifiable visualization”

Page 3: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Introduction

• Visualization is critical part of the scientific pipeline

• How can the visualization community build confidence on Algorithms & Implementationsbeing used?

Page 4: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

How to build confidence

• Consider the problem of Isosurface extraction. Common correctness tests:

– Expert analysis

– Visual comparisons

– Benchmark suites

– Comparison with “trustworthy” codes

– Simple vs. Real world data

– ….

Page 5: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Related work

• Visualization:

– “Evaluation of Visualization Software” [Globus and Uselton, 1995]

– “The Need for Verifiable Visualization” [Kirby and Silva, 2008]

• Computational Simulation Community:

– Validation & Verification [I. Babuska and J. Oden, 2004]

Page 6: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Traditional Scientific Simulation Pipeline

Physical Process

Mathematical Model

Simulation Visualization

Validation Verification

Validation – Does the mathematical model represent the physical phenomena correctly?

Verification – Does the computational model and its implementationrepresent the mathematical model accurately?

Page 7: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Scientific Simulation Pipeline by Kirby and Silva

Visualization

SimulationMathematical

Model

Verification Verification

Verification

Physical Process

Validation

Validation – Does the mathematical model represent the physical phenomena correctly?

Verification – Does the computational model and its implementationrepresent the mathematical model accurately?

Page 8: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Goal

Build tools for Topology Verification of Isosurfacesthat can be implemented by anyone willing to verify their codes

Page 9: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

VERIFICATION & VISUALIZATIONBuilding confidence through verification

Page 10: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Why verify topology?

• Do people care?

– Medical data analysis

– Numerical simulation

• Stacking complexity. Ex MC:

– “Pure MC” – fairly simple (but people still get it wrong)

– Asymptotic Decider – fairly simple + epsilon

– Chernyaev MC33 – ok, now it’s hard!

– [Your method goes here]

Page 11: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

The problem of verifying topology

• We can mathematically describe algorithm behavior

– What are algorithm limits?

– How to test limits?

– What is the proper implementation behavior?

Page 12: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Algorithm behavior

• Example: VTK Marching Cubes

• Scalar field is a distance from a curve

Page 13: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Algorithm behavior

• What are the limits of the implementation being used?

Some configurations, as shown above, has more than one way of triangulating the square or cube (green and red components). VTK always chose the red component for faces and cubes and thus it cannot reproduce a tube).

Page 14: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

The problem of verifying topology

• Implementation: What can be tested?

– Consistency:

• Informally: “no holes”

• Disk property

– Correctness:

• Informally: reproduces an underlying function/interpolant

• Topology invariants

Page 15: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Consistency Verification

• Locally, every single vertex should have a link that is a disk

Good! Bad! Bad!

Page 16: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Correctness Verification

• Verification scheme

– Compare the expected against the obtainedtopology invariant

• Euler characteristics

• Betti numbers

• Contour trees are powerful

– But, is there an easier way to test?

Page 17: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Correctness Verification

• Two possible level-sets of a trilinear field…

• … inside a single cube!

Page 18: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Verification using Stratified Morse Theory

• Euler characteristics using critical points

Boundary Interior

Given a volume date, we know all its critical points and thus we can compute the Euler characteristics.

Page 19: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Verification using Digital Surfaces

• Step 1 – User selects a grid size

Page 20: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Verification using Digital Surfaces

• Step 2 – Randomly create a scalar field

Page 21: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Verification using Digital Surfaces

• Step 3 – Create S’, a refined version of S.

No ambiguities allowed in S’. If such refinement is not possible, restart the process

Page 22: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Verification using Digital Surfaces

• Step 4 – Mark digital surface

Page 23: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Verification using Digital Surfaces

• Step 5 – Extract Betti Numbers

Compute Betti numbers of Digital Surfaces Extract mesh and compute Betti Numbers

Page 24: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Problem

• The grid should be refined until no ambiguity appears in the underlying grid. If such refinement is not possible, restart the process

• Do we systematically remove some important cases?– Complicated cases may never be

reached

– Fortunately, this does not happen!

Page 25: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Problem

• Random Sampling vs. Our method

1

10

100

1000

10000

100000

Cas

e 0

Cas

e 1

Cas

e 2

Cas

e 3.

1

Cas

e 3.

2

Cas

e 4.

1.1

Cas

e 4.

1.2

Cas

e 5

Cas

e 6.

1.1

Cas

e 6.

1.2

Cas

e 6.

2

Cas

e 7.

1

Cas

e 7.

2

Cas

e 7.

3

Cas

e 7.

4.1

Cas

e 7.

4.2

Cas

e 8

Cas

e 9

Cas

e 10

.1.1

Cas

e 10

.1.2

Cas

e 10

.2

Cas

e 1

1

Cas

e 12

.1.1

Cas

e 12

.1.2

Cas

e 12

.2

Cas

e 13

.1

Cas

e 13

.2

Cas

e 13

.3

Cas

e 13

.4

Cas

e 13

.5.1

Cas

e 13

.5.2

Random Sampling Our Method

Page 26: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

PRACTICAL RESULTSObserved implementation behavior

Page 27: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Results• Two techniques under verification:

– Lewiner’s Marching Cubes 33

– Tamal Dey and Josh’s DelIso

• Number of randomly generated scalar fields:

– 10000 for Lewiner’s MC

– 1507 for DelIso

FailedBetti 0

FailedBetti 1

Lewiner’s MC 1.14 % 1.61%

DelIso 27.0% 5.84%

Page 28: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Results

• Thomas Lewiner MC33:

Output from Isosurfacing Expected Output Trilinear surface

Page 29: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Results

• Tamal Dey and Josh’s DelIso:

– Connected components

Output from Isosurfacing Expected Output

Page 30: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Results

• Tamal Dey and Josh’s DelIso:

– Loops

Page 31: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Results

• Tamal Dey and Josh’s DelIso:

– Holes

Page 32: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

CONCLUSION & FUTURE WORKWhat we’ve learned

Page 33: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Conclusion & Future Work

• Implementation of MMS:• Easy to code test: implementation is a black box

• Future work:

– Isosurface extraction:

• Build a more complete set of manufactured solutions

– MMS in Visualization

• Streamlines computation

• Volume rendering

• Mesh simplification

Page 34: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

Thank you. Questions?

Page 35: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

References

I. Babuska and J. Oden. Verification and validation in computationalengineering and science: basic concepts. Computer Methods in AppliedMechanics and Engineering, 193(36-38):4057–4066, 2004.

J. Schreiner, C. Scheidegger, and C. Silva. High-quality extraction ofisosurfaces from regular and irregular grids. IEEE TVCG, 12(5):1205–1212, 2006.

T. K. Dey and J. A. Levine. Delaunay meshing of isosurfaces. In SMI ’07:Proceedings of the IEEE International Conference on Shape Modelingand Applications 2007, pages 241–250. IEEE Computer Society, 2007.

T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermitedata. In SIGGRAPH’02, pages 339–346. ACM, 2002.

Page 36: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

References

C. A. Dietrich, C. Scheidegger, J. Schreiner, J. L. D. Comba, L. P. Nedel,and C. Silva. Edge transformations for improving mesh quality of marchingcubes. IEEE TVCG, 15(1):150–159, 2008.

W. Lorensen and H. Cline. Marching cubes: A high resolution 3d surfaceconstruction algorithm. SIGGRAPH Comp. Graph., 21:163–169, 1987.

C. J. Roy. Review of code and solution verification procedures for computationalsimulation. J. Comput. Phys., 205(1):131–156, 2005.

S. Raman and R. Wenger. Quality isosurface mesh generation usingan extended marching cubes lookup table. Computer Graphics Forum,27(3):791–798, 2008.

Page 37: Verifiable Visualization for Isosurface Extraction · Verification using Stratified Morse Theory •Euler characteristics using critical points Boundary Interior Given a volume date,

References

A. Globus and S. Uselton. Evaluation of visualization software. SIGGRAPHComp. Graph., 29(2):41–44, 1995

R. Kirby and C. Silva. The need for verifiable visualization. IEEE ComputerGraphics and Applications, 28(5):78–83, 2008