Vedeld 2 - VIV Fatigue Calculation

Embed Size (px)

Citation preview

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    1/36

    VIV Fatigue Calculation

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    2/36

    Slide 2

    Vortex Induced Vibrations (VIV)

    Let us try to calculate the fatigue life of a span!

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    3/36

    Slide 3

    Fatigue - overview

    Strength

    Probability

    2-Design criteria

    2-Resistance

    S

    N

    4,5-Load effects

    (cyclic stresses)

    6, 7-

    Structural response

    3-Environment

    WavesCurrent

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    4/36Slide 4

    0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

    Reduced Velocity VR

    Normalised

    vibrationamplitudeA/D

    IN-LINE

    CROSS-FLOW

    U/f0D

    Summary Response Model Basic Concepts

    CF induced

    IN-LINE

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    5/36

    Slide 5

    Exercise

    Calculate the fatigue life of a 40m long free span at 300m water depth.

    0 m

    75 m

    500 m

    500 m

    100 m

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    6/36

    Slide 6

    Basic data

    Pipe dimensionsOutside diameter D 500 mm

    Wall thickness t 13.2 mm

    Operational parameters

    Operational pressure Pop 100 barg @ +30m

    Operational temperature Top ambient

    Content density cont 153 kg/m3

    Residual lay tension Heff 200 kN

    Design life Tlife 25 years

    Environment

    Weibull parameter - Shape 1.718

    Weibull parameter - Scale 0.133 m/s

    Weibull parameter - Location 0.005 m/s

    Current reference height zr

    3.0 m

    Current to pipe angle 90

    Incoming turbulence Ic 5 %

    Water depth d 300 m

    Seabed

    Medium sand

    Corrosion coating asphalt

    Thickness tcorr 6.0 mmDensity corr 1900 kg/m

    3

    Concrete coating

    Thickness tcon 50.0 mm

    Density con 2240 kg/m3

    Structural damping 0.5 %

    SN curve F1 free corrosion

    Slope parameter m 3

    Fatigue constant Log(C) 11.222

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    7/36

    Slide 7

    Practical information

    The presented information should be used for allexercises during day 1

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    8/36

    Slide 8

    VIV Load and Response

    Let us start look at the loading mechanism

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    9/36

    Slide 9

    CR

    OSS-FLOW

    In-line and Cross-flow VIV

    Flow

    IN-LINE

    IN-LINE

    CROSS-FLOW

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    10/36

    Slide 10

    Vortex shedding frequency- Strouhal number

    D

    UStfs =

    The frequency at which the

    vortices are shed from a

    fixed cylinder

    Oscillations in the lift force

    occur at the Strouhal

    frequency

    Oscillations in the drag

    force occur at twice the

    Strouhal frequency

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    11/36

    Slide 11

    Response Model - example

    Provides amplitude versus loading

    Swing different lengths

    or Pendulum

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    12/36

    Slide 12

    0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

    Reduced Velocity VR

    VibrationamplitudeA/D

    IN-LINE

    CROSS-FLOW

    U/f0D

    widthelmod

    cycleperlength

    Df

    UV

    0

    R ==

    Response Models

    CF induced

    IN-LINE

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    13/36

    Slide 13

    Lock-in phenomena - cross-flow

    the vortex shedding locks-on

    to the natural frequency

    St

    1

    Df

    U

    Df

    Uff

    s0

    s0

    ==

    =

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    14/36

    Slide 14

    Exercise Calculate Amplitude

    Given:

    - Current velocity, U = 0.6 m/s

    - Natural frequency, f0

    = 0.773 Hz

    - Reduced frequency should be used for

    calculation of reduced velocity

    - In-line Response Model (next sheet)

    Use Response Model to estimate vibration

    amplitude, A/D and fill value into spreadsheet

    1.1,0,0 == ff

    d

    ff

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    15/36

    Slide 15

    In-line Response Model

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.0 1.0 2.0 3.0 4.0 5.0

    VR

    (A

    y/D)

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    16/36

    Slide 16

    Calculation sheet

    UC

    p(UC

    ) VR,d

    AY

    /D SIL

    Ni

    =a/Sm ni

    =Tyear

    p(UC

    )f1

    ni

    /Ni

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    17/36

    Slide 17

    Challenge

    Break a wire by hand

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    18/36

    Slide 18

    Reflection

    Fatigue failure

    Relation between Stress Range and Number of cycles to failure

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    19/36

    Slide 19

    Fatigue Calculation

    Damage accumulation by Miner-Palmgren:

    Number of stress cycles:

    Number of cycles to failure by SN curve:

    =i

    ifat

    NnD

    Tf)(Pn vi =

    mii SaN

    =

    1

    10

    100

    1000

    1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

    No of cycles, N

    StressR

    ange,

    S

    NSW

    SSW

    (a1;m1)

    (a2;m2)

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    20/36

    Slide 20

    SN curve (F1 free corrosion)

    10

    100

    1000

    1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

    N

    S(MPa

    )

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    21/36

    Slide 21

    Vibration mode

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    22/36

    Slide 22

    Modal stress

    Curvature, , of free span vibratingwith a given mode 2nd derivative

    of mode

    Modal stress found by curvature

    E(D-t)/2

    Ain, modal stress for maximum mode

    amplitude = OD given by multiplying

    modal stress by OD Ain = 445 MPa (given value from FE

    analysis)

    Vibration stress range:

    S = 2 Ain

    (Ay

    /D)

    Safety factor on stress range

    3.1, == ssd SS

    Exercise Calculate Stress Range & Number

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    23/36

    Slide 23

    Ca a S a g &of Cycles to Failure

    Calculate Stress Range

    Calculate Number of cycles to failure

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    24/36

    Slide 24

    Calculation sheet

    UC

    p(UC

    ) VR,d

    AY

    /D SIL,d

    Ni

    =a/Sm ni

    =Tyear

    p(UC

    )f1

    ni

    /Ni

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6 0,00 1,40 0,05

    0,7

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    25/36

    Slide 25

    Exercise Fatigue Damage & Life

    Estimate number of stress cycles per year, n(Hint : vibration frequency = natural frequency)

    Calculate fatigue damage (per year)

    Find fatigue life (inverse of fatigue damage per year)

    Multiply with utilization factor 0.5

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    26/36

    Slide 26

    Calculation sheet

    UC

    p(UC

    ) VR,d

    AY

    /D SIL

    Ni

    =a/Sm ni

    =Tyear

    p(UC

    )f1

    ni

    /Ni

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6 0,00 1,40 0,05

    0,7

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    27/36

    Slide 27

    Reflection Current

    Will the current be constant over time (years) or vary?

    L di ib i f

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    28/36

    Slide 28

    Long-term distribution of current

    Ui(m/s)

    F(Ui) f(Ui)= Pi Exposure

    (days/year)

    0 0.00000 0 0

    0.1 0.42517 0.42517 155

    0.2 0.85220 0.42703 156

    0.3 0.97972 0.12752 47

    0.4 0.99840 0.01868 70.5 0.99992 0.0015199 1

    0.6 1.00000 7.3066E-05 0

    0.7 1.00000 2.1580E-06 0

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    29/36

    Slide 29

    Exercise Fatigue life for current distribution

    Use approach for one current flow velocity and calculate for a long-termcurrent distribution

    Find fatigue life (in years)

    C l l ti h t

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    30/36

    Slide 30

    Calculation sheet

    UC

    p(UC

    ) VR,d

    AY

    /D SIL

    Ni

    =a/Sm ni

    =Tyear

    p(UC

    )f1

    ni

    /Ni

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6 0,000073066 1,40 0,05 56,4 930793 1781 0,001913588

    0,7

    S

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    31/36

    Slide 31

    Summary

    This exercise follows the principles of VIV fatigue calculation according toDNV RP-F105

    Safety factors are included as specified Normal safety classification

    and Well defined span.

    In addition:

    - Cross-flow VIV (in a similar way)

    - Cross-flow induced Inline VIV- Direct wave load

    and a lot of details.

    R fl ti i l i i t

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    32/36

    Slide 32

    Reflection main learning points

    .

    Fatigue overview

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    33/36

    Slide 33

    Fatigue - overview

    Strength

    Probability

    2-Design criteria

    2-Resistance

    S

    N

    4,5-Load effects(cyclic stresses)

    6, 7-

    Structural response

    3-Environment

    WavesCurrent

    S R M d l B i C t

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    34/36

    Slide 34

    0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0Reduced Velocity VR

    Vib

    rationamplitude

    A/D

    IN-LINE

    CROSS-FLOW

    U/f0D

    Summary Response Model Basic Concepts

    CF induced

    IN-LINE

    Calculation sheet Results

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    35/36

    Slide 35

    Calculation sheet - Results

    UC

    p(UC

    ) VR,d

    AY

    /D SIL

    Ni

    =a/Sm ni

    =Tyear

    p(UC

    )f1

    ni

    /Ni

    0 0 0 0 0 inf 0 0

    0.1 0.42517 0.2325298 0 0 inf 10364509 0

    0.2 0.42703 0.46505961 0 0 inf 10409850 0

    0.3 0.12752 0.69758941 0 0 inf 3108597 0

    0.4 0.01868 0.93011921 0.002102086 2.44 11511283020 455368 3.95584E-05

    0.5 0.0015199 1.16264902 0.025356892 29.40 6558240 37051 0.005649549

    0.6 0.000073066 1.39517882 0.048611698 56.37 930793 1781 0.001913588

    0.7 0.000002158 1.62770862 0.071866503 83.34 288069 53 0.000182617

  • 7/31/2019 Vedeld 2 - VIV Fatigue Calculation

    36/36

    Slide 36

    http://www.dnv.com/