43
1. (a) = b  a A1 AB  = a + b A1 CB  (b) = (  b  a)•(  b + a) M1 CB AB  =  b2    a2  A1  = 0 since  b= a R1 Note: Only award the A1 and R1 if working indicates that they understand that they are working with vectors.  so is perpendicular to i.e. is a right angle AG AB CB C B ˆ A [5]  2. (a) A1A1               1 3 4 AC , 3 1 4 AB  Note: Accept row vectors.  (b) M1A1        16 16 8 1 3 4 3 1 4 AC AB  k  j i normal n = so r (M1)       2 2 1                     2 2 1 1 2 1 2 2 1  x + 2  y + 2  z  = 7 A1 Note: If attempt to solve by a system of equations: Award A1 for 3 correct equations, A1 for eliminating a variable and A2 for the correct answer.

Vectors Practice MS

Embed Size (px)

DESCRIPTION

IB Math HL Vectors Markscheme

Citation preview

Page 1: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 1/43

1.  (a) = b – a  A1AB

  = a + b  A1CB

 

(b) = ( b – a)•( b + a) M1CBAB

  = │ b│2

 – │ a│2

  A1  = 0 since │ b│=│ a│  R1

Note: Only award the A1 and R1 if working indicates that they

understand that they are working with vectors.

  so is perpendicular to i.e. is a right angle AGAB CB CBA

[5]

 

2.  (a) A1A1

 

 

 

 

 

 

 

 

1

3

4

AC,

3

1

4

AB

 Note: Accept row vectors.

 

(b) M1A1

 

 

 

 

16

16

8

134

314ACAB

 k ji

normal n = so r • (M1)

 

 

 

 

2

2

1

 

 

 

 

 

 

 

 

 

 

 

 

2

2

1

1

2

1

2

2

1

 x + 2 y + 2 z  = 7 A1

Note: If attempt to solve by a system of equations:

Award A1 for 3 correct equations, A1 for eliminating a variable

and A2 for the correct answer.

Page 2: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 2/43

(c)  r = (or equivalent) A1

 

 

 

 

 

 

 

 

2

2

1

7

3

5

 

  1(5 +  λ) + 2(3 + 2 λ) + 2(7 + 2 λ) = 7 M1

9 λ = –18 λ = –2 A1

Note:  λ = – 

 

is used.

 

 

 

 

16

16

8

if 4

1

  distance = (M1)222 2212  

= 6 A1

 

(d) (i) area = (M1)222 161682

1ACAB2

1

= 12 (accept ) A15762

1

 

(ii) EITHER

  volume = × area × height (M1)3

1

  = × 12 × 6 = 24 A13

1

  OR

  volume = M1 )ACAB(AD6

1

= 24 A1

Page 3: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 3/43

(e) 222 16168ACAB  

 

M1

614

134ADAC  

 k ji

  = │ –19i – 20 j + 16 k│  A1

  EITHER

  M1222222 161682

1162019

2

1

therefore since area of ACD bigger than area ABC implies that

B is closer to opposite face than D R1

  OR

  correct calculation of second distance as A1222 162019

144

which is smaller than 6 R1

Note: Only award final R1 in each case if the calculations are correct.[19]

 

3.  (a) = b – c, = b +  c  A1A1CB AC

Note: Condone absence of vector notation in (a).

 

(b) = ( b +  c) • ( b – c) M1CBAC

  = │ b│2 – │ c│2

  A1

  = 0 since │ b│=│ c│  R1

Note: Only award the A1 and R1 if working indicates that they understand

that they are working with vectors.

  so is perpendicular to i.e. is a right angle AGAC CB BCA

[5]

Page 4: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 4/43

4.  METHOD 1

  equation of journey of ship S 1

 r1 =  

  

 

20

10t 

equation of journey of speedboat S 2 ,setting off k  minutes later 

 r2 = M1A1A1 

  

 

 

  

 

30

60)(

30

70k t 

Note: Award M1 for perpendicular direction, A1 for speed, A1 for 

change in parameter (e.g. by using t   –  k  or T , k  being the time

difference between the departure of the ships).

  solve (M1) 

  

 

 

  

 

 

  

 

30

60)(

30

70

20

10k t t 

Note:  M  mark is for equating their two expressions.

  10t  = 70 – 60t  + 60k 

20t  = 30 + 30t   –  30k   M1

Note:  M  mark is for obtaining two equations involving two different parameters.

  7t   –  6k  = 7

 – t  + 3k  = 3

k  = A115

28

latest time is 11:52 A1

Page 5: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 5/43

  METHOD 2

  x

 y

time takent - k 

time

taken t 

S (26,52)

22 526 5

10 58

(A)

O

B (70,30)

  SB = 22  M1A15

(by perpendicular distance)

SA = 26  M1A15

(by Pythagoras or coordinates)

t  = A1510526

t – k  = A1530

522

k  = leading to latest time 11:52 A115

28

[7]

 

5.  (a)

 

 

 

 

 

 

 

 

 

 

 

 

k  z 

 y

 x

1

3

212

311

120

 

= 0 – 2( – 2 + 6) + ( – 1 + 2) = –7 M1A1

212

311

120

since determinant ≠ 0 unique solution to the system planes R1

intersect in a point AG

Note: For any method, including row reduction, leading to the explicit

solution , award M1 for an attempt at 

  

   

7

21,

7

10,

7

56 k k k 

a correct method, A1 for two correct coordinates and A1 for 

a third correct coordinate.

Page 6: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 6/43

(b)

212

311

12

a

a

a

= a((a + 1)(a + 2) – 3) – 2(–1(a + 2) + 6) + (–1 + 2(a + 1)) M1(A1)

 planes not meeting in a point no unique solution i.e. determinant = 0(M1)a(a

2 + 3a – 1) + (2a – 8) + (2a + 1) = 0

a3 + 3a2 + 3a – 7 = 0 A1

a = 1 A1[5]

 

(c) M1

21

312

4440

3121 r r 

 

 

 

 

 

(A1)312

6550

44403121 r r 

 

 

 

 

 

(A1)

23 54

44000

4440

3121 r r 

 

 

 

 

for an infinite number of solutions to exist, 4 + 4k  = 0 k  = –1 A1

   x + 2 y + z  = 3

 y +  z  = 1 M1

  A1

 

 

 

 

 

 

 

 

 

 

 

 

1

1

1

0

1

1

 

 z 

 y

 x

Note: Accept methods involving elimination.

Note: Accept any equivalent form e.g. .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

1

1

2

0

or

1

1

1

1

0

2

  

 z 

 y

 x

 z 

 y

 x

Award A0 if or r = is absent.

 

 

 

 

 z 

 y

 x

[14]

 

6.  (a)  x3 + 1 =

1

13  x

(–1.26, –1) (= (  , –1)) A13 2

 

Page 7: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 7/43

(b)  f ′(–1.259...) = 4.762... (3 × ) A13

2

2

 g ′(–1.259...) = –4.762... (–3 × ) A13

2

2

required angle = 2arctan

 

M1 

  

 

...762.4

1

  = 0.414 (accept 23.7°) A1

Note: Accept alternative methods including finding the obtuse angle first.[5]

 

7.  (a) (M1)

 

 

 

 

 

 

 

 

 z 

 y

 x

1

5

0

SR ,

3

1

1

PQ

 point S = (1, 6, –2) A1 

(b) A1

 

 

 

 

 

 

 

 

1

4

2

PS

3

1

1

PQ

 

 

 

 

 

2

7

13

PSPQ

m = – 2 A1

 

(c) area of parallelogram PQRS = M1222 )2(7)13(PSPQ  

  = = 14.9 A1222

 

(d) equation of plane is –13 x + 7 y – 2 z  = d   M1A1

substituting any of the points given gives d  = 33

 –13 x + 7 y – 2 z  = 33 A1

 

(e) equation of line is r = A1

 

 

 

 

 

 

 

 

2

7

13

0

0

0

 

Note: To get the A1 must have r = or equivalent.

Page 8: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 8/43

(f) 169 λ + 49 λ + 4 λ = 33 M1

 λ = (= 0.149...) A1222

33

closest point is (= (–1.93, 1.04, –0.297)) A1 

  

 

37

11,

74

77,

74

143

 

(g) angle between planes is the same as the angle between the normals (R1)

cos θ  = M1A16222

1227113

θ  = 143° (accept θ  = 37.4° or 2.49 radians or 0.652 radians) A1[17]

 

8.  (a) for using normal vectors (M1)

 

= 1 – 1 = 0 M1A1

 

 

 

 

 

 

 

 

1

0

1

1

2

1

hence the two planes are perpendicular AG

 

(b) METHOD 1

  EITHER

  = – 2i – 2 j – 2 k  M1A1

101

121  

 k ji

  OR

  if is normal to π 3, then

 

 

 

 

c

b

a

a + 2b  –  c = 0 and a + c = 0 M1

a solution is a = 1, b = –1, c = – 1 A1

  THEN

  π 3 has equation x – y – z  = d   (M1)

as it goes through the origin, d  = 0 so π 3 has equation x – y – z  = 0 A1

  Note: The final (M1)A1 are independent of previous working.

Page 9: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 9/43

  METHOD 2

   r = A1(A1)A1A1

 

 

 

 

 

 

 

 

 

 

 

 

1

0

1

1

2

1

0

0

0

t  s

[7]

 

9.  ( a +  b)•( a – b) = a • a +  b •  a – a • b – b •  b  M1

= a • a – b • b  A1

= | a|2 – | b|2 = 0 since | a| = | b| A1

the diagonals are perpendicular R1

Note: Accept geometric proof, awarding M1 for recognizing OACB is a

rhombus, R1 for a clear indication that ( a +  b) and ( a – b) are the

diagonals, A1 for stating that diagonals cross at right angles and

A1 for “hence dot product is zero”.

  Accept solutions using components in 2 or 3 dimensions.[4]

 

10.  (a) 2 y + 8 x = 4 M1

 –3 x + 2 y = – 7 A1

2 x + 6 – 2 x = 6

Note: Award M1 for attempt at components, A1 for two correct equations.

 No penalty for not checking the third equation.

  solving : x = 1, y = – 2 A1

 

(b) │ a + 2 b│=

 

 

 

 

 

 

 

 

 

2

2

4

2

2

3

4

=

 

 

 

 

6

7

4

 (M1)222 6)7(42     b a

= A1101

[5]

Page 10: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 10/43

11.  (a) (i) use of a • b = │ a││ b│cos θ   (M1)

 a • b = –1 (A1)

│ a│ = 7, │ b│ = 5 (A1)

cos θ  = A135

1

 

(ii) the required cross product is

 

= 18i – 24 j – 18 k  M1A1

430

236

 k ji

 

(iii) using r • n = p • n the equation of the plane is (M1)

18 x – 24 y – 18 z  = 12 (3 x  –  4 y  –  3 z  = 2) A1

 (iv) recognizing that z  = 0 (M1)

 x-intercept = , y-intercept = (A1)3

2

2

1

area = A16

1

2

1

2

1

3

2

 

  

  

  

  

  

 

 

(b) (i)  p • p = │ p││ p│cos 0 M1A1

= │ p│2  AG

 

(ii) consider the LHS, and use of result from part (i)

│ p + q│2 = ( p + q)•( p + q) M1

= p • p +  p • q + q • p + q • q  (A1)

= p • p + 2 p • q + q • q  A1

= │ p│2 + 2 p • q + │q│2

  AG

Page 11: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 11/43

(iii) EITHER

use of p • q ≤ │ p││q│  M1

so 0 ≤ | p + q|2 = │ p│2 + 2 p • q + │q│2 ≤ │ p│2 + 2│ p││q│+│q│2 A1

take square root (of these positive quantities) to establish A1

│ p + q│≤│ p│+│q│  AG

  OR

  M1M1

Note: Award M1 for correct diagram and M1 for correct labelling

of vectors including arrows.

  since the sum of any two sides of a triangle is greater than the third side,

│ p│ + │q│ > │ p + q│  A1

when p and q are collinear │ p│ + │q│ = │ p + q│  │ p + q│ ≤ │ p│ + │q│  AG

[19]

Page 12: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 12/43

12.  EITHER

  using row reduction (or attempting to eliminate a variable) M1

  132

13222

2

21

213

312

 R R

 R R

ba  

 

 

 

 

 

A15/2

22

10

2

3230

550

312

 R

ba

 

 

 

 

  Note: For an algebraic solution award A1 for two correct equations in two variables.

 

23322

2

2

3230

110

312

 R Rba  

 

 

 

 

 

 

 

 

 

82

2

2

6200

110

312

ba

  Note: Accept alternative correct row reductions.

  recognition of the need for 4 zeroes M1

so for multiple solutions a = – 3 and b = – 4 A1A1

 

OR

  M10

21

213

312

a

  2(a – 4) + (3a + 2) + 3(6 + 1) = 0

  5a + 15 = 0

  a = –3 A1

 

M10

21

213

212

b

  2(b + 4) + (3b – 2) + 2(6 + 1) = 0 A1

  5b + 20 = 0

  b = –4 A1

[5]

Page 13: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 13/43

13.  (a) EITHER

  normal to plane given by

 

M1A1

236

232

 k ji

= 12i + 8 j – 24 k  A1

equation of π  is 3 x + 2 y  –  6 z  = d   (M1)

as goes through (–2, 3, –2) so d  = 12 M1A1

π  :3 x + 2 y – 6 z  = 12 AG

  OR

   x = – 2 + 2 λ + 6 μ

 y = 3 + 3 λ – 3 μ

 z  = – 2 + 2 λ + 2 μ

  eliminating  μ

 x + 2 y = 4 + 8 λ2 y + 3 z  = 12 λ  M1A1A1

eliminating λ

3( x + 2 y) – 2(2 y + 3 z ) = 12 M1A1A1

π  : 3 x + 2 y – 6 z  = 12 AG

 

(b) therefore A(4, 0, 0), B(0, 6, 0) and C(0, 0, –2) A1A1A1

  Note: Award A1A1A0 if position vectors given instead of coordinates.

 

(c) area of base OAB = = 12 M1642

1

V  = = 8 M1A12123

1

 

(d) = 3 = 7 × 1 × cos M1A1

 

 

 

 

 

 

 

 

0

0

1

6

2

3

 

  7

3arccos 

so θ  = 90 – arccos 

= 25.4° (accept 0.443 radians) M1A17

3

 

(e) d  = 4 sin θ  = (= 1.71) (M1)A17

12

Page 14: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 14/43

(f) 8 = area = 14 M1A1 area7

12

3

1

Note: If answer to part (f) is found in an earlier part, award M1A1,

regardless of the fact that it has not come from their answers

to part (c) and part (e).[20]

 

14.  (a) use GDC or manual method to find a, b and c  (M1)

obtain a = 2, b = –  1, c = 3 (in any identifiable form) A1

 

(b) use GDC or manual method to solve second set of equations (M1)

obtain x = , z  = t  (or equivalent) (A1)2

7;

2

114 t  y

t   

 r = (accept equivalent vector forms) M1A1

 

 

 

 

 

 

 

 

1

5.3

5.5

0

0

2

  Note: Final A1 requires r = or equivalent.[6]

 

15.  (a)  a = is parallel to the line (A1)(A1)

 

 

 

 

 

 

 

 

1

2

 planetothe

1

2

4

e

  Note: Award A1 for each correct vector written down, even if not identified.

  line plane e parallel to a  

since (M1)A12

11

2

1

2

4

 

 

 

 

 

 

 

 

Page 15: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 15/43

(b) 4(3 – 2 λ) – 2 λ – = 1 (M1)(A1) 

  

     

2

11

Note: FT their value of k  as far as possible.

   λ = A17

8

 

A1 

  

 

7

3,

7

8,

7

5P

[8]

 

16.  (a) cos θ  = M1A1 

  

   

2

13sin

22

12cossincos2sin        

 b a

 ab

 

(b)  a   b  cos θ  = 0 M1  

sin 2α cos α + sin α cos 2α – 1 = 0

α = 0.524 A1 

  

 

6

π

 

(c) METHOD 1

  (M1)1sincos

12cos2sin

    

 k ji

assuming α =6

π7

Note: Allow substitution at any stage.

  A1

121

23

12

1

2

3

 k ji

=

 

 

 

 

 

 

 

 

 

  

 

2

3

2

1

2

1

2

3

2

3

2

3

2

1

2

1 k ji

= 0 A1

 a and b are parallel R1

Note: Accept decimal equivalents.

Page 16: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 16/43

  METHOD 2

  from (a) cos θ  = –1 (and sin θ  = 0) M1A1

 a ×  b = 0 A1

 a and b are parallel R1[8]

 

17.  (a) A1A1A1

 

 

 

 

 

 

 

 

 

 

 

 

1

2

0

OP and

2

1

0

ON,

2

2

1

OM

 

(b) A1A1 ,

0

1

1

MNand

1

0

1

MP

 

 

 

 

 

 

 

 

 

(M1)A1

 

 

 

 

 

 

 

 

1

1

1

011

101MNMP

 k ji

 

(c) (i) area of MNP = M1MNMP2

1

  =

 

 

 

 

1

1

1

21

  = A12

3

 

(ii)

 

 

 

 

 

 

 

 

2

2

0

OG,

0

0

2

OA

 

A1

 

 

 

 

2

2

2

AG

since AG is perpendicular to MNP R1)MNMP(2AG  

Page 17: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 17/43

(iii)  r  M1A1

 

 

 

 

 

 

 

 

 

 

 

 

1

1

1

2

2

1

1

1

1

 r  = 3 (accept – x +  y +  z  = 3) A1

 

 

 

 

1

1

1

 

(d)  r = A1

 

 

 

 

 

 

 

 

2

2

2

0

0

2

 

 

= 3 M1A1

 

 

 

 

 

 

 

   

1

1

1

2

2

22

 

 

 

 –2 + 2 λ + 2 λ + 2 λ = 3

 λ = A16

5

 r = M1

 

 

 

 

 

 

 

 

2

2

2

6

5

0

0

2

coordinates of point A1 

  

 

3

5,

3

5,

3

1

[20]

Page 18: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 18/43

18.  METHOD 1

  for finding two of the following three vectors (or their negatives)

 

(A1)(A1)

 

 

 

 

 

 

 

 

 

 

 

 

1

0

2

BC,

2

2

2

AC,

1

2

0

 AB

and calculating

  EITHER

  M1A1ACAB 

 

 

 

 

4

2

2

222

120

 k ji

area ∆ABC = M1ACAB2

1

  OR

  M1A1BCBA

 

 

 

 

4

2

2

102

120

 k ji

area ∆ABC = M1BCBA2

1

  OR

  M1A1CBCA

 

 

 

 

4

2

2

102

222

 k ji

area ∆ABC = M1CBCA2

1

  THEN

  area ∆ABC = A12

24

= AG N06

Page 19: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 19/43

  METHOD 2

  for finding two of the following three vectors (or their negatives)

 

(A1)(A1)

 

 

 

 

 

 

 

 

 

 

 

 

1

0

2

BC,

2

2

2

AC,

1

2

0

AB

  EITHER

  cos A = M1ACAB

ACAB

=  

  

 

15

3or 

60

6

125

6

sin A = A15

2

area ∆ABC = M1 AsinACAB2

1

=5

2125

2

1

= A1242

1

= AG N06

 

OR

  cos B = M1BCBA

BCBA

=5

1

55

1

sin B = A1

 

 

 

 

5

24or 

25

24

area ∆ABC = M1 BsinBCBA2

1

=25

2455

2

1

= A1242

1

= AG N06

Page 20: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 20/43

  OR

  cos C  = M1CBCA

CBCA

=   

  

153or 

606

5126

sin C  = A15

2

area ∆ABC = M1C sinCBCA2

1

=5

2512

2

1

= A124

2

1

= AG N06

 

METHOD 3

  for finding two of the following three vectors (or their negatives)

 

(A1)(A1)

 

 

 

 

 

 

 

 

 

 

 

 

1

0

2

BC,

2

2

2

AC,

1

2

0

AB

AB = M1A1abc   5BC,3212AC,5

 s = M1532

5325

area ∆ABC = ))()(( c sb sa s s  

= )3)(35)(3)(53(  

= A1)35(3  

= AG N06

Page 21: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 21/43

  METHOD 4

  for finding two of the following three vectors (or their negatives)

 

(A1)(A1)

 

 

 

 

 

 

 

 

 

 

 

 

1

0

2

BC,

2

2

2

AC,

1

2

0

AB

AB = BC = and AC = M1A15 3212 

∆ABC is isosceles

 

let M  be the midpoint of [AC], the height BM = M1235  

area ∆ABC = A12

232  

= AG N06

[6]

 

19.  (a) identifies a direction vector e.g. A1

 

 

 

 

 

 

 

 

1

1

2

BAor

1

1

2

AB

identifies the point (1, –1, 2) A1

line l 1: AG1

2

1

1

2

1  

 z  y x

 

(b)  r =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

1

3

2

1

1

1

2

2

1

1

     r

1 + 2 λ = 1 +  μ, –1 +  λ = 2 + 2 μ, 2 +  λ = 3 +  μ  (M1)

equating two of the three equations gives λ = –1 and  μ = – 2 A1A1

check in the third equation

satisfies third equation therefore the lines intersect R1

therefore coordinates of intersection are (–1, –2, 1) A1

 

Page 22: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 22/43

(c)  d 1 = 2i +  j +  k, d 2 = i + 2 j +  k  A1

 d 1 × d 2 = = – i – j + 3 k  M1A1

121

112

 k ji

  Note: Accept scalar multiples of above vectors.

 

(d) equation of plane is –  x  –   y + 3 z  = k   M1A1

contains (1, 2, 3) (or (–1, –2, 1) or (1, –1, 2)) k  = –1 – 2 + 3 × 3 = 6 A1

 –  x  –   y + 3 z  = 6 AG

 

(e) direction vector of the perpendicular line is (M1)

 

 

 

 

3

1

1

 r = A1

 

 

 

 

 

 

 

 

3

11

4

13

m

  Note: Award A0 if r omitted.

 

(f) (i) find point where line meets plane

 –(3 – m) – (1 – m) + 3( – 4 + 3m) = 6 M1

m = 2 A1

 point of intersection is (1, –1, 2) A1

 

(ii) for T′, m = 4 (M1)

so T′ = (–1, –3, 8) A1

 

(iii) (M1)222 8)4(3)(11)(3TT  

= A1)114(176  

[22]

Page 23: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 23/43

20.  consider a vector parallel to each line,

  e.g. u = A1A1

 

 

 

 

 

 

 

 

1

3

3

 and

1

2

4

v

let θ  be the angle between the lines

cos θ  = M1A11921

1612  

vu

vu

= = 0.350... (A1)1921

7

so 0 = 69.5° A1 N4

 

 

 

  

  

 

1921

7arccosorrad1.21or

Note: Allow FT from incorrect reasonable vectors.

[6]

 

21.  (a) let A = (M1)

 

 

 

 

 

 

 

 

 

 

 

 

5

2

2

 and,

415

312

211

 B X 

 z 

 y

 x

 point of intersection is (or (0.917, 0.583, 0.25)) A1 

  

 

4

1,

12

7,

12

11

 (b) METHOD 1

(i) det

 

M10

15

312

211

 

 

 

 

a

 – 3a + 24 = 0 (A1)

a = 8 A1 N1

 

(ii) consider the augmented matrix M1

 

 

 

 

5

2

2

815

312

211

use row reduction to obtain

 

 

 

 

 

 

 

 

1

0

0

000

10

01

or 

1

2

2

000

130

211

31

35

(or equivalent) A1

any valid reason R1

(e.g. as the last row is not all zeros, the planes do not meet) N0

Page 24: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 24/43

  METHOD 2

  use of row reduction (or equivalent manipulation of equations) M1

e.g. A1A1

 

 

 

 

 

 

 

 

5

2

2

1060

130

211

5

2

2

15

312

211

aa

  Note: Award an A1 for each correctly reduced row.

 

(i) a – 10 = – 2 a = 8 M1A1 N1

 

(ii) when a = 8, row 3 ≠ 2 × row 2 R1 N0[8]

 

22.  (a) = i + 2 j – k  (M1)OP

the coordinates of P are (1, 2, –1) A1

 

(b) EITHER

   x = 1 + t , y = 2 – 2t , z  = 3t – 1 M1

 x – 1 = t , A1t  z 

t  y

3

1,

2

2

 x – 1 = AG N03

1

2

2  

 z  y

  OR

  M1A1

 

 

 

 

 

 

 

 

 

 

 

 

3

2

1

1

2

1

 z 

 y

 x

 x – 1 = AG3

1

2

2  

 z  y

 

(c) (i) 2(1 + t ) + (2 – 2t ) + (3t  – 1) = 6 t  = 1 M1A1 N1

 

(ii) coordinates are (2, 0, 2) A1

  Note: Award A0 for position vector.

 

(iii) distance travelled is the distance between the two points (M1)

 (= 3.74) (M1)A114)12()20()12( 222

Page 25: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 25/43

(d) (i) distance from Q to the origin is given by

d (t ) = (or equivalent) M1A12224 )1()1( t t t   

e.g. for labelled sketch of graph of d  or d 2  (M1)(A1)

 

the minimum value is obtained for t  = 0.761 A1 N3

 

(ii) the coordinates are (0.579, 0.239, 0.421) A1

  Note: Accept answers given as a position vector.

 

(e) (i) (M1)A1

 

 

 

 

 

 

 

 

 

 

 

 

3

1

4

 and

0

0

1

,

1

1

0

 c b a

substituting in the equation a – b = k ( b – c), we have (M1)

 

A1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

1

3

1

1

1

3

1

4

0

0

1

0

0

1

1

1

0

k k 

 which is impossible

3

1 and1   k k 

so there is no solution for k   R1

 

(ii) are not parallel R2CBandBA

(hence A, B, and C cannot be collinear)

  Note: Only accept answers that follow from part (i).

[23]

Page 26: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 26/43

23.  direction vector for line = or any multiple A1 

  

 

1

1

 

M101

1

sin1

sin2

 

  

 

 

  

 

   

 

2 sin θ  – 1 + sin θ  = 0 A1

  Note: Allow FT on candidate’s direction vector just for line above only.

  3 sin θ  = 1

sin θ  = A13

1

θ  = 0.340 or 19.5° A1

  Note: A coordinate geometry method using perpendicular gradients is acceptable.[5]

 

24.  EITHER

  l  goes through the point (1, 3, 6), and the plane contains A(4, –2, 5)

the vector containing these two points is on the plane, i.e.

 

(M1)A1

 

 

 

 

 

 

 

 

 

 

 

 

1

5

3

5

2

4

6

3

1

 

= 7i + 4 j +  k  M1A1

153

121

1

5

3

1

2

1

 

 

 

 

 

 

 

 

  k ji

 

(M1)25

1

4

7

5

2

4

 

 

 

 

 

 

 

 

hence, Cartesian equation of the plane is 7 x + 4 y + z  = 25 A1

Page 27: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 27/43

  OR

  finding a third point M1

e.g. (0, 5, 5) A1

three points are (1, 3, 6), (4, –2, 5), (0, 5, 5)

equation is ax + by + cz  = 1

system of equationsa + 3b + 6c = 1 M1

4a – 2b + 5c = 1

5b + 5c = 1

a = , from GDC M1A125

1,

25

4,

25

7 cb

so A1125

1

25

4

25

7  z  y x

or 7 x + 4 y + z  = 25[6]

 

25.  (a) on l 1  A(–3 + 3 λ, –4 + 2 λ, 6 – 2 λ) A1

on l 2  l 2 : r = (M1)

 

 

 

 

 

 

 

 

1

4

3

3

7

4

 

  B(4 – 3 μ, –7 + 4 μ, – 3 –  μ) A1

  (M1)A1BA

 

 

 

 

92

342

733

  

  

  

 b a

Page 28: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 28/43

  EITHER

  BA

 

0

2

2

3

BA1  

 

 

 

 

  3(3 λ + 3 μ – 7) + 2(2 λ – 4 μ + 3) – 2(–2 λ +  μ + 9) = 0 M1

  17 λ –  μ = 33 A1

BA

 

0

1

4

3

BA2  

 

 

 

 

   –3(3 λ + 3 μ – 7) + 4(2 λ – 4 μ + 3) – 2(–2 λ +  μ + 9) = 0 M1

   λ – 26 μ = –24 A1

  solving both equations above simultaneously gives

 λ = 2;  μ = 1 A(3, 0, 2), B(1, –3, –4) A1A1A1A1

  OR

  = 6i + 9 j + 18 k  M1A1

143

223

 k ji

so M1A1AB

 

 

 

 

 

 

 

 

92

342

733

6

3

2

  

  

  

 p

3 λ + 3 μ – 2 p = 7

2 λ – 4 μ – 3 p = – 3

 –2 λ +  μ – 6 p = –9

 λ = 2,  μ = 1, p = 1 A1A1

A(–3 + 6, –4 + 4, 6 – 4) = (3, 0, 2) A1

B(4 – 3, –7 + 4, –3 – 1) = (1, –3, –4) A1

 

(b) AB = (A1)

 

 

 

 

 

 

 

 

 

 

 

 

6

3

2

2

0

3

4

3

1

|AB| = = 7 M1A149)6()3()2( 222

Page 29: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 29/43

(c) from (b) 2i + 3 j + 6 k is normal to both lines

l 1 goes through (–3, –4, 6) = 18 M1A1

 

 

 

 

 

 

 

 

6

3

2

6

4

3

hence, the Cartesian equation of the plane through l 1, but not l 2,is 2 x + 3 y + 6 z  = 18 A1

[19]

 

26.  (a) (i) METHOD 1

  = b   a = (A1)

AB

 

 

 

 

 

 

 

 

 

 

 

 

110

211

321

  = c   a =

 

(A1)AC  

  

  

  

  

  

112

211

103

    = M1

AB

AC112110

 k ji

  = i (1 + 1)   j(0  2) + k (0  2) (A1)

  = 2 j  2 k  A1

Area of triangle ABC = sq. units M1A1 28

2

122

2

1   k j

Note: Allow FT on final A1.

Page 30: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 30/43

METHOD 2

 A1A1A16AC,12BC,2AB  

Using cosine rule, e.g. on M1C ˆ

cos C  = A13

22

722

2126

 M1C ab sin

2

1ABCArea  

  =

 

 

 

 

3

22arccossin612

2

1

  = A1 2

3

22arccossin23  

 

 

 

 

Note: Allow FT on final A1.

 

(ii) AB = A12

  = equals the shortest distance (M1)2 hhh ,22

1AB

2

1

 h = 2 A1

 

(iii) METHOD 1

  has form r •

 

(M1)d 

 

 

 

 

2

2

0

 

Since (1, 1, 2) is on the plane

d  = •

 

M1A1

 

 

 

 

2

1

1

242

2

2

1

 

 

 

 

Hence r •

 

= 2

 

 

 

 

2

2

0

2 y  2 z  = 2 (or y   z  = 1) A1

Page 31: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 31/43

METHOD 2

 r = (M1)

 

 

 

 

 

 

 

 

 

 

 

 

1

1

2

1

1

0

2

1

1

 μ λ

 x = 1 + 2   (i)

 y = 1 +       (ii)

 z  = 2 +       (iii) A1

Note: Award A1 for all three correct, A0 otherwise.

 

From (i)   =2

1 x

substitute in (ii) y = 1 +       

    

2

1 x

   = y  1 +  

  

   

2

1 x

substitute   and   in (iii) M1

  z  = 2 + y  1 +  

  

   

 

  

   

2

1

2

1  x x

  y   z  = 1 A1 

(b) (i) The equation of OD is

 r =  

 

M1

 

 

 

 

 

 

 

 

 

 

 

 

1

1

0

or ,

2

2

0

 λ r

This meets   where

2  + 2  = 1 (M1)

  = A14

1

Coordinates of D are A1 

  

 

2

1,

2

1,0

(ii) (M1)A12

1

2

1

2

10OD

22

 

  

 

 

  

 

[20]

 

Page 32: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 32/43

27.  METHOD 1

Use of | a   b | = | a | | b | sin   (M1)

| a   b |2 = | a |2 | b |2 sin2   (A1)

Note: Only one of the first two marks can  be implied.

  = | a |2

 | b |2

(1  cos2

 ) A1

  = | a |2 | b |

2  | a |

2 | b |

2 cos

2   (A1)

  = | a |2 | b |

2  (| a | | b | cos )

2  (A1)

Note: Only one of the above two A1 marks can  be implied.

  = | a |2 | b |2  ( a • b)2  A1

Hence LHS = RHS AG N0

 

METHOD 2

Use of a • b = | a | | b | cos   (M1)

| a |2 | b |2  ( a • b)2 = | a |2 | b |2  (| a | | b | cos )2  (A1)

  = | a |2 | b |2  | a |2 | b |2 cos2   (A1)

Note: Only one of the above two A1 marks can be implied.

  = | a |2 | b |2 (1  cos2 ) A1

  = | a |2 | b |2 sin2   A1

  = | a   b |2  A1

 

Hence LHS = RHS AG N0

Notes: Candidates who independently correctlysimplify both sides

 and show that LHS = RHS should be awarded full marks.

 If the candidate starts off with expression that they are trying to

 prove and concludes that sin2 = (1  cos

2) award M1A1A1A1A0A0.

 If the candidate uses two general 3D vectors and explicitly finds

 the expressions correctly award full marks. Use of 2D vectors

 gains a maximum of 2 marks.

 If two specific vectors are used no marks are gained.[6]

Page 33: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 33/43

28.  (a) Use of cos  = (M1)

ABOA

ABOA

  = i   j + k  A1

AB

 

= and = A1

AB 3

OA 23

  = 6 A1

ABOA

substituting gives cos  = or equivalent M1 N1

 

 

 

 

3

6

6

2

 

(b)  L1: r = + s  or equivalent (M1)

OA

AB

 L1: r = i   j + 4 k + s(i   j + k) or equivalent A1

Note: Award (M1)A0 for omitting “r =” in the final answer.

 

(c) Equating components and forming equations involving s and t   (M1)

1 + s = 2 + 2t , 1   s = 4 + t , 4 + s = 7 + 3t 

Having two of the above three equations A1A1

Attempting to solve for s or t   (M1)

Finding either s = 3 or t  = 2 A1Explicitly showing that these values satisfy the third equation R1

Point of intersection is (2, 2, 1) A1 N1

Note: Position vector is not acceptable for final A1.

 

(d) METHOD 1

 r = (A1)

 

 

 

 

 

 

 

 

 

 

 

 

3

3

3

3

1

2

4

1

1

  

 x = 1 + 2   3 , y = 1 +   + 3  and z  = 4 + 3   3   M1A1

Elimination of the parameters M1

   x + y = 3  so 4( x + y) = 12  and y + z  = 4  + 3

so 3( y + z ) = 12  + 9

3( y + z ) = 4( x + y) + 9 A1

Cartesian equation of plane is 4 x + y  3 z  = 9 (or equivalent) A1 N1

Page 34: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 34/43

METHOD 2

EITHER

The point (2, 4, 7) lies on the plane.

  The vector joining (2, 4, 7) and (1,  1, 4) and 2i + j + 3 k

are parallel to the plane. So they are perpendicular to thenormal to the plane.

(i   j + 4 k)  (2i + 4 j + 7 k) =  i  5 j  3 k  (A1)

 

M1

312

351  

 k ji

 n

  =  12i  3 j + 9 k  or equivalent parallel vector A1

 

OR

 L1 and L2 intersect at D (2, 2,1)

  = (2i + 2 j + k)  (i   j + 4 k) = 3i + 3 j  3 k  (A1)

AD

 

M1

333

312

 k ji

 n

  = 12i  3 j + 9 k  or equivalent parallel vector A1

 THEN

 r • n = (i   j + 4 k) • (12i  3 j + 9 k) M1

  = 27 A1

Cartesian equation of plane is 4 x + y  3 z  = 9 (or equivalent) A1 N1[20]

Page 35: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 35/43

29.  The normal vector to the plane is (A1).

2

3

1

 

 

 

 

EITHER

  is the angle between the line and the normal to the plane.

 

(M1)A1A1 

  

 

 

 

 

 

 

 

 

 

67

3

2114

3

2114

2

3

1

2

1

4

cosθ 

    = 79.9 (= 1.394 ...) A1

The required angle is 10.1 (= 0.176) A1

 

OR

  is the angle between the line and the plane.

 

(M1)A1A12114

3

2114

2

3

1

2

1

4

sin  

 

 

 

 

 

 

 

 

 

  = 10.1  (= 0.176) A2[6]

 

30.  METHOD 1

(from GDC)

 

(M1)

 

 

 

 

0

6

112

1

000

3

210

6

101

 A1

12

1

6

1   λ x

 A1

6

1

3

2   λ y

 r = A1A1A1 N3 

  

 

 

  

    k ji ji

3

2

6

1

6

1

12

Page 36: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 36/43

METHOD 2

(Elimination method either for equations or row reduction of matrix)

Eliminating one of the variables M1A1

Finding a point on the line (M1)A1

Finding the direction of the line M1

The vector equation of the line A1 N3[6]

 

31.  = c – bBC

  = a – cCA

   a • ( c – b) = 0 M1

and b • ( a – c) = 0 M1

  a • c = a • b  A1

and a • b = b • c  A1

   a • c = b •  c  M1

   b • c – a • c = 0

 c • ( b – a) = 0 A1

  is perpendicular to , as b ≠ a.  AGOC AB

[6]

 

32.   a •  b = │ a││ b│cos θ   (M1)

 a • b = = 7 + 3m  A1

 

 

 

 

 

 

 

 

m

2

3

3

2

1

 A121314 m   b a

  30cos1314cos 2m  b a

7 + 3m = cos 30° A121314 m

m = 2.27, m = 25.7 A1A1[6]

Page 37: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 37/43

33.  (a) M1

 

 

 

   

5705

4213

321 k 

 R1 – 2 R2

 

(A1)

 

 

 

   

5705

42138705 k 

 R1 + R3

 

(A1)

 

 

 

   

5705

4213

3000 k 

Hence no solutions if k   , k  ≠ 3 A1

 

(b) Two planes meet in a line and the third plane is parallel to that line. A1[5]

 

34.  (a)  x = 3 + 2m

 y = 2 – m

 z  = 7 + 2m  A1

   x = 1 + 4n

 y = 4 – n

 z  = 2 + n  A1 

(b) 3 + 2m = 1 + 4n  2m – 4n = –  2(i)

2 – m = 4 – n  m – n = –2(ii) M1

7 + 2m = 2 + n  2m – n = – 5(iii)

(iii) – (ii) m = –3 A1

  n = –1 A1

Substitute in (i), – 6 + 4 = – 2. Hence lines intersect. R1

Point of intersection A is (–3, 5, 1) A1

Page 38: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 38/43

(c) M1A1

 

 

 

 

2

6

1

114

212

 k ji

 r • (M1)

 

 

 

 

 

 

 

 

 

 

 

 

2

61

7

23

2

61

 r • = 29

 

 

 

 

2

6

1

 x + 6 y + 2 z  = 29 A1

  Note: Award M1A0 if answer is not in Cartesian form.

 

(d)  x = –8 + 3 λ

 y = – 3 + 8 λ  (M1)

 z  = 2 λ

Substitute in equation of plane.

 –8 + 3 λ – 18 + 48 λ + 4 λ = 29 M1

55 λ = 55

 λ = 1 A1

Coordinates of B are (–5, 5, 2) A1

 

(e) Coordinates of C are (A1) 

  

 

2

3,5,4

 r = M1A1

 

 

 

 

 

 

 

 

2

6

1

2

3

5

4

 

  Note: Award M1A0 unless candidate writes r = or

 

 

 

 

 z 

 y

 x

[18]

Page 39: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 39/43

35.  EITHER

  Let s be the distance from the origin to a point on the line, then

 s2 = (1 –  λ)2 + (2 – 3 λ)2 + 4 (M1)

  = 10 λ2 – 14 λ + 9 A1

 = 20 λ – 14 A1

 d)d(

2

 s

For minimum A110

7,0

d

)d( 2

    

 s

 

OR

  The position vector for the point nearest to the origin is perpendicular to

the direction of the line. At that point:

 

= 0 (M1)A1

 

 

 

 

 

 

 

 

03

1

232

1

 

 

Therefore, 10 λ – 7 = 0 A1

Therefore, λ = A110

7

 

THEN

   x = (A1)(A1)10

1,

10

3 y

The point is . N3  

     2,

10

1,

10

3

[6]

Page 40: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 40/43

36.  (a)

M1

  (M1)

  M1

When a = – 1 the augmented matrix is

  A1Hence the system is inconsistent a ≠  – 1 R1

 

(b) When a ≠  – 1, ( –a – 1) z  = 9 – a2

(a + 1) z  = a2 – 9

 M1A1

1

92

a

a z 

2 y – z  = 0 M1A1)1(2

9

2

1 2

a

a z  y

 x = – 3 y + z  = M1A1)1(2

9

)1(2

)9(2

)1(2

)9(3 222

a

a

a

a

a

a

The unique solution is when a ≠ –1 

  

 

1

9,

)1(2

9,

)1(2

9 222

a

a

a

a

a

a

 

(c) 2 – a = 1 a = 1 M1

 

or (2, –2, –4) A1 

  

 

2

8,

4

8,

4

8issolutionThe

[13]

 

37.  (a) = – i  –  3 j + k, = i + j  A1A1AB BC

Page 41: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 41/43

(b) M1

011

131BCAB  

 k ji

= – i + j + 2 k  A1

 

(c) Area of ∆ABC = │ – i + j + 2 k│  M1A12

1

= 4112

1

= A12

6

 

(d) A normal to the plane is given by n = = – i +  j + 2 k  (M1)BCABTherefore, the equation of the plane is of the form –  x +  y + 2 z  = g 

and since the plane contains A, then –1 + 2 + 2 =  g    g  = 3. M1

Hence, an equation of the plane is –  x +  y + 2 z  = 3. A1

 

(e) Vector n above is parallel to the required line.

  Therefore, x = 2 – t   A1

   y = –  1 + t   A1

   z  = – 6 + 2t   A1

 

(f)  x = 2 – t 

 y = – 1 + t 

 z  = – 6 + 2t 

 –  x + y + 2 z  = 3

 –2 + t   –  1 + t   –  12 + 4t  = 3 M1A1

 –15 + 6t  = 3

6t  = 18

t  = 3 A1

Point of intersection (–1, 2, 0) A1

 

(g) Distance = (M1)A154633 222

 

(h) Unit vector in the direction of n is e = (M1) n n

1

= (– i + j + 2 k) A16

1

  Note: –e is also acceptable.

Page 42: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 42/43

(i) Point of intersection of L and P  is (–1, 2, 0).

 

(M1)A1

 

 

 

 

6

3

3

DE

 

M1

 

 

 

 

6

33

EF

  coordinates of F are (–4, 5, 6) A1

[25]

 

38.  (a)  L1 : x = 2 +  λ; y = 2 + 3 λ; z  = 3 +  λ  (A1)

 L2 : x = 2 +  µ;  y = 3 + 4 µ; z  = 4 + 2 µ  (A1)

At the point of intersection (M1)2 +  λ = 2 +  µ  (1)

2 + 3 λ = 3 + 4 µ  (2)

3 +  λ = 4 + 2 µ  (3)

From (1),  λ = µ  A1

Substituting in (2), 2 + 3 λ = 3 + 4 λ

   λ = µ = –1 A1

We need to show that these values satisfy (3). (M1)

They do because LHS = RHS = 2; therefore the lines intersect. R1

So P is (1, –1, 2). A1 N3

 

(b) The normal to Π  is normal to both lines. It is therefore given bythe vector product of the two direction vectors.

Therefore, normal vector is given by M1A1

 

 

 

 

241

131

 k ji

= 2i – j +  k  A2

The Cartesian equation of Π  is 2 x  –   y +  z = 2 + 1 + 2 (M1)

i.e. 2 x – y +  z  = 5 A1 N2

Page 43: Vectors Practice MS

7/17/2019 Vectors Practice MS

http://slidepdf.com/reader/full/vectors-practice-ms 43/43

(c) The midpoint M of [PQ] is . M1A1 

  

 

2

5,

2

3,2

The direction of is the same as the normal to  Π , i.e. 2i  –   j +  k  (R1)MS

The coordinates of a general point R on are thereforeMS

 

(M1) 

  

       

2

5,

2

3,22

It follows that = (1 + 2 λ)i + A1A1A1PR    k j    

  

 

 

  

      

2

1

2

5

At S, length of is 3, i.e. (M1)PR 

(1 + 2 λ)2 + A19

2

1

2

522

 

  

 

 

  

      

1 + 4 λ + 4 λ2 + – 5 λ +  λ2 + +  λ +  λ2 = 9 (A1)

4

25

4

1

  6 λ2 = A1

4

6

 λ = A12

1

Substituting these values, (M1)

the possible positions of S are (3, 1, 3) and (1, 2, 2) A1A1 N2[29]

 

39.  (a) Finding correct vectors A1A1

 

 

 

 

 

 

 

 

1

1

3

AC

1

3

4

AB

Substituting correctly in scalar product = 4(–3) + 3(1) – 1(1) A1ACAB

  = –10 AG N0

 

(b) (A1)(A1)11AC26AB  

Attempting to use scalar product formula, M11126

10

CAˆ

Bcos

 

= –0.591 (to 3 s.f.) A1

  = 126° A1 N3CAB

[8]