135
DE91 013349 The DataShoP: A Database of \Veak-ShockConstitutive Data !!439 A18F~OGL0sAla..S,New.exi. & ~ LosAlamosNationalLaboratory ,f*./.+ “;,~ ,,, i.1.0 .,, ., ..; , ,~ - J I.* L,...>,.., ,,.-

Veak-ShockConstitutive Data - Sciencemadness

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Veak-ShockConstitutive Data - Sciencemadness

DE91 013349

The DataShoP: A Database of\Veak-ShockConstitutive Data

!!439A18F~OGL0sAla..S,New.exi.&~ Los Alamos NationalLaboratory

,f*./.+“;,~ ,,,i.1..0“.,, ., . .; , ,~ - JI.* L,...>,..,,,.-

ABOUT THIS REPORT
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images. For additional information or comments, contact: Library Without Walls Project Los Alamos National Laboratory Research Library Los Alamos, NM 87544 Phone: (505)667-4448 E-mail: [email protected]
Page 2: Veak-ShockConstitutive Data - Sciencemadness

Contents

ABSTWCT........ ......................................................................................... 1I. INTRODUCTION ...................................................................

h~ETHODOF DATAAN.~iLYSIS2

H. ............................................ 3A. Wallace’~Weak-Shock..kalysis ........................................... 3B. Wu~dowReflectionstid Fke&kfaceReflections . . . . . . . . . 7

HI, ERROR ANALYSIS................................................................. 10IV. RESULTS................................................................................ 13

A. Constitutive Data and Error Analysisfor 6061T6Al............ 13B. Chstitutive Data and Error Analysisfor Beryllium............ 15C. Constitutive Data and Error Analysisfor Bismuth .............. 17D. Constitut.iveData and Error Analysisfor Copper . . . . . . . . 19E. Comtitutive Data and Error Analysisfor Iron . . . . . . . . . . . 22F. CkmstitutiveData and Error Analysisfor

21-69 Stainless Steel . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 24G. Constitutive Data and Error Analysisfor Uranium .............. 27H. CkmstitutiveData and Error Analysisfor Vanadium ............ 29

v. STRAIN-PATE MODELING................................................... 31ACKNOWLEDGMENT............................................................................. 32REFERENCES ............................................................................................ 33FIGURES, RESULTSFOR EACH METAL:Particle velocity. ..................... 38

Strains, Stresses, Plastic Strain RateA. Figures 2- 8: 6061T6Al ...................................................... 38B. Figures 9- 15: Beryllium ..................................................... 45C. Figures 16- 22: Bismuth ..................................................... 52D. Figures 23- 29: Copper .................................................... .. 59E. Figures 30- 36: Iron ............................................................ 66F. Figures 37- 43: 21-69 Stainless Steeel ................................. 73G. Figures 44- 50: Uranium ..................................................... 80H. Figures 51- 57: Vanadium ................................................... 87

APPENDIX A: FORTRANSubroutine for Iknding DataShoP Data Files....; 94APPENDIX B: Data Listings by Material and Shot Number......................... 95

Page 3: Veak-ShockConstitutive Data - Sciencemadness

The DataShoP: A Database of Weak-ShockConstitutive Data

byD. L. Tonks

ABSTRACT

Experimental velocityprofilesfor weakshock wavesof a variety of metals. .are analyzed to det.em-inethe piastic strain, plastic strain rate, and devi-atoric stress through the shock front. (A weak shock wave is one that. isnot. ~’etoverdriven, i.e. it. has an elastic precursor.) A steady-wave weakshock analysis is used for most of the data. In some cases a numericalcharacteristics-codecalculation is used to correct for reflectionscreated whenthe steady wavepasses through a sampbvindow interface or reflectsfrom afree surface. (The effectsof asampl~window interfaceare rninorfor windowscloselymatched in impeckmceto the sample.) The data are collected herein the form of the Data%GP database: Data (from) Shockwave) Profiles).The data are presented in the fom~of both figures and tables. The tablesare available on request on a floppy disk, The collection of data here is arepository of basic material high-strain-rate information for the modeler ortheorist. Wave propagation calculations and other such analysis have al-ready been performed leaving the user free to concentrate on questions ofbasic material behavior.

1

Page 4: Veak-ShockConstitutive Data - Sciencemadness

I. Introduction

Particle velocit}.profilemeasurements are now a~a.ilablefor a nundwr ofmaterials.1 These measurements use the laser intexfcrometer to dcterntinethe particle velocitiesof weak shock wavm as these wavesreflect frtml a freesurfa{.eor enter a windowt.ran.sparent.to the laser beam.

These measurementsare important for determining the elastic-plasticbe-havior of materials at high strain rates. Strain rates up to 107/s are mea-surable with this technique, whilemore conventionalmechanical testing ma-chines, such as the Hopkin.sonbar, achieve strain rates OXIIJPup to aboutlo~/s.

.Asuperior method for analj.zing weak shock wnes is the stead}”-wav(*anal~’sisof \\’allace.z’3 This method utilizes a complete t.henuoelastic de-scription of solids including third-order elastic constants and entrop~’contri-butions to stresses. The effectsof these quantit~ are often large.3

For the plastic-rise portion of the shock, the }Wdlacemethod assumes astead?.wave.i.e. one whichmoveswithout changing in shape. Steady shock\\a\’es interacting with a transparent windo~~’are no longer quite steady,howe~”~r,but contain reflectionsdue to samplewindow impedance mismatch.These reflectionsare easily corrected for, how-ever,if the impedance match isa good ~xleo~

The purpose of this report is to analyze availableprofiledata and presentthe extracted materials-behaviorin thefoml of the DataShoP database: Data(from) Shockwave) Profiles). Wallace’smethod for steady wavesis used twgether with occasionalwavecode calculations to correct f;r windowand freesurface reflections. Most of the data are from %regleand Grady,l Wise andNf.ikkola?and ChhaMMasand Hills! Exept for the uranium and stainlesssteel data, these %ndia data as reported here havebeen correctd for windowreflectionsusing their methods. For 21-6-9stainless steel, windowreflectionshave been corrected for b~’Ttmkst in a wq” includingstrain-rate effects. Theuranium data and that of the 30-kbar series for copper by Warms have beencorrected b-j’Tcmksfor free surfam reflections.

The results ~~illbe given in the form of the ini[iai in //i//~ stm+wavevelocityprofile together with the normal stress, dwiatoric stress, and plasticstrain through the shock front. These quantities arc given for earh matmialstudied in the form of figuresand tables. The tables are availableon a floppydisk by rcques~from the author.

The task of understanding the underlying high-strain-rate material he-kivior has hem greatl-ysimplifiedfor materials researchersby the work here.All waveanalysis and running of codes to extract rrmterialinformation fromra~~”data has been taken care of freeing the materials researcher to concen-

2

Page 5: Veak-ShockConstitutive Data - Sciencemadness

trate on the ba<icIuaterial behavior,.4 description of }Vallace’ssteady wm’eanalj’sis and of the wa~e-code

calculaticu~sused for anal~’sisof the data is given in Section II. The erroranalysis is discussedin Section III.

The resul~.>for each material in graphical fom~,together with error analy-sis tables, are given and discussed in Section 11’.Power law fits to the dataare gil-enin Section l’. .~ppendix A contains a FORTRAN subroutine thatc.a.nbe used to read the DataShoP digital files into a FORTRAN program..~ppendix B contains listings of the filesthemsehvs.

II. Method of Data Analysis

Most of the best quality shock-wavedata available are in the form of\T3.4R profilesof particle velocit}rversus time at a sampkwindu~- intmfamor at a free surface. These are the sort of data studied here. The task isto extract from this data the total and deviatoric stresses and strains. Thisinformation. together with its timing, presents a picture of the plastic flowthrough the shock front..

A weak shock analysis due to M’allacewas used to analyze most of thedata. For some of the data. additional wave code calculations were doneto account for reflectionsat windowsor free siu-faces.(The rest of the datawerecorrectedat Sandiafor winch’ reflections.) This sectioncontainsa briefsurvel’of Wdace’s weakshock anal~”sisand the wavecode calculationsusedin conductionwith it., 1<also describes the author’s method of estimating thethird-order elastic constants when only pressure deri~ati~w of the bulk andshear rnoduli are lmm n.

A. Wallace’s Weak-Shock Analysis

The Mea.kshockanal~’sisof \Vallace2’3is based on a therrnoelast.icdescription for solids together with an integration of the equations of motion. It isused to extract horn experimental particle velocity data the plastic strainand de~tiatoricstress through the shock front. This information, tog~therwith the time record, can then be used to study the strain-rate plasticity,This thermoplastic description, given in Fiefs. 2 and 3, applies to isotropicsolids. i.e. polycrystalline materials.

The them~oelasticdescription irn’elvesan expansion of the total normalstress, o, and of the deviatoric stress, ~, to include terms up to second orderin the plastic strain, @,and the total normal compression,c.

The normal compression. c, is 1 – pa/p, where pa and p are the initialand current densities, respectively. T4e plastic strain, ~, can be defined in

3

Page 6: Veak-ShockConstitutive Data - Sciencemadness

t~rmsof e and 6;.,- the infh.itesimal elastic strain component in the shockdirecticn, x:

6;1 = 111(1– e)+ //’.

One can further defile @in term.. of the yy- ancl zz.components of the in-finitesimalelastic strain tensor as follows:

The plastic strain is, thus, “equaland opposite” to the two deviatolic elasticstrains. The three together maintain the !ateral dimensions constant.. Thisand the other above relations are i~uposedby the uniaxial-strain condition.The strains are to be regankd as small and referred to the initial confibwa-tion. Tbe nomal stress. o, is definedto be positive in compression. It equals– ~==,the xx-ron:]xmentof the Kirchoffstress tensor. The deviatoric stress~, can be defined in teniIs of the yy- and ZZ-components of the Kirchoffstress tensor as follows:

The second-orderequation..mentioned above for o and T are the following:

o = (A+2p)E–2/1$? – (1.5A+3p +( +20E2+(4A + IOp+ 4f)aJJ– (1,5A+ 6p + 1.5( + .25v)112

(1)

T = //(6– 1.5/1)– (A+ L.5p+062

+(1.5~ +4.5p + 1.5(+ .25v)cvJ– (9p/4+ 3v/8)i’2. (~)

In the above equation.., Aand y are the ac?iabat.icLanti elastic constantand the adiabatic shear modulus, and <, <, and v ai”erelated to Ihu-nap)mn’sadiabatic third order elastic constants. Fhr example, hlurnaghan’s l,m, andn are equal to Vi’ahce’s <,f, and v, respectively. C~l11.C\ IY,and C’lZ~ar(equal to 2<+ 4&,2<, and 2< – 2(+ v, respectively. Brugger’sv], V2,and Vtare equal to (2<– 2( + v), (~ - .5v), and (.25v), respectively. See Wallacesand referencestherein for further information. Included in the expressionforCTis a term involutingthe entropy of plastic work, 27 ~ 7-(c’,If)d?/J’, whirl~isof secondorder in the strains. I’he integration is over the path taken by th[’shock. -i is the Griineisenconstant.

In applying the above equations, one encounters a lack of experimentaldata for polycrystalline third-order elastic constants. Even where such dataare available, they should be tested by using them to predict the pressure

4

Page 7: Veak-ShockConstitutive Data - Sciencemadness

derivatives of the bulk and shear mochdifor comparisonwith values dirtctiymeasurd by pressure. The pressure deli~at.ivemeasurementsare not.subject.to the error due t.cmicroplasticity which often plagues third-order constantnleasurementswhichrely heavilyon uniaxial stress. SeeClifton7fora methodof measming third-order constants that avoids these problem.

For the present work, reliable TOE (third order elastic constants) wereavailable only for 6061T6 Al in the work by Wallace3and Clifton.7 Othersets availablefor Fe and CU8failed the comparisonwith measured pressurederivatives. Howel.er,measured pressure dmi~ntivesof the b-ulkand shearmoduli were available for all the materials studied here. The author WAable to proceed by using the followingmethod. Express two of the TOE,viz. ~ and v, in t.em~ of the two pressure derivatives and the third TOE,<. Then calculate all results with reasonablevalues of < to demonstrate thatthe results are insensitive to this variation.

The sensiti~ity for the stainless steel and copper, for example, is surpris-ingl~’small. The final results depend very little on the ( variation. Thisinsensitivity has the followingtheoretical basis.g When Eqs. (1) and (2)abo~’efor ~ and o are re-expressed in tem~ of the bulk- and shear-modulipressure deri~atives and <, the resulting term in p’, the adiabatic pressurederi~ative of p, has the factor (c – 1.5YJ).The corresponding term in < hasthe factor (e – 1.5~1)2.Fkomabout mid-shockon, this factor of < is alwayssmall since c is then close to 1.5ti in order t.o reduce the de~tiatolicstress.For the limiting case where the deviatoric stress at the shock end is zero,this term is exactly zero at. the shock end. Hence, from about mid-shockon, the tem~in < is about an order of magnitude less than ~ itself, vh.ich isof order p(~ – 1.5d?). At the beginning of the shock. the strains are smalland the TOE terms are not important. Hence, the (-term is not import.imtthere either, and the insensitivity}.to ( is explained, These considerationsare qualitative, however,and could change with unusual paranwt.er values,Hence, the procedure of vaqing ( should be tested out 011a case b~,cawbasis, as was done here.

The equations giving v and ~ in term of the pressure cleritutivw and ~are as follows:l”

v = 1.5(-3B’B - 6<)

c = (-3p’B - 3B - p + .51))/3, (3)

where B is the adiabatic bulk modulus and the primeclquantities are the cor-respondingadiabatic pressure cleli~’atives.The expeximcntalpressuredeli~n-ti~fesare usuall~rat constant temperature, so to convert thcm to adiabaticderi~atives, the-followingrelation..hip was usecl:(dB/0T)P(T~3)/(pUC’P).where S is the entropy,

Page 8: Veak-ShockConstitutive Data - Sciencemadness

the volume codicient of thermal expansion at. constant P. The analogousrelationship was used for the shear modulus. (B’)~ and (p’)~ will be usedhere to denote (dB/dP)~ and (@i/dP)~, respectively.

The other part of the Wallaceweakshockanal~”sisconsists of the integra-tion of the equations of motion. The ~’elocityprofilesdealt with by Wa.llace3consisted of a stead~’plastic portion with a precursor section that stretchedout with travel in front of the steady plastic portion. As Fig. 1 illustrates,in a record taken at constant position, this prc.-ursorportion behaved exper-imentall?-like an abrupt elastic rise to a point on the wave, called point b,~f’ithI“oudd}’col~tant ])article docit.~’, ~lb.The particle velocity then grewlineari]. in time until another point, point c, was reached at the base of thestead~’plastic portion. Point c had roughly ccmstant particle velocity, vC.The time required for the p~articlevelocit~rto rise from vbto v, became grad-uall~-longer as the precursor stretched out with travel siuce point b traveledat a higher velocitj. than the velocity of point c, which moved at the theshock velocit~’D. Point b traveled at ~.elocityCP,which is a finitestrainLagrangian sound velocity.

v

-.

B

A c

t

k“lg. 1. Points of the velocity profile important in the Widlace steadywal’c iuvd~”sis,

6“

Page 9: Veak-ShockConstitutive Data - Sciencemadness

This precumor behavior can be utilized to integrate the equations of mmtion for the precursor portion3 to arrive at the followingformulas for ~ ando in terms of v, the particle velocity:

The subscripts “c” and “b” refer to the previomly discussedpoints c ar,d bcf the shock. The subscript “a” refers to the initial condition, or the pointon the shockjust before the elastic rise. 6 is the quantity (cp– D)/D. Here,tb is to be obtained from u~/cpfrom experimental values for v6. fJbis to be

obtained fbnl ~ar’vb.The equations of motion can be integrated along the plastic steady wave

portion using the steady wave assumption. The resu.itsfor ~ and a are thefollowing:

e = 6C+ D-l (v – UC), (6)0= ~c+ ~a~(~ – vc). (7)

The above equations are used in analyzing an experimental profilein thefollowingway. First a and e are calculated from particle velocity data amdthe measured shock velocityusing I@. (4), (5), (6), and (7). The calculateda and e are then used with Eqs. (1) and (2) to find @and then T.

In the calculation for ~ using ~. (l), the integral in -rd~ is handlediteratively. First @iscalculated leavingthe intergral out. ~ is then calculatedfrom Eq. (2) from these lowest order @-values.Then the lowestorder@ andT are used in the integal to calculate a better approximation to ~. Theprocedure is repeated until convergence.In the calculations here, one or twoiterations were adequate.

I B. Window Reflections and Free-SurfaceReflectioils

The data for many of the materials was taken through a transparent%indoti’ placed in back of the sample to reduce as much as possible thechanges in the wave that would take place in reflectingfrom a free surface.For most of the materials investigated, the windows were well matched inimpedance to the materials so that the actual profilemeasured was close tothe in situ wavein the material,

Except.for the uranium data, the data obtained horn Sandia Laboratorieswas taken through windows. With the exception of the sttti‘Ass steel data,

7

Page 10: Veak-ShockConstitutive Data - Sciencemadness

the window data were already corrected for the minor window reflectionsbefore being released to the author,ll or published in the literature,~ Thewindm~’-correct.ionsmethod was probably that of Grady and Young.*2Thismethod doesxiottake into account plastic strain-rate effectsbut ww probablyadequate for the small comctions involved.The %ndia data falling into thiscategory include that. of 6061TUAi, Be, Bi, Fe, V, and the 54-kbar shot forcu.

In the work on window reflcctions,4the distortions in the data due towindow reflections were studied for Cu a,nd 21-G9 stainless steel (SS) andfound to be small. A modification of the dmracteristics wave code (CH.4-R-4DE)]3 was used with iterations to find an in sitr~steady wave togetherwith a comist.entplastic-strain-rate law whichproduced quite accurately theex~eriment.alproiile. The final calculation in the iteration involved an ini-tial condition in particle velocity and time (the in du wave) which wasanal~.zedusing Wake’s weak shock analysis to get a strain-rate constitu-tive law which was then used to propagate the initial condition through thesample-windowinterface. It was possible to achieve quite good agreementbetween the calculated and experimental particle velocitiesat. this interface.At the beginningof this finzdcalculation, the accuracy of the constitut.ivelawwas checkedby using it to recalculate the initial condition from scratch forcomparisonwith the original initial condition. Only quite good comparisonswere toleratd.

The con.stitutivelawousedto fit the results of the Wallaceanalysisthe plastic strain rate, @as a function of @and T is the following:

~ = lo~(~ - Ty- h@)g(@ + @a)’,

gjving

(8)

whered, h, g, and c are constants to be fitted. ~yis the constant -yieldstrengthwhichis calculated from a choic(~for V6using the equations in SectionII. Theterms ~Yand h~~pro~ide zero strain rate at the beginning and ending of theshock, respective}’. @. is a small initial plastic strain used to give a verysmall nonzero ~ to properly begin the wave-codecalculations.

me ZI-~k9SSresults presented here wereobtained in the aboved~tibedfashion.

The 30kbar Cu data of Wames and the U-data of Grady involvedmeas-urements of particle velocity at a free surface, in which the wave reflectioneffkctsare expected to be more serious than those at a window. The iterativewavecode procedure was also used to analyze these data with the windowbeing a “vacuum”. The fkeesurface reflection,however,fiidves more com-plicated plasticity behavior than that at a windowsi.lcefull elastic unloadingand reloading take place there. The strain-rate plasticity relation needed inthe code must also describe unloading and reverseplastic flow. In the case of

8

Page 11: Veak-ShockConstitutive Data - Sciencemadness

a window,only “forward”strain-rates are involvedand tihecode constitutiverelat.icn is never called upon, in running the initial condition through thewindow,to depart very far from the steady-waveconstitutive data obtainedfrom the initial condition. The whole problem is essentially a perturbationaxound the steady wave condition and only small extrapolations therefkomare necessary.

In contrast.,in a fressuxface reflection, a wider range of plasticity is in-volvedand the observedprofileat the f~ee.mrfamis further removedfromthein situ steady wave. In a freesurfacweflection calculation, this wide rangeof plasticity behaviw must be modeled and this mcdeling is more arbitrary.

In the case of the 30-kbar Cu data of Warms. however, it was foundthat the calculated free surfaceprofilewas not very sensitivet~ the model ofre-t.ersepl~~ticityused. (This was not the case for 50-kbar data, however.)The strain-rate model used in fact contained a yield surface,so that a portionof’the re~-erseloading path was elastic, and used the same algebraicform forboth positive.and negative strain rates with a simple change of sign for theeffectivestress and strain rate. The elastic excursion produced only quiteminor features in the calculated he surface profile wi~ch hardly degradedthe comparison of data to calculation at the free surface. The features werenot present in the data, but their presencein the calculation was so weak asnot to be a problem. In summary, for the 3Gkbar calculations, an in situinitial condition wasfound by iteration whichwasconsistentwith its forward-stmin-rate law (obtained from it by the Wallaceanalysis as describedabove),and that produced a good match with the free surface data. The forward-strain-ratelaw was used for reverse plastic flow as described above. Theresults of this procedure for the 30kbar Cu data are reliable due to the lackof sensitivity to the law for reverse plastic flow.

In the case of the uranium data analysis, the calculated free surface v~locities do contain features sensitive to the model for reverse plastic flow. A~evers~plmtic-flo~~model with a )tieldsurface fails to match the data. Theelastic excursions produce pronounced features not present.in the data. Arevers~plasti.cflowmodel in which no yield surface is praent but in whichreverse plastic flowbegins immediately after forward flowceasesproduces a.much better fit to the data.

For the present uranium data analysis, this reverse-plastic flow modelwas obtained from the power law for forward phstlc flowby using the samepower law coefficientsd, g, and c with a new “ef%ctive”stress h~ – (~) anda change in sign of strain rate. Thus, for reverse plastic flow,the strain-ratelaw used was:

4=- Id(h@ - T)qo + 4%)’. (9)

For the present uranium data analysis, the forward strain rate law was ob

9

Page 12: Veak-ShockConstitutive Data - Sciencemadness

tained by the approximation of dividing the particle velocity data by twoand analyzing the results with Wallace’smethod. The resw~of running thedata divided by two as an initial condition with this con..t.it.utivelaw wasin fair agreement with the free surface data. Iteration with the wave codeproduced better agreementfor the cases tried but was deemednot worth theeffort due to the uncertainty in the revers~plastic flowmodel. Since it wasobtained from the law for foxwardplasticity, the law for reverse plastic flowmust possess generally plausible behavior but is otherwise arbitrary. Theresults for a!l the uranium profiles were obtained in the manner clesclibedabove.

The reverse-plastic-flowbehavioris a topic o.fcurrentresearchand progressin understanding it will be used to update the uranium results.

See Ref. 4 for more description of the wave-codeiteration procedure forthe case of a window.

III. Error Analysis

An extensive error analysis of the Vlallacemethod for andj’zing steadywaveswas done for a typical velocity profile of A material of this study.This analysis involvedvarying the elastic constants, the experimental shockvelocity,and the choiceof the point.w’herethe precursor ends and the plasticwave begins over ranges based on available data. The choice of the point.where the precursor elastic rise ends was also varied for protileshaving su~~a rise.

Errors in measuringparticle velocityand shot to shot.variations werenotinvestigated in this way, out an idea of their importance (which appears tobe minimal) can be obtained by comparing the results for the three 30-kbarCu shots which nominall~”differonly in sample thickness.

The assumption ofa steadinessin the plastic waveportion whichis crucialto the anal?sis used here is diflicult to :heck without.a series Gfexperimentsin which only the sample thickness is varied. Such data are included herefor 6061T6 Al and the 30-kbar Cu series by Wines. For this data, theinvariance of the plastic v,ave to shock thickness supports the steadinessassumption. The 89kbar 6061T6 Al shot is not mcompanied by others ofcWerent sample thickness, hut since its weakercompanion shots are steady,it probably is steady also. The stronger shock wavestend to shock up faster.The 54-kbar Cu shot horn Swegleand Grady is probably steady at a samplethicknessof 6.36mm since the 30-kbar Cu shot H800of Warnes is steady ata sample thickness of 10 mm. The steadiness of shot Be14 for beryllium issubstantiated by another shot14(not included in the data base) of differingsample thickness. Shot Be18 included here, of wm.kershock strength, is not

10

Page 13: Veak-ShockConstitutive Data - Sciencemadness

so substantiated however,and could be somewhat unsteady. The steadinessof the two Bi shots included here are substantiated by othersls not includedhere. The steadiness of shot Fe16 for iron included here is substantiatedb~’anotherlG (not gi~en here). Shot Fe15 is not, but is of similar samplethickness to shot.Fe16and only slightl}’weaker, and so, is probably steady.

It is worth noting that possessionof velocity profiles of varying samplethickness for the same shock strength also allom a better choice of pointsc and b (see Fig. 1) nec-’ for the Wallace shock analysis. Point c isthe point where the nonstead}’“precursor” ends and the plastic steady wavebegins. Such a point does not stricth’ exist; assuming its existence is an.approximation.

The shots for materials 21-69 SS. 1!, and U were not done with varyiiigsample thicknmms to checkfor steadiness. However,since weakshock wavesof sufficientstrength seem to achievesteadiness in just a few mm of samplethickness, these shots, all of whichinvolvesubstantially greater sample thick-nesses than this. are probably steady. The weakest shot V1 for vanadiumand the weakestshots AV3and A1’4for uranium were left out because theydid not ‘look” stead}”.Their peak particle velociesare not muchgreater thantheir peak precursor particle velocities.

Of all the shots included here, only the 8WdMr60611%Al and shot Be14for ~q.llim fier~ horn lack of time resolution. To fill out the 89-kbProfik. points were intevlated by Wallaceinto the 8%kbar shot recoxdtoobtain the velocity profilegiven here.3

some uncertainty arises in the data an&}”sisdue to assumptions necessaryin ewduating the precmrsorrise, the first rise in the velocity profiles. ForCu, Bi, and Be no such rise is seen and so no uncertainty Aesults. Theprecurwr rises for 6061T6Al are quite sharp and unmistakably elastic, so nouncertainty arises here either. The precursor rises for Fe, LT,V, and SS aresloped, however,and their nature is less certain. For Fe, LT,and ~’,however,data for several shock strengths at the same sample thickness are availablewhich show almost the same precursor structure for all strengths. This istaken here as evidencethat these precurs.or rises are elastic in natue, whichis how they were treated in the data analysis. hTosuch data are availablefor 21-&9 SS, whose precursor rise was also assumed to be elastic, but thismaterial is knownto have a high yield stress whichwouldgiverise to a strongelastic precursor rise.

Point b, the end of the elastic rise, was taken to be the very pmk of theprecursor rise. Someidea of the error in the results due to uncertainty in thepra-ise location of the end of the precursor rise is given in the error analysis.The error appears to be minor.

The rest of the error analysis, that involvingthe Wallace steady wave

11

Page 14: Veak-ShockConstitutive Data - Sciencemadness

analysis, is contained for each material, in its particular sdxction.The de~tiatmicstress, ~, is most sensitiveto the uncertainties in the analy-

sis. In particular, the de~iatoricstress at the end of the shock rise, ~e,is par-ticularly sensitive,because at this point in the shock, the elastic and plasticstrains’ contributions to ~ are almost. canceling each other giving rise toa delicate balance. The calculated peak deviatoric stress, ~P,is much l&ssensitive and more reliable.

By contmst. the uncertainty in the plastic strain ~!and plastic strain ratet;’is xnuchsmaller. ~or most parameter variations in the error analysis, i.e.~wiatiom of D, elastic constants, and points b and c of the Wallacea.tl.alj’sis,the plot of ~~~~rersus(I changed very little, for example. Only for parameterVariationsfor w!tich ~cvaried by, say, 40(%or more did this plot change innoticeable fashion. the final plastic strain chauging by 10%,for example.

Becauseof this lack of sensitivity, the effectsof the parameter variationsare only ghen for T and not for $. The percentage changes in Tc at. theend of the shock and in Tp, the peak deviatoric stress, are given in terms ofpercentage changes of the parameters considered.

The most sensitiveparameters are, in order ofsensitivity, the shockspeed,D: the bulk and shear moduli, B and p, and the prasure deri~ative of thebulk modulus, (l?’)~. For the best results, the shock speed D should beknom experimentally to better than 1/2% accuracy and. the bulk modulusto 1%or so. For purposes of the weak shockanalysis, it is much preferable tomeasure shockspeeds at the same time as particle velocity”dataare measuredand to measure ubsonic sound speeds on the same material shot to obtainB and p.

Except for Bi. knowledgeof only pressure deri~ativesof 1?and p as opposed tO a full set of thircl order elastic constants seemed sufficientfor thematerials studied here due {othe insensitivit~’of the results to variation (asdescribed earlier) of the <-TOE with (B’)T and (p’)Tknown. <wasvariedthrough a physically reasonable range within which the other two TOE, (and v, remained less in magnitude than somereasonable limit, usually about10 Mbar. The biggest magnitude for metals for ~,~, or v, reliable or not,knom to the author is about 10 Mbar. The materials upon which this isbased includesteels, iron, copper and copper alloys.aluminum and aluminumalloys. nqywsium, molybdenum, tungsten, vanadium, uranium, berylhrn,and bismuth.

Another possible source for error is the possible breakdown, i.e. inacbquacy, of the expansionof the thermoplasticequations to secondorder in thestrains used in the Wdace analysis. To check on this potentiality, versionsof rP and ~t taken to only first order in the strains were calculated and com-pared to the full, second-orderversions. The ratio ~(lst)/~, where the (lst)

12

Page 15: Veak-ShockConstitutive Data - Sciencemadness

Quantity Char2ge, rP/rP(std.) r,/r, (std.~Eq3. Range(qnty. + std.)

D(crdw) 1.+ 1.* .007 1. +0.93 1.+1.+0.17 “

Table 1: Parameter Variation..fur 6061T6Al

IAllnk shearDensity Constant Modulus(9/~23) (M&r) (hbr) (mar) (M&r) (h’mar)

hIaterial pa A P c ( v6061T6Al 2.7033 0.5443 0.276J -1.40’ -2.823 -4.6@_—

Table 2: Material Properties for 6CKVT6Al

refers to a first-order version, are reported for t!le peak and end deviatoricstress= in the individual sections on materials. In onl~’a few cases did thesecond order expansion seem inadequate. Unfortunately, meamred fourth-order elastic constants for metals necessaryfor the next-higher-orderversionof the expansion are almost nonexistent.

IV. Results

This sec~ionhas a subsection for each material containing the detailederror analysis and results of the data reduction. Figures are to be found atthe end of the main text just after the references. Tables of the data usedto make the figures are to be found in Appendix B. hhst of the parametervariations will be gh’enin the form of tables. Tables will also give materialproperties and shot information. Specialinformationand salient features willbe noted in the text.

A. Constitutive Data and Error Analysis for 6061T6Aluminum

Figures 2-8 for 6061T6 Al are to h found on pages !38-44. Theyshowparticle velocity,total and plastic stl ms, normal stress, and deviatoricstress plotted versus time; deviatoric stress plotted versus plastic strain; andplastic strain rate plotted versus plastic strain and deviat.oricstress. Talk1-4 give parameter variations, material properties, and shot infom2ation.

The data points in the data base for 6061T6 Al correspond to actualclata points except for the four points for the 8Qklm.rprofile between about0.173and 0.425mnl/ps whichwere interpolated as a strzight line in particle

13

— —

Page 16: Veak-ShockConstitutive Data - Sciencemadness

Griirwisen HeatConstant capacity

(erg/g K)hfaterial ~ c,!6061T6Al ~.163 0.88X10(3

Table 3: Material Properties for 6061T6Al

Shot I.D. Normal Stress (kbar) %rnple Thickness (IIU11)3g~~ ~~ 1~.5

939 21 31.6936 37 6.139~7 37 p~937 37 37.99Q6 89 12.5

Table 4: Plate-hnpact Shots for 6061T6Al

velocity versus time.3 The velocity profile numbers were taken from MTd-lace’snotesgwhich are based on the original data notebooks of Johnson andBarker.]7 Three velocities,however,were also corrected slightly for windoweffects.17

The shockvelocitieswer..measured by Johnson and Barker fkomabsolutetiming measurements, which are to be preferred to any cort of mix of cal-culated precursor speeds and relative shock speeds. Wake’s paper showsan average scatter in these measurements Gfabout +0.7% around he B\r,aluesgiven by his [~~– UPfit: D = 0.526cm/us + 1.47L\, where Upis the@ particle ‘,rekity of the shock ~l,eo This fit was used for Din all thecalculations.

The elastic constants, including a complete set of 1-OE,were measuredfor 6061’IUAl by Clifton.7 The method for measuring the TOE ms speciallydesignedto rely more on pressure than longitudinal stress to avoiderrors fromplastic microstrain that. plague the usual sort of measurements done. Thepressure derivati~”eofB, i.e. (B’)T,calculated from Clifton’sTOE was about5.27 for comparison with that of pure Al which is about 5.3. By contrast,a complete set of TOE measured by Asay et al.lg by a method relying onuniaxiid stress reds in a cahn.dat.ed(~)T of about 8.9.

Only such cmor analysis as available from Wallace’swork is repeatedhere, since this is Wallace’swork. He estimated the error in ~e as beingroughly +17% due to errors of +().7%0in the experimental shock velocity.The estimated e~rorin J’,was about +3%. Sincethe elastic constants appear

14

Page 17: Veak-ShockConstitutive Data - Sciencemadness

to be reliable for this case, most of the uncertaintyexpected to arise from this uncertainty in the shockresulting therefrom can be taken as representing the

in the data analysis isvelocity and the errorstotal error.

The-&duefor u, ms taken to be 50nl/s for all shots execpt for shot 937for which 21Cwas 53nl/s.

B. Constitutive Data and Error Analysis for Beryl-lium

Figures 9- 15 for beryllium are to be fould on pages 45-31. Theyshowparticle ~’elocity,total and plastic strains, normal stress, ard dm-iatoncstress plotted versus time; deviatoric stress plotted versusplastic strain; andplastic strain rate plotted versus plastic strain and deviatoric stress. Tables5-8 give parameter wn-iations,material properties, and shot information.

Quantity std. Change, Tp/Tp(stdo) ‘Clrml’a.lue Exp. Range

(qnty. + std.)D(cndm) 0.8438 1.-+0.9931 1.+0.93 1.+0.55i(k(il’r) 172.5 1.+0.90 1.+1.18 1.+2.02p(ktm7”) 1509.3 1.+0.982 1.+1.18 1,+~.02

(B’)~ 4.60 1+1.02 1.+1.003 1.+0.95(P’)T 2.3 1.+1.17 1.+1.0 1.+1.0

rc(n? s) 38.39 0.8+1.17 0.88+1.11 0,71+1,26~(:lhr) -5.5 -11.+16.5 1.0+1.0 1.0+ 1.0

abs. values

Table & Parameter l’aziations for shot Be18. Aand p were varied jointly.

Lumi ShearDensity constant Modulus (dB/dP)T (dp/dP)T dB/dT(!ll~”) (M&r) (M-bar) (l&r/Ii)

Material pa A P (B’)T (#’)TBe 1.851:9 0.172519 1.509319 4.601° WJo -o.202~

Table 6: Material Properties for Be

The berylliurnmaterial shot was ahout 98(Zpure with 35 pm grain size.’”The data points for beryllium in the data base correspond to actual data

points from Sandia.1 The velocity profiles given here are the same onesobtained from Sandia. They werecorrected there for windowreflections.andso do not reprment raw data, however.

Page 18: Veak-ShockConstitutive Data - Sciencemadness

Griineisen Hwlt Lineard}l/(lT (’oILstant ralx-wit?’ mpalL5ioll(ldMI”/K) (c+ K) ~;-1

Shot I.D. Nmmal Stress (Mm) sample Thikness (lM)l$’B(18 638

UsingSilversmithand Averlmch’svaluesfor 1?and p in the data.analysisgave the unacceptable red r, = Tp so th~e vahws were excluded froxnconsideration. Their 1?and p values were 0.94 and 1.00 times the standardones, respectively.

The A and p variations in Table 5 are bawd on the B and p valuesof%nith and Abrogast which were 0.90 aml 0.982 times the standard on=,respectively.

Values for (13’)~were availahle only from Voronov and l’ereshchagin2~(4.69) and from Silversmith and Avehch (4.60).z0The latter, as reportedby Guinan and Steinberg,l” was taken as st.andmd and the fo: ~ler used for

,-. .

Page 19: Veak-ShockConstitutive Data - Sciencemadness

I

parameter wuiation. The Voronovet al. value was for a polycrystal. TheSilI’ersmithet al. value involvedaveraging single crystal values, which gavereliable polycrvstalline~aluestor this case, as noted previously.

~~?duesfOl”(#)T lvere a.h a~’ai]ab~eonly fron}Voronovet d. (2.7) andSilversmithad .4vei%ach(2.3). The latter value, as reported by Guinan andSteinberg’”was taken as st.audard,with the former value being used fur theerror-analysisIariation.

The parameter m.riatiom were done for the shot 13e18.The ~zdueof ~ was varied in t.ht range – 11.lfbar < ~ < 16.&Mbarwhich

resulted in the range —172.5.’tlbar< v < 75.Oill&/r for v, the larger inmagnitude of the other two TOE. Only swill changes in ~, and hence in allother calculated quantities, resultwi from thk lariation.

The valuesfor ~P(lsf)/~P and re(lsf)/~, were284 and -0.24,r~pectively.The values of ?T,for shots Be18 and Be14 wer~ 38.39 and 44.88 7~2/s,

r~pectn’e!?-.A comment is in order concerning the lack of an elas~~~rise in the pre-

cursor in the ex~exinlentalvelocity profiles. Beryllium is kx.-ml to have afairly high ~tieldstressl ~~hichshould produce a wellMined ela~5crise. Thealxsenceof such a rise in the data must tJf2due to some pronounce~smearingmechanism. The data analysis here is no doubt zdfectedby not in~hdngthis rise. but none can be seen in the data. Figure 13 showingdevia;micstras ~mws plastic strain does shot~.an abrupt rise at very small plam:cstrain ~~ltichis reminiscent of a ~ield transition. however. Hence. it seemslikelythat the plastic ~tieldtransition is captured in the analysishereto someapproximation.

C. Constitutive Data and Error Analysis for Bismuth

Figur(~ 16- zz for bislllllth are to be found on pages 52- 58. They show’particle ~’elocity,total and plastic straim, nomal stress, and dcwiatoricstrewplotted versustime: deviattixicstress plo:ted IwslLsplastic strain; and plasticstrain rate plotted versus plastic strain and cle~tiatmicstress. Tables 9- 11gi~-t’mzitexialproperties and shot infomuition.

Lu))l’/ shearDensit?? Ch-wult ~IoduhLs (dB/dP)~ ((@/dP)y- dl?/dT(!l/~3) (mar) (mar) (kbar/Ii)

Material p.” A (B’)~ (p’)~Bi 9.777]:’ o.X41~’ :.12172’ 3.5427 l.g~ZT -0.06226 -

Material Properties for Bi

17

Page 20: Veak-ShockConstitutive Data - Sciencemadness

Gr_iineis[m Heat Linear -dp/dT COXIStiUd C2i1JilCitJ’ (’x~)alLsioll(kbar/K) ((al/g K) ](- !

Matexial -)’ (;, (1R -O0089V ill 0.’124730 103AX10-531—

Table 10: I’datexialPropertifls for Bi

Shot I.D. Xcml”ialStrt’ss(ldxu”) sanipk Thi(”km%s(mmy’147 11 4.060149 23 3.012

Tlw data points in the data base for Bi m-rcspmd to actual data puints.The velocityprofilegivenhere is the same one obtained from %mdia It wscorrected there for windmf’effects,hol~sevcr,and so is not.rzm-data.

The data were taken through a fumd silica Windoll”.1.s~\o(%~lt~t~lllott,silo(.kl’elocitim.~W s~~[~~kThe wigild pa~m’b}’.%ilt” .’

I’elw-itirs llsefl iur thr (liltiil mse ral(wkttionw’erctah from Swegh’andGrw{y.s[~,- [~,relati(m D = 0.182&rn///s + 1.473[\o*

Pol}’cq’stalli~wdi~sti(’constants tiith prrssure dexi~”ati~.esof D aml il arcz? C,a.kulat(dpolJ’cl~’s-waihll)1(’froxllFxitzvfiad \’ol”olKn’ml(l Still.gO1”Ol-~.

tallin(}alvragt%lxi.sedon single cq’stal valu(Isof Eckst.einet al.2afor D and// fw”t~j’o(“lystalsare a~wtihi))](’fI”onlAndmon.~”Asay(lidnot Illm.%lu”(’Idtr.awnksoundveloci,i[s.15

The resdts for Ri viuicfl so wildly with rhoicc of elastic constants andD that the results givr~lherr ar(~fj~dya gIwss. ~J,f’f)lfl(lhp off Iq’ as muchas *70Y. This is cOILsi[l(wJJ_j.j]](m)unc(’rt(aixltj”in tltis qu:ultit~’than forthe other nudrrials. ThLIream] ffu.all of this SeCIILC;tohe iheWi(lerthanILSIAexperimental v-driatiOnin B and p valurs aml thr special scmitil’it.yofthe r(wdts to thwwqu;mtities, This scn%itivityis &ltI to the relative}”smallvalues of U and ~1compared to the TOE, whic]l~ueas large M most othermetals. For example, Aand p due to Voronovaw only244.1and 121.7kbar,respectively;while (13’)1iixl[l (/t’)ys arc 5.54 and 1.92,respectively.

OIdy the elastic con..tants and pressure drrivat ivm of VoronovILscddhSwegk and Grady’sU3– Ul,rdati(mgaveall nonmgatiwvaluesfor 7. I%itz’selastic constants and pressurr dmivati~w re!idt(’(1innegative values for ~

18

Page 21: Veak-ShockConstitutive Data - Sciencemadness

(unphysical)for the latter part of the shock rise. Shock velocitiesabout 5%larger-than those from the Us– L~ relation estimated from graphs in theoriginal Paperls gave equally disastrous results.

llit.z’s elastic constmltwdlwscouldbe too large. His Aandp are IO%and15%,respecti~’cl}”,above those ofVorormv.The averagesof Anderson’sAandp values for the two crystalsareonlyabout 6% and 2% higher, respectively,than Y’oronov’s}a.lues,suggesting that Voronov’sare closer to the truth.

Fritz’s value for (l?’)~ is 6.55, not too far from the value 5.54 given byVorononv. Fritz’s mhw for (p’)~ is also close to Voronov’s: 2.03 (Fkkz)

compared to 1.92 (l’orontiv)o The experimental pressur~derivativ~valuesare probabl}’not the ca~l~eof the data analysis problem,

The value of zero W-Museclfor <. This gave rise to v and f valuessmallerin magnitude than 10 Mlm. Values for these two TOE grew rapidly inrna.@tude with variation of ~ from zero.

The valuesof ~(lst)P/~P far shots 147and 149were0,88and 0.76,resp~-tively. The values of r(lst),/,t for shots 147 and 149 were 0.74 and 0.40,respectively. So the data dysis probiem is not due to a breakdownof thesecond-orderthermoplasticmodel.

The values used for UCwere 12.7 and 12.1 m/s for shots 147 and 149,respectively.

D. Constitutive Data and Error Analysis for Copper

Figures 23-29 for copper are to be found on pages 59-65. They showparticle velocity,total and plastic strains, nomud stress, md deviatonc stressplotted versustime; deviatoric stress plotted versusplastic strain; and plasticstrain rate plotted versus plastic strain and deviatoric stress, Ihbles 12-15give parameter variations, material properties, and shot information.

Quantity Std. Change, 7-p/Tp(std.) Tc/Te(std.)Value Exp. Range

(qnty. + std.)D(cm/ps) 0.4052 1.+1.0025 1.+1.09 1.+1.5r

— A(klx.zr) 1077. 0.9935+ J.,007 1.10+0.89 1.52+0.48p(kbar) 443.2 0.977~ 1.024 1.07+0.91 1.48+0.52(B’)T 5.28 0.95+106 l,o’2+(_JCJ(j 1.35+0.70(#)T 1.3 1.+0.85 1.+1.008 1O+l.OOO

vCm s 5.77 1.0+1.15 1.+1.02 1.+1.17

Table 12: Parameter Variations for shot H801of Cu.

19

Page 22: Veak-ShockConstitutive Data - Sciencemadness

LarL4 ShearDensity C&start Modulus (dB/dP)~ (dp/dP)~ dB/dT

Material \:’n’”) ima) :ma) (B’,~ p(kbar/K)

‘(X 8.93?3 1.07734 0.44340 5.2a34 l.w” -0.2223

Table 13: Material Properties for Cu

Grtineisen Heat Linemd@lT constant -0’ expamkm(kbar/K) (cal/g K) 1{-’

Material -Y Cp QCu -0.2(?3 1.991 o.li9?4 1.65x10-5 45

Table 14: Material Properties for Cu

Shot I.D. Normal Stress (kbar) Sample Thickness (mm)H800 30 9.970’2H801 30 19.93932H802 30 29.959J254 kbar 54 (X3&]

Table 15: Plate-Impact Shots for Cu

20

Page 23: Veak-ShockConstitutive Data - Sciencemadness

The material for both W&nes’s3@kbar seriw32and the 54-kbar profilefrom Sandia*is OFE copper, annealed, at least for Wa-nes’swork,

The data points in the data base for the 54-kbar shot are bawd on actualdata points, coxwctedfor windov effects,however.

The data points here for the 30-kbar selies of W’arnesare taken from thefinal initial condition of the wave code calculation (the one that accuratelymatched the data when run through the window or free surface). The be-ginning times for the profilesare arbitrary. The actual data were availableand were used at. the start of the iterations as an initial condition and forthe comparison between the calculation and the data at the free surface.

The error analysis Wasdone for the W-kbzushot H801of Warnes.Data for all the 54-kbarshot were taken through a sapphire tiIKIow. The

3@kbarseries was taken from the free sample surface.No abso]ut~t.iming measurements were made for the shock-wavespeed

when the \T3AR data weretaken. Valuesfor the shockspeed weretaken fromthe L; - t? relation of hknson and Barker:33D = 0.3917mn/ps + 1.520~j,based on absolute measurements but using pr~VISAR technology, To tmtsensitivityof the results to D, a plausibleupward variation of .25%wasmade.

A great number of ~-~uesfor B wereavailablein the literature, includingthose of van’t Kkmster et al.,34Hiki and Granato,35Chang and Hirnmel,3GSchmunk and Smith,3TOverton and Gafhwy,38and Goens and W&ts.39The~’all agreed fairly closel}”,givinga range for ~ of 1.07-1.085Mm, (usingthe p value of van”t Kkmster t.oconqmte Afrom B.) The fairly recent value1.077from van’t Klooster et al.34was chosen to be standard since it wasfrom apolycrystal. The range for ~ quoted above was 0.9935-1.007times thestandard value. The ~-pararneter variation was based on this range.

Only two seeminglygood values for p measured from polycrystals werea~ailahle:443.2kbar from Tkappenierset al.qoand 454kbar from Kanemochiet al.8 The value from ‘llappeniers was taken :X :it.~ldard. The Kanemochivalue is 1.02 times the standard value, The pzumvter variation made for pwas based on these two values.

A variety of closely agreeing values for (ll’)T were available from van’tKlooster et al.,3~Hiki and Grarlato,35Sakuna and Alers,41and Daniels md

Smith.42(D’)~is the same for cubic singlecrystals and for pol)mystals. Therange encountered was 5.3-5.6,a 6[%variation. The parameter variation for(l?’)Twas slightly expanded from this range. The stanckud value used wasthat of van’t Klooster.

The only values cf (p’)~ availablefor polycrystals were those of ltkappniers et al.40 (1.3) and !3irc.h43(1.27), differing by about 2Y0.The formerwas taken as standard, The parameter variation is larger than this sprd invalues.

21

Page 24: Veak-ShockConstitutive Data - Sciencemadness

The value of -4 hlbar wis used as standard for <. Variation of ~ thatmaintained v and ( less than 5 Mbar in magnitude produced very littlevariation in the results for T.

‘he values of ~(lst)P/~P and ~(lst),/r,, for the shot H801 were 0.92 and0.5z, r=pati~’e]v It app that the second order then-noelasticexpansion.“is workingrmsonably wellhere.

The values usd for VCwere 5.61, 5.77, 5,81, and 10.85 m/s for shotsH800, H8W, H802,and 54 War, respectively.

E. Constitutive Data and Error Analysis for Iron

Figures 30-36 for iron are to be found on pages 66-72. They showparticle velocity,toml and plastic strain.., normal str~, and deviatoric stressplotted versus time; deviatoric stress plotted versusplastic strain; aud plasticstrain rate plotted versus plastic strain and deviatoric stress. Tables 16-19give parameter variati~i~, materi:,i properties, and shut information.

Quantity Std. Change, Tp/Tp(sid.) Te Tc(std.)Value Exp. Range

(q??tlJ.+ std.)D(crn/ps) 0.4978 1.+1.004 1.41.04 1.+1.20p(kbar) 814.7 1.+0.997 1.+1.0 1.+1.0(B’)T 5.463 0.%1.09 1.02+0.97 1.2+0.94(P’)T 1.857 1.-+1.03 1.+l.O 1,+1.0

Vc(ms) ,3,1.3 1.+1.12 1.+1.04 1.+1.08~(iWX27’) -5.5 -10,+20. 1.0+1.1 1.0+ 1.2

abs. values

Table 16: Parameter Variations for shot Fe15.

—Lank Shear 1

I Density Gmstant,Iatetid ::/m’) ylbar, ~:y ::p)’ ~“@p’T $%$,)

Fe 7.8516 lol~3651 0.814751 5.46351 1.85751 -0.3352

Table 17: Material Properties of Fe

The material used for the shock experiments was AIIMCO iron of 99.8%purity and with an averagegrain size of 150pm.]GThe material was used asreceivd. It had a Rockwellhardness of B 34 to 37, The experiments weredone nominally at room temperature.

Page 25: Veak-ShockConstitutive Data - Sciencemadness

Griineisen Heat Lineard/@T constant capacity expansion(kbar/K) (cal/g K) A--’

Material 7 Cp CYFe .oe~@ 1.753 0.10754 1.18x10-5 55

Table 18: Material Properties of Fe

Shot I.D. Normal Stress - %unpleThickness=15 105 6.30416 131 6.309

Table 19: P!at&Impact Shots for Fe

The data points in the data base correspond to actual data points. Thevelocity profiles given here are the ones obtairwd from Sandia. They havebeen corrected slightly for windowreflectioneflw+s.

The data were taken through a sapphire window.Shockvelocities(measured by absolute timing) and particle velocitypro

filesweremeasured along with the profles b~”Barker and Hollenbach.lGThevaluesfor D used here were taken from their U, – UPfit: D = O._/W+1.33UP. The sensitivity of the results to D for shot Fe15 was assessed byraising the value for D from this relation by 0.4%.

All parameter variations for Fe were done for shot Fe15.A l;, – Uprelation from experimental work by Arnold and Sachs4GpIo

duced a plastic wave velocity differing by 2% from the standard one usedhere for shot Fe15. This value yielded very small ~Cvalues of about 0.5 kbar.

Three sets of high-quality elastic constant data includingpressure fieriva-tives are available, from Voronovand Vereshchagin,22Rotter and Smith,4Tand Guinan.48 The quoted values were 1,667, 1,669,and 1,664kbm fol”L~;812, 818, and 814 kbar for p; 5.13, 5.96, and 5.29 for (~’)~; and, fixl~lY,2.16/1.84, 1.91,and 1.82 for (p’)~; all for Voronov,Rotter and Smith, andGuinan, respectively. The slash for the Voronov (p’)~ value indicates twoconflictingvalues to be found in their paper.22 These values all agree fairlywell. Their averageswereused for the database calculation (using 1.84for theVoronovvaluefor (p’)~). The pammeter variations used in the error analysisfor these quantites are based on the experimental spread. The experimentalvaluesfor B wereso closetogether, a sprad of 0.3%,that no parameter vari-ation was done for this quantity. The above experimental spread in p-valuesis ().7%6;that for (~)~ is about 15~o;whalethat for (p’)~ is about 5~o.

The completesets of TOE availablefrom Hughesand Kelley49and Seegerand Bucksowere not used here. They yielded (l?’)~ values of 2.8 and 4.0,

23

Page 26: Veak-ShockConstitutive Data - Sciencemadness

—— —

respectively,which difIer significantlyfrom those above.The standard value for ( was taken to be -5.5 Mbar. As ( was varied

from -10 M&r to 20 Mbar, v, the larger in magnitude of v and (, variedfrom 49.8 Lfbar to -260 MIN. The former value produced little change inthe calculated r values,while the latter resulted in an increase in all ~ of lessthan 20(1. This parameter variation, the one quoted in Table 16, goes faroutside the physical range,

The sensitivity of the results to a different precursor treatment was as-sessed. It was assumed that the wwe-portion between points b and c, i.e.betmwmthe elastic rise and the steady wave, propagated as a simple wave,i.e. that the propagation velocity at constant particle velocity dependedonl~-on particle l’elocity. The propagation velocity ~~asinterpolated usingthe particle velocitiesbetween the elastic precursor propagation velocityandthe plastic-wave velocity. This change in treatment. resulted in TPand T,

droppingto 0.93 and 0.83 of their former values, i.e. no iarge change wasseen.

The ~alues of ~(lsf)/~ for shot Fe15 for the peak and end de~-iatoncstresses were 0.89 and 0.52. respectively.

The point b of the J1’’’laceanalysis was changed for shot Fe15from 1.10ps to 1.07 ps to ass~s the sensitivity of the results t.o the choice for thispoint. The plot for Y’versus ~ underwent very little change to the eye, i.e.less than 1%change.

The values used for UCwere 35.3 and 43.2 n2/s for shots Fel~ and Fe16,respectively.

Somecomment is in order concerningFig. 36, ~~.herethe strain.rate dropsto the x-axis in the precursor portion of the stronger shock in Fig. 36, whereiog(~~)is plotted versus ~. This drop is due to the corresponding dip seenm Fig. 30 in the plot of particle velocity versus time. This dip gi~-c~riseto a short negative strain rate excursion. In the plots, all strain rates less

than 1/s were set equal to 1/s. Hence, the negative strain rate excursion isreproduced there as a portion lying on the x-axis,

F. Constitutive Data and Error Analysis for 21-6-9Stainless Steel

FiOwes 37-43 for 21-69 stahdess steel are to be found on IJages73-79. The}.show particle velocity,total and plastic strains, normal stress, addeviatwic stress plotted versus time; deviatoric stress plotted versus Plasticstrain: and plastic strain rate plottedstress. Tables 20 - 23 give parametershot information.

~q

. .versusplasticstrainad cleviatoricvariations.materialproperties,and

I

I

I

Page 27: Veak-ShockConstitutive Data - Sciencemadness

QU.L ;)” Std. Change, Tp Tp Std.) T~ T~ Std.

Value Exp.Range(qity.+ Sil.)

D(cm/ps) 0.4783 1.+0.9967 1.+0.97 1.+0.93.\(kbm) 99s. 1.+1.067 1.+0.8s 1.+0.48p(kb(-zr) 7N’. 1.+0.%5 1.+0.88 1.+0.48

(l?’)~ “ ‘-a.al 1+().97 1.+1.0!17 1.+1.06 n(jl’)~ 1.75 1.+1.07 1.-1.007 1.+1.06

Il’c(nl s 47.0 1.+0.89 1.+0.97 1.+0.95((ilhr) -4. -5.5+-3. 1.+1.01 1.+1.02

abs. values ITable ?0: Parameter \Tariatiom for Shot S~VPIS for SS. B, p and(l?’)~. (p’)~ were varied jointl}”.

Lilnlt ShearDensity constant mddus (d~/d~), (d/f/d~), d~/~(g/cm3) (M-bar) (Mb@ (kbar/K)

Material p. A P (B’)~ (P’)T~l&9cJs 7.8225 0.9985 0.7865 5.5756 1.7556 -0.1457

Table 21: Material Properties for 21-69 SS

Griineisen Heat Lineardp#l- Constant capacity expansion(kbar/K) (cal/g Ii) ~;-1

Material -1 Cp CY~1-&9Ss -0.37” 1.6PE 0.1158 1.71X10-559

T~le 22: Material Properties for 21-69 SS

Shot I.D. Normal Stress (kbar) Sample Thickness (mm)sSSWPIS 98 4.175

Table 23: Platd@ %ots for 21-&9SS

25

Page 28: Veak-ShockConstitutive Data - Sciencemadness

The material US4 for the LT3.4Rshots was nominally 21-6-9stainlesssteel (SS) with the followingcomposition (wt. %): Cr(19.81), Ni(7.23),Mn(9.38), .&(O.30),C(O.02),P(O.011),S(O.O1O),and Si(O.09)with the bal-ance Fe.s The averagegrain size was 80pN15after annealing.

The data points here for 21-6-9SSare taken from the last initial conditionof the wavecode calculation, the one that accurately matched the data whenrun through the window. The actual data were amilable and were used atthe start of the czdculationand for the data-calculation comparison at thefree surface. Thus, the particle velocity profile giveu in this dat.alxisehasbeen corrected for effectsof the sapphire window.

onl~”the shot SS\$TIS ~msanal}”zedfor the database. The others lackedresolution through the shock rise.

.Wsolute timing measurements weremade of shock velociti~ at the sametime as the particle velocity profik were rneasured.s W’isefitted his shock~elwiti= ~lth the cis– Up relation: D = 0.4403ctII/ps+ 1.441L~.The Dgivenb}”this expressionfor shot SSlf’PIS is 0.9967of that directl}”measuredfor this shot, whichwas taken as standard in the database calculation. Thisvariation is the one taken for the paramet.er-variationcalculations as repre-senting the error in the measurd shock velocity.

Mlse and Mikkolameasured ultrasonic sound velocities from which thestandard valuesfor Aand p weretaken for the database calculation. hleasuredpolycrystallinepressure deri~ativesfor a number of stainless steels closelyre-lated to 21-69 SS are given b~’Gerlich and Hart.sG The (l?’)~ and (p’)~valuesfor 304 SS given there are taken here as standard since this SS is clos-est to 21-G9SS in composition. The pressure deri~ativesof 316 SS, anothersimilar steel, were used in the parameter variations to gi~resome idea of theuncertainty due to (13’)~and (p’)~. These values for (B’)T and (p’)~ were0.97and 1.07times those of 304 SS used as standard. The Aand p valuesofthe XII SS wereuswlin the parameter variations of the error analysis. Thesevalues for Aand p.were 1.067and 0.985 times the standard ones measuredfor 21-G9 SS by Wke and Mikkola.5

The major constituents of the 304 SS investigated by Gerlich and Hartare (bides Fe)(wt. %): Cr(18.4), NTi(9.7),Mn(1.4), and hlo(O.0).Thoseoftheir 316 SS are: Cr(16.8), Ni(ll.7), hfn(l.9), and Mo(2.1).

The ~-value4 hk was taken as standard. Vaqving~ over the range-5.5+-3. Mbar produced the variation in v from -10.’74to 11.76Mhar. TheTOE( was smaller in magnitude. This <-rangeis thus the physical one, andwas, therefore, used in the parameter variations.

The values for r(lst)P/~P and ~(lst)t/rc for this SS shot were 0.90 and0.66, respectively.

The value of Vbwas changed to 0.87 of its standard value to assess the

26

Page 29: Veak-ShockConstitutive Data - Sciencemadness

sensitivity of the data analysis to the choice for vb. rP and r~ changedand 0.94 of their standard values, respectively.

G. Constit utive Data and Error Analysis fornium

Figures 44-50 for uranium are to be found on pages 80-86.

to 0.97

Ura-

They.- .show particle v&city, total and plastic strains, normal stress, and deviatoricstress plotted versus time; deviatoric stress plotted versus plastic strain; andplastic strain rate plotted versus plastic strain and deviatoric stress. Thbles24-27 give parameter variations, material properties, and shot information.

Quantity Std. ~- r- (std. Te/re (std. )Value ?Rnge

(qnty.+ std.)D(cm/ps) 0.2735 1.+0.9978 1. +0.99 1.+0.96A(kbur) 526.67 1.+0.93 1.+1.12 1.+1.23p(kbur) 860. 1.+0.97 1.--+1.04 1,+1.09

(B’)T 5.95 1+0.96 1.+1.0 1.+1.04(#)T 2.99 1.+1.05 1.+1.0 1.+1.0

Vcrns 31.0 1.0+1.14 1.0+1,04 1.()+1.04<(Mbur) -5.5 -5.5+ 0.0 1.0--+1.02 1.0+1.03

abs. values

Thble 24: Parameter Variations for shot AV1O for U. UCis in situ.

Larni ShearDensity constant modulus (dB/d~)T (dp/d~)T dB/dT(9/~3) (M-bar) (MIX@ (kbar/K)

Material p. A P (B’)T) (P’)Tu 18.94CF 0.526WI 0.860615.9561 2.9W -0.1CY’3

Table 25: Material Properties for U

Grtineisen Heat Lineardp/dT constant capacity expansion(kbar/K) (cd/g K) ~{-1

Material -Y q Clu -0.523 1.56] 0.0277262 L39X10-5 63

Thble 26: Material Properties for U

27

Page 30: Veak-ShockConstitutive Data - Sciencemadness

Shot I.D. Normal Stress (kbar) Sample Thickness (mm)BoAV6 75 7.539AV1O 96 7.565AV8 116 7.530AV7 127 7.624AV9 144 7.640

!l%ble27: PlateImpact Shots for U

The material used for the uranium shock-wavemeasurementswas unal-loyed D-38 from Union Carbide.Go

The data points for U in the data base are basedon the actual fresurfaceprofile data multiplied by on~half and linearly interpolated to fill out the rawdata points to serve as a better initial condition for the wav~code calculation.(The data were in no way sparse, however.) The constitutive data are theresult of the Wallace analysis done on this initial condition. The agreementbetween the free surfacedata and this initial condition after being run to thefkeesurface using the power-law fit to the comtitutive data was good for thefirst half of the shock rise and fair for the second half for the five velocityprofiles analyzed. See the section on the method of data reduction for moreinformation.

Absolute timing measurementswere not done during the shock profilemeasurements.The shock velocites were calculated in the original workGObyusing an average precursorvelocity aud relative times between the precursorrise and the plastic wave front. Grady fitted the folIowing CL– Up relationto the shockvelocities: D = 0.249cm/ps+ 1.370UP.

For the error analysis,the analysisfor shot AV1Owas used. The standardshockvelocity for this shot was taken to be that given by the Us– Uprelation.To test the sensitivity of the data dysis to D, this value was varied to theactual measuredvelocity for this shot.

The only set of polycrystalline elastic constantswith pressurederivativesfound was that of Abey and Bonner.‘1 Their valueswere varied by plausibleamounts in the error analysis.

The ~-value of -5.5 M&r was taken as standard. Vaxying it to zeroresulted in v, the larger of the other two TOE in magnitude, changing from20.3 to -29.2 Mbar. Hence, the interval -5.5 to O Mbar for ~ includes thephysically reasonablechoices.

When V*was lowered to 0.87of its standardvalue, TPand ~eboth changedto 0.97 of their standard values.

The valuesfor shot AV1O for r(lst)p/~p and r(lst),/r. are 0.85and 0.65.The second-order thermoplastic expansion seemsto be adequate here.

28

Page 31: Veak-ShockConstitutive Data - Sciencemadness

The values used for UCwere 29.09,31.04,28.95,35.47,and 34.48m/s forshots AV6, AV1O, AV8, AV7, and AV9, respectively.

H. Constit utive Data and Error Analysis for Vana-dium

Figures 51-57 for vanadium are to be found on pages 87-93. Theyshowparticle velocity, total and plastic strains,normal stress,and deviatoricstressplotted versustime; deviatoric stressplotted versusplastic strain; andplastic strain rate plotted versusplastic strain and deviatoric stress. l%bles28-31 give parameter variations, material properties, and shot infomnation.

Quantity Std. Change, Tp Tp std.) Te Te(std.)V’ue * we

(qnty. + std.)D(cm/ps) 0.529 1.+0.99 1.+1.0 1.+1.01A(kbur) 1258.0 1.+0.986 1.+1.02 1.+1.14p(kbar) 471.6 1.+1.04 1.+1.02 1.+0.96

(B’)T 4.74 0.9+1.1 0.99+1.00 1.10+0.90(#)T 0.516 1.+0.9 1.+1.0 1.+1.0

vcms 61.7 1.+1.1 1.+1.05 1.+1.06~(h%ur) -4. -5.-+2. &6Y&4.unge &67&4ange

abs. values

Table 28: Parameter Variations for shot VAN2 for V

Lam’ ShearDensity constant modulus (dB/dP)T (dp/d~)T dB/dZ’

(9/~3) (mar) @l-bax) (kbar/K)Material pa” A’j’ (B’)T (#)Tv 6.086 1.25806 0.47166 4.7465 0.51665 -0.1196

Table 29: Material Properties for V

Grtineisen Heat Lineardp/dT constant(kbar/K)

caPac’itY expansion(ml/g K) K-’

Material -Y Cp 0!v -0.08464 1.3566 0.11667 O.84X1O-568

Table 30: Material Properties for V

29

Page 32: Veak-ShockConstitutive Data - Sciencemadness

Shot I.D. Nomml Stress (kbar) sample Thi :kness (nlm)fiV.MW (M 5.0L2VAN3 97 5.047

Table 31: Platehnpact Shots for V

The material used for the shock wavestudies ~~as99.9[X:pure with a rangein grain size of 30 – 150pnl.G

The data points here for vanadium were digitized from Fig. U of theoriginal paper,Gill which Wiudowworrecttdvelorit~’profileswere given,

The shock profiledata were taken through a sapphire wiwkm..Shockwavevelocitieswere calculated b)*Chhid~iM:~saml HillsGusing an

average velocity of the leading wave edge together ~Jith measured relativetimes be. ~~n this edge and the plastic wm’efront. The sensitivity of thrdata analysls to D for shot J’.4N2~~asassessed b~’lo~~vxingth(*]~lt~ii.sllrt!(lDby the plausible amount of 1(X..

The analysis of shot l’.AN2WMILsedin the error analysis.Sourcmforpolycrystallineelastic constants wereultrasonic measurements

b~’Chhahiklas and Hills6and Farraro and hld.ellan.~~ Alberts et al.~sgivemeasurements for two sinde crystals from which y’oigtand muss averageswere calculated h]’ the author. The a~’erageof the Voigt ancl RtYLSS~ahwswas takenfor coxL~iderationhere. The ~ and p values of ~d~abih!as et al.wvretaken as standard, since they weredone on the same material shot. The~-~nluesof Fk-raro et al. and of one of the twu mystals of Alberts werelowerthan the standard value b}’0.5(jl. The other of the two crystals of Albmtsu“ashigher b~’().3(X.koxthe error analysis, the standard k-valuewas lowm’db:,-1.4X. u.hichshould adequately reprment the range of values available.

The )~-vahwof Farraro and hfcLellan was 2% lmvcr than the standard,Ahih’the two values from .41berts were I(x,and 1.5(X1higher. For the erroraxti~”sis,}(was varie(lu1)from the sta.ndarclvalue by 4%.

Prfhsure derivatives of p were available only from the Voigt and Fbmssaverages (done by the author) of Alberts’s data fur the two singk cgrstak.Val~lfA,fur (p’)~ for each crystal were obtained by averaging the Voigt andRml>smlurs for tha! crystal. The standard value for (p’)~ for use in ana-1~.zingthe wdveprofileswas obtained from the average of the correspondingvaluesfor the two crystals. For the (p’)~-wu-iationof the error analysis, thestandard value was varied downwardby 10%,to the lowerof the two valuesof the singlecrystals.

For (l?’)y’,the standard value was taken to be the average of those forthe single crystals. For the error analysis, the standard value for (13’)Y’wasvaried by about +10%, which reflected the variation of tlw (l?’)7~valuesfor

30

Page 33: Veak-ShockConstitutive Data - Sciencemadness

the two crystals fromthe Stanckx’dvalue.The<-valueof -4 MIx-uItzwtaken M standard. Varying< between-G.,and

-2. Mbar resulted in a wuiation in v betwf’cn11.7 aml -15.3 Mtxuc,whichincludes the physically reasowiblevalues. u was larger iu magmitudethan f.This same ~-range was uwd in the Cm”oranalysis.

\$kn ‘Ub~f~ variedh ().89of its st~ldd I’ahlc,TJ,and T(~b”~)pp~lto0,95 and 0.93 of their standard values, respcctivel),.

The values for shot V.0J2 for ~(lst)P/~P and ~(lst)e/~. were 0.99 aw;0.8G.respectively. The second-order themmclastic expan.sifmis t.hILsqllitcadquat.e here.

The VdUf?S used for IIC\\”Cl”t’61.7 and ~.6 ???/Sfor shots ~’.~x~and VAN3,respectively.

An od(l feature of Fig. 55, where ~ is plotted versus ~’, is worthy l)fmention. This feature is tlw prononncecldroop in deviat.wic stress :S theend of the shock wave is approached. This same behavi~)rwas noted h}.Chhabildas,Gwho used a differrnt method to extract the fleviatoiic stress.This behavior is proabahly real and could indicate some sort of thmmalsoftening.

V. Strain-Rate Modeling

In this sectionpower-lawfitstct}.estress.-:+trainratedatawillh given.Thefitsweremadeonlytothe plastic-~~aw’part oftheshrk wave.Exceptforuranium. no yield stresses were included ill the Ij(nver-lav”fits. For nmterials,suchas vanadium and iron, whichhavea high initial ,yieldstress, this omissionwill result in a differentfit but.one which mu perhaps be more mwmingfullycompared with the fits for the materiak n(~t.possessinga ]arge-yieldstrength.In the case of the 30-kbar Cu data and the 21-M SSdata, fits werealso madefor the precursor portion for use in wave code calculations. See the earlierwork of TG&Stand Warms and Tonks32for these fits.

The algebraic form used for giving the plastic strain rate, ~~as a functionof [~and ~ is the fo!kxving:

where d, h, g, and c are constants to be fittai. The terms 7Yand hd~providezero strain rate at the beginning and ending of the shock. The term @uisa small initial strain included in the fit mostly to give a small initial strain-rate for wave-codecalculations. Its value was taken to he .0001here, smallenough to have no effecton the plastic-wavefit.

31

Page 34: Veak-ShockConstitutive Data - Sciencemadness

Tlatmial shot d h 13 c6WlT6 Al 937(37ld)al”) 25.844 0.055 5.76 1,97Be BP18(63klti”) 13.460 0.04 1.842 1.507Cu HS01(30kbar) 18.048 0.0141 2.99 1.18Cll 54 ldxu” ~1.~~ 0.0155 4oQ~ 1,188F( Fe15 (105 kbar) 14.530 0.085 2.30 1,45~1.&(J~s SSNTIS (98 kbar) 13.59(3 0.130 2.303 1.278t- .41”10(96ld)ar) 16.450 0.045 3.790 0.7768

AcknowledgmentI would like to thank J. E. Dunn, D. E. Grady, zxl.~J. L. Wise forprovidingdigitizedshockprofiledata,and J. W’.Sweglefordiscussions.

32

Page 35: Veak-ShockConstitutive Data - Sciencemadness

References

5J L ~’isead DeE.~fikk~la,ill,$hock ~’rfvesin Co?tdensed kfaf~e?’.. .

19~Y7,Atd bY S. C. %hm.idt and N. C. Holmes,(Elsevier,Amsterdam,1988).pp. 261-264.

6Lc. ~Hhi]~aq ~~ Cl.R. Hills,inAft:alhirgiad ripp/icatiortsof●ock- 11’aucand High-Sirain-RattPh(nonlina. edit(’(1I)}L.E.Murr,K.P. Staudhammer, and hl. A. Meyers (Dekk(Ir.N. Y., 1986),p. 429.

‘R. .J. ~ifton, in Shock 11’aves(~jd /he &JwhanicalProperties ofSOlids,editedby J. J, Burke and V, Iikiss (Syracuse Uniwrsity Press,S.yra.cu.w,N. }-.. 1971),pp. 73116.

8s ~{menlochi,M. .u&s~, and K. Mizuno, J. Soc. Mater. Sci.Japan 2’7,974 (1978).

1“JI.J\”.Guinan and D. J. Steinberg, ,J.Phys, Chem. Solids35, 1501(1974).

12D, E. ~l.~~t~~ E, G. yOLU1g, E’ualualionof ~’onstituliveProp-.er(i~s from Velociig lnterferom~ter flaia, Sandia hTationalLaboratoriesreport S.4ND7&0650(1976).

13JN.Jo~on ~d D.L.‘l’OXJW,CIZARADE:A characteristiccodefor CalculatingRutc-DependentShock-WaveResponse, La Alamos Na-tional Laboratory report L.4-ll$XXLMS,January (1991).

~4J R ~ay, L. c. ~abi]d=, ZUKI J. L. Wise, in Shock waves z’~Condcn;ed.Mafier -1981, edited by W. J. Nellis,L, Seaman, and R. A.Graham (Am. Inst. Phys., N. Y., 1982),p. 427.

15J.R. ~~y, J. Appl. Phys. 48, 2N2 (1977).

IGL.M. Barker ~d R. E. Hollenbach,J. Appl. Phys. 45,472 (1974)”

33

-

Page 36: Veak-ShockConstitutive Data - Sciencemadness

17J0N. Jo]mon and L. .M.Barker, J. .4p!>1.Phys. Jo, 4321 (1~~).

18J R. ~aJ,, s. Re urzendo~mki, .4. H. (h~l~th~r,ultI’fl.$oll~~all(j.Thenml Studies OSSelwicd Plastic.$,Lanlinalcd Maicrials, and Mc!als,AFWLTR-67-91, Air ForctiWeapons Laboratory, 1968.

19JL Wise L.C.~~abildw, and J.R.Asay,inShockH’~IIMin. .CondensedMatfe’r- 1981, editedby W. J, Nellis, L. Seaman, and R. A,Graham (An~.Inst. Phys., N. Y., 1982),p. 417.

~oDoJ.Silvemlfithmd B.L..kverbachlPh~s.RN. Bl,567(197’0).

~lJ,F.S1fithand C.L. Abrogast, J. Appl. Ph}.s.3~, ~ (1~)”

ZZF F. voroxlo~~and L. F. l’ereshchaginl Fiz. Met. Metalloved. 11,443 (ltil.).

z3SjngleC1.Y~lalElastic ~’onsto?lt5and CnlCUlfllr(fAggregnieProPe)’-

ties: A Handbook,edited by G. !%mmonsand H. Wang (M,I.T., Camb-ridge, hbss., 1971)

24Thermophysjca/ propertiesoj Matter, VO1. ~, ~ted bY ‘S ‘“Touloukianand E. H. Buyco (Plenum, New York, 1970),p. 18.

25ThermophysicalPropel.tit5 Os.kfatterl VO1.12, ~t~ ~Y ‘O ‘,

Touloukian, R. Ii. Kirby, R. E. Taylor, and P. D. Desai (Plenum, NewYork, 1975),p. 32.

ZGIOJ. Ffitz, J.Appl. Phys. 45, 60 (1974)”

27F0 F. voronol~~d (). V. Stal’gorovzz,Fiz. Met. Metalloved.34, ~~(1972).

28y ~te~, A. w. ~won, and D. H. Beneker, J. APP1”PhYsS3~~

1534(l&).

290 L. ~demon, in ~hys~ca~Acoustics,~0/.ZZ1-B,~t~ bY ‘. ‘-Mason (Academic,N.Y., 1965),Appendix III, p, 88.

30Thermophysicaf Properfzes OSMatter, VO1.41 ~t~ bY ‘O ‘)Touloukianand E, H. Buyco (Plenum, New York, 1970),p. 24.

31Themophysjcal Properties of Matter, VO1.12, ~t~ bY ‘“ ‘O

Touloukian, R. K. Kirby, R. E. Taylor, and P. D, Desai (Plenum, NewYork, 1975),p. 33.

34

Page 37: Veak-ShockConstitutive Data - Sciencemadness

3ZR.H. w“= ~lcl D. L. Tox&.s,in Shock Compressionof CondensedMaiicr - I!W, edited by S. C. Schmitt, J. N. Johnson, and L. W. Davison(Elsevier, N. Y., 1990),p. 329.

33D, E. h:IuEoll ~ld L M. Barker, J. Appl. PhYs.37, 1652(1~),

3GY,A. ~alg ~d L, Himmel, J. Appl. Phys. 37, 3567 (1~).

37R0 E. s~u& ~~ c. s. smith, J. Phys. Chn. Solids 9, 100(1959).

AON.J.~appefiers,S.N. Biswas, and C. .4. ten Seldam, physi~85B, 20 (1977).

411{.Sal- ad G. A. Alers, Phys. R--t-.161,673 (1967).

43F0 B~ch, J. Appl. Phys. 8, 129 (1937)”

44Thermophgsica/ PropF;’tics Of ~ti’fafffl’fVol. 4, edited by Y. S.Touloukianand E. H. B~i:”~>(Plenum, New York, 1970),p. 57.

45Thtl.nlophy~lc.a/~ropcrti~s Of fifa~tcl’!vol. 12, edited by Y. s.Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai (Plenum, NewYoik, 1975),p. 77.

qG~70hold ad W. s~s, in ShockCompressionof CondensedMat-ter - 1989, editedby S. C. ScArnitt,J. N. Johnson, and L. W’.Davison(Elsevier,N. Y., 1990),p. 337.

4TC,A. ~tter and C. S, Smith, J. Phyi, Chem. SOlidS27,267 (1~).

48M. W’.Guinan and D. N. Beshers. J. Phys. Chem. Solids 29, 541(1968).

49D0 s. Hu@& and .J, L. Kelley,Phys. REW.92, 1145(1953).

SOAOS&ger ad 0. Buck, Z. Naturforsch. 15A, 1056(1~).

35

Page 38: Veak-ShockConstitutive Data - Sciencemadness

5~T~l(%e ~~u= WC averwes of those of Voronovand Veresh&@n,Rotter and Smith, and Chinan ancl Beshex-s.

‘*D. S. Hughesand C. Maurette, J. .4ppl, Phys. 27, 1184(1956).

5300L. .klderson, J. Phys. Chem. Solids 27, 547 (1~).

M Thel.l),ophy~ica/pl.o~crtjesOf hf(zttcI”, VO1. d, ~ted by ‘- ‘“

Touloukianand E. H. Buyco (Plenum, New York, 1970),p. 107.

55lqhe,.,)tophgsiralpl.o~ertjesOf Mattel”,Vol. 12, edited by Y. S.Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai (Plenlun, NewYork, 1975),p. 157.

57H0 M. Mbtter, hlater. Sci. Eng. W, 255 (1977).

58Thet.lnophy5ica/P1.opertiesOf fkfatter, VO1. 4, edited bY ‘S ‘“Touloukianand E. H. Buyco (Plenum, New York, 1970),p. 695.

WIThel.mophy~icalP1.opertiesof Alattcr, VO1.12, ~t~ bY ‘“ ‘O

Touloukian, R.,K. Kirby, R, E. Taylor, and P. D, Desai (Plenum, NewYork, 1975), pp. 1148-1156.

GOD.E. &@*, ill h{ctal[urgical Applications Of Shock- wave andHi@-Sfrai;i-Rate Phenomina,editedby L. E. Murr, K. P. Staudharnmer,and M. A. Meyers (Dekkel”tN. Y., 1986),p. 763.

61A.E. AheJ~and B. P. Bonner, J. Appl. Phys. 46, 1427(1975).

62Thermophy5ica/Rvpertaes of Matfer, VO1.4, ~ted bY ‘O ‘-

Touloukian and E. H. Buyco (Plenum, NewYork, 1970),p. 270.

63Thermophy5ica/Properties Of Matter, VO1. 12, ~t’:~ bY y. ‘“Touloukian, R. K, Kirby, R. E. Taylor, and P. D. Desai (Plenum, NewYork, 1975),p. 365.

64R.J.FaITaroandR,,B.McLellan,Met. fians. A 10~, 1699(1979).

G5H.L. AIIMrtS,E. S. Fisher, K. W. Katahara, and M. H. M&,J. Phys. F 9, L209 (1979).

MD. I, Bol~, R. E. Smith, and J, G. Miller, Phys. k. B3, 4100(1971).

c; Themophysica~ Properties of Matter, VO1.41 ~t~ bY Y“ $.Touloukian and E. H. Buyco (Plenum, New York, 1970),p. 273.

36

Page 39: Veak-ShockConstitutive Data - Sciencemadness

G~Themophy~icalProperties of Matter, VO1.12, ~t~ by y. s“

Touloukian, R. K, Kirby, R. E, ‘Ihylor, and P. D. Desai (Plenum, NewYork, 1975),p. 373.

37

Page 40: Veak-ShockConstitutive Data - Sciencemadness

x\

o00m

o(ooox

+0

xo

n❑x

+c%

”++.++++.++~

am

a~

,a

Page 41: Veak-ShockConstitutive Data - Sciencemadness

o0000

+++q++

++

aa&

%a

i&

I

.*M

aea%

“”x-....

rI

II

3—

o-4q-o0-d

OT”O

00”0

90”0

*0”0

(“!~z?s

@~qq)@

~

Zo”

o00”

0

Page 42: Veak-ShockConstitutive Data - Sciencemadness

x

=?

o00W

90xxoxoxooxox

+0;

+c1

x

+%

a+++++++++

a+@

0a

fix%

Oad

aa.

0000

00

0I

iI

II

-oO“OOT

0“080“

09O

“oti

(Ssqsp

mou

)(mp

$’oz0“0

40

Page 43: Veak-ShockConstitutive Data - Sciencemadness

41

Page 44: Veak-ShockConstitutive Data - Sciencemadness

o

I

0

o

0

-ko

0O

QI

O“b

0“0

Page 45: Veak-ShockConstitutive Data - Sciencemadness

0

o0

&.0

oao

vr

Iv

r

en0,0*o0‘ain

o-o0“9

.00%’

0“2

0“!)

(?GW

=F

@)(yo(?P

/*P)m

43

Page 46: Veak-ShockConstitutive Data - Sciencemadness

o

il.,:‘..o#

:....<

00““””%

;Q.e......,...*...

,..,.........0,,..,.,,,.,,,,,

00.

ti

o0[

In

+’

0“2

liMi4)(3P

/7@~

o~

44

0“0

Page 47: Veak-ShockConstitutive Data - Sciencemadness

I

ilP-0

Be

Fig. 9. h situ particle velocity versus time for beryllium. Squares andcircles are for shots Be18 and Be14,repsectively.

Page 48: Veak-ShockConstitutive Data - Sciencemadness

&

0.

Page 49: Veak-ShockConstitutive Data - Sciencemadness

1’ Ua

-40‘-i

%’a3

Ino

Page 50: Veak-ShockConstitutive Data - Sciencemadness

Ua

-4o“4

c

ro

I0’9

(:!:~~~Aa@(J#i”~

0“0

I

0 qo

48

Page 51: Veak-ShockConstitutive Data - Sciencemadness

Q)

0

I&c

1

c1c100

49

0“0

ml

o0o0,

-o

Page 52: Veak-ShockConstitutive Data - Sciencemadness

❑all❑

o%

[I

w3-c33-

50

Page 53: Veak-ShockConstitutive Data - Sciencemadness

q.....Q

ii

Q

0..,

I

Page 54: Veak-ShockConstitutive Data - Sciencemadness

o000

00

n❑o

rI

ST”o

I01”0

Go”o

00”0

(Sti/UITXI)[aA

d

.Zd.$0

Page 55: Veak-ShockConstitutive Data - Sciencemadness

–z.

o00

0

Ei

Io

1I

I

*o”o

20”0

00”090”

0(um

qs~d

6pq

o$@.

53

Page 56: Veak-ShockConstitutive Data - Sciencemadness

o000

❑❑c1❑ElIi\

oyI

II

O“w

II

------+

0“02

0“s1

0“01

(-J”)S

pw

Jou

)(JIxp

g”s0“0

54

Page 57: Veak-ShockConstitutive Data - Sciencemadness

‘?

Maqo0=

$-o

Page 58: Veak-ShockConstitutive Data - Sciencemadness

o@

o

0

0

000

0

000

0%

@o

ocP

”o56

Page 59: Veak-ShockConstitutive Data - Sciencemadness

Q)

o00

do0000

000

000/ED

:

0°OQ

IO

Q3J

wo0

57

Page 60: Veak-ShockConstitutive Data - Sciencemadness

II[

58

Page 61: Veak-ShockConstitutive Data - Sciencemadness

+++

o%4J

%+

t-t-t++

++

++

++

+

uQ

++

+-+

i-++

‘dqt-Qjlo

+-+

i-++T

+++\ ++++

--40

,.

0

59

00”0

Page 62: Veak-ShockConstitutive Data - Sciencemadness

2

?o,0IIIIt1I,i?%

\:,,

d

+++L=

%t+t+t+++

+++++

60

Page 63: Veak-ShockConstitutive Data - Sciencemadness

+++%-t-t

++

-++

++

++

+

0“09

o%4)

•1

G!

++

++

++

++

+If

m-+

o‘w-i

0..,~=

0“02

(Ssaqs

pluou)(mqq)ll

000

61

Page 64: Veak-ShockConstitutive Data - Sciencemadness

t#

00

-o

Page 65: Veak-ShockConstitutive Data - Sciencemadness

.-

+

+

-++

++

+

+++++

+

,++++f’+--+

++

++

+

++

++

+

++

++

\+

++

+[

-+0“1

I

(WLqs

Aap)(J

f

63

E’

Page 66: Veak-ShockConstitutive Data - Sciencemadness

I

+

{+

$~...a.....na-

4A

f’

+

--

I

m

-2/0Eo0

-dh

0

Page 67: Veak-ShockConstitutive Data - Sciencemadness

u+&l

a..

Ua

--i

1-1

U“u

65

Page 68: Veak-ShockConstitutive Data - Sciencemadness

❑❑c1o

n

c1

o‘b0°0

00?

Q1o%oUD

Page 69: Veak-ShockConstitutive Data - Sciencemadness

c1c10D❑I

b

Q1o

.----&--+’

80”090”0

20’0

t(u!RJ~s@’~w$@a

00”0

,..r.,

:...

67

Page 70: Veak-ShockConstitutive Data - Sciencemadness

o00000000

D❑❑Dc1❑

❑n❑

nA!

0.

u

o

❑a

%3

00()%00Q

I

II

Ua4.

-4

0“0010“0s

.(=W

Iwmou)(mqqfl

00

8!4c%’

iii

68

Page 71: Veak-ShockConstitutive Data - Sciencemadness

&!

0“8

0“9

o

(=qs::p)(mpgz

0“0

69

Page 72: Veak-ShockConstitutive Data - Sciencemadness

o

0

0

c1c)

G

o

0

0

•1

oE

l

Oo #

o

0

o0

❑[Jm

(“w’

Aap)(JF?qq)-L

--i

o000“0

8El

c%

I

Page 73: Veak-ShockConstitutive Data - Sciencemadness

mo

0O

o 000

00

/?O

t%p

oo

c1

on

c1

o

0

n

oc1

on

Do

u(5’0n

nla

71

0000

-o

Page 74: Veak-ShockConstitutive Data - Sciencemadness

&

o-cdo‘C

d

in

72

Page 75: Veak-ShockConstitutive Data - Sciencemadness

0

o

c1o❑o

min0Cll

Cq

“o

I *.Io

rI

I.

0“0

coo

‘&l/U@~~A

;0

73

.52g‘p

Page 76: Veak-ShockConstitutive Data - Sciencemadness

c1❑c1

n

d-4”o“d”

qo

I

74

Page 77: Veak-ShockConstitutive Data - Sciencemadness

.’

a

o“%

0c1

II

IO

’OO

TI

0“08

I0’09

0“0?

(Ssqspou

)(mqq):oz

‘“c

=..-,/.

Page 78: Veak-ShockConstitutive Data - Sciencemadness

II

%I

‘~

,~

0“8

0“9

t,=

..

.(Ssiqs

::p)(JE

?qa);

z00

(n

76

Page 79: Veak-ShockConstitutive Data - Sciencemadness

+4

0“[

•1

#

r4

##

J!!!

la

mo0

‘aI

.4”

II

77

Page 80: Veak-ShockConstitutive Data - Sciencemadness

AY

Ii

(nU2

92IcoIz

.so

000

78

Page 81: Veak-ShockConstitutive Data - Sciencemadness

N2

o“a”

79

Page 82: Veak-ShockConstitutive Data - Sciencemadness

n

o

❑o

04

n++a+a++

a+

x

[

o

\;0.

II

.——coo

-0.

yL-p

uu

l)pF

0“0

%’z.

w

80

Page 83: Veak-ShockConstitutive Data - Sciencemadness

‘-

—-.-—

—01”0

.!30”0

i’o”o(U

?W~

s@’pqq@

a20”000”0

81

Page 84: Veak-ShockConstitutive Data - Sciencemadness

o

000

00

4c.

*+4

●a

++

x

qo

--@I

II

0“0s

0“0

OOOsl

0“001

(Ssaw

~wmq(ww”

I

Page 85: Veak-ShockConstitutive Data - Sciencemadness

I[

m-Gqo00

83

Page 86: Veak-ShockConstitutive Data - Sciencemadness

...

.*......●✎✎●+..

xxx

xx

xx

xx

x+

—@anxMwm...

0“0

C5

idLI

-#m

I

84

Page 87: Veak-ShockConstitutive Data - Sciencemadness

#

1I

a

1I

CDo000,

-o

85

Page 88: Veak-ShockConstitutive Data - Sciencemadness

r...*a*

4’%

%

1$..a

....““U..

..OO...““”4.....,,,‘W

.,,,,,,.

,,...,,,,,,,

,,,..,,04,

86

Page 89: Veak-ShockConstitutive Data - Sciencemadness

0io0II

o0

0H

o00<‘Q

Q%

oo

oo

mm

%

r

C*O

I

2“0-1

q

1“0o

0“0(S

7’j/

~qaA

d

.;

Page 90: Veak-ShockConstitutive Data - Sciencemadness

J(

or-J8000000

I-.——.

.-—..——

-90”0

1’()”0Zo”o,’

(U!WW[d

6~q

q)@

a00”0

U2

-“.-

88

Page 91: Veak-ShockConstitutive Data - Sciencemadness

o00000t-l

N--is

+—

40-

-i

II

II

I-1

03

0)“001

0“08

0°09

O’ot

(=qs

pmmu)(qq):oz

0“0

Page 92: Veak-ShockConstitutive Data - Sciencemadness

m

II

90

&r—

I

O“fiI

o“&I

‘m0“2

)0“

I(S

=qs

Aapl)@q3)/_‘“r

OsO

Page 93: Veak-ShockConstitutive Data - Sciencemadness

00

00

00

00

.2$0o“o

‘E’

91

Page 94: Veak-ShockConstitutive Data - Sciencemadness

o000:o0000w

ril

o0

o0

0°0

Page 95: Veak-ShockConstitutive Data - Sciencemadness

()()()\

o-U5

~-

0I

0“0I

I0

0“9

.I

(a@J

u!~-w

:j(yl)(wyigso[

000

Page 96: Veak-ShockConstitutive Data - Sciencemadness

.—.

Appendix A: FORTItAN Subroutine forReading DataShoP Data Files

subroutine get(nfile,idata,textl,text2,text3,1 tsub,vsub,esub,ssub,psub,dsub,hsub)

cc * * *cc * * *

cc * * *cc * * *cc * * *cc * * *cc * * *cc * * *cc * * *cc * * *cc * * *

cc * * *cc * * *

~Get f reads the information from a ~ataShoP file into aFORTRAN program.

nfile=fortran # for data file.idata=# time ‘pointst in file.id holds the id information:material, shot ?trength, and id #.text,text2,text3=dummies to hold text in file.dsam=thickness of sample in experiment.The ‘sub’ arrays hold data for the shock rise.The prefixes t,v,e,s,p,d,h of the ‘sub’ arrays refer totime,particlevelocity, tot-alstrain, ncmmal stress, plasticstrain, deviatoric ~tress, and temperature, respectively,

nfile’s value must be supplied by the userf all other valuesare read from the DataShoP file.

dimension tsub(200),vsub(2CO),esub(200),ssub(200),psub(200),1 dsub(200),hsub(200),id(16)dimension textl(5),text2(l),text3(12)

read(nfile<’(2x,16a8/]t)id

990 format(2x,5a8,.f5.2,a2)read(nfiler990)textl,dsam,text2

read{nfile,’(5a8,i3,/)f)textl,idata

900 format(a12,10a8,1x,a6)read(nfile,900)text3read(nfile,900)text3read(nfile,900)text3read(nfile,900)text3

920 format(lx,fll.8,5x,fll.8,5x,fll.7,8x,f8.3,5x,$fll.7,8x,f8,3,1 4x,f5.o)

do 700 i=ltidataread(nfile,920)tsub(i),vsub(i),esub(i),ssub(i),psub(i),clsub!i).

1 hsub(i)700 continue

returnend

94

Page 97: Veak-ShockConstitutive Data - Sciencemadness

Appendix B: Data Listings by Material andShot Number

I

Page 98: Veak-ShockConstitutive Data - Sciencemadness

6061T6-A121kbar (shot#922)

in situ steadywave: sample thickness~12.50mm# data entries-16

time(us)

0.000000000.040000000.06800000C.108OOOOO0.187000000.260000000.304000000.340000000.360000000.374000000.40000!3000.430000000.462000000.500000000.560000000.575000U0

p vel(mm/us)

0.0226000C0.027900CJ0.031400000,034900000.042200000.04950000C.056800000.069800000.081700000.09010000O.1O68OGOO0.119000000.127300000.132900000.138600000.14000000

e-1-rO/rcompression

0.00351840.00435150.00491800.00549760.00674820.008CJ5550.00?3911O 01176950.01394670.01548350.01853s9().o~1391730.02228950.02331400.02435690.0246130

sigma(kbar)normal stress

3.9244.835S.4205.9917.1430.2459.32411.24413.00214.24316.71118.63119.73920.56721.40921.616

psiplastic strainvon Mi9e3 bq

0.00000000.00006420.00017610.00034150.00085230.00157900.00241840.00395180.00539750.00644130.00857260.01028160.01128690.01204660.01282760.0130207

tau(kbar)deviatoric

9tre9s1/2 von M eq

0.995l.~lo1.3281.4271.5771.6521.6871.7341.7591.7681.7611.7331.7091.6861.6601.653

temp(k)

295.296.296.296.297.298.299.jol.303.304.306.300.309.310.310.311.

I

Page 99: Veak-ShockConstitutive Data - Sciencemadness

6061T6-A1 21kbar (shot*939)

in situ steady wave: sample thickness-31.60mm

time(us)

0.01123001100.03130UO00.24430000!4630000

c ‘+:->00000.772000000 -i3300000.U40900000.867000000.888700000.916100000.952100001.044400001.25550000

# d~ta

p vel(mmdus)

0.02290001J0.027200000.031500000.040400000.049300000.059290000.067300000.076200000.085200000.094200000.103200000.112100000.121100000.13490000

entries= 14

e=l-rO/rcompression

0.00356470.00423850.00493250.0064?310.00802030.00966920.01131810.01294860.01459750.01624630.0178952:.01952570.02117460.0237029

sigma(kbar)normal stress

3.9764.7185.4386.8668.2159.54310.87112.18413.51114.83916.16717.480!8.80820.844

p3iFlastic strainvon Mises eq

0.00000000.00004330.00017260.00070000.00156030.00260460.00367250.00475110.00586430.00699940.00815600.00932050.01051860.0123947

tau(kbar)devictoric

stres91/2 von M eq

1.0081.la61.3331.5491.6491.6891.7191.7401.7521.7541.7471.7321.7061.650

temp(k)

295.296.296.297.298.299.301302.303.304.306.307.308.310.

Page 100: Veak-ShockConstitutive Data - Sciencemadness

6061T6-A137kbar (shot#936)

in situ steady wave: sample thickness-6.13MM# data entries=18

time(us) p vel(mndus) e=fl-rO/rcompression

0.000000000.010000000.020000900.040000000.08000000O.IiOOOOOO0.130000000.13500000C.138000000.140000000.142000000.144000000.147000000.150000000.160000000.19000000oo~3000000G.29000000

0.022600000.029600000.034800000.039200000.043300000.050100000.061900000.071000000.10350000o.l~s~oooo0.148600000.17200000~.~07200000..216600000.223700000.229200000.222900000.23660000

0.00351840.00462030.00546660.00620100.00690050.00809300.01019720.01182000.0176155o.~~148510.02565780.02983060.03610750.03778380.03904990.04003070.04069040.0413502

sigma(k~ar)normal stress

3.9245.1265.9906.7027.3528.40010.18911.56816.49419.78423.33126.87832.21333.63834.71435.54836.10936.669

p3iplastic strainvon Mises eq

0.00000000.00009370.00028240.00051810.00079900.00139110,00257400.00351480.00706720.00959000.01246050.01545440.02019090.021501U0.02250280.02328590.02381610.0243492

tau(kbar)deviatoric

stress1/2 von M eq

0.9951.2761.4431.5591.6461.7451.8631.9442.!562.2322.258~.~232.0611.9951.9391.8921.8591.8”’4

temp(k)

295.296.296.297.297.298.300.301.305.308.312.315.320.321.Iyz.;.’?.;23.324.

Page 101: Veak-ShockConstitutive Data - Sciencemadness

6061T6-A137kbar (shot#927)

in Situ steady wave: sample th!ckness=12.20mm# data entries-21

tims(us)

0.000000000.025900000.07600000o.l~60000<,U.177000000.210000000.233000000.24800000o.~600000~0.280000000.286000000.290000000.292000000.294000000.296000000.298000000.300000000.310000000.350000000.460000000.60000000

p vel(mm/us)

0.026100000.027800000.031400000.034900000.038500000.042200000.045800000.050000000.053100000.068700000.086900000.107700000,126800000.145900000.165100000.18420000130pf333000f30.222500000.2298000013.~373(313000.24040000

e=l-ro/r

c0mpre3910n

0.00405790.00432110.00488820.00545210.00604500.00666810.00728750.00802680.00857910.01135820.01460040.01830580.02170840.02511100.02853140.0.3193400.03533660.03875690.04005740.04139350.0419458

siqma(kbarnormal stre99

4.53e4.8345.4<?6.0396.63u7.~~,]

7.7908.4358.30511.27214.03317.18920,08722.98525.89928.79731.69534.60835.71636.85437.324

psiplastic ~trainvon Mises eq

0.00000000.00000570.00006110.00016820.00033170.00055460.00082380.00120130.00150630.00308540.00501760.00733870.00957110.01189560.01432090.01681820.01939650.02206670.02310190.?2417680.0246243

tau(kbardeviatoric

stress1/2 von t4 eq

1.1511.2,261.3681.4891.5941.6831.7511.8091.8421.9932.1342.2522.3172.3432.330~.~772.1852.0531.9931.9251.895

temp(k)

296.296.296.296.297.297,298,2°8.299.301,303,30L.398,311.314.317,319.322,323.324.325.

99

Page 102: Veak-ShockConstitutive Data - Sciencemadness

6061T6-Ai 37kbdr (shot#937)

in situ ~teadywave: sample thickness=37.90mm# data antries- 24

0.000000000.070000000.17CIOOOO0IJ.260000000.440000000.620000000.73COOOO00.790000000.840000000.852000000.872000000.900000000.910000000.913000000.916000000.920000000.923000000.927000000.933000000.950000CJ00.967GOO1301.0030000’31.060:))\’.~O1.06000000

p vel(mm/us)

0.023100000.024400000.026100000.027900000.G31iOOO00.035100000.038800000.042400000.047900000.050000000.053400000.060800000.082700000.106500000.130200000.161900000.185700000.204900000.215800000.222900000.22650000(j.~301f)f3f300.234600000.23530000

e=l-rO/r

compre33ion

0.00359550.0C379680.00406210.00434540.00491900.00550460.00611620.00672180.00766690.00803410.00863600.00995600.01386270.01810820.0223359o.o~799060.(132236211.u3566120.03760550.03687210.03951420.C4015640.04095910.0410840

siqma(kbar)normal stxess

4.0114.2384.5334.8425.4526.0516.6567.2348.1008.4248.94310.06512.38316.99020.58125.38428.99031.90033.55134.62735.17335.71836.40036.506

psiplastic strain

von t4i5eseq

0.00000000.00000250.00001560.00004060.00012440.00025240.00042900.0006438I3.(101052O0.00123280.00155440.00230100.00460510.007?6200.0100570U.U1401350.01713070.01975140.02126980.02227210.02278420.0232991o.~~394630.0240473

tau(kbar)deviatoric

3tre531/2 von M eq

1.0111.0741.1461.2181.3501.4681.5731.6601.7651.7971.839i.9112.08979J.2.,..

2.?952.296-*42.L..

v 12?..2.0481.9921.961).9?01.8001.881

temp(k)

295.295.296.296.296.296.-)g-)297.298.29b.29!?.300.30?.306.3f)’J.?14.?17.320.321.>7.....>7>....323.324.?24.

100

Page 103: Veak-ShockConstitutive Data - Sciencemadness

6061T6-A189kbar (shott926)

in situ steady wave: sample# data

time(us) p vel(mdus)

0.00000000I 0.021600000.057000000.0881LJOO00.103300000.l16500fJ00.119900000.120300000.12130GO00.122300000.123300000.124300000.125300000.12670000

I0.128300000.15940000

o.op4300000.026800000.034800000.041900000.050000000.057000000.072100000.087200000.171800000.256400C00.341000000.425600000.510200000.525300000.538000000.54040000

thickness==12.50nunentries- 16

e==l-rolr sigma(kbar)compression normal stress

0.00378060.00416740.00542310.00656050.00788430.00904050.01153460.01402860.02800200.04197530.05594860.06992200.08389530.08638940.08048700.0888834

4.2224.6596.0367.2348.5749.72012.19114.66228.50742.35156.19670.04183.88686.35788.43588.828

psiplastic strainvon Miaes eq

0.00000000.00000610.00011580.00032310.00G68160.00105500.00191710.00285370.00932390.01756810.02727500.03822500.05025360.0525C.430.05442010.0547845

tau(kbar)deviatoric

stress1/2 von M eq

1.0711.1811.5031.7511.9942.1812.5702.9J44.5575.4815.7245.3034.2313.9723.7383.692

temp(k)

295.296.296.297.298.299.301.302.314.326.340.355.269.372.374.375.

Page 104: Veak-ShockConstitutive Data - Sciencemadness

Be.63 kbar(ghot#Be18)

in situ steadywave: s~ple

8 data ‘hicheS.geo.~omentrie== 98

e=l-roircowce~~ion ‘i9ma(kAar)

‘Om=l ~trea=‘.2Y060000‘“36910000 O.OOOOOOOOo.42slooon 0e00006000 0.00000000.44770000 0.0001(3000 ‘.00000460.5313(3(700 0.0001200(J 0.00000760055200000 0.00023000 0.00000910.5?8soooo ‘.00026000 o“[email protected] 0.00034000 ‘.”o001980.60180000 0.00040000 0.0000~60o.60370000 0.001310(30 ‘-oooo306o.61970000 ‘.00161000 o.00011.)f37‘3.62580000 ‘3.00411(700 0000012410.63380000 0.00470000 0-ooo3224O.64970Coo 0.00551000 0.00037020.65290000 0.006750go 0oooo43640.666300,)0 0.00701000 0.0005393o.6736000G 0-uo846000 0e0005611o.67780000 0.00902000 0.00068390.68870000 0.00944000 0-ooo73200.69760000 0.01047000 ‘-ooo76820.70340000 0-01126000 0.00065800.71570000 0.01202000 ‘[email protected])ooo o.Q355r300 0.00099530.73270000 0-01361000 0.00113350.73350000 0-01556000 0.00113900.749W300 0.0156sooo 0.00131890.7S690000 0.01774000 0.0013?7,0.76370000 0.0187sooo 0.001,0.77720000 0.01974000 0.001<0.77820000 0.02115000 0.001718;o.78810000 ‘so2127000 0.00185sl0.79180000 0.02261000 ‘.oo187010.79460000 0.02333000 0.00200470.80190000 0.0238gooo 0-00207780.80450000 0S02547000 o.oo2135~o.81340000 0.02607000 ‘-oo2298s0.81770000 0.02714000 0.00236130.82730000 ‘.02777000 0.0024743o.827soooo 0.02906000 0.0025414‘.836zoo00 0.W9101300 ‘.oo268020.83910000 0.03074000 0.0026845‘.84190000 ‘-03128000 0.00286370.84990000 0.03232000 0-oo292330.85150000 ‘.0338sooo 0.00303910.86040000 0.03414000 ‘.00321~60.@6240000 0.03575000 ‘.0032446‘.87310000 ‘.0361SOoo ‘.oo342g40.$372613000 o.03e28000 ‘.00347580.88410000 0.0383gooo 0SOO372S7o.88510000 o.04088t306 0.00373870.89130000 o.f34113(loo 0.00403410.89590000 0.04313000 0-oo~06370.90060000 o.f34475(7~o 0.004301(30.90710000 ‘.04687000 0.00449310.9092(3000 ‘ooS121000 o. ‘~~4460e91560000 ‘.05283000 ‘SooS25940.91700000 ‘.oS752000 0.00545150.%?1313000 0.0S85SOOo 0.00600780.92690000 ‘.0630QqOo 0-oo61300f3.9?i50000 0.07547(300 0.00666730.23260000 0.08496000 ‘.o0813700.94070(300 o.08800000 0.0092626‘.94760000 0.11435000 0.0096232‘.95060000 0.13503000 0.01274070.95070000 ‘.15920000 0.01S2017 19.26g0.95840000 ‘.16001000 o.01806-~60.96640000 0.~94C6000 0.01816470.97160000 0S31321000 o.0222035‘.9742003C 0.34013000 0.0363365‘.98010000 0.34380000 0.0395296u.9a0800~” 0.36594000 0e039964g

o.36?l&30n 0.0425gII-J

8.40~8.7399,41fj9.66g

10.4(31lo.56~11.26813.20214.68315.157

0.04273;;

0.000

0.(7150.0240.0290.0560.0630.0820.097o.3~5o.3870.9701.1051.2881.565

22.49626.26826.39431.708so.313~

102 :;:;;;

1.6221.9392.0602.15o2.36g2.s352.693

3.r31a3.41r33.4273.8364,03f34.2184.4834.5054.7524.8834.9845.2675.3735.5615.6705.8g25.8g96.1776,2686.4406.6926.7396.998

0.0000000

0.0000000”

0.0000000

0.0000000

0.0300001

o.000o(lfj~

o.000o(?o~

0.00000(320.00000200.0000030O.OOOoig~0.00002540.0000347f3.00005190.00005590-ooo08090-oooo9180.0001004‘.oOO12300.0001419

3.006 ‘.00016130-ooo20380-ooo2056Q.boo2&j9‘.00026990.00034440.0003834‘.00042360.00048410.00048940.000ss07‘.oo058s1o.00061~40.000692$30.00077450.000;8~8o.00081f3r)o.000Qy~50.000894$30.00099390-oo1o2760.00109390.001i950‘“oo12146

7.062 0.00132627.398 ‘.00135467.416 ‘-00151067.804 0.00151887.843 0,00170648.155 ‘-oo172s2

0.00187600.00199830.002:585o.oo:4&710.0026099 ,0-0029~6f0.0030445o.flo3?99~0.0043380o.oo506f360.00530340.00735440.0089836O.O1O9O9(J0.01097390.0137~58‘.0236g11o.oZ69]~7‘.o~61z99O.OZ8Z592~.u2836~o

58.s3058.7:1,

psiplastic strain‘On Miae~ eq

‘aU(kbar)deviatoric tew(k~

~tre==1/2V0,3Meg

0.000

0.007o.ol~o.r3140.02*0.0300.(3390.0460.1470.1800.442o.5f310.!j800.6960.7200.8480.8960.9321.0161.0781.1371.2491.2531.3861.3921.52,21.58~1.6361.7091.7151.7801.8131.8381.9031,9261,9661.9872.0292.o3o2.07112.0922.1172.1502.1562.1832.1892.2162.2172.2412.243

2.277.?.2$)72.3362.3s(32.3go2.3992.4352.5292.5<#42.6132.7542.8312.8832.8842.8872.27s2.0031.9621.696i.~a~

293,293.293.293,293.293.293.293.293,293.293.293.293.293.293.293.293.293.293.293.293.293.293.293.293.294.294.294.294.294,294.294,294.294.294.294.294.294.294.294.294.294.294.294.294,294.294.294.29s.295.295.29s.2fJ5.295.29:,.~.>.,,~$1~.296.296.297.297.298.299.30]0301.3Cl~.309.310.110.311.311.

Page 105: Veak-ShockConstitutive Data - Sciencemadness

0.98570000(J.98670iIO00.989400000.996000000.999400001.000000001.008500001.ooaf300001.015700001.021300001.024300001.027600001.032200001.034200001.044700001.051300001.053200001.058800001.069700001.076300001.083500001.094000001.096300001.104600001.113800001.115700001.12300000

0.376160000.377350000.380520000.383510000.385140000.385180000.387450000.387540000.388890000.389890000.390390000.390600000.390860000.391700000.392320000.392870000.393030000.393320000.393880000.394260000.394670000.395240000.395250000.395300000.395840000.395950000.39668000

0.04380330.04394440.04432040.04467510.04486840.04487320.04514240.04515310.04531320.04543190.04549120.04551610.04554690.04564650.04572010.04578530.04580430.04583870.04590510.04595020.04599880.04606640.04606760.04607360.04613760.04615070.0462372

60.12560.31160.80561.27261.52661.53261.88761.90162.11152.26762.34562.37862.41962.55062.64762.73262.75762.80362.89062.94963.01363.10263.10463.11263.19663.21363.327

0.( 915510.02925970.0295384u.0298016().0~994520.02994870.03014880.03015670.03027580.03036410.03040820.039C7C3o.3?~44910.63052390.03057870.03062730.03064140.03066700.03071650.03075010.03078640.03083680.03083770.03084210.03088990.03089960.0309642

1.5621.5461.5031.4621.4391.4391.4061.4051.3861.3721.3641.3611.3581.34b1.3371.3291.3261.3221.3141.3081.3021.2941.2941.2931.2851.2831.273

312.312.312.312.312.312.312.312.312.312.312.312.312.312.312.?.2.;;?.312.312.312.312.312.312.312.313.313.313.

103

Page 106: Veak-ShockConstitutive Data - Sciencemadness

Be-17Z kbar(shot?Be14)

in situ ateadvwave: samplo thicknesa=9.OUmn.# d~ta entries=135

time(us)

0.431300000.457300000.472500000.481300000.515900000.528000000.534100000.539900000.552800000.567500000.584100000.588800000.602000000.613000000.622400000.630900000.637000000.639800000.651200000.657700000.665000000.671800000.672300000.678000000.684000000.685300000.692200000.695400000.704000000.705200000.71820300fJe7p91f3(joo0.730100000.738000000.140200000.746600000.749600000.751800000.758700000.761800000.768100000.770800000.779400000.779700000.787100000.789100000.796900000.798900000.806200000.807900000.813100000.818900000,823600090.829400000.837400000.840400000.848400000.849800000.858400000.859500000.865700000.872100000.873700000.880000000.883300000.889600000.896300009.897300000.904200000.905700000.91010000

p vel(mm/us)

0.000000009.000070000.000070000.UOO070000.000070000.UO04.20000.000490000.000560030.000630000.000700000.000910000.000980000.001180000.001310000.001500000.001680000.001860000.001940000.002200000.002530000.002930000.004J90000.004170000.005600000.U0609000O.ooczoooo0.006850000.007150000.008040000.0081?OOd0.00986C03O.O1O32OCJO0.010380000.01087000C.ollti$ooo0.011710000.012399000.012900000.013930000.CI.4150000.014590C’-I0.014780000.015390000.0154300G0.016240000.016440000.017230000.017440000.018190000.018350000.018920000.019530000.020040000.020660000.02136000oOo~1620000.022610000.022780000.023590000.023690000.024360000.024960000.025110000.026430000.026900000.027760000.029?2tii100.0294;gO00.030510000.03.)790000.0?151090

e-1-ro/rcompression

0.00000000.00000530.00000530.0)000539.00000530.0000321(’.00003740.00004280.00C04810.00005350.00006960.00007500.00009040.000:0040.00011510.00012909.00014290.00014920.00016940.00019510.03022630.00031770.00032410.00043820.00047760.00048650.00053920.00056360.00063640.00064710.00078710.00082560.00083070.00087190.0CI089040.0009429I7.OO1OCIO80.00104440,00113320.90115220.00119040.06120700.00i26030.00125380.00133500.u0135270.00142280.0014415o.oo15!3@:0.J0152290.00157420.00162940.0016758G.00173240.00179660.00182060.00191230.00192810.00200380.00201320.00207620.00213290.00214710.00227300.00231810.00240110.00255310.00256780.00267020.00269790.0027794

sigma(kbar)normal stress

104

O.(WO0.0170.0170.C170.0170.1020.1190.1360.1530.1700.22CI0.2379.2850.3160.3620.4050.4480.4670.5290.6070.7020.9750.9931.3251.4381.4631.6111.6801.8811.9102.2882.3902.4032.5112.5592.6952.8422.9533.i743.2213.3153.355?.4843.4933.ti633.7053.870>.9144.0L94.1024.2194.3444.4484.5734.7154.7674.9654.9985.1595.1795.3115.4285.4575.7145.8045.9696.~666.2946.4896.5425.694

psiplastic strain

von Misas eq

0.00000000.0000OWI0.00000000.00000000.00000000.0000001(3.(3~o(J(3020.00000025.00000030.00000040.00000070.00000080.00000110.00000130.90000180.00000220.00000270.GOOO030(3.00000380.00000500.00000670.00001300.00001360.0000244o.000028e0.00002980.0000363C.00003960.00004990.00005150.00007470.00008170.000Gf1270.00009060.0000942U.OO(31O490.00011720.00012690.00014760.00015220.0001617u.00016590.00017960.00018050.60019950.00020440.000224.0.CO022950.00024920.00025350.00026920.00028640.00030120.00031970.0093412?.00034940.00038130.UO028699.00041.1b.3cJ041760.UO044CJ90.000Q6230.00046770.00051670.00053470.00056840.00063210.0006384o.f]9r]~8280.fJoc16950<J.[JfJfJ”ljl?

tau(k~ar)deviatoric

s:rQ39lf2 von M eq

0.000u.0u80.0080.0080.008f3.0480.0560.0640.0720.0800.1040.1110.1340.1480.1700 1900.2100.2180.2470.2830.2260.4500.4580.6060.6550.6660.7310.7610.8470.8591.0181.0601.0661.1101.1301.1851.2441.2881.3751.3931.4291.4451.4941.4981.5621.5781.6391.6551.7111.7231.7651.8101.846l.@~o1.9381.9562.0222.0:!2.0862.0922.1352.1722.1812.2612.2882.?372,423~.’J~l2.4862.500..541

temp(k)

293.293.293.293.293..)994.-J.293.293.293.293.293.2Y3.293.293.293.293.293.293.293.293.293.293.293.293.293.293.293.2930293.293.293.293.293.293.293.293.293.293.293.293.293.293.293.293.293.233.293.293.294.294.294.294.294.294.294.-.,J-.4.-....,,4.2’34.-’>4..-’94..234.294.294.294.294.294.294.294.294.294.2:44.

Page 107: Veak-ShockConstitutive Data - Sciencemadness

0.91290000o.9151000c0.919000000.9:0600000.926000000.926600000.929300000.933000000.933900000.937800000.93$400000.940600000.943000000.944400000.947000000.949400000.950200000.951100000.952800000.953400000.955300000.957800000.958200000.961800000.963600000.965300000.966200000.968300000.96910000P.96950000

0.970800000.971100000.972300000.972400000.973500000.974100000.975500000.975800000.975900000.982900000.983900000.985000000.985500000.989100000.98960CO00.991300000.992300000.992500000.993900000.994600000.995500000.997100000.999900001.001300001.005100001.033100001.034800001.041500001.051100001.057800001.066700001.075900001.084300001.09270000

0.032400000.033010000.034050000.034470000.036200000.036550000.038100000.039660000.040030000.04:770000.042500000.043130000.044880000.045220000.046890000.048530000.049700000.051100000.053700090.054570000.056320000.058510000.059160000.064780000.067380000.069860000.071190G00.078840000.082260000.084480000.090370000.090880000.092880000.093040000.107090000.115450000.128600000.134440000.136420000.937640000.976900000.982880000.985890000.990210000.990940000.994230000.997190000.997760000.999900001.000940001.001680001.002990001.004450001.005180001.007520001.007700001.007940001.008890001.009920001.010190001.010310001.010410001.011490001.01158000

o.oo265a40.00291970.00302490.00306769.00324490.00328100.00344210.0i)360610.00364520.00383080.00390930.00397730.00416790.00420520.00438820.00456790.00469610.00404950.00513440.GC)522970.005421>0.0056b150.00513270.00634850.00663340.00690510.00705090.00788910.00826390.00850710.00915250.00920%40.00942760.00944510.01098460.0i190070.01334160.01398150.01419850.10199290.10629480.10695010.10727990.10775330.10783330.10819380.10851810.10858060.10881510.10892900.10901010.10915370.10931370.1093936O.1OQ65OO0.10066980.1096961O.1O9BOO20.10991300.10994260.10995580,10996670.11008510.1100949

6.8416,9537.1437.2207.5327.5957.8718.1468.21.18.513a.6388.7469.0449.1019.3839.6609.85810.09410.53410.68010.97611.34611.45612.40512.64413.?;313.4a814.78015.35815.73316.72816.81417.15217.17919.55220.96523.18624.17224.507159.852166.484167.494168.00216b.732168.855169.411169.911170.008170.369170.545170.670170.891171.138171.261171.656171.687171.727171.888172.062172.107172.128172.144172.327172.342

0.00076710.00079520.00004440.GO086460.00095040.00096820.00104900.00113330.00115370.00125220.00129460.00133170.0014374().00145830.00156110.00166210.00173420.00182060.00198120.00203500.00214330.(JC1227900.C0231930.00266850.00283040.0029852fl.011306826.00354740.00376230.00390210.00427380.00430600.00443260.00444270.00533610.00587120.00671830.00709650.00722510.06951120.07299900.07353380.07380290.07418940.07425470.07454930.07481460.07486570.07505750.07515080.07521720.07533480.07546580.07553140.07574150.07575770.07577920.07586460.07595710.07598140.07599220.07600120.0760983fJ.0761064

2.5802.6092.6572.6762.7502.7642.8262.8842.8972.9552.9792.9983.0483.0573.1033.1473.1793.2163.2863.3093.3563.4143.4313.5783.6453.7093.7433.9374.0234.0784.2234.2364.2844.2884.6234.8175.1135.2405.2833.7672.7472,s812.4972.3752.3542.2612.1762.1602.0982.0682.0472.0091.9661.9451.8771.8711.8641.8361.8061.7901.7951.7921.7601.757

294.294.294.294.294.294.294.294.294.294.294.294.2$5.295.295.295.295.295.295.295.295.295.295.296.296.296.296.296.296.296.297.297.297.297.298.298.299.299.299.345.347.347.347.348.348.348.348.348.34e.348.348.348.348.340.348.348.348.348.348.348.348.349.3490349.

105

Page 108: Veak-ShockConstitutive Data - Sciencemadness

Bi-11 kbar(shot#147)

in situ steady wave: sample thickness- 4.06MMO data entries- 51

time(us)

0.422903000.424099500.424742900.426.393600.429170600.430855800.433275400.437621700.43840690(J.445218000.449098200.45304100J.4611581O0.461780700.469359100.411451200.4744319(10.480396600.482743800.486716400.406768400.490506000.4’33915200.494432000.497880700.498848900.501970200.502039000.505781000.506617400.509032100.511i40700.511347400.514123900.514920400.517375100.51783270o-52(J6265f30.52i612200.5250823fl0.52700610o.5~16140f30.533013400.534244900.537412$500.542664200.549199500.553038600.556659200.561838100.58434110

p Vel(mndus)

0.000219200.000284000.000578900.001333600.003311700.004088200.0C5231500.007206500.007514300.010037900.011406000.012712500.015420700.015603500.017913900.018594200.019585000.02179740O,(J228O71O0.024853700.024881500.02665830o.02896a200.029285900.032105500.03284270@.G36341400.036417200.049294900.041122700.f1436657013.04566190O.U459561O0.047792200,048355600.049770200.050036100,051114800.051501690.052648800,053056600.053402600.054237800.054415700.054881400.055743400.056377200.056492600.056602800,057504200.05800300

e=l-ro/rcompression

0.00009810.00012710.00025S00.00059580.00147440.00181760.00232120.00321140.00335400.0045634o.oo524e80.00592280.00733960.00743520.00864400.00899990.00951820.01067570.01120390.01227460.0122892o.o1321a70.01442720.01459340.01606850.0164542(3.I?1828460.01832430.02035290,02078600.02211610.02316080.02231470.02427530.02457000.02531010.02544920.02601360.02b21590.02681610.02702940.02721050.02764740.02774050.02798410.02843510.02876670.02082700.0288F470.02935630.0296172

siqma(kbar)

normal stress

0.0480.0620.1270.2920.7270.8991.1531.5811.6462.1612.4282.6763.la23.2163.6483.7753.9604.3744.5624.9454.9505.2825.7145.7736.3006,4387.0927.1067.8317.9a58.4618.8’48.8899.2329.3379.6019,6519.8539.92510.13910.21610.28010,43610,47010.55710.71810.83610.85010.87811.04711.140

psiplastic strainvon Mises eq

o.000fJooo0.00000000.00000000.00000000.00000000.00000000.00000000.00009340.00012430.00053290.00086520.00125190.00213100.(3021910(3.30295600.00318?60.00351700.00426980.00461?0u.u0532790.00533760.00596230.00678490.0068989c.00792040.00819030.00948650.00951:80.01098160.01129870.01228140.01306190.01317760.01390350.01412760.01469300.01479970.01523400.015390?0.01585560.01602160.01616270.01650430.01657720.01676840.01712340.01738540.01743320.01747880.01785310.0180609

tau(kbar)deviatoric

stress1/2 von M eq

0.0120,0160.0320.0730.1840.227o.~930.3920.4050.4870.5140.5290.5470.5400.5610.5640.5690.5770.5800.5850.5850.5880.5900.590o.5a80.5880.5B00.5800.5650.5610.5470.5340.5310.5180.5130.5010.4990.4890.4860.4740.4700.4670.4580.4560.4310.4410.4340.4330.4320.4210.415

temp[k)

294.294.294.294.294.294.294.295.295.295.295.296.296.296.297.297.297.

297.297.290.298.298.299.299.299.299.300.300.301.301.301.301.302.302.302.302.302.302.303.303.303.303.303.303.303.303.303.303.3r33.3(34,304.

106

Page 109: Veak-ShockConstitutive Data - Sciencemadness

LM-23kbar(shot#149)

in 91tu steady wave: sample thi.ekness-3.04mm# data entries- 44

time(us)

0.42450320(3.4~53874f30.427318200.4333:7800.43410750I3.4385611O0.439406500.443466900.445616300.449354300.449673100.454144100.455813500.45E449700.462272200.463003.200.467414200.46897dO00.472130500.472240300.474621800.476167300.476952600.477973800.480247500.48113170o.4e1429800.405462200.48482E613O.4G5671OO0.48677050o.4a7i37a800.489570000.492033000.492302500.49431190o.4969a09(l0.497124600.499937600.5041?6900.504521000 514967400.535466803.54959950

p vel(mmius)

0.000147300.000397000.000736100.00212240o.oo232e200.003490000.003045400.00554490o.oo65a430o.ooa436200.0i18634300.011030100.012110500.01373640o.o161a7ao0.01665073o.o~oa8S000.02230800o.o~570860o.o~5g44300.030051300.034541000.036429000.041202500.056598600.065262900.068451000.085b04600.051934505.096617900.100950200.101521500.104295100.106454800.10667950o.loa491aoo.lo9a9a60o.lo9973ao0.110845900.112490500.112530900.114449400.116604600.11707260

e=l-rO/rc0mpre33i0n

0.00006590.00017770.00032920.0009469o.oolo3a30.00155320.00171040.00245900.00292050.0037678o.oo3a463o.oo500a30.00554350.0063571o.oo75a370.00781530.00993560.01064620.012347b0.0124157o.o14520a0.01676740.0177122o.020100ao.027804a0.03214030.03373560.0423191o.0454a65o.047a300i).04999700.05028370.05167160.05275230.05286470.05377160.05447550.05451310.05494950.05577250.05579270.0567527o.057a311c.05a0653

sigma(tiar)normal stress

0.032o.oa70.1610.4650.5100.767o.a451.2231.4511.8471.aa22.3782.5912.9093.3aa3.4784.3064.58?5.24a5.2746.0966.9747.3428.27511.2a312.97613.59916.95118.18e19.10319.94920.06120.60321.02521.06921.42321.69821.71221.8a322.20422.21222.5a723.ooa23.099

p3iplastic strainvon Mises eq

0.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00002240.0001691o.0001a900.00059010.00083560.0012386o.oola596o.oo197a70.00309380.00341750.00441600.00445400.00565320.00697600.00754510.00901660.01406350.01709310.0182406o.o~470420.02721010.02910520.0308894o.031126ao.0322a720.03219920.03329450.03406620.034668a0.03470110.03507640.0357873o.035a04a0.036639ao.0375a4a0.0377910

tau(kbar)deviatoric

Strc?slfl1/2 von H eq

o.ooa0.0220.0400.117o.12a0.1940.2140.3110.3670.4520.4590.5370.5610.593o.63a0.6460.7170.7.$00.7900.7920.847o.a980.9170.9601.0341.0351.02a0.9210.8520.7920.7280.7190.6730.6360.6320.5990.5720.5710.5540.5210.520o.4a~0.4350.425

temp(k)

294.294.294.294.294.294.294.295.295.295.295.295.296.296.296.296.297.297.29a.29a.299.299.300.301.303.305.305.3oa.309.310.311.311.312.312.312.312.313.313.313.313.313.313.314.314.

107

Page 110: Veak-ShockConstitutive Data - Sciencemadness

CU-32 kbar(shot#H800)

in situ steadvwave: sample thickness=9.97MM# deta entriew-100

time(us)

0.25629600o.33!j703710.409609510.467153600.502803030.526617940.543652480.5566’35020.56692S140.574904040.581185550.586272410.590483850.594033020.59706ti490.599697140.601997990.604030760.605841530.607466400.608934080.610267710.611486150.612604920.613636930.614592970.615482190.616312330.617090050.61782108CI.618510360.619162220.619780440.620368340.620928860.621464610.621977910.622470850.622945280.623402910.623845270.624273740.6.’?4689600.625094020.625488090.62507279o.6~6249060.626617760.626979730.627335730.627686490.62803273o.6~837512

0.628714320.629050980.629305720.629719170.630051970.630304750.630718130.631052790.6313&9400.631728670.632071330.632418170.632770020.633127780.633492410.633864970.634246620.63463864

p val(mm/us)

0.00039207O.oolllsel0.001857400.002515770,003364660.004007390.004642340.005284640.005934770.006626G80.007353770.008107100.008878870.009663320.010455910.011253270.012054210.012858900.013668410.014484070.o15307000.016137920.016977200.017824800,018680770.019544510.020415590.02129340o.o~2177~80.023066540.023960480.02405842o.o~5759720.026663750.027569970.028477870.029307010.030297010.0312075d0.032118460.033029510.033940590.03485164C.035762650.036673620.037584570.038495530.039406540.040317610.U4122B7B0.042140030.043051360.043962750.044974170.045705580.046696970.047608290.048519540.049430710.050341830.051252960.052164190.053075670.053987550.054900090.055813550.056728270.057644630.058563080.059484100.06040822

e=l-ro/rcompreaaion

0.00008410.00024170.00040650.00056930.00075160.00090290.00105490.00121100.00137120.00154200.00172170.00190770.00209830.00229200.0024877C.00268460.00288240.00300120.00328110.00348250.00360570.00389090.00409820.00430750.00451890.00473220.00494730.00516410.00530230.00560190.00582270.00604440.00626700.00649030.00671410.00693830.00716280.00738750.00761240.00703730.130B06230.00828730.00851230.00873730.00896220.00918720.00941210.00963710.00986210.01000710.01031220.01053720.01076230.01098740.01121240.01143750.01166250.01188760.01211260.01233760.01256260.01270760.01301270.01323790.01346330.01368080.(3139147o.fi1414100.014?6780.01459530.0148235

sigma(kbar)normal stress

108

0.1630.4600.7591.0421.3471.5911.d~82.0642.3002.5502.8133.13863.3653.6493.9364.2254.5144.0065.0995.3945.6925.9926.2966.6036.9127.2257.5407.8588.1708.50@8.8239.1409.4749.80110.12910.45810.78711.11611.44611.77512.10512.435?:.7641s.09413.42413.7Z314.08314.41314.74215.07215.40215.73216.06116.39116.72117.05117.38117.71018.04018.37018.69919.02919.35919.60920.01920.35020.60121.I-I1?~1.~4521.67822.01?

psiplastic strainvon Misea eq

0.00000200.00001650.00004500.00000780.00014920.00021070.00028150.00036320.00045480.00055370.00065820.00076680.00087840.00099230.00110700.00122430.00134190.00146030.00158000.0017010o.oole2350.00194760.00207350.00220100.00233030.00246120.00259380.00272790.00286330.00300020.00?13820.00327140.00341760.00355880.00370080.00304360.130398710.00413130,00427610.00442140.00456730.oo471370.00486060.00500800.00515600.00530440.00545330.00560200.00575270.00590320.00605420.00620570.00635780.00651030.00666330.006816e0.00697080.00712530.00728020.00743570.00759160.00774800.00790500.00806250.00822060.00837930.0085387n.nn869Yo0.J0886000.0090220o.oo91e50

tau(kbar)deviatoric

stress1/2 von M eq

0.0360,0960.1500.1940.2340.2610.2810.2960.3070.3170.3280.3390.3490.3600.370o.3eo0.3910.4010.4100.4200.429o.43e0.4470.4560.4650.473o.4el0.4890.4970.5040.511o.sleo.5~50.5310.5370.5C30.5480.5530.5580.5620.5660.5700.5730.5760.5790.5810.583o.5e5o.5e7o.see0.5890,5890.589o.5e913.589o.see13.5f37o.seso.5e30.5010.5790.5760.5730.5700.5660.5620.558o.~~q0.5480.543c).5~7

temp(k)

300.300.300.300.300.301.301.301.301.301.301.301.301.301.302.?02.302.302.302.Jf)p.302.3f3~.302.303.303.303.303.303.303.303.304.304.304.304.304.304.304.305.305.305.305.305.305.305.306.306.306.306.306.306.306.307.307.307.307.307.3(J7.307.307.3oe.3oe.?oe.308.308.308.308.309.309.309.309.309.

Page 111: Veak-ShockConstitutive Data - Sciencemadness

0.635042460.635459670.635892090.636341750.636811030.637302620.637819710.638365980.638945820.639564480.640228260.640944880.641723840.642577020.643519510.644570740.645756270.647110390.648680320.650532950.652766470.655531250.659070240.663803770.670528720.680964570.699637220.743534400.97567609

0.061336070.062268320.063205770.064149350.065100250.066059990.067030740.068015630.069019600.070050700.071119130.07S221680.073337540.074411560.075392370.076263060.077047320.077793880.07B552700.079351390.000176930.080998680.081823010.092671750.083547080.084445070.085339340.086189170.08709720

0.01505260.01528290.01551440.01574740.01598220.01621920.01645890.0167C220.01695010.01720470.01746860.01774080.01801640.01828160.01852380.01873890.01893250.01911690.01930430.01950150.01970540.0199083o.()~olllg0.02032150.02053770.02075940.0209803().l)~llgol0.0214144

22.34822.68623.02523.36623.71024.05824.40924.76525.12925.50225.88926.28826.69127.08027.43527.75020.03428.30428.57928.86829.16629.46429.76230.06930.38630.71131.03531.34231.671

0.00934920.00951460.00968150.00984990.01002020.01019250.01036740.01054530.01072730.01091470.01110950.01131120.01151600.01171380.01189500.01205620.01220180.01234070.01248220.01263150.01278610.01294040.01309550.01325560.01342110.01359130.01376120.01392310.0140965

0.5310.5240.5180.5100.5030.4950.4860.4770.4680.4580.4470.4350.4230.4100.3990.3880.3780.3680.3580.3400.3360.3250.3130.3000.2870.2730.2590.2460.231

309.309.310.310.310.310.310.310.311.~llo311.311.311.311.312.312.312.312.312.312.312.312.313.313.313.313.313.313.313.

109

Page 112: Veak-ShockConstitutive Data - Sciencemadness

k #

s s w samDle t h.t e

tha(ua)

o0o00o00000000000000000000000000o0000000c0c0000000o0000000000000000009‘ J

p v

00000000000000000o0000000000000000000000000o000000000000000n0000

900000f

ec

00000000o00000000000000000000000000000000000000000000000000000000000o

4( 4

sn s

1

(00111222223334444555

66667770089991111111111111111111111111111112222222

p sM

00000000000000000000000000000000000000000000000000000000000000(000000f I G

! . j

td

s

000000o00c00000000000000(0000000000000000000000000000000~

009(0000re.00f.~

t

333j3333333333333333333333333333333333333333333333333W33$2?08.

y)a.

308.

308.

31)M0

33~3:U?~fl*4.

I

Page 113: Veak-ShockConstitutive Data - Sciencemadness

0.891516130.892012480.892530650.893073710.893645220.894249360.894891000.895575960,896311180.897105050.897967840.898912210.8999540C0.901113270.902415850.903895520.905597340.907582760.909937640.912785650.91631114o.~20800850.926724450.934903370.946902620.966073771.000929531.079989921.36999690

0.061651560.062614770.063590050.064579040.065583690.L166606510.067650970.068722000.069826170.070968680.072143560.073332830.074478720.075503070.076380390.077168950.077954490.078790730.079682280.080584480.081463840.082346780.083246310.084159070.085088240.086023270.086920540.087786340.08903892

0.0:511640.01535410.01559470.01583880.01608670.01633910.01659690.0168612C.01713360.01741560.01770550.01799900.01828170.01853450.01875100.01894560.01913950.01934580.01956580.01978850.02000550.02022340.02044530.02067060.02089990.02113060.02135200.02156570.0218748

22.48422.83323.18623.54423.90824.27824.65725.04525.44425.85826.28426.71427.12927.50027.81828.10328.388 ,28.69129.01429.34029.65929.97930.30430.63530.97131.31031.63531.94832.402

0.00935040.00952090.00969400.00987010.01004960.01023290.01042070.01061390.01081370.011021?0.01:2353o.olL452a0.01166300.01165160.0120136oof1121S950.01230520.u1246070.01262690.01279540.01296020.01312500.01329530.01{46766.0;364340.0i?62080.”1399150.01415650.0143960

0.5600.5540.5470.5400.532().5240.5150.5050.4950.4840.4720.4590.4460.4340.4240.4140.4040.3940.3820.3700.3580.3450.3320.3190.3040.2900.2760.2610.241

309.310.310,310.310,310.310.310.311,311.311.311.311.312.312.312.312.312.312.312.312.313.313.313.313.315.317.313.314.

I

I

111

Page 114: Veak-ShockConstitutive Data - Sciencemadness

C U - 3 3kbr(shot+ W802)

IIJ situ steady wave: sample thlcknoas-29.96nnn# data ontrioa-100

timo(us)

0.087293410.270012430.417855030.547860730.637%10540.696760750.738290820.769471860.790579340.803755190.81404319e.e2231404o.9~9116400.834814760.839661470.843937130.847474630.05(J673960.853511900.056049370.85a330860.86039?400.062279180.864001340.865505000.867047730.868404320.86966732o.070e47410.871953810.672994450.e73976230.874905170.8757%656O.876625O50.877424770.078189310.878922140.879626OO0.880303600.880957330.881589340.882201620.882795970.8%3374050.883937390.884487430.085025470.885552760.886070470.806519700.887081510.887576900.888066950.888552300.889934180.809513390.809999840.890467440.890944090.891421710.991901270.8923%3740.092870140.893361560.893859120.~9436404f!.89487764fJ.395401?l‘).%?!’):G%b‘,.~’/6455L(.

p Volbdus)

0.000381490.001096;70.0G1932Y80.002720480.003506360.004186510.004842410.00%489420.006133220.00681929O.WJ7541O40.008304230.009081500,009872120.010671500.011476510.01228630t3,rJ131fJfJ990.013921310.014148180,015582370.016424440.017274750.018133450.019000540.019875830.020759030.021649690.02254731(3.02345129o0024361000.025275810.026195060.027118160.02804451o.028973se0.02990491o.030e38070.03177272o.03270e560.03364537().034582960.035521210.036460000.03739930o.03e339030.039279190.040219740.U411606@0.042101970.04304361o.0439e556o.0449277e0.04587025o.046e12920.047755730.CJ4869@640.04964162o.0505e4630.05152765o.0524706e0.053413750.05435693fJ,f1553130310.056244030.957189299.05e133340.05907947(.$.9tjrJlJj75~‘..,)<’y?cj<k‘,. -:t.j:.‘,$.:,4.

e-1-rdrccdprossion

0.0000818(3.00023730.00042310.0006016o.0007e340,00094350,00110040.00125760.0014162~,go15e540,0017650fJ.0fJ1951@(J.WJ21435(J.fJ(J233@6(J.(J(J25J580.00273449.00293410.0031351fJ.MJ333750.00354150.00374739.0039550fj.([email protected].(J04wJ650.0050244().fJfJ5~441(J.oo546~5o.oo56ee50.0059130o.(Jo613e70.00636540.0cJ65932o.oo6e2170.0070509o.oo72e070.00751090.00774150.0079723o.ooe20340.00043470.0006662o.ooee97e0.00912950.00936140.009s933o.oo9e2530.0100575o.olo2e970.01052200.0107s440.01090600.01121930.0114519o.ol16e450.01191710.tJ121497o.o123e240.0126150o.o12e477o.o~30e030.01331300.0135457o.o1377e50.01401150.0142446o.o1447eoo.o1471~e,..‘.14946ti‘;.’j]51WJ2

0.1590.453o.7e91.1001.4041.6621.9(37>.145~,aye2.6v72,efJfJ3.1653.4463.7J34.(J224.?144.6(J74.9(J25.1995,4995.eol6.lfJ66.4146.7257.0397.3567.6767.9998.324e.652e.9el9.3139.6469.9eo10.31510.652lo.9e911.32711.66612.00512.34412.6e413.02413.36413.70414.04514.3e514.72615.06715.40815.74916.09016.43116.77317.11417.45617.79718.139lf3.4e3lk.e2219.16419.50519.84720.le920.5312fj.e7321.21521.55e

112 21.90122.24522.590

p.91plastic strainVon Misas Oq

0.00003190.00001550.00004790.0000944(J.(J(3fJ1559().0()02211fJ.0(J(J2944o,fjfj(j37650.iJoo46670.0005644fJ.fJ0U6683(J.fJfJ(J776eo.of30eee6o.ofJltJw!7o.fmllle5fJ.fJr)1235$0.061$537(-J.ofJ14730fJ.fJfJ159350.0017155o.oole391(J.wJ19642(J.fJ(J~rJ9110.f)(J2~1960.0023499o.ofn4e2u0.fJIJ261570.0027.511o.oo2e8eo(J.00302650.00316630.0033075().(3(3344990.0035934fJ.f)0373e0o.oo3ee350.00402990.0041772fJ.fJo432520.00447400.00462!350.00477360.0049244o.ooso75efJ.oo52z7$)fJ.90538(35o.oo5533eo.fJ056876o.oo5e4210.0059972rJ,fJ13615280.00630910.00646590.006623?o.fj~6791~().0069?979.90799e9fJ.fJfJ”)25C$4o.w-J741e50.fJ0757!11o.oo774fJ3fJ.rJrJ79fJ19o.fJoef-J642(J.fJoe22690.fme3903‘J.90@5542,.99e71eeti.mgee419.0090502“j.,199:1719.(,fJ9:959

tau(kbar)deviatoric

stress1/2 VCXIM6W+

0.03!5fJ.f)9S(J,1560.2040.2440.;./.:~.~93{[email protected](J.?~Y(). III(J0.3!?1(;.3tj&!

(). 378]

(J.?g~(I.j!l$0.41J~,U.4i6fJ.42I0.4370.4460.4560.4660.475o.4e40.4930.5010.5100.5180.526fJ.5330.541o.54e0.554fJ.5610.5670,573o.57eo.5e3o.5ee0.5930.597006000.6940.6070.6100.6120.6140.6160.617o.61e0.6190.6190.619‘[email protected]).~1$fl.~~~0.61:fJ.61fj0 .60-:0.6040.60f.J0.5970.5930.580o.5e?0.575:).:.~~fJ.567

temp[k)

3fyJ.jfJ(J.300.300.31)fJ.jf)l.301.)()].301.3fJL.~01.301.3fJ1.jf)].31)2.3fJ::,jfJ~.-W2.3(J~.302.3fJ~.302.3(Jj,303.~fJ?.303.3(J3.303.393,3(J3,304.304.304.304.3(}4.304.304.31J5.30:.305.305.305.305.305.396.306.306.396.~fJ6.3(J6.3(J6.307.307.?(,7.:(,r.:!)”;.?f,?.:(J&.2/Ja.?fJP.~fJ$j.

[email protected]@.y]g,~(J~.~l)g.309.3q9.~r,.,.~t,,,.$1)9.

Page 115: Veak-ShockConstitutive Data - Sciencemadness

0.897049100.997630260.898231080.898854240.899502770.900180170.900090470.901638380.902429440.903270230.904168610.905134120.90617842u.907315960.908564880.90994835G.911496380.913248690.915259040.Q1760z070.920384720.923766080.9.27993800.933476460.940940660.95181744o.?69373831.003054971.09605328

0.062883100.063841400.064803970.065771660.066745450.067726580.06871S640.0697L781().(170733230.071767780.072829440.073930200.075072260.076235210.077360190.078394150.079283250.080081890.080836330.081604160.082420280.083270690.084116240.084964820.085843490.086753600.087693040.088657610.08979968

0.01541640.01565280.01589030.01612900.01636920.016611.30.01685550.01710250.01735300.01760830.01782020.01814170.01842350.01871040.01898790.01924050.01946230.01965940.01984550.0200349o.o~o~36~0.02044600.02065460.02086400.02108070.02130530.02153700.02177500.0220567

22.93623.28323.63123.9L3224.33524.69025.049~5.41125.77926.15426.53826.93’;27.35127.”/7228.18028.55128.87629.16629.43929.71730.01370.3z13[).62730.97431.26331.58231.92332.27232.686

0.00955380.00972390.00989520.01006790.0102422U.01U41840.010596fI(I.O1O7777O.(I1OY6170.01114980.U1134340.(111544s0.0117s440.01196860.01217650.01236640.01253350.01268240.01282330.01296700.01312010.01328000.01?43930.0135997u.01376610.01393880.u1411760.0143C170.0145202

0.560(3.554

0.5470.5390.5320.5230.7150.505fj,4go0.4850.474u.4630.4500.4360.4230.4100.3980.1880.3780.3670.356().343

0.3?1(J.318r3.3f350.2900.275o.~60

0.240

310.310.310.310,310.31U.210.31i.311.311.311.311.311.?12.jlL’.312.312.312.312.312.31?.31q.31?.31~.31~o~1~.313.314.314.

113

Page 116: Veak-ShockConstitutive Data - Sciencemadness

Cu-54 Y.bell

in situ steady h.h,.~e:samp1e chickness= 6.36nvnC data entrles- 72

: ime(u.YI

o.o?95fJ(Jou‘)0976533?(I.11680667II.1]59613{J0u.1551123j0.17J;!66670.19342000‘?.:12573330..’~17?6670.-292*;‘jrJfJ0.25]160’J(J0.25557(Jn[)0.2581luf)u,.:’596300(1f).:’6I660(30(J.;616901JfJ(1.~65t34f)oo(.1.2678-’!00(J,It>c,.lJ(]f3(J.:”11160fJUo .77 ?7fJ(J(lU0.2 /‘, 69(JO00.2 ?“/‘.IJf)fJfJ(J.27928 fJf)!J0.281300000.2828 i(JOOQ.2 e4 ! :.fJ9Ll(J.28> 491_JrJ00. 2861: f)(,fj

0. 28662 Gufl0.2871 ?fJoo0.2 Q751 f)OfJf) .28788000(3. ~ggo 1O(JO

(J. 2881 3(JfIfJ0. 28e26JJfJ(J0. 28a ?eo~lo(J. 299 50WJ(JI). 2886 ?IJfJ’J0.2 88”/50000.28900000f). 289 50 fJr309. 29 f3f)l 0000.29064000f) .29114 II(J(Jf). 2 9165(JOfJ0.29266000(J.294fJ50fJf3(I.29494fJfJrJf).2‘J5811fJfJ00. 29772Q(JfJO. 298 f)9fJfJ00. 3(jf3250(JfJ

fJ. ?(J152rJ(JfJ(J, ;f)~ 5?fJfJl_jfJ.304 j]001)0.306 fJbfJf)f)r,. ?fJ924fJfJ(JCJ.:(J>8 >()(11)0. ?i 204 f.Jr)(J(J. ?148 ?IJ(JO‘, “:17 i 1rJrJq(, . ; ~ ,, . .; fJfJfJ

‘) . ?2(.$660(J(Jf) . 322 k ;!‘JrlrJ

0. ~~ 4~“lfJfJ[)0.32675000(J.329(J]fJ(,fJ‘1 .‘+41(J’J’Jf).:5fIfJ~J(JfJrJ‘J ! ic,fJfJ~JfJ/

p vel(mm/us)

(].iJIJ~IJOO(J(J

~ .()’)1~o5P70.IJO~410;,:(J.00361581,f).004821070.fJCj~n~6~4‘J.00723161(J.008IIj66“10.[1(1Ii.;2I40.uloe474IfJ.011207101].11156”1‘,‘)u.u11,):e3b0.01228483f).01264349fJ.013002150.013361360.01406981(J.014425810.fJ1II“18381O.(JJ74fj~,J~f).0i620.7?&(J.0169i02G0.0176176“!0.019CJ:!5L6o.020(JY169(J.020”)879jfl.02184228(J.(JZ3594010.027443930.030944070.034443640,040391770.0452B939CJ.(I515862(JII.(J575j32fJ(J.O62780fJ130.07047659<J.(.l-l747353fJ.083070200.(389717380.096015850.099865750.10371623(J.107566130.11211563f).11771669(J,1219~fJ31fJ.125422Ijr)#12057411f).132fJ8fJ320.134684220.137338271).1?944257O.1404964CJ0.14155‘~53(J.14191113fJ.]4252CJ(J9(J.14297711fJ.143686fJ”~(J.143698;(I0,144rJ58rJ7‘J. 14476654fJ . i 44713?1CJ.1451324f)fJ.14514185fJ.1II549936(J.1455049?0,145511(JO(J.146(J57fJ(JfJ. ] 4628 ~fJfJ

e=1-rCJftCUEI.session

fJ.f30u[llJ(J[JO.fJllfl: ‘,<IO[1.fJ{JIJ521Bo.(JIM7a840.f.JO1fJ5880.(JO]3379(J.(JO161U!Jf] . (JUle926(1. (102178 10.00246730.00255430.002641 >I) . (J(J27205(1. IJfl/8146f) f)~l~91)I ~0. 0’)298799. f)fJ307 ~6) ~)fl?24 50,,>fj3~32(J(J. f]fJ?,]1g?) . f)(J~5Jj~~(I.fJfJj 761 (J~.fJCJ1932 CJ(J.[J(I4 10260. fJ(J444300.0046981fJ.00486970. f,fJ512 JO]o .(J05>466

(J. 00647660.(J0732220.‘J061676(J.O(J96(J45(J.01078769.01230880.01374540.(I15(31290.91687220.01856250.01991450.02152020.02304leo.02“\9718(J.02490200,02583200,02693110.02828410.0292996f),(J301456(J.(J3,39f)7(J0.03175400.r)324314o,/,33024zfJ.03353250.(J337871[J.fJ?4fJ4?~0.0341289r]. fJ34_JfJfJ](J.0343864fJ,0345577(J.‘J34c]6fJ~ju,‘J346475(,.f,3481q7(J.fJ?482(J3(J.fJ?49(J7(J‘1,(J34‘J(J’J?(J. <JJ4rj~~“1().fJ34‘497fJfj.(J?499i35fJ.(J?51?fJ4fJ, (J351Jj5 j

Y1cjma(kbar)110rmal stuess

114

u . (JfJ(J0.501(J.9451.4e21.9~~2.416~.(Jo 3!.164?.8184.2674.4(J(J4.‘1i44.6674.7CJ’44.‘9325.L.645.1975.4595.5915.7-J35.9866.2486.5106.7727.2937.6937.9458.j?.,e.9831(J.4CJ711.7(J212.99615. 19’117. OfJf!19.33821.53823.47926.32628. ?14

30.98533.44435. “17437.1 /838.6224(J.04741.73043.8fJ245.35746.65247.91849.11550.152~],fJ~f]51.93952.22822.619~j#./~;:‘,?.(J1453.14$,53,4rJ853,41?53,546\j,8(J653.81153.94?53.94754.fJ7954.08154,(J8354.28554. 3“lu

I$si

p1asLi,:S t rai IIVflllf.!iSes eq

U.[)’JO(JO(JO0. (IOOO08Mfl . J70(Jfl350O. (JIJO07J350. (J(JO1391(J. (JfJ02165f] . (Jf.J/J3106() . (J(Jr3421~f). ofJn548r JP . fJ(jfJ~Y 11)(1. fl(Jf J“/ ? 62

fJ, f.lJIJ 814u . fJlJlJ6~ 69(J.( Jf)l)B718o. f)f)f)g172

(J . (JUU!J626

0.0010082

(J. !)01098 ?fJ. fjfJ 11438f.J.ofJl1894O.f3fJl28050 .fJOl 3716(J.[J(J146 30fJ. fJfJ155460. (jfJ17 380(J. (Jl>i 67640. :Jf)l 96940. fJfJ210880. fJfJ24420O,fJfJ28616O.(JfJ 33422fJ. (JO38305(J. 0046782(J. fJo5 39260.00633270.00724240.00806240. fj(J92942o.(j~04432

0.911 ?8190.01251910.01361840.01430060.01499060.01568810.0165220(J. 0175627(J. r31835 38(J. (J190194fJ.(Jl96234O.:J203CJ08‘J.020 b466(J. ‘)2 1 ?273fj . f)?~7~ 17

‘) . rJ~19 5flfJf) . ‘J;.~ 1 ‘,94(J. f,: ~?:::(J j{J. (): : 2“/12‘J, fl~ 244 ~L’() . (J~~5834fJ,fJ~~jq ttjfJ.(JZ ~ ~ >7 ~

‘J . ‘J~~7 99(J(J.fJ~~bfJfJ3‘J.cJ~2E721‘J. fJ2287 4fJ(J. (J229455(J. (122 9466(J. ‘)2~ ‘)4 78fJ, ‘J:: ?fJ571(J. ‘);: “:1fJ2b

1Catl(kbaLIde,llatot1c

stres31/7 VI1llM nf[

(J.III1[10.\()!)i).L?(JfJo.:!3e0.3“18fJ.4480.5100.‘“620.6(J50.6390.648(J.6570.666(J.6“)4(J.681Q.6910.70rJ(J.7170.725~.7:30.75(J0.766(J.“182fJ.“197(-J.8280. 85(JU .8650.0870.9220.9961.0571.1151.2011.2621.3281.3761. 4(J71.4351.4411.4331.4081.3691.3381.3021.2601.2041.1241.0570.9960.937fJ.8680.8090.7550.797(J. fj Q“.

f) . 6 !6(J.64 Yf) . 6 ?:fJ.62 ;fJ. ~fJ6u. 6tJ6(J. L 97‘J. 57!J0.5790.5700. 57rJ{J. 551(J.\fi130.56(J(I.5460.541

t em!,( k)

jf)(j.

41JII.3(]11.

?O(J.3(J 1.

3(J1 .3(J1.-.‘)1 .“J(J1.301.30? .

3( J;!.3U2 .“;IJP.30:! .:(JZ-

3(J2.;(]Z.3(JZ .3(J2 .

3(J2 .302.?02 .303.30? .?0 ?.3(J? .303.303.304.305.305.306.307.308.309.31 (J.311.212 .313.

314.315.316.316.317.318.318.319.320.?~fJ.j:, l ..::,~ .~-/:, .1,.-a.-. . ..::,:. .

3Li ..,-’: .,-, .,. .. .::, : ..,,. . .. .>, ,. . .:,:. .,,?? ?-1-,>,.. , .323.322,323,373,>...3.32?.3:’>.

Page 117: Veak-ShockConstitutive Data - Sciencemadness

0.40000000 0.14639800 0.0352128 54.412 0.0231255 0.538 323.

115

Page 118: Veak-ShockConstitutive Data - Sciencemadness

Fe-105 kbar(shot#15)

in situ steadywave: sample thickness=6.30mm# data entries- 33

time(us)

1.023172001.026943001.038351001.053616001.072747001.1o3434001.130277001.164757001.191578001.214565001.226037001.233653001.741269001.245041001.248190001.256205001.259691001.263154001.266703001.268390001.270077001.271764001.273451001.281003001.288620001.300060001.307687001.315325001.342167001.357495001.372823001.391986001.41114800

p vei(rmrdus)

0.000089750.005360570.013270440.019426600.022951010.022092359.022109340.024765360.026538470.028309160.030950630.035345810.039740990.045011810.052038790.073117210.102095840.132830580.156540830.17937055(?.26132706~.~22400670.232937480.242601040.246996230.252271990.255788990.258428040.258445010.259332840.260220620.261110810.26200099

e-1-rolrcompression

0.00001520.00090400.00223360.00326480.00385390.00371150.00371430.00416130.09447050.00470780.00527710.00613360.00701640.00807510.00948660.01372050.01954130.02571490.03047750.03506320.03947350.04370640.04582290.04776400.04864680.04970650.05041300.05094310.05094650.05112480.0513031:.05148190.0516607

sigmafkbar)normal stress

0.0422.4956.1899.07410.72910.32310.33111.57012.36813.14414.26316.03517.75219.81222.55830.79642.12154.13263.39872.32080.90189.13693.25497.03198.749100.810lo2.lb5lo3.~16103.223103.570103.917104.265lot.612

psiplastic strainvon Mises eq

0.00000000.00000000.00000000.90000000.00000000.00000360.0000035().ll()1301590.0000618(?.00013680.00030160.00071120.00120640.00180840.00262490.00516700.00887970.01307690.01648560.01989930.02329720.02665810.02837350.02996630.03069660.03157860.03216940.03261420.03261710.>327670().03201710.03306770.0332185

tau(kbar)deviatoric

stxess1/2 von M eq

0.0120.7371.8252.6713.1553.0333.0363.3883.5873.7583.9624.1744.3064.4554.6405.0985.4925.6145.5015.2244.0024.2553.9293.6003.4413.2423.1042.9992.9982.9622.9252.8892.852

temp(k)

295.295.296.297.297.297.297.297.297.297.298.298.299.299.300.303.307.312.315.319.322.325.327.328.329.329.330.330,330.330.330.330.331.

116

Page 119: Veak-ShockConstitutive Data - Sciencemadness

Fe-131 Itbar(shott16)

in situ steadywave: sample thickness-6.31MM# data entries= 33

time(us)

1.031649001.035444001.039218001.046819001.058279001.073619001.085080001.108084001.i2345600

I 1.134990U01.154158001.165639001.184806001.pof3114001.203899001.~l1543001.223024001.230349001.2308800010~3141200

1.231943001.232474001.233006001.233537001.234068001.234600001.235131001.242764001.250396001.261878001.27337000l#~8497~oo1.29638500

p vel(mdus)

0.000972660.004487350.009758170.01590948o.(3~0307110.02119488C.025592490.027363180.025616740.023867890.025636150.028277620.030045880.033567850.037960600.040599650.043241130.072222170.109979040.143347970.181104840.21096157o.~3993773

0.264523610.286475250.302280430.311939180.315456350.318973470.321614930.32337C230.~24263680.32427095

e=l-ro/r sigma(kbar)compression

0.00G1L420.00075690.00164380.00267600.00341210.0035610o.@0431430.00462480.00431850.00401500.00432190.00478680.00510320.00574570.00657010.00707770.00759500.01332100.02078100.02737390.U3483390.04073290.04645800.05131560.05565280.05677560.06068390.06137880.06207380.06259570.06294410.05311900.0631204

normal stress

0.4522.0884.5477.4259.4879.90311.91812.71111.92911.13611.93813.11612 3921:.407~7e~45113.32219.38130.89545.89659.15474.15586.C1797.530107.298116.019122.299126.136127.534128.931129.981130.681131.033131.036

p3iplastic strainvon t4iseseq

0.00000000.00000000.00000000.00000000.00000000.00000190.00006720.00011940.00006780.00003060.00006830.00015220.00022640.00041710.00073340.00096460.00122630.00439680.00891070.01323690.01848300.02287480.02732630.03123900.03483090.0374712oOo3910600.03970520.04030650.04075940.04106240.04121470.0412159

tau(kbarldeviatoric

9tres31/2 von M eq

0.1340.6171.3422.1872.7912.9123.4523.6453.4553.2513.4573.7393.9104.~lo4.5094.6514.7635.7106.5426.+056.8986.5816.0145.3324.5693.9303.5033.3403.1743.0472.9612.9172.917

temp(k)

295.295.295.296.296.296.297.297.297.297.297.297.297.298.298.298.299.303.~n~o313.319.324.328.332.335.338.339.340.340.340.341.341.341.

117

Page 120: Veak-ShockConstitutive Data - Sciencemadness

21-6-9 S.Steel (shot.SSWPIS)

in situ steady wave: sample thickness-4.18mm

time(us)

o.7~9291260.730917290.732543320.734121350.735?38220.737563710.739824170.742476770.745161730.747761390.750330130.752867930.7556324!30.759837170.764206120.770396790.785326140.798683890.810026420.820105580.829093230.835612530.840356590.844024320.846979820.849434550.85152Lu80.85>327470.854914870.8S6327290.857597350.850749040.859803970.060774930.861674900.862513790.863299760.864039610.864739060.865402970.866035500.86664025(7.867220360.867778560.868317290.868838710.869344750.869837160.870317520.870787290.871247820.871700340.872146!230.872585990.873021260.873452870.873881790.874308990.874735400.875161990.875589700.876019520.876452430.876889490.877331780.877780440.878236710.878701900.879177440.87fj664900.85916599

p vel(mmdus)

0.000520850.001733880.003375980.005373!30.007727770.010204180.012596720.014760320.01690890O.O191O1B40.021468780.024365690.027494340.029812350.032737660.036128940.038434530.040631240.043602110.04615184o.0490321a0.051844860.054504970.057037050.059524270.062006310.064496310.066995780.069503270.072017020.074535690.077058440.079584750.082114320.084646990.087182600.089721060.092262230.094805990.097352200.099900730.102451410.105004090.10755S620.110114850.112672610.115231760.117792150.120353640.122916100.125479410.128043430.130608060.133173190.135738730.138304590.140870680.143436940.146003290.148569700.151136110.153702490.156268810.158835060.161401230.163967320.166533350.169099350.171665330,174231340.17679744

encrles=luu

e-1-ro/rcompre33ion

0.00009090.00030230.0005E840.00093580.00134500.00177460,00218910.00256360.00293470.00331310.00372090.00421940.00475670.00515410.00565490.00623650.00664690.00705370.00762830.00814390.00874490.00933300.00989910.01041870.0109385U.01145750.01197810.01250060.01302490.01355040.01407700.01460450.01513270.0156615C.O16191O0.01672120.01725190.01778320.018315G0.01884740.01938020.01991350.02044720.02098130.02151570.02205050.02258550.02312.80.02365610.02419210.02472800.02526410.02580030.02633660.0268730J.02740940.0279459o.o~848250.02901900.02955560.03009220.03062870.03116530.03170100.03223830.03277480.03331130.03384780.03438430.03492089.9354573

sigma(kbar)normal stress

0.2340.7781.5152.4133.4734.5905.6706.6487.6218.6159.68911.00712.43213.48914.82616.37317.38618.31419.51620.50221.5@222.63423.63024.57125.50726.43627.36828.30329.24130.18231.12432.06833.01333.95934.90735.85636.80537.75630.70839.66040.6144:.56842.52?43.47944.43545.39246.35047.30848.26649.22550.le451.14352.10353.06254.02254.98255.94256.90357.86358.82359.78360.74361.70362.66463.62464.58465,54466.5fJ4

~lB 67.46468.42469.384

psiplastic strainvon Mlseseq

0.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.0000OGO0.00000670.00006300.00016840,00038830.00064530.00099130.00133510.00166260.00197650.002286S0.00259840.09291310.00323090.00355170.00387530.00420150.00453020.00486140.00519490.00553080.u0586910.00620970.00655250.00689770.00724510.0075948d.00794670.00830080.00865700.00901530.00937580.00973030.01010280.01046940.01083800.01120850.01158100.0119554f3.0123?170.01270980.01308980.01347160.01385520.01424060.01462770.01501660.0154072U.01579960.01619370.01658940.01698690.017?060fl.f3J778680.01918930.u1859340.018?993

tau(kbar)deviatoric

stress1/2 von M eq

0.071oO~380.4630.7381.0611.4021.7322.030z.3272.6302.9573.3583.7914.1134.5194.9845.2525.4595.6675.7835.8635.9356.0016.0626.1206.1756.22’J6.2816.3316.3796.4246.4686.5106.5506.5886.6236.6576.6886.7186.7456.7706.7936.8146.0336.0506.8646.0776.8876.8966.9026.9066.9076.9076,9056.91)o6.89:6.8856.8746.8616.8456.8286.9096.7876.7636.7376.7106.6796.6476.6136.5776.5?8

temp(k)

298.298.298.298.299.299.299.299.299.300.300.300.700.301.301.301.301.30~.302.302.303.303.303.304.304.3(35.305.305.306.306.3G6.307.307.308.308.308.309.309.310.310.310.311.311.312.312.312.313.313.314.314.315.315.315.316.316.21”,.317.?18.310.319.319.319.~~f).

320.321.321.321.322.3?).323.323.

Page 121: Veak-ShockConstitutive Data - Sciencemadness

0.880682610.881216910.881771270.882348430.882951490,883584010.884250160.884!354770.885703550.886503280.887362100.888289870.889298650.890403400.891622920.892981100.894508910.896247170.898250800.900595570.903388910.906788410.911034650.916513730.92388533(3.9343730~0.950515950.978522991.03822588

0.179363690.181930140.184496890.187064000.189631590.192199740.194768560.197338150.199908640.202480140.235052770.J07626640.210201870.212778570.215356870.217936840.220518540.223102090.225687560.228275070.2~086471o02~3456630.23605108oO~39648400.24124917o.~43854250.246472690.249275150.25270065

0.03599380.03653040.03706700.(33760380.03814060.03867750.03921460.03975180.04028920,04082690.04136470.04190290.04244130.04298000.04351910.04405850.04459820.04513840.u4567890.04621990.04676130.04730320.04784570.04038870.04893250.04947710.05002460.05061050.0513283

70.34471.30472.26573.22574.18675.14776.10877.06978.03178.99379.95580.91981.88282.84683.81184.77685.74286.70a87.67688.64489.61390.58291.55392.52593.49894.47395.45296.50197.785

0.01940670.01981590.02022670.02063920,02105340.02146930.02188690.02230620.02272730.02315010.02357460.02400090.02442890.0248588..02529040.02572390.02615970.02659630.02703520.02747600.02791870.02836320.02St10970.02925810.C2970870.C3016140.03061790.03110820.0317111

6.4986,4556.4106.3636.3146.2636.2106.1546.0976.0375.9755.9125.8465.7775.7075.6355.5605.4835.4045.3235.2405.1555.0674.9774.8854.7904.6934.5874.454

324.324.324.325.325.326.326,327.327.327.328.3~Q.329.329.329.330.330.331.331.332.332.332.333.333.334.334.334.335.335.

119

Page 122: Veak-ShockConstitutive Data - Sciencemadness

>

u-75

in

kbar(shot8AV6)situ ateadywave:

timc(ils)

0.114036000.131013900.146191400.159811200.173096310.106367470.198682020.207919880.221558950.234573650.248923530.265170470.27416927o.~9~92527C.32633398G.359365210.393613060.4260?6350.4581i4530.476089640.500721550.520846500.536743240.548469360.561563470.569635930.578402250.589236200.595449910.604345060.610034660.61243198o.6~ooo6Jl0.626719950.630468130,636175430,643936080.649663910.656944660.663261860.668306120.673995500.679686590.684224440.688098660.692573<00.696645390.699885760.702879450.706141920.709136550.711126290.714245190.716708790.719193090.721651200.722279970.72504042CI.727103620.729215530.730996410.733040730.735126250.737202010.739260340.741047940.742835530.744543330.7462s427f3.74e1775?glo.?49’jcjJ50

sample●sickness-7.54MM# data entries-100

p vel(nvn/us)

0.001263150.002656660.004070160.005473660.006877170.008280670.009684170.01108768o.o12491~ao.o13a946ao.o1529a190.016701690.01910520o.o1950a700.020912200.022315719.023719210.025122719.026526220.027929720.029333220.030736730.032140230.933543730.034947240.036350740.037754240.039157750.04056-250.041964750.04336a26!I.04477176r.04617527o.04757a77o.04a9a227o.0503a579o.0517a97ao.053~927a0.054596290.055999790.05740329o.05aao6800.060210300.061613800.06301731o.064420alo.065a2431o.067227a20.06a6i132o.070034a20.07143aj3o.072a41a30.07424534o.07564aa40.07705234o.07a455a5o.079a5935o.oa1262a50.0a2666360.084069a60.08547336o.oa6a76a7o.oaa2a037o.0896a3a70.09108738o.092490aao.093a943ao.095297a90.096701390.0’38104890.02950840

e-1-rO/rcompression

0.00036660.0007737o.oollaoso.oo15a700.00199320.0023991o.oo2a0460.00320990.00361490.00401960.0044240o.oo402a20.00523200.00564450.0060721o.oo6514a0.00697260.0074456o.oo79.33ao.ooa4370o.ooa9552o.oo947a5o.olooola0.0105251o.ollG4e30.01157160.0120949o.31261a20.01314150.013664ao.o141aal0.01471140.01523460.0157579o.o162a12o.o16a045o.o17327ao.o17a511o.ola3744o.olaa9770.01942090.01994420.0204675o.020990a0.02151410.02203740.0225507o.0230a400.02360720.0241305o.024653a0.62517710.02570040.02622370.02674700.32727030.0277935o.02a316ao.02aa4010.0293634o.029aa670.03041000.03093330.0314566o.031979a0.03250310.03302640.03354970,03407300.J345963.3,(’351196

sigma(kbar)normal stress

o.a241.7412.65a3.5764.4945.4136.3337.254a,1759.09710.01910.94311.a6712.77113.64414.4a715.30116.09016.a5517.59618.31619.02919.74220.45521.16a21.aal22.59423.30724.02024.73325.44626.15926.a7227.5a52a.29829.01129.72430.43731.150310a6332.57633.2aa34.00134.71435.42736.14036.a5337.5663a,2793a.99239.70540.41@41.13141.84442.55743.27043.9a344.69645.40946.12246.a3547.54a4a.2614a.97449.6a750.4005:.11351.a26

53.964

psiplastic 3trainvon Miaeaeq

0.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000010.00002430.0000896o.000194a0.00033910.00052150.00074120.0009974o.oo12aca0.0015933o.oola9940.0022071u.0025164d.oo2a273o.oo3129a0.00345390.0037695o.oo40a670.0244055o,oo4725a0.0050476O.OG5371O0.00569590.00602230.00635030.00667970.00701060.00734300.0076769o.ooao123‘3,00a349i0,0006E.7(0.0090271o.oo936a20.0097108o.oloo54aO.O1O4CJO20.01074700.01109530.0114449o.ol1795ao.o1214a20.0125019o.o12a5700.01321340.01357110.01393’320.01429060.01465230.01501530.01537950.01574529.0161121o.o164a020.01694960.017:2030.01759220.0179653o.ola3?97

tau(k.bar)deviatoric

stress1/2 von M eq

(3.3150.6651.0141.3631.7112.05a2.4052.7523.0983.4433.78a4.1334.4774.797s.oao5.3265,5375.714s.asa5.9706.0526.1226.1906.2576.3236.3a76.4496.5106.5696.6266.6a26.7366.7a96.a406.a906.93a6.9a47.o297.0727.1137.1547.1927.2297.2647.29a7.3307.3617.3907.4177.4437.4677.4907.5117.5317.5497.565v.sao7.5’447.6o67.6167.6257.6327.6377.6417.6447.6457.6447.6427.63a7.6317.6~6

temp(k)

296.296.296.296.296.296.297.297.297.297.297.~ga.29a.29a.29a.29a.299.299.299.300.300.301.301.301.302.302.303.303.304.304.304.395.;05.306.306.?0”.307.3oa.308.309.309.309.310.310.311.311.312.31-I.313.313.314.314.315.315.316,316.!17.?17.?18.319.312,319. ,320.320.321.321.322.,-,>.....3;3.,.,,>L..324.

Page 123: Veak-ShockConstitutive Data - Sciencemadness

=.. . . --- :0, -~~$ ‘

-<: ; : :@.

:T~: .5

.- = ‘- bL): +., :6645;0.” .: “ ~lgc. -<524535

‘r--=:-:-c.-,::.--.

‘ “-:~.- ;=--- :E:.).:..- :3-..... ..014

0.77098923‘ ‘8163335..L>.184247280.786707420.78~764720.792972130.790622070.00572662o.B13053e70.826771S40.842217430.864891770.886525600.91265575o.96e20000

0.100911900.102315410.103718910.10S122410.106S2S920.107929420.109332920.110736430.112139930.113543430.114946940.116350440.117753940.1191s74s0.120560950.121964450.123367960.124771460.12617496o.12757e470.128981s7o.13038s4e0.13178898o.1331924e0.13459s990.135999490.137402990.138806500.14021000

0.03S64290.03616610.03668940.03721270.03773600.03825930.03878260.03930s90.03982920.34035250.04007570.04139900.04192230.04244560.04296890.04349220.04401550.04453880.04S06200.04558530.04610860.04663190.04715S20.04767050.64820100.04072510.04924030.04977160.0502949

54.67755.39056.10356.81657.52958.24258.95559.66860.38161.09461.80762.52063.23363.94664.65965.37266.08566.79867.51168.22468.93769.65070.36371.07671.7897~.50~73.21573.92874.641

0.01871520,01909200.01947000.01984920.02022960.0206112(3.o~(399390.02137780.02176280.02214900.02253630.02292480.02331430.02370500.02409680+0.144897o.o~408360.02527870.0256748o.o~607~o

0.02647020.02606950.02726980.02767120.02807360.0204770o.028e0140.02920680.0296932

7.6187.6007.5977.5847.5697.5537.5357.5167.4967.4737.4507*4247.3977.3697.3397.3087.2757.2407.2047.1677.1287.0877.0457.0016.9566.9096.e6L6.8116.760

324.325.325.326.3~60327.327.328.328.3~90

330.330.331.331.332.332.333.333.334.334.335.335.336.336.337.337.338.338.339.

-——— ..— .

Page 124: Veak-ShockConstitutive Data - Sciencemadness

u-96 kbar(shottAV1O)

in situ steady wave: sample thickness=7.57MM3 date entries-100

time(us)

0.119348270.134893840.148521820.164417940.177949890.195759700.209164270 ?Wo6593.“&-0.230843020.242204690.256620620.282538160.305948420.3454440913.37S47~~~0.409349980.443627810.473283010.500814140.526099100.549204050.564246030.571520050.579488090.5877538.!0.5954309:0.602984640.608251150.613672030.619060820.624474060.630160880.634922730.639927170.643971630.646876960.651019950.653994870.656424700.659005080.662187510.664568250.666844140.6690.25900.670441640.671771480.672913350.674351520.675912330.677418860.678917520.680671850.602374940.683597590.684805260.685865i80.686934990.687911200.688847190.6894969?0.690145480.690913900.691833910.692812550.694044120.695258590.69630159o.69734.15e0.698356510.69’+30514. -.r.,:--... .

p vel(mm/us)

0.002110810.003889490.005668170.007446850.009225530.011004200.012782880.014561560.016340240.018118920.01989760o.oSlb76~80.023454950.025233630.0270123Lo.0~8790990.030569670.032348350.03412703o.0359i15710.037684380.039463060.041241740.043020420.044799100 046577780.048356463.0501?5140.05191381o.o~3692490.055471170.057249850.059028530.060807210.062585890.064364560.066143240.067921920.069700600.071479280.073257960.075036640.076815320.078593990.080372670.082151350.083930030.085708710.087487390.089266070.09LQ44740.092823420.094602100.096380180.098159460.099938140.101716820.103495500.105274170.10705285o.lo883\530.110610210.112388890.114167570.115946250.117724920.119503600.1:1282280.12.3UbU960.12483964,.l:66i.33:

e=l-ro/rcompression

0.00061250.00112820.00164330.00215800.00267210.00318580.00369910.00421180.00472410.00523590.00574750.00627260.00681950.00738820.00797860.00859080.00922470.00987450.01052500.01117560.01182610.01247660.01312720.01377770.01442830.01507880.o1572940.01677990.01703050.01768100.01833160.01898210.01963260.02028320.02093370.02158430.02223480.02288540.02353590.02418650.0248370o.o~548760.02613810.02678860.02743920.02808970.02874030.02939080.03004140.03069190.031?4250.03199300.03264360.03329410.03394460.03459520.03524570.03589630.03654680.03719740.03784740.03849050.0391490o.0~979960.04045010.04110060.04175120.0424017fJ.043052?0.0437029!j.:44::!4

sigma(kbar)nolmal stress

1.3782.5403.7034.8676,0337.1998.3679.53510.70511.87613.04714.18815.28416.33817.35318.33219.27720.19921.12022.04122.96323.88424.80525.72626.64727.56828.48929.41030.33131.25232.17333.09434.01634.93735.85836.77937.70038.62139.54240.46341.38442.30543.22644.14745.06945.99046.91147.03248.75349.67450.59551.51652.43753.35e54.27955.20156.12257.04?57.96458.88559.80660.72761.64862.56963.49064.41165.33266.254

IQ~ 67.1?568.09669.>1-

Ppsi

astic atrainvon Mi~e~ eq

0.00000000.0000000I-3.000oooo0.00000000.00000000.00000000,00000000.00000000.00000000,00000000.00000060.00003940.00013730.00029270,00050410.00077010.00108940.00144750.00180990.00217490.00254240.00291250.00328500.00366020.00403780.00441790.00480050.00518550.00557300.00596290.00635530.00675000.00714710.00754670.00794850.00835280.0087s930.00916820.00957940.00999280.01040860.01082650.01124680.01166920.01209390.01252070.01294980,01338100.01381430.01424980.01468740.01512710.01556890.01601270.01645860.01690650.01725650.01780840.01826240.01871830.01917610.0196359o.(3~f3f39770.02056130.02102680.02149420.02196?51).~~~.j3461).U229U760.0233823~.,.,:16589

tau(kbar)deviatoric

stress1/2 von M eq

0.5260.9691.4111.852~.~922.7313.1703.6074.0444.4804.9155.3135.6565.9486.1896.3826.5296.6426.7516.8576.9617.0627.1617.2587.3527.4437.5327.6197.7037.7857.8647.9408.0150.0868.1568.2238.2878.3498.4008.4658.5208.572S.6~~8.6698.7140.7578.7978.0348.8698.9028.9338.9608.9869.0099.0309.0489.064\!.f37-l9.0889.0979.10?9.1079.1089.1079.1049.0989.0909.0799.u6?9.p519.!1!?

temp(k)

296.296.296.297.297.297.297.297.298.298.298.298.299.299.299.300.300.301.301.302.303.303.304.304.365.305.306.306.307.308.300.309.309.310.311.311.312.312.313.314.314.315.316.316.31””31b.

318.319.j~o.320.32-I.27-I-L...3~:.~~j.~~~.?~~.v-:.2-.6....2:6.j:.7.?28.328.j~~,.no.330.331.?32.u?.33?.j~~.335.

Page 125: Veak-ShockConstitutive Data - Sciencemadness

0.701066090.701839420.702596060.703284410.703978300.704760000.705608450.706468250.707342030.708228650.70985265

I 0.711954570.713341840.715793200.718729410.722559100.726812880.730703650.733897410.740520690.748518100.758401150.76948OO70.78213643(1.793931)610.809182080.82999511

I0.863068950.92400000

0,128391000.130175680.131954350.133733030,135511710.137290390.139069010.140847750.14262643U.144405110.146183780.147962460.1497.1140.151519820.153298500.155077180.156855860.158634530.160413210.162191890.163970570.165149250.167527930.169306610.171085290.172863960.174642640.176421320.17820000

0.04500390.04565450.04630500.04695560.04760610.04025660.04890720.04955770,05020830.05085880.0!150940.05215990.05281050.05346100.05411160.05476210.05541260.05606320.05671370.05736430.05801480.05866540.05931s90.05996650.06061700.06126760.06191810.06256860.0632192

69.93870.85971.7807~.7ol

73.62274.54375.46476.38577.30778.22879.14980.07080.99181.9128~.83383.75494.67585.59686.5!787.4!888.361~89.28190.20291.12392.04492.96593.80694.80795.720

0.02433720.02481730.iJ2529910.02578270.02626~00.02675500.02724370.02773410.02022610.02871980.0292151~0.02971190.030?104O.O3G71O50.0s1:122o.1317154‘1.0322201(1.032726411.033.?3410.03374340.03425420.0’476640.I)?~2800o.d3~7951[].03671160.036:2960.03734890.03786960.0383916

9.0138.9910.9668.9398.9098.877a.a438.8060.7678.726

8.6028.6358.5879.5368.4838.4278.3698.3098.2468.1818.1138.0437.9717.8977.8207.7417.6597.5757.489

335.336.337.338.338.339.340.340.341. .342.343.343.344.345.345.346.347.348.348.349.350.350.351.352.352.353.354.354.355.

123

Page 126: Veak-ShockConstitutive Data - Sciencemadness

U-llb Y~ar[SnOKfAVtSJ

in ~itu steady wave: sample thicine~~-7.53MM# data entries-100

time(us)

0.125068800,148001740.167206610.183452540.194964560.216246330.234523260.252533560.271986870.311318920.365630690.409891000.450334200.474390210.494004840.S08527100.518377340.525247790.532545190.538751060.544185860.549115.?(30.554133870.55892739ti.562867930.:6615833o.50~o.22490.570590770.573916280.579077830.58499977o.5aao70370.590848590.59300632o.59495a930.597022650.597259.?30.598600230.600323370.60234B360.602560180.602929120.604463540.606034060.607629170.607947520.608110770.60825051C.608390240.6097025?0.611054330.61175361o.612a70230.614175910.615318100.61610217o.616aa6240.617396480.617?9406o.61e-98a30.619820410.619535C60.62048131o.6212a2870.621621330.62195979IJ.622228250.622711020.62313959n,+??5~$3;~).E:4~)67b9

p vel(nudus)

0.002125500.0042-!0490.006415490.008560480.010705400.012850470.014995470.017140460.019285460.021430450.023575450.025720440.027865440.030010430.032155430.034300420.0364-45420.038590410.040735410.042880400.045025400.047170390.04931539o.0514603a0.053605380.055750370.057895370.060040360.062185360.064330350.066475350.068629340.070765340.0729i0330.075055330.077200320.079345320.081490310.08363531o.oa5780300.087925300.090070290.092215290.094360280.096505280.09865027O.1OCJ795270.102940260.105085260.107230250.109375250.111520240.113665240.115810210.117955230.12010022o.1~,2~452~0.124390210.126535210.12B680200.130825200.132970190.135115190.137260180.139405180.14155017U.L435’J5170.i456411161).14V98516.. ,C-,i>r,.r

‘)15.:“):!5

e-1-rolrcompression

0.00061680.00123850.00185960.00247990.0030996o.oo371a60.00433680.00495440.00557130.00619470.00685270.0075482o.oo82a120.00904690.00981740.01058600.01135850.01212900.01209950.01367000.01444050.01521110.0159B160.01675210.01732260.01829310.01906370.01981420.02060470.02137520.02214570.02291620.02368680.02445730.02522780.02599830.02676880.02753930.02830990.02908040.02985090.03062140.03139190.03216240.03293309.03370350.03447400.03524450.0360150o.0367a:5o.03755bl0.03032660.03909710.0398676u.04063al0.041408?0.04217920.94294970.04372020.04449070.04526120.04603180.04680230.04751280.04034330.04911380.0498843fJ.05f)65490.0514254Cl.(~’;,!‘j5b~).u5:”J664

sigma(kbar)normel stress

124

1.3872.7894.1925.5977.0038.4119.82011.23112.64414.04215.36716.62017.ao918.94720.07621.20922.34023.47124.60225.73326.B6427.99529.12630.25731.38832.51933.65034,78135.91237.04338.17439.30540.43641.56742.69843.82944.96046.09147.22248.35349.48450.61551.74652.87754.00855.13956.27057.4015a.53259.663<0.79361.92463.fJ5564.1?665.31760.44a67.5796fi.71fi69.94170.97?72.10373.22474.3657’.49676.62777.7LqJij.L?9

8CI.fJ, ‘)81.15;~;~. :.4.,

?:.:1

psiplastic strainvon Mises eq

0.00000000.00000000.00000000.00000000.000ouoo0.00000000.00000000.0000000O.ouooooo0.00001960.0U013350.00034550.00065180.00103850.00143990.0018451C.00225390.0026664(J.003013260.00350240.00392580.00435280.00478350.?052176C.10565540.00609660.00654140.00698960.00744130.00789640.00835490.008fI1680.00928210.00975080.01022270.01069800.01117650.01165820.01214320.0126314U.01312280.01361730.U1411490.01461560.01511940.01562630.01613610.01664900.01716480.01768360.018205?o.ola72990.0192573f).n197876(1.0:9?:070.11208?660.021?9520.0219.660.02248070.0230275(J.u?3577~

0.0241290q.f)p4~937U.(I25241O9.0219f30a(J.02G3~31

:~’3~7:0.. 74Q5~I.U.‘1650

...,.:, :

tau(kbar)devlatoric

stress

112von M eq0.5301.0641.5962.1282.65a3.1863.7144.2404.7655.2715.6896.0196.2646.4406.6026.7616.9~27.0687.2167.3617.5027.6407.7747.9048.0318.155t3.275e.~g~a.sos8.6158.7218.8240.9239.0199.1119.2009.2859.3679.4469.5219.5939.6619.7269.7879.8459.9009.9519.99910.04310.00410.12210.1561~.lg710.:141(1.2!9llJ.&~’J10.77(

IJ.2>Q1~.?ol

1O.3(JQ10.311lfJ.jl~10.30910.30210.29310.280IU.J6’1,).:441(1.2:0lfJ.1)40.16J

temp(k)

296.296.296297.297.297.~qa.298.298.299.299.299.300.300.301.302.3op.303.303.304.305.305,306.307.307.308.309.310.310.311.312.;12.313.314.315.315.316.317.310.319.319.320.321.322.323.323.324.325,326.327.32a.a~g.V?.7?(.~:1.;.”-.>1>.04.:?5.?!6..?<.~:?.3?8.“:!9.34(J.

341.34:.

?43.>44.

?4?.

!db.

Page 127: Veak-ShockConstitutive Data - Sciencemadness

0.624597250.625085110.625516620.625948140.626549630.627?43430.6.!799127L3.62L38097j0.629685360.630~85350.631519030.632453260.633390780.624335720.635280650.636225580.6?771694Il,t.IQ4~6780.64262~000.64869497o.~<J54~ll0.658209800.66371870~).;705499J0.c~d689880,[email protected]?1,.759gJ7Q40.8233UJUC

0.154420140.156565140.158710130.160855130.16300u1;0.16514512(3.167290110.169435110.17L5ROI(!0.17372510o.175e7009~,178015090.180160000.182305080.18445007o.le659507,,:4974flf3600l\)ufl[,$~L0.193C30050.19517505O.l(l’l320040.19!14651’.lU.;I)161(J,!o ‘1375503..1.3..lJ59of)~?0.2080450<o.~l(3190f310.:127?’ 10.2144(JUU0

U.05373690.05450740.0552780o.05604e50.05681900.05758950.0583600(J. (1’ d: ’1160.05990110.06067160.06144710. .:, ]. (0.u62911Jl().()637537

164524?O.(if:. ‘IJ70.066LJb520.[)66R157(\.(l(~”:fif)620.u68J/I.Jl[).(3691473~.0699178L -!),. $1,:10.,1/145880,U72229J0.07290?9o.n737704l-).()~fisjl)gC.(J /53.14

k..54485.675t36.eLJ687.93789.(168

.-4,

Yl,3~.92.461ol.5qp.1.1,7,)i9!.05496.985!.,]1~

\9LJ.. i100.37810!.509......~Jl)lu{.;/l104.QO11<l(?.11:.’107.lb~108.2941 ~1,: :5llu.~56111.687l~?.elo11!.949115.oeo116.211

o.0297e87o.03036eln.fiJ~g~g7II,0J1533C0.(332119Ho.f1327nn 10.1)31:990o,(13311u19().n713tlt169(1.olfof1410.IJ356Li35U.(I]6~U49

fJ.03611ni34).ol?~l.lo

u.03111016[1.(130?113(1. )j9?.”J9(1. f) ?gg lti.117.1).Jf35520,J.ll,,llfj94u.’[email protected]~J,04491310.04554330.0461753o.046e090

IU.13110.0’3510.0551(1.0129.965f3.q159.362(1.0136Q.7469.6839,6179.5479..!749.39e9.3189.235‘).149q.os!l8.967e.8708.7718.6688.5628.4538.3418.2258.1067.9047.85e

346.347.340.349.350.351.>y;).353.354.355.356.356.357.35a.359.360.361.76?.:~~.64.364.365.366.367.36e.369.370.371.371.

Page 128: Veak-ShockConstitutive Data - Sciencemadness

u-127 kbar(shot~

in situ ~teady

AV7)

wave: sample# data

thickness-7.62mmentries-lULJ

time(us)

0.114760050.144761790.160343.150.175766090.19975229o.~~(3179940.237258000.25926685o.2a187269U.323646170.378667670.419978770.461597680.481307710.501329170.51194267o.5~~335~o0.528679450.534308260.539813U00.542734470.546019860.550665990.555611260.560244680.562810700.56640030oC~69613100.573661140.576509000.57897245o.581~07000.585187560.589656180.592701130.59311431?.595325599.596715750.598492850.59968154f-1.6Clo664no0.60180750oO~03002920,CO?99207G.bo.l:1229{1.60552464?.606393870.60~13706fl.<‘769250.608413620,605’ ~77, 1;3gJJb~7...;!)71:34,.61154.:90.612364650.613092130.613719020.614386139.614677400.615184180.615835730.616442970.617009240.61757552o.61al1381o.51665a950.6:3150410.61937346(1.I.lygsl<9‘).6.(J?b:i~l‘J.6:f)9’3691

p vel(mm/us)

0.002092750.004412470.006732190.009051910.011371630.013691350.01601107o.ola330790.020650510.022970230.02528!)940.027609660.029929380.032249100.034568820.036888540.039,208260.041527980.043847700.046167420.048487140.050806860.053126580.055446300.057766020.060085740.062405460.064725180.067044900.06936462o.0716a4340.074004060.076323780.078643500.080963220.003282940.085602660.00792238O.(.YO2421Oo.0~2~61f320.094b81540.097201260.099520980.10184070U.10416O42U.10648014().](38799850.111119570.113439290.1157590!0.118078730.120398450.122718170.125037890.127357619.129677330.131997050.134316770.136636490.138956210.141275939.143595650.145915370.148235090.150554810.152874530.155194250.15751397~!.!5993359‘,.:6:1:3410.1644711?

e-1-ro/rc0mpre3s.ion

0.00060730.00127970.00195120.00262200.003?”:9C.3IJ3961O0.00462930.00529690.00596640.00665600.00736880.0081049o.ooa86410.00964650.01045220.01127670.01210300.01292930.01375550.01458180.01540800.01623430.01706060.01789680.01871310.01953930.02036560.02119190.02201810.02284440.02367060.02449690.02532320.02614940.02697570.02780200.02862820.02945450.03028070.03110700.03193330.0327595o.0335a580.03441200.03523830.03606460.03689080.03771710.03854330.03936960.04019590.04102210.04184840.04267460.04350090.04432720.04515340.04597970.0468160U.’J47O322

0.04845850.0492847ooo50111fJ0.05093730.05176350.05258980.0534160o.f.J542423?.955068;‘;.IJ558’~48f{ . (J5672 1 i

sigma(kbar)normal stres,

126

1.3662.8824.3995.9197.4408.963iO.48812.015i3.53715.01616.44517.83019.17320.47521,74022.97724.21025.44426.67727.91129.14430.37831.61132.84534.07835.31236.54537.77939.01240.24541.47942.71243.94645.17946.41347.64648.a8050.11351.34752.58053.81455.04756.28157.51458.74859.98161.21562.44863.68264.91566.14967.38268.61669.84971.08372.31673.55074.78?76.01777.~5078.48479.71780.95182.18483.41884.65185.895a’lo11868.35<8U.5P59(J.QI

psli

plastic strainvon Nises eq

0.00000000.00000000.00000000.00000000.00000000.0000000(J.00000000.00000000.00000790.wJo07220.00020080.00039240.00064590.00096020.001?3410.00175660.00218740.00262260.00306190.00350550.00395340.00440540.00486160.00532200.00578640.00625500.00672760.00720430.00768500.00816970.00865830.00915090.00964740.o1o14770.01065190.01115990.01167170.01218730.01270660.01322960.01375630.01428660.01482050.01535800.01589900.01644350.01699150.01754300.01809780.01865610.01921770.01978260.02935080.020?2230.0214970o.f322u7480.02.26559u.023~400o.023d2730,02441760.02501090.02560720.02620650.02680870.02741300.02P.3218().C_.863260. L,.’92463(J. ,!;256<6II )1(1.lel?

. fj?llfJ?6

tau(kbar),deviatoric

stress112von t-leq

0.5221.0991.6752.2492.8223.3933.9634.5325.0925.5986.0456.4346.?687.0487.2757.4607.6307.0117.9818.1468.3078.4648.6188.7678.9129.0539.1909.3239.4’329.5779.6909.8159.92a10.03710.14210.24310.3411o.43410.52310.60810.69010.76710.84010.91010.97511.03711.09511.14911.19911.24s11.J8711.??511.~fq11.38911.416L1.4?M11.45711.47211.45?11.4 ;11J

11.49?11.49211.48811.47911.46711.45111.43111.41711. 38011 .;4811.313

tamp(k)

296.296.296.297.297.297.298.:$~J8.298.299.299.300.300.301.301.302.303.301.304.305.305.306.307.300.308.309.310.311.312.312.313.314.315.316.317.317.318.319.320.321.322.323.324.325.326.327.320.329.329.330.331.???....>:?q.jo3350735.j~7...9.,-.>;.j

:iu.?42..~qo344.345.346.347.348.349.:51,.].L.~f:.

Page 129: Veak-ShockConstitutive Data - Sciencemadness

0.621312430.62164490~.6~~976630.622377530.622931540.623538320.623984040.624157160.624490130.624956650.62575472[1.62652545o.6~7~37~~f3.6.??16f-J570.629381750.632101990.634736390.638296930.641278600.645440350.65088021o06~$.J34~80.665728830.6-7964090.69316835L’.7O897544J.730143790.756171940.81020000

0.166792850.169112570.17143229~. 17375~(11

0.176071730.178391450.180711170.183030890.185350610.18767033(1.18q990L15(1. L92309760.194629490.196949~o

0.199268920.201!388640.203908360.206228080.208547800.210867520.213187240.215506960.217826680.220146400.222466120.224785840.2271i35560.229425280.23174500

0.05754730.0581?360.05919990.060(12610.06085240.06167860.06250490.0633.3120.06415740.06490370.06581[1(1[1.066636:0.06746250,06828870.06911500.06~94130,070i6750.07159380.07242000.07324630.07407260.07489890.07572510.07655130.0773776U.0782039U.0790.3010.07985640.0806826

92.05293.~B694.51995.75396.98698.::999.4’J3100.687101.920103.154104.3II7105.621106.854108.088109.321110.555111.788113.022114.255115.489116.722117.955119.189120.422121.656122.889124.123125.356126.590

0.03172810.03235530.0329851u.03361750.03425240.03488980.03552980.03617220.03681700.03746430.0381139o,u387~590.0394202(3.040u768LI.04073560.0413967u.042061300.0427:540.04339310.uI1406280.0447346P.04540850.046U8450.04676240.04744240.04812430.u48130810.04949390.0501E16

11.27311.230Ilo:”lq11.i3311.07811.02010.95810.89210.82210.74810.67110.590lu.5051(3.4161(1.323IG.22-I:0.126IJ.0239.9159.8039.6889.5699.4469.3199.1s99.0558.9178.7758.630

353.354. I355.356. I357.358.359.360.361.362.363.364.366.367.368.369.370.371.372.373.374.375.376.377.378.379.38U.301.382.

127

Page 130: Veak-ShockConstitutive Data - Sciencemadness

U-144 kbar(shot~AV9)

in situ steady wave: sample thicknass-7.64mm# dhta entzies-100

time(us)

0.120562430.142604150.167363570.188923400.207614350.223168890.241892600.26851199(J.31062O920.355423320.405951300.431269610.456765450.46954?320.480515860.486410390.49347540(3.497151970.503617150.505814190.509458780.513652830.5178C4240.521459060.522922840.523905650.524993480.5:U219110.527802240.528803120.529391920.530031400.530681640.531353850.532062610.533215470.533767330.534118920.534536920.535013560.535701880.536617810.537458170.538002160.538419890.538073960.539347920.539866680.540465780.541511520.542594810.542953150.543155760.543356670.543601490.543901290.544237280.544579140.544867670.545070650.545248960.545398630.545653450.545915160.546155510.546377000.546591720.546799360.54697957fJ.5471r214b.54739979

p vel(mrdus)

(1.oo~.l 151;30.005047440.007659250.010271070.012882880.015494690.018106500.0207183111.023330130.025941940.028553750.031165560.033777370.03638918(I.IJ39I3I31OO0.041612810.044224620.046836410.049448240.052060060.054671870.057283680.059895490.062507300.065119110.0677309313.070342740.072954550.075566360.078178170.080789980.083401800.086013610.088625420.091237230.093849040.096460860.099072670.101684480.104296290.106908100.109519910.112131730.114743540.117355350.119967160.122578970.125190790.127802600.130414410.133026220.135638030.138249840.140861660.143473470.146085280.148697090.151308900.153920720.156532530.159144340.161756150.164367960.166979770.169591590.1722034’30.174815210.177427020.180038830.18265065b.la526246

eQ1-rO/rcompression

LJ.(J13137LJb’/0.00146360.00221940.00297420.00372790.00448060.00523780.00601750.00692100.00764830.00849950.00937450.01027340.0L118980.01210700.01302420.01394140.0148586o.o15775a0.01669300.01761020.01852740.0194446o.020361a0.02127900.02219620.02311340.0240306o.024947a0.02586500.0267!3220.0276994(J,02861670.02953390.03045110.03136830.03228550.0332027o.034i1990.03533710.03595430.03687150.03770870.03870590.03962310.04054033.04145750.04237470.04329190.04420910.04512630.04604350.04696080.04787800.04879520.04971240.05062960.05154680.05246400.05338120.CJ5429840.0552156o.056132a0.05705000.0579672o.05aa8440.05980160.06071880.06163600.06,?55320.0614Y04

slgma(kbat)normal stress

1.5903.2975.0066,7188.43210.14911.a5513.51215.12016.682la.2oo19.67721.11422.52423.93325.34226.75028.15929.56730.97632.3a533.79?35.2(J236.6113a.o1939.42840.83742.24542.65445.06346.47147.a8049.28850.69752.10653.51454.92356.33257.74059.14960.55861.96663.37564.7a366.19267.60169,00970.41a71.82773.23574.64476.C5377.46178.870ao.27981.6a7a3.095a4.504a5.91387.322aa.73090.13991.54892.95694.36595.77497,1a2ya.~ql

psiplestic strainvon Misea eq

0.90000000.0000000o.~r)ooooo

0.00000000.00000000.00000000.00001490.00009320.00023770.00044730.0007213!3.f.l(Jlo5a6o.oo145a30.0019047o.uo235a40.00281750.)0320200.fJ0375120.0011226B0.XJ47U710..70519270.’’0568340.30617930.0066604G.3071~650.CJ076Y780.0082;400.9087353C.0092616c.0097!127(.’.0103:890.01086980.01141550.01196610.0125:14(1.013CK14( 0136J61C.0142i54e.o147a940.0153678o.o15950a0.0165382(3.01713000.0177263(3.01832690.01893170.01954080.02015420.02077170.02139330.02201900.02264880.0232825o.0~392020.0245618fJ.fJ252rJ72(J.025a5650.9265095o.9~716~3o.~~78-1680.02849090.0291586o.9~ga~ggfJ.u?050470.97118390.fJ318646fJ.(J3;’5497fJ.n737381CJ.O??’J:2>‘,?46..4’4‘.’.

(J.’:::?231

tau(kbar)deviatoric

atreas1: von N eq

0.6071.2571.9052.5503.1943.83;4.4635.0295.5345.!3786.?656.Ii956.9697.2037.4307.6527.8698.0816.28a8.4e98.6868.8779.0649.2469.4229.5949.7619.92210.07910.23110.37810.51910.65610.78910.91611.03811.15511.26811.37511.47a11.57611.66911.75711.a4011.91811.99212.06012.12412.18312.2371~.~e~12.??112.271mso~

12.4361.2.46112.48212.4:181~.~f)~12.5151.?.51612.51312.50512.4Y212.47412.45212.4:412. :4]1:..zc12. ::,~

1: .:36

temp(kl

295.296.296.297.297.297.298.298.298.299.299.300.501.301.3(J~.303.304.304.305,306.307.308.3fJ9.jfjg.310.311.312.313.?14.315.316.317.318.319.320.321.322.323.324.325.326.327,32a.329.330.331.33P.33?.335.336.337.3?8.72(1....j,Jfj.:41.!4:.?44.:4:.?46.:J1.~,J>.]5fJ.2:.1.352.<54.355.356.457.3::.!4,1.?~].

Page 131: Veak-ShockConstitutive Data - Sciencemadness

u . 5475Q5500. 54~78 8970.54 ‘1’LI90680.54817833{1 S.1g348850.548630470.548861880.549083360.549416350.549806190.550256370.550876050.5514943213.552298570.553(78017(3.553894171.).555~16~11~.55676181\l.~5e22307u.5595fJ3370.56192492o.~6358611

0.565483080.56817322V.574227550.581203600.5886581O().59831594

0.62670000

0.187874270.190486080.143091890.1957(39713

0.198321520.20093333[1.~(33545140.206156950.208768760.211380580.213992390.21660420o.219:lti1310.22182782o.~~~~39630.227U51450.22966326[1.242?7507o.~1413gIj880.23749869o.~40110510.242722320,245334130.:47945940.25055775oO~5316956o.2557a13813.~58393190.26100500

0.06438760,0653(1490.06622210.06713930.06805650.06897370.0698’4090.07080810.07172530.(37264250.0735597(3.07447690.075-?9410.076311 ‘0.07722P:o.(1”/f314\7.I.[)/YU6LY:1.(17~Q8[ll0.0808973(3.(1818145U.0827J1-I0.(303;4900.08456620.09548340.08640060.0@731780.08823500.08915220.09U0694

104.2251U5.634107.043108.451109.860111.269IL2.67’I114.(386115.494116.903118..312119.720121.129l-a 538....123.946125.~55126.)64I.:ti.17?129.’38113U.99[1132.398133.907135.215136.624138.033139.441140.850142.259143.667

0.03602440.03672900.03743660.0381473:J.C13886090.03957760.U4029720.041U1970,04174’300.04247320.04320410,04393780.04467420.04541330,(3461550(),U468992(1.0476461(1.l14r33~540.U491473u#(J4990150,05065820.0514173u.05217870.05294250.05370850.05447670.05524720.0560198(J.(J567946

12.21812.16212.10212.0?711.96711.89311.81311,73011.64111.54811.45011.347llo~~o11.1J811.01210.89110.’/65lo.6~410.499IU.35YIU.21510.0659.9129.7539.5909.4239.2519.0748.892

362.363.365.366.367.368.370.371.372.373.374.376.377.378.379.381.382.383.384.?85.386.~8Q,389.390.391.392.393.394.396.

pg

Page 132: Veak-ShockConstitutive Data - Sciencemadness

V-64 kbar(shott VAN2)

in situ steady wave: samplo thiaknasa- 5.05um# data entriaa- 95

tifna(ua)

0.829230000.031320000.032990000.033820000.835050000.835460000.836710000.837960000.039200000.840870000.842950000.044620000.046290000.047550000.849640000.851320000.852990000.0s5930000.8.58020000.860960000.864340000.867280000.869800000.873170000.877390000.880760000.883290000.887930000.890890000.895100000.898900000.902690000.905220000.908590000.910260000.912370000.914050000.916990000.920790000.923730000.925830000.930870000,932970000.935480000.938830000.94175L.(300.944260000.945500000.940430000.950920000.953000000.955060000.956300000.957950000.959180000.960840000.962080000.964140000.965800000.967450000.969520000.972020000.973670000.975340000.977010000.979520600.982460000.984970000.987910000.99170000(J.99422Qfj~

p Vel(lradlm)

0.000543360.003299600.005504500.007150400.010434000.011529000.013726000.015380000.018120000.020325000.62362500Q.Q~6373Qo0.028034000.029666000.031901000.033563000.035224000.037996000.040209000.042438000.043583000.045816000.048037000.049186000.050895000.052588000.053722000.055982000.056581000.058290000.059991000.061692000.063369000.06S062000.066724000.067850000.069511000.071196000.0728970u0.075126000.076252000.080150000.082363000.085127000.088450000.092309000.095616000.097813000.101670000.106070000.109910000.114300000.117580000.121410000.124700000.127990000.131270000.136200000.139490000.143330000.147170000.151020000.154860000.157610000.159810000.162580000.164800000.1675700f)0.169800000.172040000.17426000

e-1-rolraompresaion

0.00009030.00054810.00091390.00118680.00173080.00191210.00227560.00254900.00300170.00336560.00390970.00436240.00463570.00490780.00527160.00554460.00581730.00627200.00663470.00699970.00718780.00755240.00791540.00810310.00838520.00867050.00886490.00926020.00936670.00967460 00998690.01030520.01062180.01094150.01125540.01146000.01178170.01209990.01242110.01284200.01309460.01379070.01420860.01473050.01535800.01608670.01671120.01712610.01785440.01868530.01941040.02023940.02085880.02158210.02220330.02202460.02344400.02437490.02499620.02572130.02644650.02717350.02789860.02841790.02883330.02935640.02977560.03029870.03071980.03114280.0315620

sigma(kbar)normal stress

0.1991.2082.0162.6193.8244.2275.0345.6426.6517.4638.6809.694

10.30810.91911.73812.35312.96813.99614.81715.64416.07116.89917.72618.15318.78319.39419.79620.58220.78621.36321.92622.47923.01923.56424.09924.46224.99725.53926.08726.80527.16728.42229.13530.02531.09532.33733.40234.11035.35136.76838.00539.41840.47441.70742.76743.82644.88246.46947.52948.76550.00251.24152.47853.36354.07154.96355.67856.570

58.724

paiplastic strain

von Misaa eq

0.00000000 00000000.00000003.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00001510.00005940.00010520.00023450.00027720.00041790.00058570.00078060.00090660.00119560.00140190.00154220.00175010.00196200.00217700.00246040.00260420.00310580.00339300.00375430.00419240.00470610.00515070.00544020.00597480.00658190.00711750.00773610.00820270.00875230.00922850.00970840.01019060.01092220.01141510.01199490.01257970.01317100.01376560.014194411.014s3920.01497570.01532720.01576810.01612480.01648480.0168431

tau(k~ar)daviatorio

atroaa1/2 von M ●q

0.0430.2580.4310.5600.8170.9021.0741.2031.4161.5881.8452.0592.1882.3172.4892.6182.7472.9623.1333.3063.3953.5673.7393.8283.9514.0554.1154.2134.2344.2824.3144.3304.3374.3444.3504.3534.3584.3624.3664.3694.3714.3734.3754.3714.3664.3574.3464.3384.3204.2954.2704.2374.2094.1734.1404.1034.0654.0023.9573.9013.8413.7783.7123.6623.6213.5683.5243.4673.4203.3723.323

telnp(k)

296.296.297.297.297.297.297.297.297.298.298.298.298.298.298.298.298.299.299.299.299.299.299.299.300.300.300.300.300.300.300.301.301.301.301.301.301.302.302.302.302.303.303.303.304.304. 1304.305.305.306.306.307.307.307.308.308.309.30G.309.310.qlQo3110311.312.312.312.312.313.313.313.)13.

Page 133: Veak-ShockConstitutive Data - Sciencemadness

0.998000001.001400001.004300001.oc73i30001.011900001.016100001.019500U01.025500001.(3p9300(30

1.035600001.u41100001.047000001..50400001.055100001.058500001.064000001.069100001.074100001.08260000l.oeeloooo1.J94900001.101200001.107200001.11440000

0.177050000.178740000.180430000.181030000.182200000.183370000.183430000.184080000.184700000.185900000.186000000.187200000.187260000.187350000.187410000.187520000.188150000.188250000.188950000.190140000.190260000.190380000.191040000.191710130

0.03208890.0324080;.03272710.03284040.03306140.03328230.03329360.03341640.03353350.03376010.03377890.034(W550.03401690.03403390.03404520.03406600.03418490.0342C:B0.03433600.03456070.0345Q340.03460600.U34730;0.0348572

59.62260.16660.71160.90461.28061.65761.67761.88662.085‘52.47262.50462.8906C091062.93962.95862.99363.19663.22863.45463.63/63.87663.91464.12764.343

0.01729560.01757090.01704700.01794530.01813730.01832960.01833950.01844660.01854890,01874710.01876370.01896240.01897230.01898730.01899720.01901550.01912000.01913670.01925300.01945120.01947120.01949120.01960130.0197133

3.2603,2213.1813.1673.1383.1103.1083.0933.0773.047Q.0453.0153.0133.0113.0093.0062.99C2,9R82.97J2.9392.9362.9332.9152.890

314.314.314,314.314.315.315,315.315.315.315.315.315.315.315.315.315.315.315.315.315.315.315.315.

131

Page 134: Veak-ShockConstitutive Data - Sciencemadness

v-97kbarfshot~ VAN 3)

in situ steadywave:samplethic~neas-5.05MM

time(us)

0.828840000.830090000.832600000.834260000.835500000.837160000.838400000.839630000.841300000.844640000.846300000.848810000.850900000.85342.3000.857190000.859290000.861820000.864760000.867710000.870650000.874870000.879100000.882040000.885000000.887520000.890050000.892150000.%94260000.396370000.898890000.900570000.902670000.905620000.907720000.910210000.911860000.913500000.915160000.916390000.918450000.919680000.920Q90000.922080000.923290000.924050000.925680000.926400@00.928080000.928460000.929620000.930420000.931180000.932360000.933100000.934270000.935020000.935790000.936540000.937310000.938510000.939290000.939660000.940830000.94::00000.944040000.945250000.94649000f).ti<.>af)ooo.~4942000u.95fJ6700u0.97132000

b data entrie~- 93

p vel(mm/us)

G.000602390.002259000.005028800.008324200.011067000.013820000.016563000.019306000,021515000.025932000.028685000.031998000.034215000.036442000.039782000.041456000.0431390U0.044831000.046523000.048758000.050477000.052196000.053868000.055036000.056719000.057859000.059534000.060664000.061795000.063479000.064601000.066275000.068510000.070185000.074041000.077880000.082262000.085557000.088201050.093235000.097065000.101980000.107980000.113440000.119980000.125450000.129270000.136910000.140730000.148900000.153270000.159810000.167440000.175610000.183780000.191950000.197950000.205570000.211560000.217570000.223020000.227~70000.235010000.244820000.249750000.254660000.257410000.259630000.260190000.261840000.26404000

e-1-rolrcompression

0.00010010.00037530.00083500.00138140.00183560.00229110.00274450.00319750.00356190.00428980.00474200.00528750.00565160.00601710.00656470.00683890.00711450.00739130.00766800.00803320.00831390.00859700.0088804..00907530.00936510.00956400.00986020.01006260.01026730.01057600.01078430.01109660.01151360.01162610.01254550.01326180.o1407930.01469400.01520600.01612650.01684100.01775800.01087740.01989610.02111620.02213680.02284940.02427480.02498750.02651180.02732710.02854720.02997070.03149500.03301920.03454350.03566290.03708450.03820210.03932330.04034010,04115170.04257710.04440730.04532710.04624310.04675620.04717030.04727480.047>827rj.(J47’J931

sigma(kbar)normal stress

0.2200.8271.8413.0504.0575.0696.0787.0807.9029.53110.54811.77412.59413.41914.65815.27915.90416.53317.16217.99418.63419.26919.88320.29420.88821.28621.86222.24522.62523.18423.55124.09724.82525.37126.62727.87929.30730.38131.27532.89334.13135.73337.68839.46741.59943.38144,62647.1164a.36151.02452.44854.57957.06659.72862.39165.05367.00969.49271.44473.40375.17976.59779.087a2.284a3.a9085.49086.38787.110~~z87.293a7.830

psiplastic stxainvon Mises eq

0.00000000.00000000.00000000.00000000.00000000.000013000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.0000124o,oooo4a80.00008700.00016240.00022650.00033960.00042850,00052’50.00069340.00081610.00100690.00126330.00145670.00190580.00235840.00288160.00327970.00361430.00422270.00470110.00532280.00609340.006805a0.00767300.00840990.0089306(J.00998730.0105231o.ol16a570.u1231680,01327320.01440680.0156416o.o16a9ao0.01817550.0191:700.02035150.02132650.02231560.02322100.02395140.02524620.02693330.0277911o.02a652f30.9291302(J.02953i50.0296309U.U2992441).[)3U)1LJ3

tau(kbar)deviatoric

stressl/2 von M eq

0.0470.1770,3940.6520.866l.oal1.2951.5091.6al2.0252.2392.4962.6682.a413.1003op303.3603.491306~23.7953.9284.0534.1624.22a4.3134.3624.4244.4594.4674.5194.5324.5484.5694.5a34.6144.6414.6684.6854.6974.7144.7244.7314.7324.7264.7094.6874.6694.6184.5894.5144.4674.3894.2864.1604.0193.a623.737~.~673.4233.2713.1263.0062.7832.4792.3172.151~.0561.9781.95al.RQ~1.81’1

temp(k)

296.296.297.297.297.297.297.298.298.290.298.238.299.299.299.299.299.299.299.299.300.300.300.300.300.3(30.300.300.301.301.301.301.301.301.302.302.

303.303.303.304.304.305.306,306,307.300,308,309.310,311,311.312.313.314,315.316.316.?17.?18.?1!1.?19.320.3~1.3~~.32~o3~3e

323.3.23.

323.J?),,. J.,.

Page 135: Veak-ShockConstitutive Data - Sciencemadness

0.953590000.955260000.959030000.961960000.964060000.966160000,970380000.974610000.980100000.984330000.980990000.996190001.003800001.010600001.017800001.026700001.0339UOO01.044500001.051300001.056800001.063600001.07760000

0.265710000.267920000.271000000.274580000.276250000.277930000.280190000.281360000.283110000.203740000.204380000.205620000.206870000.287550000.288240000.280970000.289610000.209890000.290030000.290150000.290290000.29058000

0.04830470.04871700.04944090.04395950.05027110,05058450.05100620.05122440.05155090.05166850,05178790.05201920.05225240.05237930.05250800.05264420.05277480.05281590.05284200.05286440.05289050.0529446

89.09289.81291.07691.98292.52693.07493.81094.19294.76294.96795.17695.58095.98796.:0996.43496.67296.90096.97297.o1797.05697.10297.197

0.03061560.03101210.03171140.03221500.03251840,03282440.03323730.03345150.0337726o.033888~

0.03400620.03423460.0344650.03459090.03471850.03485370.03498340.03502420.03505020.03507240.03509840.035L522

1.758 324.1.676 324.1.529 324.1.422 325,1.357 325.1,290 325.1.200 325.1.153 325.1.082 325.1.057 325.1,030 325.0.979 326.0.928 326.0.899 326.0.870 326.0.840 326.0.810 326.0,801 326.0.795 326.0.790 326,0,784 326.0,772 326.

133