Variable Frequency Response Analysis 8 Ed

Embed Size (px)

Citation preview

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    1/105

    Variable-Frequency Response Analysis

    Network performance as function of frequency.

    Transfer function

    Sinusoidal Frequency AnalysisBode plots to display frequency response data

    Resonant Circuits

    The resonance phenomenon and its characterization

    Scaling Impedance and frequency scaling

    Filter Networks

    Networks with frequency selective characteristics:

    low-pass, high-pass, band-pass

    VARIABLE-FREQUENCY NETWORK

    PERFORMANCE

    LEARNING GOALS

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    2/105

    0RRZRResistor

    VARIABLE FREQUENCY-RESPONSE ANALYSIS

    In AC steady state analysis the frequency is assumed constant (e.g., 60Hz).

    Here we consider the frequency as a variable and examine how the performance

    varies with the frequency.

    Variation in impedance of basic components

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    3/105

    90LLjZL Inductor

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    4/105

    Capacitor 9011

    CCjZc

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    5/105

    Frequency dependent behavior of series RLC network

    Cj

    RCjLCj

    CjLjRZeq

    1)(1 2

    C

    LCjRC

    j

    j

    )1( 2

    C

    LCRCZeq

    222 )1()(||

    RC

    LCZeq

    1tan

    21

    sC

    sRCLCssZ

    sj

    eq

    1)(

    2

    notation"intionSimplifica"

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    6/105

    For all cases seen, and all cases to be studied, the impedance is of the form

    011

    1

    01

    1

    1

    ......)(

    bsbsbsbasasasasZ n

    n

    n

    n

    m

    m

    m

    m

    sCZsLsZRsZ CLR

    1,)(,)(

    Simplified notation for basic components

    Moreover, if the circuit elements (L,R,C, dependent sources) are real then the

    expression for any voltage or current will also be a rational function in s

    LEARNING EXAMPLE

    sL

    sC

    1

    R

    So VsCsLR

    RsV

    /1)(

    SV

    sRCLCs

    sRC

    12

    So VRCjLCj

    RCjV

    js

    1)(2

    0101)1053.215()1053.21.0()(

    )1053.215(332

    3

    jj

    jVo

    MATLAB can be effectively used to compute frequency response characteristics

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    7/105

    USING MATLAB TO COMPUTE MAGNITUDE AND PHASE INFORMATION

    011

    1

    011

    1

    ...

    ...)(

    bsbsbsb

    asasasasV

    n

    n

    n

    n

    m

    m

    m

    mo

    ),(

    ];,,...,,[

    ];,,...,,[

    011

    011

    dennumfreqs

    bbbbden

    aaaanum

    nn

    mm

    MATLAB commands required to display magnitude

    and phase as function of frequency

    NOTE: Instead of comma (,) one can use space to

    separate numbers in the array

    1)1053.215()1053.21.0()(

    )1053.215(332

    3

    jj

    jVo

    EXAMPLE

    num=[15*2.53*1e-3,0]; den=[0.1*2.53*1e-3,15*2.53*1e-3,1];

    freqs(num,den)

    1a

    2b1b

    0b

    Missing coefficients must

    be entered as zeros

    num=[15*2.53*1e-3 0];

    den=[0.1*2.53*1e-3 15*2.53*1e-3 1];

    freqs(num,den)

    This sequence will also

    work. Must be careful not

    to insert blanks elsewhere

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    8/105

    GRAPHIC OUTPUT PRODUCED BY MATLAB

    Log-log

    plot

    Semi-log

    plot

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    9/105

    LEARNING EXAMPLE A possible stereo amplifier

    Desired frequency characteristic

    (flat between 50Hz and 15KHz)

    Postulated amplifier

    Log frequency scale

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    10/105

    Frequency domain equivalent circuit

    Frequency Analysis of Amplifier

    )()(

    )()(

    sVsV

    sVsV

    i n

    o

    S

    i n

    )(/1

    )( sVsCR

    RsV S

    i ni n

    i ni n

    ]1000[/1

    /1)( i n

    oo

    oo V

    RsC

    sCsV

    ooi ni n

    i ni n

    RsCRsCRsCsG

    11]1000[

    1)(

    000,40

    000,40]1000[100 sss

    000,401001058.79

    100101018.3

    191

    1691

    oo

    i ni n

    RC

    RC

    required

    actual

    000,40000,40]1000[)(000,40||100

    sssGs

    Frequency dependent behavior is

    caused by reactive elements

    )()()(

    sVsVsG

    S

    o

    Voltage Gain

    )50( H z

    )20( kH z

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    11/105

    NETWORK FUNCTIONS

    INPUT OUTPUT TRANSFER FUNCTION SYMBOL

    Voltage Voltage Voltage Gain Gv(s)Current Voltage Transimpedance Z(s)

    Current Current Current Gain Gi(s)

    Voltage Current Transadmittance Y(s)

    When voltages and currents are defined at different terminal pairs we

    define the ratios as Transfer Functions

    If voltage and current are defined at the same terminals we define

    Driving Point Impedance/Admittance

    Some nomenclature

    EXAMPLE

    admittanceTransfer

    tanceTransadmit

    )(

    )()(

    1

    2

    sV

    sIsYT

    gainVoltage)(

    )(

    )(1

    2

    sV

    sV

    sGv

    To compute the transfer functions one must solve

    the circuit. Any valid technique is acceptable

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    12/105

    LEARNING EXAMPLE

    admittanceTransfer

    tanceTransadmit

    )(

    )()(

    1

    2

    sV

    sIsYT

    gainVoltage

    )(

    )()(

    1

    2

    sV

    sVsGv

    The textbook uses mesh analysis. We will

    use Thevenins theorem

    sLRsC

    sZT H ||1)( 1

    1

    11

    RsL

    sLR

    sC

    )()(

    1

    112

    RsLsC

    RsLLCRssZT H

    )()( 11

    sVRsL

    sLsVOC

    )(sVOC

    )(sZTH

    )(2 sV2R

    )(2 sI

    )(

    )()(

    2

    2sZR

    sVsI

    T H

    OC

    )(

    )(

    1

    112

    2

    1

    1

    RsLsC

    RsLLCRsR

    sVRsL

    sL

    121212

    2

    )()()( RCRRLsLCRRs

    LCssYT

    )()(

    )(

    )(

    )()( 2

    1

    22

    1

    sYRsV

    sIR

    sV

    sVsG T

    sv

    )(

    )(

    1

    1

    RsLsC

    RsLsC

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    13/105

    POLES AND ZEROS (More nomenclature)

    011

    1

    011

    1

    ...

    ...)(

    bsbsbsb

    asasasasH

    n

    n

    n

    n

    m

    m

    m

    m

    Arbitrary network function

    Using the roots, every (monic) polynomial can be expressed as aproduct of first order terms

    ))...()((

    ))...()(()(

    21

    210

    n

    m

    pspsps

    zszszsKsH

    functionnetworktheofpolesfunctionnetworktheofzeros

    n

    m

    ppp

    zzz

    ,...,,

    ,...,,

    21

    21

    The network function is uniquely determined by its poles and zeros

    and its value at some other value of s (to compute the gain)

    EXAMPLE

    1)0(

    22,22

    ,1

    21

    1

    H

    jpjp

    z

    :poles

    :zeros

    )22)(22()1()( 0

    jsjs

    sKsH84

    120

    ss

    sK

    18

    1)0( 0KH

    84

    18)(

    2

    ss

    ssH

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    14/105

    LEARNING EXTENSION Find the driving point impedance at )(sVS

    )(

    )()(

    sI

    sVsZ S

    )(sI

    )(1

    )()(: sIsC

    sIRsVi n

    i nS KVL

    i n

    i nsC

    RsZ1

    )(

    Replace numerical values

    M

    s

    1001

    flhdldlhd

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    15/105

    LEARNING EXTENSION

    )104(

    000,20,50

    0

    7

    0

    21

    1

    K

    H zpH zp

    z

    :poles

    :zero

    )(

    )()(

    sV

    sVsG

    K

    S

    o

    o

    gainvoltagethefor

    ofvaluetheandlocationszeroandpoletheFind

    ooi ni n

    i ni n

    RsCRsCRsCsG

    11]1000[

    1)(

    000,40

    000,40]1000[100 sss

    For this case the gain was shown to be

    ))...()((

    ))...()(()(

    21

    210

    n

    m

    pspsps

    zszszsKsH

    Zeros = roots of numerator

    Poles = roots of denominator

    VariableFrequencyResponse

    SINUSOIDAL FREQUENCY ANALYSIS

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    16/105

    SINUSOIDAL FREQUENCY ANALYSIS

    )(sH

    Circuit represented by

    network function

    )cos(0

    )(0

    tB

    eAtj

    )(cos|)(|

    )(

    0

    )(0

    jHtjHB

    ejHAtj

    )()()(

    )()(

    |)(|)(

    jeMjH

    jH

    jHM

    Notation

    stics.characteriphaseandmagnitudecalledgenerallyareoffunctionasofPlots ),(),(M

    )(log)(

    ))(log2010

    10

    PLOTSBODE vs

    (M

    .offunctionaasfunctionnetworkthe

    analyzewefrequencytheoffunctionaasnetworkaofbehaviorthestudyTo

    )(jH

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    17/105

    HISTORY OF THE DECIBEL

    Originated as a measure of relative (radio) power

    1

    2)2 log10(|

    P

    PP dB 1Pover

    21

    22

    21

    22

    )2

    22

    log10log10(|I

    I

    V

    VP

    R

    VRIP dB 1Pover

    By extension

    ||log20|

    ||log20|

    ||log20|

    10

    10

    10

    GG

    II

    VV

    dB

    dB

    dB

    Using log scales the frequency characteristics of network functions

    have simple asymptotic behavior.The asymptotes can be used as reasonable and efficient approximations

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    18/105

    ]...)()(21)[1(

    ]...)()(21)[1()(

    )( 2

    233310

    bbba

    N

    jjj

    jjjjK

    jH

    General form of a network function showing basic terms

    Frequency independent

    Poles/zeros at the origin

    First order terms Quadratic terms for

    complex conjugate poles/zeros

    ..|)()(21|log20|1|log20

    ...|)()(21|log20|1|log20

    ||log20log20

    21010

    233310110

    10010

    bbba jjj

    jjj

    jNK

    DND

    N

    BAAB

    loglog)log(

    loglog)log(

    |)(|log20|)(| 10 jHjH dB

    212

    1

    2121

    zzz

    z

    zzzz

    ...)(1

    2tantan

    ...)(1

    2tantan

    900)(

    2

    11

    23

    331

    11

    b

    bba

    NjH

    Display each basic term

    separately and add theresults to obtain final

    answer

    Lets examine each basic term

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    19/105

    Constant Term

    Poles/Zeros at the origin

    90)(

    )(log20|)(|

    )(

    10

    Nj

    Nj

    j NdB

    NN

    linestraightaisthis

    logisaxis-xthe 10

    2

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    20/105

    Simple pole or zero j1

    1

    210

    tan)1(

    )(1log20|1|

    j

    j dB

    asymptotefrequencylow0|1| dBj

    (20dB/dec)asymptotefrequencyhigh 10log20|1| dBj

    frequency)akcorner/bre1whenmeetasymptotestwoThe (

    Behavior in the neighborhood of the corner

    Frequenc Asymptot Curve

    distance to

    asymptote Argument

    corner 0dB 3dB 3 45

    octave above 6dB 7db 1 63.4

    octave below 0dB 1dB 1 26.6

    12

    5.0

    0)1( j

    90)1( j

    1

    1

    Asymptote for phase

    High freq. asymptoteLow freq. Asym.

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    21/105

    Simple zero

    Simple pole

    Q d ti l ])()(21[2

    jjt ])()(21[2

    j

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    22/105

    Quadratic pole or zero ])()(21[2

    2 jjt ])()(21[2

    j

    222102 2)(1log20|| dBt 21

    2)(1

    2tan

    t

    1 asymptotefrequencylow0|| 2 dBt 02t

    1 asymptotefreq.high2102 )(log20|| dBt 1802

    t

    1 )2(log20|| 102 dBt 902tCorner/break frequency

    221 2102 12log20|| dBt

    2

    12

    21tan

    t

    2

    2

    Resonance frequency

    Magnitude for quadratic pole Phase for quadratic pole

    dB/dec40

    These graphs are inverted for a zero

    G G t it d d h l t

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    23/105

    LEARNING EXAMPLE Generate magnitude and phase plots

    )102.0)(1(

    )11.0(10)(

    jj

    jjGvDraw asymptotes

    for each term1,10,50:nersBreaks/cor

    40

    20

    0

    20

    dB

    90

    90

    1.0 1 10 100 1000

    dB|10

    decdB /20

    dec/45

    decdB/20

    dec/45

    Draw composites

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    24/105

    asymptotes

    LEARNING EXAMPLE G t it d d h l t

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    25/105

    LEARNING EXAMPLE Generate magnitude and phase plots

    )11.0()(

    )1(25)(

    2

    jj

    jjGv 101,:(corners)Breaks

    40

    20

    0

    20

    dB

    90

    270

    90

    1.0 1 10 100

    Draw asymptotes for each

    dB28

    decdB/40

    180

    dec/45

    45

    Form composites

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    26/105

    21

    020 0)(

    KjK

    dB

    Final results . . . And an extra hint on poles at the origin

    dec

    dB40

    dec

    dB20

    dec

    dB40

    LEARNING EXTENSION Sketch the magnitude characteristic

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    27/105

    LEARNING EXTENSION Sketch the magnitude characteristic

    )100)(10(

    )2(10)(

    4

    jj

    jjG

    formstandardinNOTisfunctiontheBut

    10010,2,:breaks

    Put in standard form

    )1100/)(110/(

    )12/(20)(

    jj

    jjG

    We need to show about

    4 decades

    40

    20

    0

    20

    dB

    90

    90

    1 10 100 1000

    dB|25

    LEARNING EXTENSION Sketch the magnitude characteristic

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    28/105

    LEARNING EXTENSION Sketch the magnitude characteristic

    2)(

    102.0(100)(

    j

    jjG

    origintheatpoleDouble

    50atbreak

    formstandardinisIt

    40

    20

    0

    20

    dB

    90

    270

    90

    1 10 100 1000

    Once each term is drawn we form the composites

    LEARNING EXTENSION Sketch the magnitude characteristic

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    29/105

    Put in standard form

    )110/)(1()(

    jj

    jjG

    LEARNING EXTENSION Sketch the magnitude characteristic

    )10)(1(

    10)(

    jj

    jjG

    101,:breaks

    origintheatzero

    formstandardinnot

    40

    20

    0

    20

    dB

    90

    270

    90

    1.0 110

    100Once each term is drawn we form the composites

    decdB/20

    decdB/20

    LEARNING EXAMPLE A function with complex conjugate poles

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    30/105

    LEARNING EXAMPLE A function with complex conjugate poles

    1004)()5.0(25

    )(2

    jjj

    jjG

    Put in standard form

    125/)10/()15.0/(

    5.0)(

    2

    jjj

    jjG

    40

    20

    020

    dB

    90

    90

    01.0 1.0 1 10 100270

    1 )2(log20|| 102 dBt

    2.01.0

    25/12

    ])()(21[ 22 jjt

    dB8

    Draw composite asymptote

    Behavior close to corner of conjugate pole/zero

    is too dependent on damping ratio.

    Computer evaluation is better

    Evaluation of frequency response using MATLAB

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    31/105

    Evaluation of frequency response using MATLAB

    1004)()5.0(25

    )(2

    jjj

    jjG

    num=[25,0]; %define numerator polynomial

    den=conv([1,0.5],[1,4,100]) %use CONV for polynomial multiplication

    den =1.0000 4.5000 102.0000 50.0000

    freqs(num,den)

    Using default options

    Evaluation of frequency response using MATLAB

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    32/105

    Evaluation of frequency response using MATLAB User controlled

    >> clear all; close all %clear workspace and close any open figure>> figure(1) %open one figure window (not STRICTLY necessary)>> w=logspace(-1,3,200);%define x-axis, [10^{-1} - 10^3], 200pts total

    1004)()5.0(25

    )(2

    jjj

    jjG

    >> G=25*j*w./((j*w+0.5).*((j*w).^2+4*j*w+100)); %compute transfer function>> subplot(211) %divide figure in two. This is top part>> semilogx(w,20*log10(abs(G))); %put magnitude here

    >> grid %put a grid and give proper title and labels>> ylabel('|G(j\omega)|(dB)'), title('Bode Plot: Magnitude response')

    Evaluation of frequency response using MATLAB

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    33/105

    >> semilogx(w,unwrap(angle(G)*180/pi)) %unwrap avoids jumps from +180 to -180>> grid, ylabel('Angle H(j\omega)(\circ)'), xlabel('\omega (rad/s)')>> title('Bode Plot: Phase Response')

    Evaluation of frequency response using MATLAB User controlled ContinuedRepeat for phase

    No xlabel here to avoid clutter

    USE TO ZOOM IN A SPECIFIC REGION OF INTEREST

    Compare with default!

    LEARNING EXTENSION Sketch the magnitude characteristic

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    34/105

    LEARNING EXTENSION Sketch the magnitude characteristic

    ]136/)12/[(

    )1(2.0)(

    2

    jjj

    jjG 6/136/12

    12/1

    ])()(21[ 22 jjt

    40

    20

    0

    20

    dB

    90

    270

    90

    1.0 110

    100

    1 )2(log20|| 102 dBt

    decdB/20

    decdB/40

    decdB/0

    12

    dB5.9

    )1(2.0)(

    jjG

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    35/105

    ]136/)12/[(

    )(.0)(

    2

    jjj

    jjG

    num=0.2*[1,1];

    den=conv([1,0],[1/144,1/36,1]);

    freqs(num,den)

    DETERMINING THE TRANSFER FUNCTION FROM THE BODE PLOT

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    36/105

    DETERMINING THE TRANSFER FUNCTION FROM THE BODE PLOT

    This is the inverse problem of determining frequency characteristics.

    We will use only the composite asymptotes plot of the magnitude to postulate

    a transfer function. The slopes will provide information on the order

    A

    A. different from 0dB.

    There is a constant Ko

    B

    B. Simple pole at 0.1

    1

    )11.0/(

    j

    C

    C. Simple zero at 0.5

    )15.0/( j

    D

    D. Simple pole at 3

    1)13/( j

    E

    E. Simple pole at 20

    1)120/( j

    )120/)(13/)(11.0/(

    )15.0/(10)(

    jjj

    jjG

    20

    |

    00

    0

    1020|dBK

    dB KK

    If the slope is -40dB we assume double real pole. Unless we are given more data

    Determine a transfer function from the composite

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    37/105

    LEARNING EXTENSIONDetermine a transfer function from the composite

    magnitude asymptotes plot

    A

    A. Pole at the origin.

    Crosses 0dB line at 5

    j

    5

    B

    B. Zero at 5

    C

    C. Pole at 20

    D

    D. Zero at 50

    E

    E. Pole at 100

    )1100/)(120/(

    )150/)(15/(5)(

    jjj

    jjjG

    Sinusoidal RESONANT CIRCUITS - SERIES RESONANCE

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    38/105

    Im{ } 0Z

    RESONANT FREQUENCY

    PHASOR DIAGRAMQUALITY FACTOR

    RESONANT CIRCUITS

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    39/105

    RESONANT CIRCUITS

    These are circuits with very special frequency characteristics

    And resonance is a very important physical phenomenon

    CjLjRjZ

    1)(

    circuitRLCSeries

    LjCjGjY

    1)(

    circuitRLCParallel

    L CCL

    110

    whenzeroiscircuiteachofreactanceThe

    The frequency at which the circuit becomes purely resistive is called

    the resonance frequency

    Properties of resonant circuits

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    40/105

    Properties of resonant circuits

    At resonance the impedance/admittance is minimal

    Current through the serial circuit/

    voltage across the parallel circuit can

    become very large (if resistance is small)

    CRR

    LQ

    0

    0 1

    :FactorQuality

    222)

    1(||

    1)(

    CLRZ

    Cj

    LjRjZ

    222 )1

    (||

    1)(

    LCGY

    Cj

    Lj

    GjY

    Given the similarities between series and parallel resonant circuits,

    we will focus on serial circuits

    Properties of resonant circuits

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    41/105

    Properties of resonant circuits

    At resonance the power factor is unity

    CIRCUIT BELOW RESONANCE ABOVE RESONANCE

    SERIES CAPACITIVE INDUCTIVE

    PARALLEL INDUCTIVE CAPACITIVE

    Phasor diagram for series circuit Phasor diagram for parallel circuit

    RV

    C

    IjVC

    Lj

    1GV1CVj

    L

    Vj

    1

    LEARNING EXAMPLE Determine the resonant frequency, the voltage across each

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    42/105

    q y g

    element at resonance and the value of the quality factor

    LC

    10 sec/2000

    )1010)(1025(

    163

    radFH

    I

    A

    Z

    VI S 5

    2

    010

    2ZresonanceAt

    50)1025)(102( 330L

    )(902505500 VjLIjVL

    902505501

    501

    0

    0

    0

    jICj

    V

    LC

    C

    R

    LQ 0

    25

    2

    50

    ||||

    |||| 0

    SC

    SS

    L

    VQV

    VQR

    VLV

    resonanceAt

    LEARNING EXAMPLE Given L = 0.02H with a Q factor of 200, determine the capacitor

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    43/105

    necessary to form a circuit resonant at 1000Hz

    R

    L0200

    200QwithL

    LC

    10

    C02.0

    110002 FC 27.1

    What is the rating for the capacitor if the

    circuit is tested with a 10V supply?

    VVC 2000|| ||||

    ||||0

    SC

    S

    S

    L

    VQV

    VQR

    VLV

    resonanceAt

    59.1200

    02.010002R

    AI 28.659.1

    10

    The reactive power on the capacitor

    exceeds 12kVA

    LEARNING EXTENSION Find the value of C that will place the circuit in resonance

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    44/105

    Find the value of C that will place the circuit in resonance

    at 1800rad/sec

    LC

    10 218001.0

    1

    )(1.0

    11800

    C

    CH

    FC 86.3

    Find the Q for the network and the magnitude of the voltage across the

    capacitor

    R

    LQ 0

    60

    3

    1.01800

    Q

    ||||

    |||| 0

    SC

    SS

    L

    VQV

    VQR

    VLV

    resonanceAt

    VVC 600||

    Resonance for the series circuit

    2/1

    1)( M

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    45/105

    222)

    1(||

    1)(

    C

    LRZ

    CjLjRjZ

    QR

    CQRL1

    , 00

    :resonanceAt

    )(1

    )(

    0

    0

    0

    0

    j QR

    QRjQRjRjZ

    )(1

    1

    0

    0

    1

    jQV

    VG Rv

    isgainvoltageThe:Claim

    )(1

    jZ

    R

    CjLjR

    RGv

    vv GGM |)(|,|)(

    2/1

    20

    0

    2 )(1

    )(

    Q

    (tan)( 0

    0

    1

    Q

    QBW 0

    12

    1

    2

    12

    0 QQL O

    sfrequenciepowerHalf

    Z

    RGv

    The Q factor LQ 0

    1

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    46/105

    CRRQ

    0

    RLowQHigh:circuitseriesFor

    G)(lowRHighQHigh:circuitparallelFor

    MBWSmallQHigh

    dissipates

    Stores as Efield

    Stores as M

    field

    Capacitor and inductor exchange storedenergy. When one is at maximum the

    other is at zero

    D

    S

    W

    WQ 2

    cyclebydissipatedenergy

    storedenergymaximum2

    Q can also be interpreted from anenergy point of view

    221

    20202 m xeffD RIRIW

    22

    2

    1

    2

    1m xm xS CVL IW

    22

    0 Q

    R

    L

    W

    W

    D

    s

    ENERGY TRANSFER IN RESONANT CIRCUITS

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    47/105

    Normalizationfactor

    ( ) cos [ ]mO

    Vi t t A

    R

    LEARNING EXAMPLE Determine the resonant frequency, quality factor and

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    48/105

    2

    mH2

    F5

    Determine the resonant frequency, quality factor and

    bandwidth when R=2 and when R=0.2

    CRR

    LQ

    0

    0 1

    LC

    10

    QBW 0

    sec/10)105)(102(

    1 4630

    rad

    R Q

    2 10

    0.2 100

    R Q BW(rad/sec)

    2 10 1000

    0.2 100 100

    Evaluated with EXCEL

    RQ 002.010000 QBW /10000

    LEARNING EXTENSION A series RLC circuit as the following properties:

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    49/105

    sec/100sec,/4000,4 0 radBWr adR

    Determine the values of L,C.

    CRR

    LQ

    0

    0 1

    LC

    1

    0

    QBW 0

    1. Given resonant frequency and bandwidth determine Q.

    2. Given R, resonant frequency and Q determine L, C.

    40100

    40000 BW

    Q

    HQR

    L 040.04000

    440

    0

    FRQL

    C6

    620

    20

    1056.11016104

    111

    LEARNING EXAMPLE Find R, L, C so that the circuit operates as a band-pass filter

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    50/105

    with center frequency of 1000rad/s and bandwidth of 100rad/s

    )(1

    jZ

    R

    CjLjR

    RGv

    CRR

    LQ

    0

    0 1

    LC

    10

    QBW 0

    dependent

    Strategy:

    1. Determine Q2. Use value of resonant frequency and Q to set up two equations in the three

    unknowns

    3. Assign a value to one of the unknowns

    10

    100

    10000

    BW

    Q

    R

    L

    R

    LQ

    1000100

    LCLC

    1)10(

    1 230

    For example FFC6

    101

    HL 1

    100R

    PROPERTIES OF RESONANT CIRCUITS: VOLTAGE ACROSS CAPACITOR

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    51/105

    |||| 0 RVQV

    resonanceAt

    But this is NOT the maximum value for the

    voltage across the capacitor

    CRjL C

    CjLjR

    Cj

    V

    V

    S

    20

    1

    1

    1

    1

    2

    221

    1)(

    Q

    uu

    ug

    2

    0

    0

    ;SV

    Vgu

    22

    22

    2

    1

    )/1)(/(2)2)(1(20

    Q

    u

    u

    QQuuu

    du

    dg

    CRR

    LQ

    0

    0 1

    LC

    10

    2

    2 1)1(2Q

    u

    20

    maxmax

    2

    11

    Qu

    2

    2

    424

    max

    4

    11

    2

    11

    4

    1

    1

    Q

    Q

    QQQ

    g

    2

    0

    4

    11

    ||||

    Q

    VQV S

    LEARNING EXAMPLE 150, RR andwhenDetermine max0

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    52/105

    mH50

    F5

    Natural frequency depends only on L, C.

    Resonant frequency depends on Q.

    sr adLC

    /2000)105)(105(

    11620

    CRR

    LQ

    0

    0 1

    LC

    1

    0

    20

    maxmax

    2

    11

    Qu

    RQ

    050.02000 2max 2112000

    Q

    R Q Wmax

    50 2 1871

    1 100 2000

    Evaluated with EXCEL and rounded to zero decimals

    Using MATLAB one can display the frequency response

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    53/105

    R=50Low Q

    Poor selectivity

    R=1

    High Q

    Good selectivity

    LEARNING EXAMPLE The Tacoma Narrows Bridge Opened: July 1, 1940

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    54/105

    Collapsed: Nov 7, 1940

    Likely cause: wind

    varying at frequency

    similar to bridgenatural frequency

    2.020

    Tacoma Narrows Bridge Simulator Assume a low Q=2.39

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    55/105

    )11( f tV

    42

    40

    BA

    B

    i n RR

    R

    v

    v

    resonanceatmodeltheFor

    .deflection4'causedwind42mphafailureAt1

    5.9H20

    F66.31

    42mxVi n

    0.44

    1.07

    '77.3

    PARALLEL RLC RESONANT CIRCUITS

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    56/105

    222 )1(||

    1)(

    CLRZ

    CjLjRjZ

    222 )1(||

    1)(

    LCGY

    CjLj

    GjY

    Impedance of series RLC Admittance of parallel RLC

    IVYZLCCLGR

    ,,,

    esequivalencNotice

    SS YVI

    SSL

    SSC

    SSG

    IY

    LjV

    LjI

    IY

    CjCVjI

    IY

    GGVI

    11

    ||1

    ||

    ||||

    1

    0

    0

    SL

    SC

    LC

    SG

    I

    LG

    I

    IG

    CI

    II

    II

    GYL

    C

    00

    resonanceAt

    CRR

    LQ

    0

    0 1

    LC

    10

    Series RLC

    Parallel RLC

    LGG

    CQ

    0

    0 1

    LC

    10

    || SIQ

    Series RLCQ

    BW 0

    Parallel RLCQ

    BW 0

    VARIATION OF IMPEDANCE AND PHASOR DIAGRAM PARALLEL CIRCUIT

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    57/105

    LEARNING EXAMPLE If the source operates at the resonant frequency of the

    network compute all the branch currents

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    58/105

    mHLFC

    SGVS

    120,600

    01.0,0120

    network, compute all the branch currents

    SSL

    SSC

    SSG

    IY

    LjV

    LjI

    IY

    CjCVjI

    IY

    GGVI

    11

    ||1

    ||

    ||||

    1

    0

    0

    SL

    SC

    LC

    SG

    ILG

    I

    I

    G

    CI

    II

    II

    GYL

    C

    0

    0

    resonanceAt

    || SIQ

    SG IAI )(02.1012001.0

    sr ad

    LC

    /85.117

    )106(120.0

    1140

    )(9049.80120)10600()85.117()901( 6 AIC

    )(9049.8 AIL

    _______xI

    LEARNING EXAMPLE Derive expressions for the resonant frequency, half power

    frequencies bandwidth and quality factor for the transfer

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    59/105

    frequencies, bandwidth and quality factor for the transfer

    characteristic

    i n

    ou t

    I

    VH

    LjCjGYT

    1

    Ti n

    ou t

    T

    i nou t

    YI

    VH

    Y

    IV

    1

    22 1

    1

    1

    1||

    LCGLj

    CjG

    H

    LC

    1

    0 :frequencyResonant22

    max||5.0|)(| HjH h sfrequenciepowerHalf

    2

    2

    22

    1G

    LCG

    h

    h

    RGH

    1

    || max

    GL

    Ch

    h

    1

    LCC

    G

    C

    Gh

    1

    22

    2

    C

    GBW L OH I

    L

    CR

    L

    C

    GBW

    Q 10

    L GG

    CQ

    0

    0 1

    12

    121

    2

    0QQ

    L O

    Replace and show

    LEARNING EXAMPLE Increasing selectivity by cascading low Q circuits

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    60/105

    Single stage tuned amplifier

    M Hsr ad

    FHLC

    9.99/10275.6

    1054.210

    11 81260

    398.010

    1054.2250

    6

    12

    L

    CR

    L

    C

    GBWQ

    10

    LEARNING EXTENSION Determine the resonant frequency, Q factor and bandwidth

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    61/105

    FCmHLkR 150,20,2

    Parallel RLC

    L GG

    CQ

    0

    0 1

    LC

    10

    QBW 0

    srad/577)10150)(1020(

    1630

    173

    2000/1

    10150577 6

    Q

    sradBW /33.3173

    577

    LEARNING EXTENSION 0C,L,Determine

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    62/105

    120,/1000,6 QsradBWkR

    Parallel RLC

    L GG

    CQ

    0

    0 1

    LC

    10

    Q

    BW 0

    sr adBWQ /102.11000120 50

    FR

    QC

    167.0

    102.16000

    1205

    0

    HQ

    RL

    417102.1120

    60005

    0

    Can be used to verify computations

    PRACTICAL RESONANT CIRCUIT The resistance of the inductor coils cannot be

    neglected

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    63/105

    neglected

    LjRCjjY

    1)( LjR

    LjR

    22 )()(

    LR

    LjRCjjY

    2222

    )()(

    )(

    LR

    LCj

    LR

    RjY

    2

    22

    10

    )(

    L

    R

    LCLR

    LCY R

    real

    R

    LQ

    LC

    000 ,

    1 2

    0

    0

    11

    QR

    maximaareimpedanceandvoltagetheresonanceAt.Y

    IZIV

    2

    0

    2

    0

    222

    11 R

    L

    RR

    L

    RR

    LR

    ZRRR

    M AX

    20RQZM AX

    How do you define a quality factor forthis circuit?

    LEARNING EXAMPLE 5,50, RR forbothDetermine 0

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    64/105

    R

    LQ

    LC

    000 ,

    1 2

    0

    0

    11

    QR

    sr adFH

    /2000)105)(1050(

    1630

    20

    0112000,050.02000

    QRQ R

    R Q0 Wr(rad/s) f(Hz)

    50 2 1732 275.7

    5 20 1997 317.8

    RESONANCE IN A MORE GENERAL VIEW

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    65/105

    222)

    1(||

    1)(

    C

    LRZ

    CjLjRjZ

    222 )1

    (||

    1)(

    L

    CGY

    CjLj

    GjY

    For series connection the impedance reaches maximum at resonance. For parallel

    connection the impedance reaches maximum

    1)(1)( 22

    LGjLCj

    LjZ

    CRjLCj

    CjY ps

    12)(2 jj

    aswrittenwastermquadratictheplotsBodeIn

    0

    1

    L C

    QCRCR

    122 0

    series

    QLGLG

    122 0

    parallel

    2

    1QA high Q circuit is highly

    under damped

    Resonance

    SCALING

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    66/105

    Scaling techniques are used to change an idealized network into a more

    realistic one or to adjust the values of the components

    M

    M

    M

    K

    CC

    LKL

    RKR

    '

    '

    '

    scalingimpedanceorMagnitude

    ''11'' 0

    CLLCCLLC

    '

    '00

    R

    L

    R

    LQ

    Magnitude scaling does not change the

    frequency characteristics nor the qualityof the network.

    CCLL

    K' F

    1

    ''

    1,''

    unchangediscomponenteachofImpedance

    scalingtimeorFrequency

    F

    F

    K

    CC

    K

    LL

    RR

    '

    '

    '

    0

    '

    0 FK

    )('

    ''0 BWK

    QBW F

    QR

    LQ

    '

    ''

    '0 Constant Q

    networks

    LEARNING EXAMPLE Determine the value of the elements and the characterisitcs

    of the network if the circuit is magnitude scaled by 100 and

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    67/105

    2

    H1

    F2

    1

    of the network if the circuit is magnitude scaled by 100 and

    frequency scaled by 1,000,000

    2,

    2

    2,/20 BWQsr ad

    FC

    HL

    R

    200

    1'

    100'

    200'

    M

    M

    M

    K

    C

    C

    LKL

    RKR

    '

    '

    '

    scalingimpedanceorMagnitude F

    F

    KCC

    K

    LL

    RR

    '

    '

    '

    FC

    mHL

    R

    200

    1

    ''

    100''

    200''

    0'0 FK

    )('

    ''0 BWK

    QBW

    F

    sr ad/10414.1 6''0

    unchangedare0,Q

    LEARNING EXTENSIONDetermine10,000.byscaledfrequencyand100byscaledmagnitudeis2FC1H,L,10RwithnetworkRLCAn

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    68/105

    elementscircuitresultingthe

    Determine10,000.byscaledfrequencyand100byscaled

    M

    M

    M

    K

    CC

    LKL

    RKR

    '

    '

    '

    scalingimpedanceorMagnitude

    FC

    HL

    R

    02.0'

    100'

    1000'

    F

    F

    K

    CC

    K

    LL

    RR

    '

    '

    '

    scalingFrequency

    FC

    HL

    kR

    2''

    01.0''

    1''

    Scaling

    FILTER NETWORKS

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    69/105

    Networks designed to have frequency selective behavior

    COMMON FILTERS

    Low-pass filterHigh-pass filter

    Band-pass filter

    Band-reject filter

    We focus first on

    PASSIVE filters

    Simple low-pass filter

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    70/105

    RCj

    CjR

    Cj

    V

    VGv

    1

    1

    1

    1

    1

    0

    RCj

    Gv

    ;1

    1

    1

    2

    tan)(

    1

    1||)(

    v

    v

    G

    GM

    2

    11,1max

    MM

    frequencypowerhalf 1

    1BW

    Simple high-pass filter

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    71/105

    CRj

    CRj

    CjR

    R

    V

    VGv

    111

    0

    RCj

    jGv

    ;1

    1

    2

    tan2)(

    1||)(

    v

    v

    G

    GM

    2

    11,1max

    MM

    frequencypowerhalf

    1

    1

    L O

    Simple band-pass filter

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    72/105

    Band-pass

    CLjR

    R

    V

    VGv

    11

    0

    222 1)(

    LCRC

    RCM

    11

    LCM 0)()0( MM

    2

    4/)/( 202

    LRLRL O

    LC

    10

    2

    4/)/(20

    2

    LRLRH I

    L

    RBW L OH I

    )(2

    1)( H IL O MM

    Simple band-reject filter

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    73/105

    0110

    00

    C

    LjLC

    10 VV circuitopenasactscapacitorthe0at

    10 VV circuitopenasactsinductortheat

    filterpass-band

    theinasdeterminedareH IL O ,

    LEARNING EXAMPLE Depending on where the output is taken, this circuit

    can produce low-pass, high-pass or band-pass or band-

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    74/105

    reject filters

    Band-pass

    Band-reject filter

    CLjR

    Lj

    V

    V

    S

    L

    1 1)(,00 S

    L

    S

    L

    V

    V

    V

    VHigh-pass

    CLjR

    Cj

    V

    V

    S

    C

    1

    1

    0)(,10 S

    C

    S

    C

    V

    V

    V

    VLow-pass

    FCHLR 159,159,10 forplotBode

    LEARNING EXAMPLE A simple notch filter to eliminate 60Hz interference

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    75/105

    )1(1

    1

    CLj

    CL

    CjLj

    CjLj

    ZR

    i n

    Req

    eqV

    ZR

    RV

    0

    LCZR 1 010

    LCV

    tttvi n 10002sin2.0602sin)(

    FCmHL 100,3.70

    LEARNING EXTENSION )( jGvforplotBodetheofsticcharacterimagnitudetheSketch

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    76/105

    RCj

    Cj

    R

    CjjGv

    1

    1

    1

    1

    )(

    sr adFRC /2.0)1020)(1010(63 20dB/dec-ofasymptotefrequencyHigh

    0dB/decofasymptotefrequencylow

    5rad/s:frequencyerBreak/corn

    LEARNING EXTENSION )( jGvforplotBodetheofsticcharacterimagnitudetheSketch

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    77/105

    RCj

    RCj

    CjR

    R

    jGv

    11)(

    sr adFRC /5.0)1020)(1025(63

    srad/21

    at0dBCrosses20dB/dec.

    20dB/dec-ofasymptotefrequencyHigh

    0dB/decofasymptotefrequencylow

    2rad/s:frequencyerBreak/corn

    LEARNING EXTENSION )( jGvforplotBodetheofsticcharacterimagnitudetheSketch

    Band pass 1

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    78/105

    Band-pass

    LCjRCj

    RCj

    LjCj

    R

    RjGv 2

    )(11

    )(

    5.0

    102

    1010102

    ,1010

    3

    363

    362

    RC

    L C

    sradRC

    /10001

    at0dBCrosses20dB/dec.

    40dB/dec-ofasymptotefrequencyHigh

    0dB/decofasymptotefrequencylow

    rad/s1000:frequencyerBreak/corn

    2

    4/)/( 202

    LRLRL O

    2

    4/)/( 202

    LRLRH I

    1000

    1

    0

    LC

    sr ad/618

    sr ad/1618

    decdB/40

    ACTIVE FILTERS

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    79/105

    Passive filters have several limitations

    1. Cannot generate gains greater than one

    2. Loading effect makes them difficult to interconnect

    3. Use of inductance makes them difficult to handle

    Using operational amplifiers one can design all basic filters, and more,

    with only resistors and capacitors

    The linear models developed for operational amplifiers circuits are valid, in a

    more general framework, if one replaces the resistors by impedances

    Ideal Op-Amp

    These currents are

    zero

    Basic Inverting Amplifier

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    80/105

    0V

    VVgainInfinite

    0V

    0 II-impedanceinputInfinite

    02

    2

    1

    1 Z

    V

    Z

    V

    1

    1

    22 V

    Z

    ZV

    Linear circuit equivalent

    0I

    1

    2

    Z

    ZG

    1

    11

    Z

    VI

    Basic Non-inverting amplifier

    V0I

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    81/105

    1V

    1V

    0I

    1

    1

    2

    10

    Z

    V

    Z

    VV

    1

    1

    120 V

    Z

    ZZV

    1

    2

    1 Z

    Z

    G

    01 I

    Basic Non-inverting Amplifier

    Due to the internal op-amp circuitry, it has

    limitations, e.g., for high frequency and/or

    low voltage situations. The Operational

    Transd uctance Am pl i f ier(OTA) performs

    well in those situations

    Operational Transductance Amplifier (OTA)

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    82/105

    0RRin:OTAIdeal

    COMPARISON BETWEEN OP-AMPS AND OTAs PHYSICAL CONSTRUCTION

    Comparison of Op-Amp and OTA - Parameters

    Amplifier Type Ideal Rin Ideal Ro Ideal Gain Input Current input Voltage

    Op-Amp 0 0 0

    OTA gm 0 nonzero

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    83/105

    Basic Op-Amp Circuit Basic OTA Circuit

    i nS

    i nv

    L

    L

    S

    Si nS

    i n

    i n

    i nv

    L

    L

    RR

    RA

    RR

    R

    V

    vA

    VRR

    R

    v

    vARR

    Rv

    0

    0

    0

    0

    i nS

    i nm

    Li n

    m

    Si nS

    i n

    i n

    i nm

    L

    RR

    Rg

    RR

    R

    v

    iG

    VRR

    Rv

    vgRR

    Ri

    0

    00

    0

    00

    vAAAmp-OpIdeal mm gG

    OTAIdeal

    Basic OTA Circuits

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    84/105

    )0()(1

    0

    0

    00

    10

    vdxxiC

    v

    vgi

    t

    m

    )0()()( 0

    0

    10 vdxxvC

    gtv

    t

    m

    Integrator

    In the frequency domain

    10 VCj

    gV m

    00

    0

    ii

    vgi

    in

    i nm polarity)(notice

    m

    eq

    i n

    i n

    gR

    i

    v 1

    ResistorSimulated

    OTA APPLICATION

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    85/105

    Basic OTA Adder

    11vgm

    22vgm

    21 21vgvg mm

    ResistorSimulated

    Equivalent representation

    )(1 213

    0 21vgvg

    gv mm

    m

    mgofilityProgrammab

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    86/105

    )10

    10.,.(

    10

    7

    mSgge

    g

    mSg

    m

    m

    m

    decades7-3:range

    valuesTypical

    AB Cm IA

    Sg

    201

    Controlling transconductance

    LEARNING EXAMPLE resistoraProduce k25

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    87/105

    AB Cm

    m

    m

    Ig

    SmS

    g

    mSg

    20

    10410

    4

    4

    7

    4

    SSgg

    m

    m

    753 1041041

    1025

    m

    eq

    i n

    i n

    gR

    i

    v 1

    ResistorSimulated

    )(201045

    AIA

    SS AB C

    AAI AB C 21026

    LEARNING EXAMPLE Floating simulated resistor

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    88/105

    1101 vgi m 1202 vgi m

    i nmvgi 0

    One grounded terminal

    011ii

    102ii

    21 mm gg

    operationproperFor

    AB Cm

    m

    m

    Ig

    SmS

    g

    mSg

    20

    10410

    4

    4

    7

    4

    resistor10MaProduce

    Sgm 76 101010

    1 S

    7104

    The resistor cannot be produced

    with this OTA!

    LEARNING EXAMPLE

    210

    321

    210

    ,,,

    vvv

    ggg mmm

    a)producetoSelect

    m

    SmS

    g

    mSg

    1044

    4

    7

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    89/105

    210 210 vvv b)

    AB Cm

    m

    Ig

    Sg

    20

    10410

    7

    4

    )(1

    21

    3

    0 21vgvg

    gv mm

    m

    Case a

    2;103

    2

    3

    1 m

    m

    m

    m

    g

    g

    g

    g

    Two equations in three unknowns.

    Select one transductance

    )(1020

    11.0 433 AImSg ABCm

    A5

    AImSg AB Cm 102.0 22

    AImSg AB Cm 501 11

    Case b

    Reverse polarity of v2!

    ANALOG MULTIPLIERBased on modulating the control current

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    90/105

    ASSUMES VG IS ZERO

    AUTOMATIC GAIN CONTROL

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    91/105

    For simplicity of analysiswe drop the absolute valueI N O I N

    I N O

    v small v Av

    Av big v

    B

    OTA-C CIRCUITS

    Circuits created using capacitors, simulated resistors, adders and integrators

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    92/105

    Circuits created using capacitors, simulated resistors, adders and integrators

    integrator

    resistor

    Frequency domain analysis assuming

    ideal OTAs

    1101 im VgI 0202 VgI m

    0201 IIIC CICj

    V

    10

    021101

    VgVgCj

    V mim

    1

    2

    2

    1

    01

    i

    m

    m

    m

    V

    g

    Cj

    gg

    V

    Magnitude Bode plot

    1

    0

    i

    vV

    VG

    2

    1

    m

    mdc

    g

    gA

    Cgf

    C

    g

    mC

    mC

    2

    2

    2

    LEARNING EXAMPLE

    1

    4

    51

    0

    jV

    VG

    i

    v

    :Desired

    m

    m

    SmS

    g

    mSg

    101

    1

    6

    3

    OK

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    93/105

    )10(2 5

    ABCm

    m

    Ig

    g

    20

    103

    4dcA kH zfCC 100)10(25

    2

    1

    m

    mdc

    g

    gA

    C

    gf

    C

    g

    mC

    mC

    2

    2

    2

    Two equations in three unknowns.

    Select the capacitor value

    pFC 25 Sgm6125

    2 107.15)1025)(10(2

    OK

    AISg AB Cm 14.38.62 11

    AI AB C 785.020

    7.152

    biasesandncestransductatheFind

    TOW-THOMAS OTA-C BIQUAD FILTER biquad ~ biquadratic

    20 )()(

    CjBjAV

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    94/105

    20

    02 )()(

    jQ

    jVi

    Cj

    VVgV im

    021101

    )( 201202 im VVgI )( 23303 oim VVgI

    )(1

    0302

    2

    02 IICj

    V

    03i

    )(unknownsfourandequationsFour 02010201 ,,, IIVV

    1)()(12

    132

    21

    21

    3

    2

    321

    2

    3

    2

    2

    01

    jgg

    Cgj

    gg

    CC

    Vg

    gVV

    g

    g

    g

    Cj

    V

    mm

    m

    mm

    i

    m

    mii

    m

    m

    m

    1)()(12

    132

    21

    21

    3

    21

    312

    1

    11

    02

    jgg

    Cgj

    gg

    CC

    Vgg

    gCjV

    g

    CjV

    V

    mm

    m

    mm

    i

    mm

    mi

    m

    i

    1

    22

    3

    21

    2

    30

    21

    210 ,,

    C

    C

    g

    ggQ

    C

    g

    QCC

    gg

    m

    mmmmm

    Filter Type A B C

    Low-pass 0 0 nonzero

    Band-pass 0 nonzero 0

    High-pass nonzero 0 0

    C

    gBW

    g

    gQ

    Cg

    CC

    gg

    m

    m

    m

    m

    mm

    3

    3

    0

    21

    21

    LEARNING EXAMPLE

    5.-gainfrequencycenterand75kHz,ofbandwidth500kHz,offrequencycenterwithfilterpass-bandaDesign

    capacitorspF50andionconfiguratThomasTowtheUse

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    95/105

    AB Cm

    m

    m

    Ig

    S

    mS

    g

    mSg

    20

    10410

    4

    4

    7

    4

    1)()(12

    132

    21

    21

    3

    21

    312

    1

    11

    02

    jgg

    Cgj

    gg

    CC

    Vgg

    gCjV

    g

    CjV

    V

    mm

    m

    mm

    i

    mm

    mi

    m

    i

    1

    22

    3

    21

    2

    30

    21

    210 ,,

    C

    C

    g

    ggQ

    C

    g

    QCC

    gg

    m

    mmmmm

    capacitorspF-50andionconfiguratThomas-TowtheUse

    BW

    03 iV

    3

    20 |)(|

    m

    mv

    g

    gjG

    0)(1 221

    210

    jgg

    CCmm

    21 CC

    Sg

    BW m 56.23107521050

    3

    123

    Sgm 8.1175 2

    213

    61

    2520

    )105(

    108.1171052

    m

    g Sgm 5.2091

    AI

    AI

    AI

    AB C

    AB C

    AB C

    18.1

    89.5

    47.10

    3

    2

    1

    Bode plots for resulting amplifier

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    96/105

    Bode plots for resulting amplifier

    LEARNING BY APPLICATION Using a low-pass filter to reduce 60Hz ripple

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    97/105

    Thevenin equivalent for AC/DC

    converter

    Using a capacitor to create a low-

    pass filter

    Design criterion: place the corner frequency

    at least a decade lower

    T HT H

    OF VCRjV 1

    1

    21

    ||||

    CR

    VV

    T H

    T HOF

    CRT HC

    1

    ||1.0|| T HOF VV

    FCC

    05.5362

    1500

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    98/105

    Filtered output

    LEARNING EXAMPLE Single stage tuned transistor amplifier

    Select the capacitor for maximum

    gain at 91 1MHz

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    99/105

    gain at 91.1MHz

    Antenna

    VoltageTransistor Parallel resonant circuit

    CjLjR

    V

    V

    A

    1||||1000

    40

    LCRC

    jj

    Cj

    V

    V

    Cj

    Cj

    CjLjR

    A1

    )(

    /

    1000

    4

    //

    111

    10004

    2

    0

    LC/1frequencycenterwithpass-Band

    C6

    6

    10

    1101.912 pFC 05.3

    100

    1000

    410

    R

    LCV

    V

    A

    AVV0forplotBodeMagnitude

    LEARNING BY DESIGN Anti-aliasing filter

    Nyquist Criterion

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    100/105

    When digitizing an analog signal, such as music, any frequency components

    greater than half the sampling rate will be distorted

    In fact they may appear as spurious components. The phenomenon is known as

    aliasing.

    SOLUTION: Filter the signal before digitizing, and remove all components higher

    than half the sampling rate. Such a filter is an anti-aliasing filter

    For CD recording the industry standard is to sample at 44.1kHz.

    An anti-aliasing filter will be a low-pass with cutoff frequency of 22.05kHz

    Single-pole low-pass filter

    RCjV

    V

    i n

    1

    101

    050,2221

    RC

    C

    kRnFC 18.721

    Resulting magnitude Bode plot

    Attenuationin audio range

    Improved anti-aliasing filter Two-stage buffered filter

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    101/105

    01v

    RCjV

    V

    1

    1

    01

    02

    RCjV

    V

    i n

    1

    101

    One-stage

    Two-stage

    Four-stage

    ni nn

    RCjV

    V

    1

    10

    stage-n

    LEARNING BY DESIGN Notch filter to eliminate 60Hz hum

    Notch filter characteristic

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    102/105

    mHL

    FC

    704.0

    10

    Magnitude Bode plot

    sCsLRR

    R

    V

    V

    tapeam p

    am p

    tape

    am p

    /1||

    1

    1

    2

    2

    tapeam p

    tapeam p

    am p

    tape

    am p

    RR

    LsLCs

    LCs

    RR

    R

    V

    V

    LC

    1frequencynotch To design, pick one, e.g., C and determine the other

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    103/105

    (non-inverting op-amp)DESIGN EXAMPLE BASS-BOOST AMPLIFIER DESIRED BODE PLOT

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    104/105

    OPEN SWITCH(6dB)

    500

    2P

    f

    Switch closed??

    DESIGN EXAMPLE TREBLE BOOSTOriginal player response Desired boost

  • 7/27/2019 Variable Frequency Response Analysis 8 Ed

    105/105

    Proposed boost circuit

    Design equations