51
Tropical Forest Research Institute (Indian Council of Forestry Research and Education) PO RFRC, Mandla Road, Jabalpur 482021 Visit us at: http://tfri.icfre.gov.in (or) http://tfri.icfre.org Write to us at: [email protected] Issue : August 2014 Van Sangyan

Van Sangyan: March, 2014 · Mango Mealybug : A Major Pest Kritish De West Bengal Mango (Mangifera sp.) is the most important commercially grown plant of India. According to National

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Van Sangyan: August, 2014

    Windows User Wipro Limited

    2/18/2014

    Tropical Forest Research Institute

    (Indian Council of Forestry Research and Education) PO RFRC, Mandla Road, Jabalpur – 482021

    Visit us at: http://tfri.icfre.gov.in (or) http://tfri.icfre.org Write to us at: [email protected]

    Issue : August 2014

    Van Sangyan

  • Van Sangyan: August, 2014

    From the Editor’s desk

    Biofertilizers contain microorganisms that colonize the rhizosphere on application and promote

    growth by increasing the supply/availability of primary nutrients to the host plant, and thereby

    reduce the use of chemical fertilizers and pesticides. The microorganisms in bio-fertilizers

    restore the soil's natural nutrient cycle and build soil organic matter. Therefore, they are

    extremely advantageous in enriching soil fertility and are more cost-effective than chemical

    fertilizers.

    This issue of Van Sangyan contains an article on the prospects of biofertilizers. There are also

    sections on the soils of India, and how afforestation can rehabilitate barren lands, along with

    other useful articles. The back cover of this issue insists proper utilization of vermicompost,

    which is also a biofertilizer.

    I hope that you would find all information in this issue relevant and valuable.

    Readers of Van Sangyan are welcome to write to us about their views and queries on various

    issues in the field of forestry.

    Looking forward to meet you all through forthcoming issues.

    Dr. N. Roychoudhary

    Chief Editor

  • Van Sangyan: August, 2014

    Contents Page

    Mango Mealybug : A Major Pest

    & Kritish De

    1

    Bamboo and Rural Livelihood

    & Swaran Lata, Dr P. K. Khatri and Sanjay Singh

    6

    Hybrid seed production in cotton

    & Naseer Mohammad

    9

    iM+rh Hkwfe ij oukas dk iquokZlu

    & MkW- ,- ds- HkkSfed

    13

    The Prospect of Bio-fertilizers for Sustainable Plant Development

    & Rupnarayan Sett

    18

    ijkcSaxuh fofdj.k] vkstksu ijr vkSj gekjk i;kZoj.k

    & MkW- jkts'k dqekj feJk] MkW- ulhj eksgEen ,oa Vzhlk gseYVu

    25

    Biotechnology for forests

    & Tresa Hamalton

    33

    Flowering Plants and Insects

    & Swaran Lata and Dr. P. B. Meshram

    37

    Soils of India

    & Chandralekha Taksande

    41

    Know your Biodiversity ( Gyps bengalensis & Bombax ceiba )

    & Swaran Lata and Dr. P. K. Khatri

    46

  • Van Sangyan: August, 2014

    1

    Mango Mealybug : A Major Pest

    Kritish De

    West Bengal

    Mango (Mangifera sp.) is the most

    important commercially grown plant of India.

    According to National Horticulture Board,

    Government of India, India ranks first among

    world’s mango producing countries accounting

    for about 50% of the world’s mango production.

    Other major mango producing countries include

    China, Thailand, Mexico, Pakistan, Philippines,

    Indonesia, Brazil, Nigeria and Egypt. India’s

    share is around 52% of world production i.e. 12

    million tonnes as against world’s production of

    23 million tonnes (2002-03). But, this important

    fruit crop plant is attacked by several insect

    pests every year which causes economic

    damage. According to ICAR - National Bureau of

    Agriculturally Important Insects, Bangaluru

    there are 84 species of insects acting as pest of

    mango plant of which 4 insects viz. Drosicha

    mangiferae Green, Hemaspidoproctus cinereus

    (Green), Icerya aegyptiaca (Douglas) and Icerya

    seychellarum (Westwood) come from the family

    Monophlebidae (commonly called

    monophlebids or giant scales). Among them,

    last three species act as minor pest but the first

    one, Drosicha mangiferae Green is a major pest.

    It is commonly called mango mealybug. Though

    the members of the family Pseudococcidae

    (Hemiptera : Coccoidea) are commonly called

    “mealybug”, however, it is also called “mango

    mealybug” because of its close resemblance

    with the mealybugs.

    Distribution

    Giant Scales are mostly found in tropical

    countries, especially mango orchard of India,

    Pakistan, Bangladesh and other S.E. Asian

    countries.

    Morphological description of adult male

    Body is reddish orange in color and

    visibly divided into head, thorax and abdomen.

    Head is small, bears one pair black compound

    eyes and one pair antennae. Antennae are as

    long as the length of the body, black in color,

    segmented. Each segment of antennae bears

    one pair lateral bristle. Thorax has two black

    spots, one on dorsal side and another on

    ventral side. Thorax bears three pairs of

    externally jointed legs and one pair black

    colored wings. Coastal margin of wing is

    strongly developed. Median – flexion line and

    claval furrow of wing are also well developed.

    Abdomen has four pair of fleshy caudal tassels.

    Penis sheath strongly tapering, the apex

    produced into a slender, almost cylindrical style

    with rounded tip.

  • Van Sangyan: August, 2014

    2

    Morphological description of adult female

    Body is elongated oval, body length (10

    mm or more) is twice than the width (5 mm or

    more), dorsal side somewhat concave but

    ventral side is flattened. Body is covered by

    white waxy coating. Body is divided into head,

    thorax and abdomen but these parts are fused

    so that it is tough to distinguish. One pair

    segmented, dark brown colored antennae are

    present. Wings are absent. Three pairs of

    externally jointed dark brown colored legs are

    present. Thoracic spiracles often with pores,

    concentrated near entrance of atrium. Well

    developed anal tube present, with a simple

    sclerotized ring or band of pores at inner end.

    Abdominal spiracles present and simple,

    without a pore collar (it is the microscopic key

    character of family – Monophlebidae to

    distinguish it from family - Pseudococcidae).

    Mature female often with flutted ovisac or with

    a marsupium (it is the field key character of

    family – Monophlebidae to distinguish it from

    family - Pseudococcidae).

    Life cycle

    Drosicha mangiferae Green has 1

    generation each year. Female lay eggs between

    April to May. Purple-colored eggs are laid in egg

    sacs comprising mass of wax threads, in the

    loose soil around (within 2 – 3 m radius) the

    infested trees. Initially, maximum eggs are laid

    daily i.e. 56 per day and at the end minimum

    eggs are laid i.e. 1 per day. The egg laying

  • Van Sangyan: August, 2014

    3

    ranges from 221 to 361 per female in 9 to 16

    days. The eggs hatch in the month of December

    – January and 1st instar nymph emerge and

    move upward the plant with an average speed

    of 12.4 cm/minute. 1st instar nymph can live

    without food for 5 to 19 days and this stage

    lasts for 45 to 71 days in both male and female

    after which they moult to form 2nd instar

    nymph. The 2nd instar nymph moves upward the

    plant with an average speed of 17.3 cm/minute.

    The 2nd instar nymph can live without food for 3

    to 23 days. The 2nd instar stage lasts for 18 to 38

    days in both male and female. After that, they

    moult to form 3rd instar nymph. The 3rd instar

    moves upward the plant with an average speed

    of 37.1 cm/minute. The 3rd instar nymph can

    live without food for 3 to 23 days. The 3rd instar

    stage lasts for 15 to 26 days for female and 9 to

    15 days for male. Then, the female moults to

    form adult whereas, the male goes to pupa

    stage. The pupa stage lasts for 9 to 15 days.

    After that, the adult male appears. During the

    month of March – April, both adult male and

    female are present. Life span of adult male is

    about one week, but life span of adult female is

    about one month. During this time, they

    perform copulation. The males fly where the

    flightless females are present and mating time

    varies from 6 to 20 minute.

    Damage

    Only nymph and adult female cause

    damage to the plants, but adult male causes no

    damage. The nymphs and adult female suck sap

    from inflorescence, tender leaves, shoots and

    fruit peduncles. As a result, the affected

    inflorescences are shriveled and get dried.

    Rigorous infestation affects the fruit set and

    causes fruit drop. They exude honey dew over

    the leaves, on which sooty mould is

    developed which causes damage. Chief host of

    this insect is Mangifera sp. (Anacardiaceae) i.e.

    mango plant. Though it is a major pest of

    mango plant, it also causes damage to cacao,

    tamarind, citrus etc.

    Control Measures

    It can be effectively controlled by

    ploughing the soil (upper 6”) during May – June

    as female lays eggs in the soil. Mixing methyl

    parathion dust 2% @ 250gm/tree in the basal

    region after ploughing gives good result.

    Spraying of 0.20% carbaryl or 0.040%

    monocrotophos also kills nymps on shoots.

    Research shows that Profenofos (Curacron® 50

  • Van Sangyan: August, 2014

    4

    EC) at 800ml/100L water and Methomyl

    (Lannate® 40 SP) at 250gm/100L water is

    effective against first and second instar nymph.

    Eco-friendly and popular method to

    minimize the damage to the tree is the use of

    physical barriers against nymphs to crawl up the

    stem. During the month of November to

    February, banding of the basal trunk of the tree

    with 15 – 20 cm wide slippery alkathene sheet

    prevents newly hatched nymphs to climb the

    tree. Making sticky bands at 30 – 40 cm above

    the ground level with rosin and castor oil or

    grease or coal tar also prevent the nymphs to

    climb the tree.

    Research shows that the fungus Beauveria

    bassiana (Bals.-Criv.) Vuill. can effectively

    reduces first instar nymph of this insect. It is

    reported that three species of jumping spiders

    (Salticidae) - Lyssomanes sikkimensis Tikader

    1967; Myrmarachne bengalensis Tikader 1973;

    and Zygoballus indica and one species of wolf

    spider (Lycosidae) - Lycosa mackenziei Gravely,

    1924 predate on this insect. Thus, these spiders

    can also be used for biological control of giant

    scales.

    Note : Though Drosicha mangiferae Green is

    commonly called mango mealybug, however,

    the Rastrococcus mangiferae (Green)

    (Coccoidea: Pseudococcidae), Rastrococcus

    invadens (Green) (Coccoidea: Pseudococcidae)

    are also commonly called mango mealybug.

    References :

    1. Abdul Latif (1949). The taxonomic Status of Drosicha stebbingi (Green) and Drosicha mangiferae (Green) (Hem.,

    Coccid.). Bulletin of Entomological Research, 40, pp 351-354. doi:10.1017/S0007485300022811.

    2. Abrol, D. P. (Ed.) 2014. Integrated Pest Management: Current Concepts and Ecological Perspective. Academic Press.

    (Page : 291)

    3. Karar, H. 2010. Bio-ecology and management of mango mealybug, Drosicha mangiferae Green in mango orchards of

    Punjab, Pakistan. Ph.D thesis submitted to Faculty of Agriculture, University Of Agriculture, Faisalabad (Pakistan).

    (Page : 72 – 76)

    4. Koul, O. & Dhaliwal, G. S. (Ed.) 2002. Microbial Biopesticides. Taylor and Francis. (Page : 254)

    5. Prasad, D. 2007. Sustainable Pests Management. Daya Publishing House. (Page : 138)

  • Van Sangyan: August, 2014

    5

    6. Syed Ismat Hussain, Mushtaq A. Saleem and Shoaib Freed. 2012. Toxicity of Some Insecticides to Control Mango

    Mealy Bug, Drosicha mangiferae, a Serious Pest of Mango in Pakistan. Pakistan J. Zool., vol. 44(2), pp. 353-359.

    7. Technical Bulletin, Number 52. 1928. U. S. Department of Agriculture. Office of Information. Division of Publications.

    U. S. Government Printing Office, Washington. (Page 160)

    8. T. Radha, T. & Mathew, L. 2007. Fruit Crops (Horticulture Science Series - 3). New India Publishing Agency. (Page : 70,

    253)

    9. http://en.wikipedia.org/wiki/Mango_mealybug

    10. http://en.wikipedia.org/wiki/Monophlebidae

    11. http://nhb.gov.in/report_files/mango/MANGO.htm

    12. http://www.nbaii.res.in/insectpests/Drosicha-mangiferae.php

    13. http://www.sel.barc.usda.gov/scalekeys/scalefamilies/key/scale%20families/media/html/scalefamilies/Families/Mon

    ophlebiidae/Drosicha.html

  • Van Sangyan: August, 2014

    6

    Bamboo and Rural Livelihood

    Swaran Lata, Dr P. K. Khatri and Sanjay Singh

    Tropical Forest Research Institute, Jabalpur

    Bamboo is one of the fastest growing

    ancient woody grasses and known as green

    gold and poor man’s timber. Another

    peculiarity of bamboo is that most species

    flower very infrequently, with intervals as

    long as 60 to 120 years. These species exhibit

    ‘mass flowering’ where all plants in the

    population flower at the same time. Bamboo

    is an important forest resource for the rural

    communities both for farming activities as

    well as a source of food and cash income. It

    belongs to family Gramineae and subfamily

    Bambusoideae and is found in forest and non

    forest areas. It is closely associated with

    indigeneous culture and used for house

    construction, bamboo ply, agricultural

    implements, handicraft, irrigation, brooms,

    umbrellas, medicine, food, fuel, fodder and

    papers since ancient time. Today it has much

    potential for income generation, employment

    generation and poverty alleviation by

    improving the economic condition of

    bamboo-dependent people. It grows

    everywhere in the world except in extremely

    cold climates.

    It is thought to have originated in

    China, where the first use of bamboo to make

    every day items was recorded. With the

    growing demand of timber it is substitute of

    timber due to renewable property. Particular

    environmental conditions like higher

    temperature, air humidity, availability of

    water promotes clum growth. It is harvested

    for construction purpose when clums reaches

    greatest strength and sugar content in sap is

    lowest. Higher sugar content in sap at the

    time of harvestation promotes pest

    infestation rate. Major bamboo research

    began after 1920 when history of plant was

    studied. There are 1200 species belonging to

    90 genera throughout the world. In India

    there are 125 species of bamboos belonging

    to 23 genera. India is second richest country

    in the world after China in terms of Bamboo

    genetic resources. It occupies an area of 14

    million hectare land in India. It is found in all

    parts of the country from tropical to

    temperate regions except Kashmir region

    where bamboo does not occur naturally.

    More than 50 % of bamboo species occur in

    Eastern India.

    Madhya Pradesh ranks first in its

    forest cover and forestry plays a very

    important role in improving the economy of

    the state. Bastar, Balaghat, Hoshangabad,

    Mandla, Raipur, Shahdol, Seoni, Jabalpur etc

    are the bamboo rich regions in Madhya

    Pradesh. Dendrocalamus strictus, Bambusa

    vulgaris, Bambusa bambos, Gigantochloa

    rostrata, Schizostachyum pergracila are the

  • Van Sangyan: August, 2014

    7

    main species of bamboo growing in Madhya

    Pradesh of which Dendrocalamus strictus is

    most important species and grows throughout

    the state. Bamboo, which is an important

    forest produce, has high significance in socio

    economic life of the rural people. In Madhya

    Pradesh, two communities basod and nistari

    are the main consumers of bamboo. Basods

    are the people belonging to community of

    bamboo craftsmen who are traditionally

    dependent on bamboo for their livelihood.

    The nistaris use bamboo for house repair and

    crop harvesting and other domestic uses.

    The importance of forest in an area is

    reflected by the multiple uses, such as source

    for fuel wood, tools and implements, timber,

    fodder, leaf litter and other NTFPs. Bamboo is

    one of the NTFPs which is used in

    improvement of rural livelihood of the people

    in different ways:

    Bioenergy

    Through pyrolysis, bamboo can be

    converted into three valuable products:

    bamboo charcoal, oil and gas. Bamboo

    charcoal is traditionally used as a substitute

    for wood charcoal or mineral coal. It can serve

    as a fuel, absorbent and conductor. In some

    areas the situation is so bad that poor

    villagers need to purchase fuel wood or walk

    miles to collect the fuel wood; hence bamboo

    plantation in waste land are excellent

    alternate of fuel wood. Utilization of this

    renewable fuel can save vast natural forest

    resources and fossil fuels such as coal, oil and

    gas. This would allow retention of carbon

    already sequestered in forests and in fossil

    fuels. It can produce 30% more oxygen than a

    hard wood forest of comparable size. Biomass

    based power generation has huge potential to

    electrify the non-electrified villages and

    biomass gasification technology can also

    create employment in rural areas.

    Pulp, Paper and Clothing

    It is used in pulp, paper and cloth

    making. Bamboo paper has practically the

    same quality as paper made from wood.

    Paper made from wood may deteriorate over

    time but paper made from bamboo does not

    deteriorate. Because of its non irritant quality

    it is used in baby cloths.

    Furniture and Flooring

    Bamboo is used for making furniture

    from ancient times. Today Bamboo flooring is

    preferred over wooden floors due to its

    smoothness, brightness, stability, high

    resistance, insulation qualities and flexibility.

    Food and beverage

    Young bamboo shoots are edible in

    many parts of the world. Bamboo vinegar is

    extracted while making charcoal and is used

    for hundreds of treatments in almost all

    fields. This liquid contains 400 different

    chemical compounds and can be applied for

    many purposes including cosmetics,

    insecticides, deodorants, food processing and

    agriculture.

  • Van Sangyan: August, 2014

    8

    Role of Bamboo products in rural livelihood

    Reforestation

    It should be selected as an alternative

    to other trees not only for reforestation but

    also for afforestation because of fastest

    growing rate, easy propagation, tensile

    strength and renewable property. It protects

    steep slopes, soils, water ways and controls

    soil erosion.

    Bamboo has played and is still playing

    an important role in improving the livelihoods

    of rural people. The farmers produce a wide

    range of bamboo products that are marketed

    individually at present. The unavailability of

    transportation, low product prices and varying

    product quality are some of the main

    concerns of the bamboo handicraft

    producers. Therefore, possibilities need to be

    explored for forming bamboo handicraft

    production and marketing by the interested

    farmers. The growing urban population and

    their increased demand for bamboo products

    are new oppurtunities to bamboo dependent

    people. This will help to improve income as

    well as employment opportunities to the rural

    people. With rapid increase in demand due to

    rising population have caused depletion of

    bamboo resource in certain areas are also a

    growing concern among the users. In depth

    study of bamboo resource and factors

    responsible for its depletion is needed for

    future management of bamboo resources.

    Central India has many types of bamboo and

    it has potential of providing self employment

    and income by bamboo based products.

    Hence there is need to promote the utilization

    of bamboo based products.

  • Van Sangyan: August, 2014

    9

    Hybrid seed production in cotton

    Naseer Mohammad

    Genetics & Plant Propagation Division, Tropical Forest Research Institute, Jabalpur

    Cotton is a major fibre crop of global

    importance and has high commercial value.

    Four out of 50 recognized cotton species in

    the world are cultivated. Two of them

    [Gossypium arboreum (2n = 26) and

    Gossypium herbaceum (2n = 26)] are diploid,

    and remaining two [Gossypium hirsutum (2n =

    52) Gossypium barbadense (2n = 52)] are

    tetraploids. More than 80 per cent of the

    world’s area is covered by Gossypium

    hirsutum and Gossypium barbadense;

    however diploid cottons are also cultivated in

    Asia and Middle East. India is the only country

    where all the cultivated species and some of

    their hybrid combinations are commercially

    grown.

    Cotton and cotton textiles constitute

    a major share of agricultural export. In sixties,

    the production of cotton was about 5 million

    bales, mostly of short and medium staple

    cotton. With the advent of hybrid cottons in

    the seventies, a sea change was brought in

    cotton scenario both qualitatively and

    quantitatively. Today, 23.15 million bales of

    cotton consisting of short, medium, long and

    extra long staple are produced annually.

    HISTORICAL PERSPECTIVE

    The phenomenon of heterosis or

    hybrid vigour is known in cotton since 1894

    when Mell first reported an increase in

    agronomic and fibre properties through

    cotton hybrids. Thereafter, Balls reported

    hybrid vigour in the inter-specific crosses

    between upland and Egyptian cottons. Since

    then, a number of workers in India, USA and

    elsewhere recorded the heterosis for various

    traits both in the intra-hirsutum and inter-

    specific (Gossypium hirsutum x Gossypium

    barbadense; Gossypium herbaceum x

    Gossypium arboreum) crosses. Several

    workers reported higher heterosis in case of

    inter-specific (G. hirsutum x G. barbadense)

    hybrids compared to the intra-specific

    (G.hirsutum x G. hirsutum) crosses. However

    this heterosis could not be commercially

    exploited due to the tedious task of hand

    emasculation and pollination required for the

    hybrid seed production, especially in the

    absence of male sterility systems in cotton

    during those days.

    With an objective to achieve self

    sufficiency in cotton, especially for the long

    and extra long staple cottons, serious

    attempts to develop hybrid cottons combining

    both the yield and quality attributes began in

    India in the late thirties mainly at the Cotton

    Research Station, Surat in Gujarat State of

    India under the leadership of late Dr. C. T.

    Patel. Their strenuous efforts to commercially

    exploit heterosis bore fruits during late sixties

  • Van Sangyan: August, 2014

    10

    when Hybrid-4, a cross between G 67, a

    commercial cultivar of Gujarat and Nectariless

    an exotic accession from the USA, was

    developed and released for commercial

    cultivation.

    HYBRID SEED PRODUCTION

    In cotton, there are two methods of hybrid

    seed production, viz., Conventional method

    and Male sterility based method.

    CONVENTIONAL METHOD

    Breeder or certified seed of male and

    female parents is used for the production

    of hybrid seed.

    Land requirement: must be free from

    volunteer plants of cotton.

    Isolation requirements: isolation of 50

    meters for certified seed production from

    other varieties of same or other species is

    necessary for certification.

    The female and male parents are planted

    in the same field in separate plots in 4: 1 or

    5: 1 ratio.

    Sowing of parental material is done in such

    a way that there should be nicking in the

    flowering time of both the parents.

    The female and male parents are planted

    at wider spacing for easy movement

    during crossing.

    Spacing: Between rows - 150cm; Between

    plants - female -120 cm, Male - 60 cm.

    Seed rate: Female – 3.75 kg/ha, Male -

    2.75 kg/ha

    The off type plants are rogued out before

    initiation of crossing programme. Higher

    doses of fertilizer and recommended plant

    protection measures are used to raise

    healthy crop to get continuous flush of

    flowers

    Crossing techniques

    In cotton, hybrid seed production is

    carried out by artificial crossing. The crossing

    refers to hand pollination. The crossing

    technique consists of three main steps, viz.,

    1. Selection of Bud

    The selection of flower bud for

    emasculation is an important step in hybrid

    seed production. The crossing work is

    initiated after one week of flower initiation.

    The flower buds of proper stage (buds which

    are likely to open the next day) are selected

    for emasculation. Such buds have generally

    cream colour and are well developed.

    2. Emasculation

    The process of removal of anthers from

    the selected flower bud is referred to as

    emasculation.

    Anthers of selected buds are gently

    removed with the help of nail of the

    thumb as suggested by Doak (1934).

    The emasculated buds are covered with

    tissue paper bag of red colour to prevent

    natural out-crossing.

  • Van Sangyan: August, 2014

    11

    The best time for emasculation is 3-6 PM.

    Some people use straw tube to cover the

    ovary of emasculated bud. Emasculation is

    not required when hybrid seed is produced

    using male sterility.

    3. Pollination

    Emasculated buds are pollinated the

    next morning with the pollen of male parent.

    Best time for pollination is 8-11 AM, when the

    stigma receptivity is max. Generally, 4-5 buds

    are pollinated by one flower of male parent.

    After pollination, the red tissue paper bags

    are replaced by white tissue paper bags. For

    identification, a label or thread is also tied on

    the pedicel of crossed bud for identification of

    crossed bolls.

    Precautions

    After pollination, keep suitable identity by

    tying cotton thread for easy picking and

    avoiding mixing.

    Remove all unemasculated and unused

    flowers (other than crossed ones) daily so

    as to retain only genuine crossed flowers

    (bolls) on the female parent. Destroy

    leftover collected male flowers after use.

    Remove off-type plants, if any, in female

    and male parents before crossing is

    commenced.

    MALE STERILITY BASED METHOD

    Two types of male sterility systems are mainly

    used in cotton, viz., Genetic male sterility, and

    Cytoplasmic genetic male sterility.

    Genetic Male Sterility

    In cotton, Gregg male sterility is the

    only source utilized in India, Pakistan and

    USA. This male sterility is governed by two

    recessive genes (ms5 and ms6). The male

    sterility is transferred to any female parent

    through backcross technique. Maintenance of

    GMS lines involves sibmating between male

    sterile plants and heterozygous male fertile

    plants. Cross of this male fertile genotype

    with sterile line will always produce male

    sterile and male fertile plants in 1 : 1 ratio.

    Fertile plants are identified after flowerings

    are removed. The male sterile plants are

    pollinated with the pollen of male parent to

    get hybrid seed. In case of male sterile parent,

    3-4 seeds should be sown per hill because

    50% of the population (male fertile) is

    removed when flowering starts.

    Cytoplasmic Genetic Male Sterility

    In cotton, mostly G.harknessii (D2

    CMS) cytoplasm is used as a source of

    cytoplasmic genetic male sterility (G. trilobum

    D8 CMS and G. aridum D4 CMS also induce

    stable male sterility for practical hybrid seed

    production). The restoration in D2 CMS

    involves monogenic dominant action with one

    enhancer gene. The male sterile parent

    (female) is pollinated with the pollen of

    restorer (male) parent. After pollination,

  • Van Sangyan: August, 2014

    12

    flowers are covered with tissue paper bags to

    avoid natural out crossing with other plants.

    Male sterility in diploids

    There are at present two sources of GMS

    1. Hisar source: The recessive GMS in G.

    arboreum cotton variety, DS 5 (GMS-1)

    have white flowers with petal spot. The

    GMS-1 was isolated as a spontaneous

    mutation.

    2. Akola Source: The GMS line GAK-423A is

    developed by transferring the genome of

    G. arboreum (AKH-4) in to G. anomalum

    cytoplasm (Meshram and Wadodkar,

    1992). This source has yellow, larger

    flowers than DS 5 GMS and possesses

    dark petal spot.

    India is the first country to release a GMS

    based hybrid (AHH-1) in diploids.

    Chemically Induced Male Sterility

    Chemicals FW 450 (Sodium a-

    dichloro-iso-butyrate) and TD 1123 (Chemical

    constituent not known) have been

    demonstrated to posses male gametocide

    action. However, their commercial viability

    has not been established so far.

    Topping: Top and side shoots may be nipped

    suitably to control optimum growth and

    better boll development. Inadequate or

    excessive irrigation should be avoided. Stop

    irrigation a week before last picking.

    Picking: Pick completely opened crossed boll

    (kapas) as and when ready in baskets and sort

    out. Any bolls without thread be kept aside

    and only genuine crossed bolls are kept

    separately for use. Remove hard locks,

    stained kapas etc. keep good crossed boll

    kapas for processing. Dry well-cleaned kapas

    in shade after each picking and store in a good

    place picking-wise lots. Slow ginning is to be

    practised to recover good quality seed and

    without cutting the seed. After ginning, the

    seeds may be kept well spread, air dried,

    without heaping.

    Acid delinting

    100ml of commercial sulphuric

    acid/kg seed treated for 2-3 minutes and

    washed thoroughly with lime water/fresh

    water till free of acid.

    References:

    1. Anonymous (2007). Practical Manual of Principles of seed Technology. Department of Botany, Dr.P.D.K.V., Akola.

    2. Basu, AK and Paroda, RS (1995). Hybrid cotton in India- A success story. APAARI, Bankong.

    3. Khadi, BM and Kulkarni (2001). Cotton. In: V.L. Copra (ed.) Breeding field crops. Oxford and IBH Publishing co. New

    Delhi, pp531-575.

    4. Meshram, LD and Wadodkar, MB (1992). Male sterility in Asiatic cotton G.arboreum L. Hybrid cotton News letter

    2:3.

    5. Patel, CT (1971). Hybrid 4, a new hope towards self sufficiency in cotton in India. Cott. Dev. 1: 1-6.

  • Van Sangyan: August, 2014

    13

    iM+rh Hkwfe ij oukas dk iquokZlu

    MkW- ,- ds- HkkSfed

    m".kdfVca/kh; ou vuqla/kku laLFkku] tcyiqj

    iM+rh Hkwfe ij oukas dks fodflr djuk

    ouhdj.k dgykrk gSA bl izdkj ls fodflr ou dks

    d`f=e ou dgrs gSA ,slh Hkwfe tks vusd dkj.k ls

    v/kksxfr dks izkIr gks pqdh gS] rFkk bldk orZeku eas

    mfpr mi;ksx ugha gks ik jgk gS] iM+rh Hkwfe dgykrh

    gSA vizR;{k :i ls ns[kk tk; rks cM+rh gqbZ ekuo

    rFkk i'kq la[;k gh izeq[k dkj.kkas gS tk tykÅ ydM+h

    rFkk i'kq pkjk dh iwfrZ ds fy, oukas ds vR;kf/kd

    nksgu ds fy, mRrjnk;h gS] ftlls Hkwfe {kj.k gksdj

    iM+rh Hkwfe dk fuekZ.k djrh gSA oukas ds vU/kk/kqU/k

    dVkbZ ij jksd yxkdj rFkk u;as oukas dk jksi.k djds

    iM+rh Hkwfe dks lq/kkjk tk ldrk gSA

    i`Foh ij ekuo ds vfLrRo dks cuk, j[kus

    ds fy, dqy HkqHkkx dk 33% Hkkx oukas ls vkPNkfnr

    gksuk pkfg,A vr% vko';drkvkas dh iwfrZ ds fy, Hkwfe

    dks lokZsRre fLFkfr eas cuk, j[kuk vfr vko';d gSA

    Hkkjr ds dqy HkkSxksfyd {ks=Qy dk yxHkx 50% Hkkx

    v/kksxfr dks izkIr gks pqdk gSA taxykas ds dzwjrkiw.kZ

    dVkbZ ls ck

  • Van Sangyan: August, 2014

    14

    2- yo.kh; ènk % [kSj] ccwy] egkuhe] lQsn fljl]

    uhyfxjh iztkfr] tkewu] vtwZu] csj] cgM+k

    3- HkkVk Hkwfe % [kesj] vkWaoyk] veyrk'k] 'kh'ke]

    lQsn fljl] dkykfljl] ccwy] lqccwy] lhlw

    4- Hkwfe {kj.k jksdus ds fy, o`{k iztkfr;kWa % csj]

    'kh'ke ckWal] flfjl] [ksj] uhe

    5- Hkwfe dks mitkÅ cukus ds fy, % lqccqy] ccwy]

    v'kLr] 'kh'kw] pdksM+k

    6- tykÅ ydM+h ds fy, % ccwy] [ksj] djat]

    ?kkoM+k] tkequ] lqccqy

    7- x`g fuekZ.k rFkk cfYy;kWa gsrq % ikWiyj]

    ;wdsfyIVl] ckWal

    8- i'kqpkjk ds fy, % lqccqy] ccwy] flfjl] csj]

    fl'lw] [kSj

    9- Qykas gsrq % vke] tkequ] egqWavk] dSFkk] bZeyh] csj]

    fHkyok] rsUnw] xqyj

    10- vkS"k/kh; o`{k iztkfr;kWa % vkWaoyk] gjkZ] uhe] csy]

    cgsM+k

    11- 'kh?kz òf) gksus okys o`{k % foyk;rh ccwy]

    'kh'ke] vxLr] fljl] ccwy] [kEgkj

    12- tyeXu {ks=kas gsrq % ;wdsfyIVl] djat] fl'lw]

    ccwy] vtwZu] lQsnj fljl] dkyk fljl

    13- Hkwfe dVko jksdus gsrq % ckWal] ysUVkuk iztkfr]

    izkslksfil

    14- pV~Vkuh] catj ,oa iFkjhyh Hkwfe gsrq % csy]

    taxytysch] csj] iyk'k] dqYyq

    15- dks;yk [kku {ks= % foyk;rh beyh] fles:cs

    Xyksdk] vdsf'k;k esuft;e] dSfl;k lkbfe;k]

    fl';w] [kesj

    16- ykSg v;Ld [knku % lqccqy] uhyfxjh iztkfr]

    lQsn fljl] [kesj] fl';w] vkWaoyk

    17- rkWack [knku {ks= % [kesj] uhyfxjh iztkfr]

    vdsfl;k ysfUVdqysfjl] lQsn fljl

    18- pwuk [knku {ks= % ccwy] fl';w] lqccqy] [ksj]

    lQsn fljl] jrutksr] uhyfxjh iztkfr] [kesj]

    uhe

    vko';d@mi;ksxh tkudkfj;kWa %

    efYpax ikS/kksa ds of̀) ,oa vknzZrk gkfu dks cpk,

    j[kus ds fy, fofHkUu eYpsl dk iz;ksxkas }kjk

    v/;;u fd;k x;k ftleas ?kkl dk egRo lcls

    mi;qDr ik;k x;kA

    oehZdEiksLV ,oa dEiksLV [kkn dk feJ.k ¼izR;sd

    2 fd-xkz-½] ty'kfDr 10 xzk- izfr xM~

  • Van Sangyan: August, 2014

    15

    2- [knku {ks= eas Hkwfe ds fodkl dh fof/k;kWa %&

    vfHk;kaf=dh; fof/k

    tSfod fof/k

    3- fuEu [knkuksa eas izk;ksfxd dk;Z fd;k x;k %&

    dks;yk [knku] yksgk [knku] rkack [knku]

    pwuk [knku] ckWDlkbV [knku

    4- [knku {ks= eas fuEufyf[kr iSekukas ds vk/kkj

    ij o`{kkjksi.k gsrq iztkfr;kas dk p;uA

    izHkkfor {ks= eas fodflr gksus okyh iztkfr;kWaA

    izHkkfor Hkwfe eas ukbVªkstu fLFkjhdj.k okyh

    iztkfr;kWaA

    LFkkuh; yksxksa gsrw] baZ/ku] pkjk ,oa js'kas mIiUu

    djus okyh iztkfr;kWaA

    i{kh;kas frrfy;kas ,oa vU; oU; izk.kh;kas dks

    vkdf"kZr djus okyh iztkfr;kWaA

    mUur ,oa LoLFk o`{kkas }kjk chtkas dk p;uA

    dks;yk [knkukas dh Hkwfe dk fodkl

    v/;;u {ks=

    tsojk ,oa foJkeiqj ¼N-x-½

    flaxjkSyh ¼e-iz-½

    rkypsj ¼mM+hlk½

    mfpr iztkfr;kWa

    foyk;rh beyh ¼taxy tysch½] fles:ck

    Xykdk] vdsfl;k eSfUt;e] dsfl;k lsfe;k] fllw ]

    [kesj

    iz;ksxkRed ifj.kke

    vPNs ifj.kke gsrq izFke o"kZ 100 xzke ;wfj;k 25

    xzke ,l-,l-ih- ,oa 25 xzke iksVk'k E;wjsV izfr

    ikS/kk Mkyk tk;sA

    o`{kkas dh vPNh mit ,oa o`f) gsrq [knku dh

    feV~Vh ,oa daiksLV dk 1%2 dk feJ.k xM~

  • Van Sangyan: August, 2014

    16

    pwuk [knkukas dh Hkwfe dk fodkl v/;;u {ks=

    dqVs'oj [knku] ckjgh] dVuh ¼e-iz-½

    jksi.k gsrq mfpr iztkfr;kWa

    ccwy] fllw] lqccwy] [kSj] lQsn fljl] jru

    tksr] uhyfxjh iztkfr ¼gkbfczM½] [kesj] lkbek:ck

    Xyksdk] uhe

    ckWDlkbV [knku dh Hkwfe dk fodkl

    v/;;u {ks=

    vejdaVd ¼e-iz-½

    jksi.k gsrq mfpr iztkfr;kWa

    vkWLVªsfy;u ccwy] uhyfxjh iztkfr

    ¼dekYMqysfUll½] okVy czq'k] phj ikbu

    ijrh Hkwfe eas okfudh dh laHkkouk,

    1- loZizFke iM+rh Hkwfe tgkWa o`{k yxokuk gks ogkWa

    >kfM+;kas] ?kkl bR;kfn dks lkQ dj nsuk pkfg,A

    2- ikS/ks yxkus ds fy, xM~

  • Van Sangyan: August, 2014

    17

    serrata), ckWal (Dendrocalamus strictus), lqccqy

    (Sesbania sesban), vkWLVsªfy;u ccwy (Acacia

    auriculiformis), vatu (Hardwickia binata)

    2. jsrhyh Hkwfe (Sandy soil)

    tkequ (Syzygium cumini), [kSj (Acacia

    catechu), [kesj (Gmelina arborea), bZeyh

    (Tamarindis indica), uhyfxjh iztkfr (Eucalyptus

    tereticornis), lybZ (Boswellia serrata), csy (Aegle

    marmelos)

    3. {kkjh; Hkwfe (Alkaline soil)

    vkWaoyk (Emblica officinalis), ccwy (Acacia

    auriculiformis), djat (Pongamia pinnata), lQsn

    f'kjl (Albizia procera), vtwZu (Terminalia arjuna),

    'kh'ke (Dalbergia sissoo)

    4. ty Iykfor Hkwfe (Water logged soil)

    uhyfxjh (Eucalyptus tereticornis), djat

    (Pongamia pinnata), vtwZu (Terminalia arjuna),

    lybZ (Boswellia serrata), tkequ (Syzygium

    cumini), ccwy (Acacia auriculiformis)

    5. vEyh; Hkwfe (Acidic soil) pH 5.5 ls de

    [kSj (Acacia catechu), uhe (Azadirachta

    indica), djat (Pongamia pinnata), lQsn f'kjl

    (Albizia procera), 'kh'ke (Dalbergia sissoo), ccwy

    (Acacia auriculiformis), vkWaoyk (Emblica officinalis)

  • Van Sangyan: August, 2014

    18

    The Prospect of Bio-fertilizers for

    Sustainable Plant Development

    Rupnarayan Sett

    Genetics & Plant Propagation Division, Tropical Forest Research Institute, Jabalpur

    Agro-ecosystem is defined as a

    collection of agronomic crops and animals

    considered in the context of the biological,

    physical, social and economic environment.

    Bio-fertilizers act as renewable inputs helping

    in better crop nutrient management and

    maintenance of soil health; different bio-

    fertilizers including the role of VAM in plant

    growth is described henceforth.

    To increase the agricultural output,

    agro-ecosystem integrated management is

    efficiently practiced; the integrated

    management of such a system can lead to

    establishing better performance. The

    paramount issues in agricultural production

    consist not only of yields per land unit but of

    qualities of food and fiber that can be

    produced and delivered per hectare of land,

    unit of energy and human time expended. The

    increase in crop production and land

    productivity in India is one of the essential

    steps to meet the food demand of the

    growing human population. With no

    possibility of stretching the land resources,

    increased agricultural production has to come

    through the adoption of better management

    technology. Increasing dry land farming and

    development technologies for arid lands with

    soil related constraints now acquire a new

    importance and emerges as a new frontier for

    agricultural development. Long term

    sustainability in agriculture is possible

    through:

    The use of low cost farm grown inputs

    which work in harmony with nature.

    Bio-fertilizers act as perpetually

    renewable inputs helping in better crop

    nutrient management and maintenance

    of soil health.

    Better soil and water management.

    By adoption of improved agricultural

    practices.

    Trees and other plants survive on

    essential nutrients like nitrogen, phosphorus,

    potassium and several minerals they receive

    from soil and carbon source provided to them

    by photosynthesis. In agriculture, chemical

    fertilizers have been widely used, but their

    requirements have gone up substantially per

    plant because of the inefficient uptake by the

    plants resulting from their leaching away from

    soil, and reduced uptake by plants grown on

    soil from which microelements catalyzing the

    uptake of these fertilizers by plant have been

    depleted due to intensive crop production,

    thus resulting in the use of chemical fertilizers

    becoming a very costly affair.

  • Van Sangyan: August, 2014

    19

    Many a microbial inoculants have

    been developed for improved supply of

    nitrogen, phosphorus and trace elements to

    the plants for significant development.

    Application of bio-fertilizers as a major

    alternative tends to minimize the ecological

    disturbance. Most of the bio-fertilizers are

    formed by microbes like algae and fungi.

    They, so often portrayed as the simplest and

    humblest vestiges of life, are in fact the most

    versatile and talented, products of evolution.

    Stem-nodulating legumes such as Sesbania

    rostreta and incorporating Azolla, blue green

    algae and other sources of symbiotic and non-

    symbiotic nitrogen fixation in the farming

    system are fundamental to sustainable

    agriculture. The only disadvantage of the

    organic supplements is that they are required

    in bulk and they cannot be transported over

    distances. But this argument can be answered

    by the fact that most of these bulky organic

    supplements can be generated at the farm

    itself. The nutrient rich composts and bio-

    fertilizers also help in substituting market

    purchased inputs, and thus are economically

    attractive for the farming families.

    Some of the important groups of bio-

    fertilizers are detailed below.

    Azolla-Anabaena symbiosis

    Azolla is the globally distributed small

    aquatic fern comprising of 7 living species. In

    their leaves a heterocystous di-nitrogen-fixing

    blue green alga Anabaena azollae is always

    present as symbiont. Azolla is an alternative N

    source. The agronomic potential of Azolla as

    bio-fertilizer for rice has been recognized in

    many countries including India, Philippines,

    USA, Sri Lanka and Thailand. A trial under

    International Network on Soil fertility and

    Fertilizer Evaluation for Rice (INSFER)

    conducted at 37 sites in 10 countries also

    confirmed the bio-fertilizer potential of

    Azolla. Azolla when grown in fallow rice fields

    increased its fresh weight by 2-6 folds in a

    week and produced 330 tons fresh biomass

    ha-1 which was equivalent to 840 kg N.

    Nitrogen-fixing bacteria Rhizobium

    Symbiotic N2 - fixation by Rhizobium

    with legumes contributes substantially to

    total biological nitrogen fixation (BNF).

    Rhizobium inoculation is a well known

    agronomic practice to ensure adequate

    nitrogen nutrition of legumes in place of

    fertilizer nitrogen. The three Rhizobial genera

    include Rhizobium, Bradyrhizobium and

    Azorhizobium. Root infection by Rhizobia is a

    multistep process initiated by pre-infection

    events in the rhizosphere. Various events

    which lead to the formation of nodules

    include mutual recognition of host plant and

    Rhizobium species, rhizobial adherence to the

    root hairs, root hair curling, root hair

    infection, division of cortical cell to form root

    primordia and finally formation of nitrogen-

    fixing tissues in the nodules. In the formation

    of nodules, several bacterial and plant genes

    are involved and structure, function and

    regulation of several such genes are now

  • Van Sangyan: August, 2014

    20

    known. Various bacterial genes involved in

    symbiosis are nod, nif and fix genes. Several

    plant genes, specifically induced in root

    tissues as a consequence of the interaction

    with Rhizobia, are known as nodulin genes.

    Rhizobia can infect wheat, rice, maize and oil

    seed rape forming nodule-like structures. The

    slow growing rhizobia are grouped under the

    genus Bradyrhizobium and the fast growing

    under the genus Rhizobium.

    The ability to fix high amount of N

    (efficiency) is governed by the symbiotic

    capability between Rhizobium and the host

    plant. It may be necessary to introduce

    superior strains of Rhizobium to ensure

    adequate N2 fixation for maximum growth

    and yields of the host plant. The performance

    of inoculation is variable. In pigeon-pea,

    significant increase in early nodulation due to

    inoculation was not always well correlated

    with the final grain yields. Increase in grain

    yield of the pigeon-pea ranged from 19 to

    68% over un-inoculated controls.

    Diazotrophs

    Diazotrophs which comprise a large

    group of aerobic chemolithotrophs

    (Thipobacillus, Desulphovibrio), anaerobic

    photoautotrophs (members of

    Rhodospirillaceae, Chromatiaceae and

    Chlorobiaceae), aerobic to micro-aerobic

    heterotrophs (members of Azotobacteraceae

    and Bacillaceae), Corynebacteriaceae

    (Azotobacter) and Spirillaceae (Azospirillum)

    are the free-living as well as associative form

    which fix nitrogen in the rhizosphere of a

    variety of crop species. Diazotrophs like

    Herbaspirillum spp. grow endophytically in

    the stems and leaves of sugarcane and rice.

    Azoarcus inhibits roots of Kallar grass

    (Leptochloa fusca) and rice. Although many

    genera of bacteria are isolated from the

    rhizosphere of various cereals, many

    members of Azotobacter and Azospirillum

    genera have been widely tested to increase

    yields of cereals under field conditions. Many

    experiments have been performed in several

    countries to investigate the effect of

    inoculation of various strains of Azotobacter

    chroococcum and Azospirillum spp. on cereals

    and grasses. Azotobacter is effective only in

    soil with a native Azotobacter population.

    Azospirillum are the other useful inoculants. It

    is widespread in distribution and easy to

    culture and identify. In Israel, field

    experiments with Azospirillum were carried

    out using different cereal crops. Multi-

    location trials in India showed that seed

    inoculation with A. brasilense increased the

    mean grain yield of pearl millet significantly at

    6 out of 9 locations tested.

    Frankia

    Frankia is a member of Actinomycetes

    or ray fungi. It forms nodules with higher

    plants like Alnus and Elder. There is a need to

    determine the defence response of a crop to

    Frankia and technologies to engineer the

    plant to nodule with Frankia. It produces true

    mycelium and the spores are not produced.

  • Van Sangyan: August, 2014

    21

    Cynobacteria

    Species of Anabaena, Nostoc,

    Scytonema, Calothrix, Aulosira, Nodularia,

    Lyngbya and Mastigocladus etc. are able to fix

    nitrogen. Most of the crops which grow in

    plenty of water like rice etc. have association

    of these blue green algae or Cynobacteria. It is

    a common observation that if a soil is under

    rice cultivation there is native cynobacterial

    flora and may not need fresh inoculation. If

    crops are changed as in most parts of the

    country, there is need to use fresh inoculums.

    Usually a mixture of these algae is used and

    not monoculture. The cynobacterial flakes are

    mixed at the rate of 1015kg ha-1 one week

    plantation.

    Phosphate solubilizing bacteria

    A large number of heterotrophic and

    autotrophic soil micro-organisms are now

    known to have the capacity to solubilize

    inorganic phosphates through their metabolic

    activities directly or indirectly. The

    solubilization of different types of insoluble

    phosphate varies with the type of

    microorganism, the type of phosphate

    available and available carbon source.

    Rhizosphere soil of wheat possesses a greater

    number of phosphate solubilizing bacteria

    than in the non-rhizosphere soil. Bacillus spp.,

    Pseudomonas sp., Brevibacterium sp.,

    Acrobacter acrogens, Serretia spp.,

    Nitrobacter and Escherichia freundii are

    important phosphate solubilizing and

    phosphate mobilizing microbes. Phosphatic

    bio-fertilizer was first prepared by the Russian

    scientists using Bacillus megaterium var.

    phosphaticum as phosphate solubilizing

    bacteria and the product was termed as

    ‘Phosphobacterin’.

    Phosphate solubilizing fungi

    Along with bacteria and

    actinomycetes certain fungi also solubilize

    phosphate. Aspergillus awamori has been

    found to be better solubilizer than Bacillus

    polymyxa or Pseudomonas striata. Phosphate

    solubilizing bacteria Pseudomonas and fungi

    Aspergillus are found in the rhizosphere of

    coconut and cocoa.

    Plant growth promoting Rhizobacteria

    Several strains in Bacillus have been

    patented for commercial production in

    developed countries. The plant growth

    promoters belonging to pseudomonads and

    bacilli play a major role in plant productivity.

    These are usually non-colonizers. The spore

    forming bacteria are promising organisms for

    microbial control. Pseudomonas fluorescens is

    registered as microbial pesticide against

    Phythium and Rhizoctonia.

    Mycorrhiza for sustainable agriculture

    The root fungus symbiosis is caused

    by mycorrhizae. The association of mycorrhiza

    is wide-spread in bryophytes, a large number

    of pteridophytes, most or all species of

    gymnosperms and some 90 per cent or more

    of angiosperms. The association of fungus and

    roots of higher plants is termed as

    ‘mycorrhiza’. Forest crops may have

  • Van Sangyan: August, 2014

    22

    ectomycorrhizae while endomycorrhizae are

    present in most agricultural crops. These

    mycorrhizae differ in their structure and in

    the systematic position of the fungi involved.

    There are 8 distinctive types of Eucalyptus

    ectomycorrhizas. Tropical ectomycorrhizas

    are synthesized on Pinus ponderosa by four

    fungi species, viz., Amanita muscaria, A.

    pantherina, Suillus granulatus and Lactarius

    deliciosus. Russula aeruginea is another

    fungus forming ectomycorrhiza in Picea.

    Ectomycorrhizal fungi grow best at pH 5-6.

    Excess of inorganic fertilizers suppress

    ectomycorrhizal development. It has been

    found that optimal development of

    ectomycorrhiza in Chir Pine nurseries occur

    when nutrients are present in the soil at half

    the normal level. Shading suppresses

    ectomycorrhizal development. The poor

    development of mycorrhizal root results in

    the stunted growth and chlorosis of leaves.

    The mycorrhizal plants are able to withstand

    better water stress condition than the non-

    mycorrhizal seedlings. The mycorrhizae are

    described as ‘Biofertilizer’ and ‘Biocide’. The

    multilayered mantle formed by Pisolithus

    tinctorius which envelops the entire root is

    typical ectomycorrhizae. The mantle of P.

    bicolor consists of sparse hyphae embedded

    in a considerable amount of mucilage, similar

    to ectomycorrhizae formed by Wilcoxina

    species on Pine. Arbutoid mycorrhizae (P.

    tinctorius – Arbutus mycorrhizae or

    association of ectomycorrhizae with Arbutus)

    may be a modified type of ectomycorrhiza,

    with structural difference determined largely

    by the host reaction to colonization by typical

    ectomycorrhizal fungi. The ectomycorrhizal

    association produces minor changes in the

    root morphology. The mantle surrounding the

    root is absent. There are two mycelial

    networks, one on outer side and one internal.

    The orchids have endomycorrhiza which is

    called Glomerate-endomycorrhizal association

    of a different type. Ectendo-mycorrhizae are

    characterized by presence of a mantle and

    mycelium penetrating the root cells.

    VAM: Vital for soil management

    Vesicular arbuscular mycorrhizal

    (VAM) fungi are ubiquitous soil microbes and

    are found associated with crop plants, forest

    plants and other plants. These fungi are not

    host specific but differ in their characteristic

    association with host rhizosphere. VAM has

    been reported from 1000 genera of plants

    representing some 200 families. Pinaceae,

    Orchidaceae and Caesalpiniaceae do not have

    VAM. Vamycorrhizae are formed by non-

    separate zygomycetous fungi belonging to the

    genera Glomus, Gigaspora, Acaulospora,

    Enterophospora, Sclerocystis and

    Scutellospore. The fungi being obligate

    biotrophs, do not grow on synthetic media

    and hence are classified according to the

    morphological characteristics of the spores

    formed in the soil. Spores are present in

    dormant stage in soil. Surface wall layer

    spores seen under scanning electron

  • Van Sangyan: August, 2014

    23

    microscope may help to identify a species.

    Endomychorriza has been considered as

    biological enigma.

    Ecology of VAM: The distribution and

    occurrence of VAM differ both qualitatively as

    well as quantitatively with the change in

    edaphic factors and the type of vegetation.

    The pH of soil plays an important role; same

    pH may not be equally good for all. The

    number of spores in soil is also influenced by

    the season. Maximum number of spores is

    encountered during July-October. The

    number of VAM spore also varies with depth

    of soil and altitude.

    VAM multiplication: VAM fungi may

    produce zygospore, azygospore or

    chlamydospore. Most VAM fungi sporulate

    outside the plant roots in soil. However, there

    are 10 species of Glomus which possibly

    sporulate in root.

    Soil inoculum is produced in

    traditional “Pot-Culture”. Rhodes grass was

    found to be the best host. Sphagnum moss

    peat and nutrient film technique channels can

    be used for VAM culture. Large scale

    inoculum can be produced by aeroponics or

    tissue culture of root also. Expanded clay

    aggregates have been used for mass

    multiplying VAM fungi in Germany. Axenic

    culture of VAM (Glomus aggregatum)

    associated with Cymbopogon martini var.

    motia) has also been tried.

    VAM in agriculture and forestry: The effect

    of VAM on plant growth and yield has been

    extensively studied in relation to economically

    important plants like rice, jowar, pearl millet,

    soybean, groundnut barley, sunflower and

    ginger. A combination of legumes, rhizobia

    and mycorrhizal fungus brings a significant

    improvement in plant growth through

    increased availability of phosphorus together

    with nitrogen fixation in soil. Nitrogen fixing

    microbes interact with VAM fungi producing

    synergistic effects. The combination may

    prove the cheapest way to enrich tropical soil

    with nitrogen. Indigenous VAM stimulated

    growth in mung, green gram (Phaseoulus

    aureus) and Urad bean in pot culture.

    Mycorrhizal fungi in agroforestry has been

    found useful for Acacia nilotica, Prosopis

    cineraria, Proposis juliflora, Acacia

    famensiana, tissue culture raised plants of

    edible bamboo (Dendrocalamus).

    Improved productivity in medicinal plants:

    Plant can serve as factories for the production

    of vital medicinal compounds. The effect of 3

    Glomus isolates on neem seedlings has been

    reported. Organics amendment with

    Calotropis has been found useful for Glomus

    fasciculatum in improving the yields of

    alkaloid in Catharanthus roseus.

    VAM as disease-control agent: Fusarium

    disease severity in Albizia procera and

    Dalbergia sissoo was significantly reduced

    when inoculated with mycorrhizal fungi. VAM

  • Van Sangyan: August, 2014

    24

    formed by Gigaspora exerted an inhibitory

    effect on the development of pigeon pea

    blight caused by Phytophthora drechsleri f. sp.

    cajani. The addition of G. fasciculatum

    together with the pathogen S. rolfsii nullified

    the effect of the pathogen in peanut. Yields of

    two varieties of gram in the presence of

    fungicide metalyxyl increased when Glomus

    spp. were present. Glomus lates reduced the

    percentage of Fusarium infection in tomato

    and Capsicum roots at different rates. Not

    only fungi but some viruses too are known to

    be inhibited by VAM fungi.

  • Van Sangyan: August, 2014

    25

    ijkcSaxuh fofdj.k] vkstksu ijr vkSj gekjk i;kZoj.k

    MkW- jkts'k dqekj feJk] MkW- ulhj eksgEen ,oa Vzhlk gseYVu

    संगणक एवं सूचना प्रौद्योगगकी अनुभाग/आनुवांगिकी एवं पादप प्रजनन प्रभाग

    उष्णकटिबंधीय वन अनुसंधान संस्थान, जबलपुर

    गपछले कुछ दिकं से पराबंगनी गवककरण मं हो

    रही वृद्धी का पयाावरण पर अत्यंत गवनािकारी प्रभाव पड़

    रहा ह ै । पूरी दगुनया मं उभयचर आबादी (एगफिगबऑन

    पॉपुलेिन) बढ़त े पराबंगनी गवककरण के प्रभाव के कारण

    नष्ट हो रही ह ै क्ययंकक वैज्ञागनकं का ऐसा मानना ह ै कक

    उभयचर अण्डे पारदिी एवं अत्यंत संवेदनिील होत ेह ं।

    पराबंगनी गवककरण बी के बढत ेस्तर के िलस्वरूप पौधं मं

    प्रकाि संशे्लषण की गगतवगवधी मं कमी आ रही ह ै। प्रकाि

    संशे्लषण भोजन चक्र का एक महत्वपूणा आंतटरक भाग ह ै

    गजसके द्वारा पौधे जल और सूया के प्रकाि की उपगस्थगत मं

    िका रा का गनमााण कर सकत ेह ै । पौधं की इस क्षमता का

    पतन उनके गलए गवनािकारी सागबत हो रहा ह ै ।

    आनुवांगिकी अगभयांगिकी द्वारा पराबंगनी गवककरण बी

    प्रगतरोधी पौधे गवकगसत करन ेका दावा ककया गया ह ै ।

    परंत ुपराबंगनी गवककरण बी प्रगतरोधी पौधे गवकगसत होन े

    से वातारण मं पाटरगस्थगतकी असंतुलन होन ेका खतरा भी

    हो सकता ह ै।

    पृथ्वी पर जीवन के गलए वायुमंडल मं गवगभन्न

    गैसं का संतुलन महत्त्वपूणा ह।ै अन्य गैसं के समान ओज़ोन

    भी जीवन की गगतिीलता मं आवश्यक भूगमका गनभाती ह।ै

    ओज़ोन गैस पृथ्वी के वायुमंडल के ऊपरी गहस्स ेमं एक ऐसा

    आवरण बनाती ह ै गजससे अंतटरक्ष से पृथ्वी की सतह की

    ओर आने वाला हागनकारक पराबंगनी गवककरण ऊपरी

    वायुमंडल मं ही रुक जाता ह।ै इस प्रकार धरती के जीव-

    जंत ु हागनकारक पराबंगनी गवककरण के कुप्रभाव से बच े

    रहत े ह ं । लेककन आज पृथ्वी पर गवगभन्न जीवन-सहायक

    कारकं का संतुलन गबगड़ रहा ह ैऔर ओज़ोन आवरण भी

    झीना होता जा रहा ह।ै ओज़ोन आवरण के पतल ेहोन े के

    कारण पृथ्वी पर हागनकारक पराबंगनी गवककरण की

    अगधक मािा पहुचं सकती ह।ै इसके पटरणामस्वरूप त्वचा

    रोग एवं कंसर जैसी गवकृगतयं मं वृगद्ध होन ेकी संभावना

    ह।ै असल मं ओज़ोन आवरण के झीनेपन का सफबंध

    वायुमंडल मं हाइड्रो क्यलोरोफ्लोरो काबान व अन्य

    हागनकारक रसायनं की मािा मं वृगद्ध से ह।ै इन तत्त्वं का

    टरसाव रेकिजरेिर, एयरकंडीिनर, स्प्र ेव कुछ औद्योगगक

    कायं से होता ह ै । जहां एक ओर ओज़ोन गैस ऊपरी

    वायुमंडल मं ओज़ोन आवरण के रूप मं जीवन के गलए

    महत्त्वपूणा भूगमका गनभाती ह ै वहं धरती की सतह पर

    वायुमंडल मं इसकी अगधक मािा हागनकारक हो सकती ह ै।

    ऊजाा एवं संसाधन संस्थान (िेरी) ने दिे मं बढ़ते ओज़ोन के

    स्तर के बारे मं आगाह ककया ह ै। िेरी को 2010 मं भारत

  • Van Sangyan: August, 2014

    26

    के कुछ बड़ ेिहरं मं हवा की गुणवत्ता सफबंधी आंकड़ं के

    अध्ययन से ये पटरणाम गमले ह ं। िेरी ने चिचता जागहर की ह ै

    कक यकद 2030 तक ऐसा ही चलता रहा तो ओज़ोन और

    कण पदाथा, दोनं ही उच्च स्तर तक पहुचं जाएगें ।

    ऐसा माना जाता ह ैकक पृथ्वी के ननमााण के

    प्रारंनभक कदनं मं यहां पर पराबंगनी ककरणं (ऄल्ट्रा

    वायलट रे ) की बरसात होती थी । आसनलए पृथ्वी पर

    जीवन ऄसंभव था । ईस समय वायुमंडल मं अक्सीजन

    बहुत कम मात्रा मं थी ।

    समय के साथ-साथ अक्सीजन की मात्रा बढ़ती

    गइ और यह ऄल्ट्रा वायलट ककरणं अक्सीजन को ओजोन मं

    बदलने लगी। पृथ्वी के चारं ओर नथथत समतापमंडल

    (थरैटोथफीयर) मं ऄरबं टन ओजोन गैस जमा हो चुकी ह ै।

    यकद यह न हो तो सूया से ननकलने वाली पराबंगनी ककरणं

    से पृथ्वी पर मनुष्य , पशु, पक्षी समाप्त हो सकते ह ं।

    मानवजानत के नलए औद्योनगक क्रांनत जहां एक ओर वरदान

    सानबत हुइ है, वहं दसूरी ओर यह ईनके नवनाश का कारण

    भी बनी हुइ ह।ै ओजोन परत के तेजी से हो रह ेक्षरण के

    फलथवरूप मानव जीवन के ऄनथतत्व पर मंडरा रह े खतरे

    को लेकर पूरा नवश्व चिचनतत ह ै।

    यू. वी. सी. यू. वी. बी यू. वी. ए. दषृ्य ककरणं अवरक्त ककरणं

    कुछ भाग ओजोन परत द्वारा सफपूणा सतह पर

    अविोगषत कुछ सतह पर पहुचँा । पहुचँा ।

    ओजोन परत द्वारा अविोगषत ओजोन परत

    अविोगषत

    लघ ु तरंग दधै्या

    दीघा

    यू Short Wave Length Long

  • Van Sangyan: August, 2014

    27

    पराबंगनी ककरणं दगृष्टगोचर प्रकाि मं लाल,

    नारंगी, पीला, हरा, आसमानी, नीला और बंगनी रंग

    कदखाई पड़ते ह।ं यकद सूया की ककरणं को ककसी गिपार्श्ा

    (गप्रज्म) से होकर एक सिेद पद ेपर पड़ने कदया जाये तो इन

    सात रंगं की पट्टी पद ेपर कदखाई पड़न ेलगती ह।ै इस पट्टी

    को वणाक्रम कहा जाता ह।ै आजकल यह माना जाता ह ैकक

    सभी वणं की ककरणं गवद्युतबकीय तरंगं ह।ं लाल रंग की

    रगश्मयं या गवककरण का तरंगदधै्या लगभग 7,000 ॠरू

    और बंगनी रंग की रगश्मयं का लगभग 4,000 ॠरू होता

    ह।ै सूया के प्रकाि तथा अन्य प्रकािस्त्रोतं से ऐसी ककरणं भी

    गनकलती ह ंजो आँखं से दखेी नहं जा सकती ह।ं गजन

    अदशृ्य ककरणं का तरंगदधै्या 4,000 ॠरू स ेकम होता ह,ै

    उन्ह ंपराबंगनी ककरणं कहा जाता ह।ै ये ककरणं िोिो-प्लेि

    या किल्म को प्रभागवत करती ह।ं इनकी खोज इसी गुण के

    आधार पर सन् 1801 ई. मं ज.ेडब्लल्यू. टरिर ने की थी । सन ्

    1862 ई. मं जी.जी. स्िोक्यस ने इन ककरणं के कई गुणं का

    पता लगाया था। इनका गविेष अध्ययन करनेवाल े

    वैज्ञागनकं मं मैस्कािा, गथयोडोर लाइमन और रौलंड के

    नाम मुख्य ह ं।

    सूया के अगतटरक्त गवद्युत् आका , गवद्युत ्स्पाका और

    गवद्युगद्वसजान से भी पराबंगनी ककरणं गनकलती ह।ं सूया से

    गनकलनेवाली पराबंगनी रगश्मयं को वायुमंडल का

    ऑक्यसीजन गैल िोगषत कर लेता ह ैऔर वे पृथ्वी तक नहं

    पहुचँ पातं। िीिा भी इन ककरणं को पूणात: िोगषत कर

    लेता ह,ै किकत ु क्वार्ट्ज़ा, या स्िटिक 1,850 ॠरू तक की

    पराबंगनी ककरणं के गलए पारदिाक होता ह।ै 2,000 ॠरू

    से 1,800 ॠरू तक की ककरणं को गनवाात पराबंगनी कहत े

    ह।ं ये ककरणं आँखं तथा िरीर के अन्य कोमल तंतुओं के

    गलए हागनकारक होती ह।ै बहुत से पदाथा इन ककरणं को

    सोखकर दशृ्य प्रकाि दनेे लगते ह।ं इसी गुण का उपयोग

    करके प्रगतदीगि लंप बनाए जाते ह।ं कीिाणुनािक होन ेसे

    गचककत्सा गवज्ञान मं भी इन ककरणं को प्रयोग होता ह।ै ये

    आँख से नहं कदखाई दतें, परंत ुस्वस्थ युवा आँखं मं हलके

    नीले रंग की अनुभूगत पैदा करती ह।ं

    समुद्री जीवन को भी धरती के बढ़ते तापमान

    और वायुमंडल मं बढ़ रह े काबान के अलावा पराबंगनी

    (यूवी) गवककरण से भी खतरा ह।ै अंतरााष्ट्रीय िोधकतााओं के

    अनुसार पराबंगनी गवककरण समुद्री जीवं और पौधं के

    गलए खतरा पैदा कर रहा ह।ै समुद्री जीवन गविेषज्ञं न े

    दगुनयाभर मं समुद्री जीवं पर हुए 1784 प्रयोगं का

    गहनता से अध्ययन कर पराबंगनी बी गवककरण (यूवीबी) के

    हागनकारक प्रभावं की मािा का मूल्यांकन ककया । गवज्ञान

    पगिका 'ग्लोबल इकोलॉजी एडं बायोगजयोग्रािी' के

    अनुसार अभी तक पराबंगनी गवककरण का समुद्री जीवन पर

    हागनकारक प्रभावं का अध्ययन नहं ककया गया था ।

    गवर्श्गवद्यालय के बयान के मुतागबक पराबंगनी गवककरण से

    सबसे अगधक प्रभागवत होन ेवाले समुद्री जीवं मं प्रोटिस्िा

    (िैवाल), सीप, क्रसिेगियन, मछली के लावाा और अंड े

    िागमल ह ं । 1970 के दिक से फ्लोरोकाबान यौगगकं के

    गनरंतर उत्सजान के कारण ओजोन परत को नुकसान पहुचं

    रहा ह,ै गजसके पटरणामस्वरूप पराबंगनी गवककरण का स्तर

    बढ़ रहा ह ै। यह गविेष रूप से दगक्षणी गोलाधा मं हो रहा

    ह ै। ओगियंस इंस्िीटू्यि के गनदिेक एवं िोध के सह-लेखक

    प्रोिेसर कालोस डूआिे ने कहा कक पराबंगनी गवककरण के

    बढ़ते प्रभावं का अध्ययन दो प्रमुख भ्रांगतयं के कारण

    सफभव नहं हो सका गजनमं एक यह थी कक मांटियल

    प्रोिोकाल ओजोन परत के गवषय मं ह ै और दसूरा कक

    पराबंगनी गवककरण का प्रभाव समुद्र के भीतर नहं होता ।

    ओजोन परत के बारे मं लोग आम तौर पर भले

    ही ज्यादा न जानत ेहं लेककन यह पृथ्वी और पयाावरण के

    गलए एक सुरक्षा कवच की तरह काया करती ह ैतथा इसे

    सूया की खतरनाक पराबंगनी ककरणं से बचाती ह ै । 'द

    एनजी एडं टरसोसेज इंस्िीटू्यि' के अनुसार ओजोन परत

    बहुत ही महत्वपूणा ह ैजो सूया की खतरनाक पराबंगनी यू.

    वी. ककरणं से हमारी रक्षा करती ह ै। उनके अनुसार गबना

    ओजोन परत के हम चिजदा नहं रह सकत े क्ययंकक इन

    ककरणं के कारण कंसर, िसलं को नुकसान और समुद्री

    जीवं को खतरा पैदा हो सकता ह ैऔर ओजोन परत इन्हं

  • Van Sangyan: August, 2014

    28

    पराबंगनी ककरणं से हमारी रक्षा करती ह ै। आस्िेगलया का

    उदाहरण हमारे सामने ह ं , जहा ंओजोन परत को कािी

    नुकसान पहुचंा ह ै । इसी नुकसान की वजह से सूया की

    पराबंगनी ककरणं से बड़ी संख्या मं वहां लोग त्वचा के

    कंसर का गिकार हुए ह ं । एक अन्य खतरा इसके कारण

    धुवं के गपघलने का ह ै। अंिाका टिका मं ओजोन मं एक बड़ा

    छेद हो गया ह ै। अंिाका टिका क्षेि मं बड़े गहमखंड ह।ं यकद य े

    गहमखंड गपघलत ेह ंतो तिीय क्षेिं मं बाढ़ सगहत कई खतरे

    पैदा हो सकत े ह।ं इसके अलावा गमी भी बढ़ेगी जो

    नुकसानदायी होगी । ओजोन परत के क्षरण के गलए

    क्यलोरीन और ब्रोमीन के अणु गजफमेदार ह ं। जब इन अणुओं

    से युक्त गैसे पयाावरण मं छोड़ी जाती ह ंतो ये कालांतर मं

    ओजोन परत के क्षरण का कारण बनती ह।ं ओजोन परत को

    नुकसान पहुचंान े वाली सबसे आम हलैोजन गैस

    क्यलोरोफ्लोरो काबान ह ै गजसे सी.एि.सी. के नाम से भी

    जाना जाता ह।ै इसे बचाने के गलए सबसे पहल ेतो जरूरी ह ै

    कक लोग ओजोन परत और इसके संरक्षण को लेकर

    जागरूक हं । सभी लोगं को उन पदाथं और उनके

    नुकसान को लेकर जागरूक रहना चागहए जो इस परत को

    नुकसान पहुचंाते ह।ं कई आसान तरीके ह ंगजन्ह ंअपनाकर

    ओजोन परत को बचाया जा सकता ह ैजैस ेपयाावरण गमि

    उत्पादं का इस्तेमाल करना, एयरोसोल और अन्य

    सीएिसी स ेयुक्त चीजं के उपयोग से बचना, पौधारोपण

    को बढ़ावा दनेा, यकद फ़्रीजर और वातानुकूलक काम नहं

    कर रहा तो उसे ठीक करवाना आकद । इस तरह की कई

    छोिी छोिी बाते ह ंगजनका ध्यान रखकर ओजोन परत को

    बचाने मं योगदान कदया जा सकता ह ै। उल्लेखनीय ह ै कक

    ओजोन परत तकरीबन 97 से 99 प्रगतित तक पराबंगनी

    ककरणं का अविोषण करती ह ै। इसके संरक्षण को बढ़ावा

    दनेे के गलए मांटियल प्रोिोकॉल के अनुसार 16 गसतंबर को

    ओजोन कदवस के रूप मं मनाया जाता ह ै।

    ओजोन एक हल्ट्के नीले रंग की गैस ह।ै यह

    अक्सीजन के तीन परमाणुओं का यौनगक ह।ै वातावरण के

    उपरी भाग मं सूया की ईच्च घनत्व वाली पराबंगनी ककरणं

    से कक्रया करके अक्सीजन के तीनं परमाणु एक साथ जुड़

    जाते ह ं। यह गैस एिमॉगस्ियर, िोपोगस्ियर एवं

    स्िैिोगस्ियर मं एक समान रूप मं पायी जाती ह।ै ओजोन

    परत जमीन से 10 ककलोमीटर से 50 ककलोमीटर की उंचाइ

    के बीच थरैटोथफीयर मं पायी जाती ह ै। आस उंचाइ पर

    वायु मं ओजोन का ऄनुपात पृथ्वी के वातावरण मं पाये गए

    ऄनुपात से ऄनधक होता है । यह गैस सूया की पराबंगनी-

    नवककरणं के नलए एक ऄच्छे कफल्ट्टर का काम करती ह।ै

    सूया की ककरणं के ऄदशृ्य भाग मं ऄत्यनधक उजाा वाली

    पराबंगनी-सी (220-280 नैनोमीटर), पराबंगनी-बी

    (280-320 नैनोमीटर) तथा पराबंगनी- ए (320-400

    नैनोमीटर) ककरणं होती हं । पराबंगनी बी और सी जीवन

    के नलए खतरनाक है । थरैटोथफीयर मं नथथत ओजोन परत

    पराबंगनी-सी का ऄनधकांश भाग रोक दतेी ह ैऔर केवल

    2-3 प्रनतशत भाग पृथ्वी की सतह तक पहुचं पाता है ।

    ओजोन परत मं ऄगर कोइ क्षनत पहुचंती ह ैतो

    पृथ्वी की सतह पर पराबंगनी बी और सी की ऄनधक ककरणं

    पहुचंेगी, नजसके पररणाम भयंकर हंगे । वैज्ञाननकं का

    कहना ह ैकक ओजोन परत के नष्ट होने से सूया से अने वाली

    पराबंगनी ककरणं की बढती मात्रा के कारण धरती वीरान

    और बंजर हो सकती ह ै। यह नवककरण वषाा , वृक्ष-

    वनथपनतयं से लेकर जीव-जन्तुओं तक को समान रूप से

    हानन पहुचंाती ह ै। मनुष्य मं आससे अंख की बीमाररयां व

    कंसर जैसे ऄसाध्य रोग से लेकर ऄंधेपन तक की नथथनत अ

    सकती ह ै। आसके सीधे संपका मं अने से मुनष्यं मं त्वचा

    कंसर की संभावना बढ सकती ह ै। आस ककरण की मारक

    क्षमता ककतनी ऄपार है , आसका ऄंदाजा आसी से लग सकता

    ह ैकक समुद्र तल की वनथपनतयं को भी यह प्रभानवत कर

    सकती है । मौसम वैज्ञाननकं का यहां तक कहना ह ैकक

    आससे वायुमंडलीय तापमान बढ ज़ाएगा , नजससे बफा

    नपघलने लग जाएगी और समुद्री जलथतर ब ढ़ने से जल

    प्रलय जैसी नथथनत ईत्पन्न हो सकती ह ै। ओजोन परत ऄपने

    अप बनती और नबगड़ती ह ै। यह एक सतत् ननयम ह ै।

    आससे ओजोन का संतुलन बना रहता ह ै।

  • Van Sangyan: August, 2014

    29

    तरंग दधै्या

    400 एन. एम. 315 एन. एम. 280 एन. एम. 100 एन. एम.

    य.ू व्ही. ए. य.ू व्ही. बी. य.ू व्ही. सी.

    औद्योनगक युग की शुरूअत के साथ ही ओजोन

    परत की क्षनत की प्रकक्रया भी शुरू हुइ ।

    सवाप्रथम, कैलीफोर्ननया नवश्वनवद्यालय के दो रसायनशास्त्री

    माररयो मोलाआना तथा रोऄरवुड रोलेन्ड ने क्लोरोफ्लोरो

    काबान (सी एफ सी) नामक रसायन की खोज की थी ।

    ईन्हंने पता लगाया था कक ओजोन जैसे धरती के रक्षा

    कवच को सवाानधक हानन पहुचंने वाला यही पदाथा ह।ै

    परन्तु ऄमेररका ने सबसे पहले आस रसायन का प्रयोग एयर

    कंडीशनरं, रेफ्रीजरेटरं जैसे नवलानसता के ऄत्याधुननक

    यंत्रं के ननमााण मं ककया । बाद मं ऄन्य पनिमी दशें--

    आंग्ललंड, जमानी, फ्रांस ने भी आसका ऄंधाधुंध प्रयोग करना

    शुरू कर कदया ।

    मनुष्य के कुछ कक्रया-कलापं के फलथवरूप

    ननकलने वाले रसायन ओजोन परत को क्षनत पहुचंा रह ेह ं।

    आन रसायनं को ओजोन क्षरण पदाथा (ओ.डी.एस.) कहते ह ं

    । आनका ईपयोग रेकफ्रजरेटरं और प्रशीतन ईपकरणं के

    ऄनतररक्त नछड़काव , दाबीकृत प्रसाधनं और थवाथथ्य

    ईत्पादं, फोम के ननमााण , ईद्योगं मं सूक्ष्म माजान कायं

    और लदान पूवा प्रकक्रयाओं मं भी ककया जाता ह ै। आसके

    ऄनतररक्त सुपरसोननक नवमान ईस उंचाइ पर ईड़ते ह ंजो

    सुरक्षात्मक ओजोन परत को नुकसान पहुचंाते ह ं। आंजन के

    ईच्च तापमान के कारण, नाआरोजन और अक्सीजन नमलकर

    नाआररक अक्साआड बनाते हं , जो ओजोन परत को हानन

    पहुचंाता ह ै। होमोफ्लुरोकाबान (हलैो�