67
Valuations on Convex Bodies Monika Ludwig Technische Universit¨ at Wien CIEM, Castro Urdiales, 2018 Monika Ludwig (TU Wien) Valuations on Convex Bodies 1 / 29

Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Valuations on Convex Bodies

Monika Ludwig

Technische Universitat Wien

CIEM, Castro Urdiales, 2018

Monika Ludwig (TU Wien) Valuations on Convex Bodies 1 / 29

Page 2: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Felix Klein’s Erlangen Program 1872

Geometry is the study of invariants of transformation groups.

Groups acting on Rn

Group of rigid motions SOpnq: x ÞÑ Ux � bwhere U is an orthogonal n � n matrix and b P Rn

Special linear group SLpnq: x ÞÑ Axwhere A is an n � n matrix of determinant 1

General linear group GLpnq: x ÞÑ Axwhere A is an n � n matrix of determinant � 0

Monika Ludwig (TU Wien) Valuations on Convex Bodies 2 / 29

Page 3: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Valuations on Convex Bodies

Kn space of convex bodies (compact convex sets) in Rn

xA,�y abelian semigroup

Z : Kn Ñ A is a valuation ðñ

ZpK q � ZpLq � ZpK Y Lq � ZpK X Lq

for all K , L P Kn such that K Y L P Kn.

Monika Ludwig (TU Wien) Valuations on Convex Bodies 3 / 29

Page 4: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Valuations on Convex Bodies

Theorem (Hadwiger 1952)

Z : Kn Ñ R is a continuous, rigid motion invariant valuationðñ

D c0, c1, . . . , cn P R such that

ZpK q � c0 V0pK q � � � � � cn VnpK q

for every K P Kn.

Theorem (Blaschke 1937)

Z : Pn Ñ R is a continuous, SLpnq and translation invariant valuationðñ

D c0, cn P R such that

ZpPq � c0 V0pPq � cn VnpPq

for every P P Pn.

Monika Ludwig (TU Wien) Valuations on Convex Bodies 4 / 29

Page 5: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Minkowski Valuations

Brunn-Minkowski theoryRolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993;2014)Merging two elementary notions for point sets in Euclidean space:vector addition and volume

Minkowski sum (or vector sum) of K , L P Kn

K � L � tx � y : x P K , y P Lu

Z : Kn Ñ Kn is a Minkowski valuation ô

ZK � Z L � ZpK Y Lq � ZpK X Lq

for all K , L P Kn such that K Y L P Kn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 5 / 29

Page 6: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Minkowski Valuations

Brunn-Minkowski theoryRolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993;2014)Merging two elementary notions for point sets in Euclidean space:vector addition and volume

Minkowski sum (or vector sum) of K , L P Kn

K � L � tx � y : x P K , y P Lu

Z : Kn Ñ Kn is a Minkowski valuation ô

ZK � Z L � ZpK Y Lq � ZpK X Lq

for all K , L P Kn such that K Y L P Kn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 5 / 29

Page 7: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Minkowski Valuations

Brunn-Minkowski theoryRolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993;2014)Merging two elementary notions for point sets in Euclidean space:vector addition and volume

Minkowski sum (or vector sum) of K , L P Kn

K � L � tx � y : x P K , y P Lu

Z : Kn Ñ Kn is a Minkowski valuation ô

ZK � Z L � ZpK Y Lq � ZpK X Lq

for all K , L P Kn such that K Y L P Kn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 5 / 29

Page 8: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Convex Bodies Kn

Support function hpK , �q : Rn Ñ R

u

K

hpK , uq� hpK , uq � maxtu � x : x P Ku

� hpK , u� vq ¤ hpK , uq � hpK , vq sublinear

Surface area measure SpK , �q : BpSn�1q Ñ r0,8qu

K

� SpK , ωq � Hn�1ptx P bdK : uK pxq P ωuq

� SpK , �q measure with centroid at origin,not concentrated on a great sphere

Monika Ludwig (TU Wien) Valuations on Convex Bodies 6 / 29

Page 9: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Convex Bodies Kn

Support function hpK , �q : Rn Ñ R

u

K

hpK , uq� hpK , uq � maxtu � x : x P Ku

� hpK , u� vq ¤ hpK , uq � hpK , vq sublinear

Surface area measure SpK , �q : BpSn�1q Ñ r0,8qu

K

� SpK , ωq � Hn�1ptx P bdK : uK pxq P ωuq

� SpK , �q measure with centroid at origin,not concentrated on a great sphere

Monika Ludwig (TU Wien) Valuations on Convex Bodies 6 / 29

Page 10: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Integral Affine Surface Area

Cauchy’s surface area formula

SpK q �1

vn�1

»Sn�1

Vn�1pK |uKq du

uK

K� SpK q surface area of K

� uK hyperplane orthogonal to u

� K |uK projection of K to uK

� vk k-dimensional volume of k-dimensional unitball

Integral affine surface area

I pK q �

�1

n

»Sn�1

Vn�1pK |uKq�n du

�1{n

� I pφK q � I pK q for all φ P SLpnq

Monika Ludwig (TU Wien) Valuations on Convex Bodies 7 / 29

Page 11: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Integral Affine Surface Area

Cauchy’s surface area formula

SpK q �1

vn�1

»Sn�1

Vn�1pK |uKq du

uK

K� SpK q surface area of K

� uK hyperplane orthogonal to u

� K |uK projection of K to uK

� vk k-dimensional volume of k-dimensional unitball

Integral affine surface area

I pK q �

�1

n

»Sn�1

Vn�1pK |uKq�n du

�1{n

� I pφK q � I pK q for all φ P SLpnq

Monika Ludwig (TU Wien) Valuations on Convex Bodies 7 / 29

Page 12: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Integral Affine Surface Area

Cauchy’s surface area formula

SpK q �1

vn�1

»Sn�1

Vn�1pK |uKq du

uK

K� SpK q surface area of K

� uK hyperplane orthogonal to u

� K |uK projection of K to uK

� vk k-dimensional volume of k-dimensional unitball

Integral affine surface area

I pK q �

�1

n

»Sn�1

Vn�1pK |uKq�n du

�1{n

� I pφK q � I pK q for all φ P SLpnq

Monika Ludwig (TU Wien) Valuations on Convex Bodies 7 / 29

Page 13: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Projection Body

Projection body, ΠK , of K (Minkowski 1901)

� hpΠK , uq � Vn�1pK |uKq

� uK hyperplane orthogonal to u

� K |uK projection of K to uK

� Vn�1 pn � 1q-dimensional volume

� hpΠK , uq � 12

³Sn�1 |u � v | dSpK , vq

K ÞÑ ΠK continuous, SLpnq contravariant and translationinvariant Minkowski valuation

Z : Kn Ñ Kn is GLpnq contravariant of weight q ô

ZpφK q � | detφ|q φ�t ZK @φ P GLpnq

Vnp�K q � I pK q�n

Monika Ludwig (TU Wien) Valuations on Convex Bodies 8 / 29

Page 14: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Projection Body

Projection body, ΠK , of K (Minkowski 1901)

� hpΠK , uq � Vn�1pK |uKq

� uK hyperplane orthogonal to u

� K |uK projection of K to uK

� Vn�1 pn � 1q-dimensional volume

� hpΠK , uq � 12

³Sn�1 |u � v | dSpK , vq

K ÞÑ ΠK continuous, SLpnq contravariant and translationinvariant Minkowski valuation

Z : Kn Ñ Kn is GLpnq contravariant of weight q ô

ZpφK q � | detφ|q φ�t ZK @φ P GLpnq

Vnp�K q � I pK q�n

Monika Ludwig (TU Wien) Valuations on Convex Bodies 8 / 29

Page 15: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Projection Body

Projection body, ΠK , of K (Minkowski 1901)

� hpΠK , uq � Vn�1pK |uKq

� uK hyperplane orthogonal to u

� K |uK projection of K to uK

� Vn�1 pn � 1q-dimensional volume

� hpΠK , uq � 12

³Sn�1 |u � v | dSpK , vq

K ÞÑ ΠK continuous, SLpnq contravariant and translationinvariant Minkowski valuation

Z : Kn Ñ Kn is GLpnq contravariant of weight q ô

ZpφK q � | detφ|q φ�t ZK @φ P GLpnq

Vnp�K q � I pK q�n

Monika Ludwig (TU Wien) Valuations on Convex Bodies 8 / 29

Page 16: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Projection Body

Projection body, ΠK , of K (Minkowski 1901)

� hpΠK , uq � Vn�1pK |uKq

� uK hyperplane orthogonal to u

� K |uK projection of K to uK

� Vn�1 pn � 1q-dimensional volume

� hpΠK , uq � 12

³Sn�1 |u � v | dSpK , vq

K ÞÑ ΠK continuous, SLpnq contravariant and translationinvariant Minkowski valuation

Z : Kn Ñ Kn is GLpnq contravariant of weight q ô

ZpφK q � | detφ|q φ�t ZK @φ P GLpnq

Vnp�K q � I pK q�n

Monika Ludwig (TU Wien) Valuations on Convex Bodies 8 / 29

Page 17: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Projection Body

Projection body, ΠK , of K (Minkowski 1901)

� hpΠK , uq � Vn�1pK |uKq

� uK hyperplane orthogonal to u

� K |uK projection of K to uK

� Vn�1 pn � 1q-dimensional volume

� hpΠK , uq � 12

³Sn�1 |u � v | dSpK , vq

K ÞÑ ΠK continuous, SLpnq contravariant and translationinvariant Minkowski valuation

Z : Kn Ñ Kn is GLpnq contravariant of weight q ô

ZpφK q � | detφ|q φ�t ZK @φ P GLpnq

Vnp�K q � I pK q�n

Monika Ludwig (TU Wien) Valuations on Convex Bodies 8 / 29

Page 18: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Affine Isoperimetric Inequalities

Theorem (Petty: 1972)

VnpK qn�1VnpΠ

� K q ¤ VnpE qn�1VnpΠ

� E q

for K P Knp0q, with equality if and only if K is an ellipsoid E

K� � ty P Rn : x � y ¤ 1 for all x P Ku polar body

Petty’s projection inequality is stronger than the Euclideanisoperimetric inequality.

Theorem (Gaoyong Zhang: 1991)

VnpK qn�1VnpΠ

� K q ¥ V pSqn�1V pΠ� Sq

for K P Knp0q, with equality if and only if K is a simplex S

Monika Ludwig (TU Wien) Valuations on Convex Bodies 9 / 29

Page 19: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Affine Isoperimetric Inequalities

Theorem (Petty: 1972)

VnpK qn�1VnpΠ

� K q ¤ VnpE qn�1VnpΠ

� E q

for K P Knp0q, with equality if and only if K is an ellipsoid E

K� � ty P Rn : x � y ¤ 1 for all x P Ku polar body

Petty’s projection inequality is stronger than the Euclideanisoperimetric inequality.

Theorem (Gaoyong Zhang: 1991)

VnpK qn�1VnpΠ

� K q ¥ V pSqn�1V pΠ� Sq

for K P Knp0q, with equality if and only if K is a simplex S

Monika Ludwig (TU Wien) Valuations on Convex Bodies 9 / 29

Page 20: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (L.: AiM 2002)

Z : Kn Ñ Kn is a continuous, SLpnq contravariant and translationinvariant Minkowski valuation

ðñD c ¥ 0:

ZK � c ΠK

for every K P Kn.

Ludwig (TAMS 2005, JDG 2010), Schuster (TAMS 2007, Duke2010), Schuster & Wannerer (TAMS 2009, AJM 2015), Wannerer(IUMJ 2009), Haberl (AJM 2010, JEMS 2012), Abardia (JFA 2012,IMRN 2015), Abardia & Bernig (AiM 2011), Li, Yuan & Leng(TAMS 2015), Li & Leng (AiM 2015), . . .

Monika Ludwig (TU Wien) Valuations on Convex Bodies 10 / 29

Page 21: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (L.: AiM 2002)

Z : Kn Ñ Kn is a continuous, SLpnq contravariant and translationinvariant Minkowski valuation

ðñD c ¥ 0:

ZK � c ΠK

for every K P Kn.

Ludwig (TAMS 2005, JDG 2010), Schuster (TAMS 2007, Duke2010), Schuster & Wannerer (TAMS 2009, AJM 2015), Wannerer(IUMJ 2009), Haberl (AJM 2010, JEMS 2012), Abardia (JFA 2012,IMRN 2015), Abardia & Bernig (AiM 2011), Li, Yuan & Leng(TAMS 2015), Li & Leng (AiM 2015), . . .

Monika Ludwig (TU Wien) Valuations on Convex Bodies 10 / 29

Page 22: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (L.: AiM 2002)

Z : Kn Ñ Kn is a continuous, SLpnq contravariant and translationinvariant Minkowski valuation

ðñD c ¥ 0:

ZK � c ΠK

for every K P Kn.

Theorem (L.: AiM 2002)

Z : Pn Ñ Kn is an SLpnq contravariant and translation invariantMinkowski valuation

ðñD c ¥ 0: ZP � c ΠP

for every P P Pn.

Monika Ludwig (TU Wien) Valuations on Convex Bodies 11 / 29

Page 23: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Sketch of the Proof

Homogeneous decomposition: t P Q, t ¥ 0

hpZpt Pq, xq � Z0pP, xq � Z1pP, xq t � � � � � ZnpP, xq tn

with Zi p�, xq translation invariant, rational i-homogeneous valuation

ZnpP, xq � limtÑ8

hpZP, xq

tn

support function

Zi pP, xq � 0 for i ¤ j ñ

Zj�1pP, xq � limtÑ0

hpZP, xq

t j�1

support function

Monika Ludwig (TU Wien) Valuations on Convex Bodies 12 / 29

Page 24: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Sketch of the Proof

Homogeneous decomposition: t P Q, t ¥ 0

hpZpt Pq, xq � Z0pP, xq � Z1pP, xq t � � � � � ZnpP, xq tn

with Zi p�, xq translation invariant, rational i-homogeneous valuation

ZnpP, xq � limtÑ8

hpZP, xq

tn

support function

Zi pP, xq � 0 for i ¤ j ñ

Zj�1pP, xq � limtÑ0

hpZP, xq

t j�1

support function

Monika Ludwig (TU Wien) Valuations on Convex Bodies 12 / 29

Page 25: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Sketch of the Proof

Homogeneous decomposition: t P Q, t ¥ 0

hpZpt Pq, xq � Z0pP, xq � Z1pP, xq t � � � � � ZnpP, xq tn

with Zi p�, xq translation invariant, rational i-homogeneous valuation

ZnpP, xq � limtÑ8

hpZP, xq

tn

support function

Zi pP, xq � 0 for i ¤ j ñ

Zj�1pP, xq � limtÑ0

hpZP, xq

t j�1

support function

Monika Ludwig (TU Wien) Valuations on Convex Bodies 12 / 29

Page 26: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Sketch of the Proof

Z : Pn Ñ Kn SLpnq contravariant,rational i-homogeneous,translation invariant valuation

T1

T2

T1 Y T2 � T , dimpT1 X T2q   n

Dφi P GLpnq : Ti � φiT

ZT � ZpT1 X T2q � ZT1 � ZT2

� Zpφ1T q � Zpφ2T q

� | detφ1|i�1n φ�t

1 ZT � | detφ2|i�1n φ�t

2 ZT

f pxq � hpZT , xq, gpxq � hpZpT1 X T2q, xq

f pxq � gpxq � p1 � tqi�1n f pφ�1

1 xq � ti�1n f pφ�1

2 xq

family of functional equations

Monika Ludwig (TU Wien) Valuations on Convex Bodies 13 / 29

Page 27: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Sketch of the Proof

Z : Pn Ñ Kn SLpnq contravariant,rational i-homogeneous,translation invariant valuation

T1

T2

T1 Y T2 � T , dimpT1 X T2q   n

Dφi P GLpnq : Ti � φiT

ZT � ZpT1 X T2q � ZT1 � ZT2

� Zpφ1T q � Zpφ2T q

� | detφ1|i�1n φ�t

1 ZT � | detφ2|i�1n φ�t

2 ZT

f pxq � hpZT , xq, gpxq � hpZpT1 X T2q, xq

f pxq � gpxq � p1 � tqi�1n f pφ�1

1 xq � ti�1n f pφ�1

2 xq

family of functional equations

Monika Ludwig (TU Wien) Valuations on Convex Bodies 13 / 29

Page 28: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Sketch of the Proof

Z : Pn Ñ Kn SLpnq contravariant,rational i-homogeneous,translation invariant valuation

T1

T2

T1 Y T2 � T , dimpT1 X T2q   n

Dφi P GLpnq : Ti � φiT

ZT � ZpT1 X T2q � ZT1 � ZT2

� Zpφ1T q � Zpφ2T q

� | detφ1|i�1n φ�t

1 ZT � | detφ2|i�1n φ�t

2 ZT

f pxq � hpZT , xq, gpxq � hpZpT1 X T2q, xq

f pxq � gpxq � p1 � tqi�1n f pφ�1

1 xq � ti�1n f pφ�1

2 xq

family of functional equations

Monika Ludwig (TU Wien) Valuations on Convex Bodies 13 / 29

Page 29: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Sketch of the Proof

Z : Pn Ñ Kn SLpnq contravariant,rational i-homogeneous,translation invariant valuation

T1

T2

T1 Y T2 � T , dimpT1 X T2q   n

Dφi P GLpnq : Ti � φiT

ZT � ZpT1 X T2q � ZT1 � ZT2

� Zpφ1T q � Zpφ2T q

� | detφ1|i�1n φ�t

1 ZT � | detφ2|i�1n φ�t

2 ZT

f pxq � hpZT , xq, gpxq � hpZpT1 X T2q, xq

f pxq � gpxq � p1 � tqi�1n f pφ�1

1 xq � ti�1n f pφ�1

2 xq

family of functional equations

Monika Ludwig (TU Wien) Valuations on Convex Bodies 13 / 29

Page 30: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (Haberl: JEMS 2012)

Z : Kn0 Ñ Kn

0 is a continuous and SLpnq contravariant Minkowskivaluations

ðñDc ¥ 0:

ZK � c ΠK

for every K P Kn0 .

Kn0 convex bodies containing the origin

Parapatits (TAMS 2014, JLMS 2014), Li & Leng (AiM 2015), . . .

Monika Ludwig (TU Wien) Valuations on Convex Bodies 14 / 29

Page 31: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Lattice Polytopes

P lattice polytope in Rn

ðñ P is the convex hull of finitely many points from Zn

Applications� Integer programming� Geometry of numbers� Algebraic geometry (Newton polytope)

Monika Ludwig (TU Wien) Valuations on Convex Bodies 15 / 29

Page 32: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Lattice Polytopes

P lattice polytope in Rn

ðñ P is the convex hull of finitely many points from Zn

Applications� Integer programming� Geometry of numbers� Algebraic geometry (Newton polytope)

Monika Ludwig (TU Wien) Valuations on Convex Bodies 15 / 29

Page 33: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Invariant Valuations on Lattice Polytopes

PpZnq space of lattice polytopes in Rn

SLnpZq special linear group over the integers:

x ÞÑ φ x

φ n � n-matrix with integer coefficients and determinant 1

Z : PpZnq Ñ A is SLnpZq contravariant

ðñ

ZpφPq � φ�t ZpPq for all φ P SLnpZq and P P PpZnq

Z : PpZnq Ñ A is translation invariant

ðñ

ZpP � xq � ZpPq for all x P Zn and P P PpZnq

Question.

Classification of valuations on PpZnq.

Monika Ludwig (TU Wien) Valuations on Convex Bodies 16 / 29

Page 34: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Invariant Valuations on Lattice Polytopes

PpZnq space of lattice polytopes in Rn

SLnpZq special linear group over the integers:

x ÞÑ φ x

φ n � n-matrix with integer coefficients and determinant 1

Z : PpZnq Ñ A is SLnpZq contravariant

ðñ

ZpφPq � φ�t ZpPq for all φ P SLnpZq and P P PpZnq

Z : PpZnq Ñ A is translation invariant

ðñ

ZpP � xq � ZpPq for all x P Zn and P P PpZnq

Question.

Classification of valuations on PpZnq.

Monika Ludwig (TU Wien) Valuations on Convex Bodies 16 / 29

Page 35: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Invariant Valuations on Lattice Polytopes

PpZnq space of lattice polytopes in Rn

SLnpZq special linear group over the integers:

x ÞÑ φ x

φ n � n-matrix with integer coefficients and determinant 1

Z : PpZnq Ñ A is SLnpZq contravariant

ðñ

ZpφPq � φ�t ZpPq for all φ P SLnpZq and P P PpZnq

Z : PpZnq Ñ A is translation invariant

ðñ

ZpP � xq � ZpPq for all x P Zn and P P PpZnq

Question.

Classification of valuations on PpZnq.

Monika Ludwig (TU Wien) Valuations on Convex Bodies 16 / 29

Page 36: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Invariant Valuations on Lattice Polytopes

PpZnq space of lattice polytopes in Rn

SLnpZq special linear group over the integers:

x ÞÑ φ x

φ n � n-matrix with integer coefficients and determinant 1

Z : PpZnq Ñ A is SLnpZq contravariant

ðñ

ZpφPq � φ�t ZpPq for all φ P SLnpZq and P P PpZnq

Z : PpZnq Ñ A is translation invariant

ðñ

ZpP � xq � ZpPq for all x P Zn and P P PpZnq

Question.

Classification of valuations on PpZnq.

Monika Ludwig (TU Wien) Valuations on Convex Bodies 16 / 29

Page 37: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Invariant Valuations on Lattice Polytopes

PpZnq space of lattice polytopes in Rn

SLnpZq special linear group over the integers:

x ÞÑ φ x

φ n � n-matrix with integer coefficients and determinant 1

Z : PpZnq Ñ A is SLnpZq contravariant

ðñ

ZpφPq � φ�t ZpPq for all φ P SLnpZq and P P PpZnq

Z : PpZnq Ñ A is translation invariant

ðñ

ZpP � xq � ZpPq for all x P Zn and P P PpZnq

Question.

Classification of valuations on PpZnq.

Monika Ludwig (TU Wien) Valuations on Convex Bodies 16 / 29

Page 38: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (L. & Boroczky: JEMS 2018)

Z : PpZnq Ñ Kn is an SLnpZq contravariant and translation invariantMinkowski valuation

ðñD c ¥ 0:

ZP � c ΠP

for every P P PpZnq.

Theorem (L.: AiM 2002)

Z : Pn Ñ Kn is an SLpnq contravariant and translation invariantMinkowski valuation

ðñD c ¥ 0: ZP � c ΠPfor every P P Pn.

Monika Ludwig (TU Wien) Valuations on Convex Bodies 17 / 29

Page 39: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (L. & Boroczky: JEMS 2018)

Z : PpZnq Ñ Kn is an SLnpZq contravariant and translation invariantMinkowski valuation

ðñD c ¥ 0:

ZP � c ΠP

for every P P PpZnq.

Theorem (L.: AiM 2002)

Z : Pn Ñ Kn is an SLpnq contravariant and translation invariantMinkowski valuation

ðñD c ¥ 0: ZP � c ΠPfor every P P Pn.

Monika Ludwig (TU Wien) Valuations on Convex Bodies 17 / 29

Page 40: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Valuations on Lattice Polytopes

Theorem (Betke & Kneser: Crelle 1985)

Z : PpZnq Ñ R is an SLnpZq and translation invariant valuation

ðñD c0, c1, . . . , cn P R :

ZpPq � c0 L0pPq � � � � � cn LnpPq

for every P P PpZnq.

L0pPq, . . . , LnpPq coefficients of the Ehrhart polynomial

LpPq number of points in P X Zn for P P PpZnq

LpkPq �n

i�0

Li pPq ki for k P N

Monika Ludwig (TU Wien) Valuations on Convex Bodies 18 / 29

Page 41: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Valuations on Lattice Polytopes

Theorem (Betke & Kneser: Crelle 1985)

Z : PpZnq Ñ R is an SLnpZq and translation invariant valuation

ðñD c0, c1, . . . , cn P R :

ZpPq � c0 L0pPq � � � � � cn LnpPq

for every P P PpZnq.

L0pPq, . . . , LnpPq coefficients of the Ehrhart polynomial

LpPq number of points in P X Zn for P P PpZnq

LpkPq �n

i�0

Li pPq ki for k P N

Monika Ludwig (TU Wien) Valuations on Convex Bodies 18 / 29

Page 42: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Valuations on Lattice Polytopes

Theorem (Betke & Kneser: Crelle 1985)

Z : PpZnq Ñ R is an SLnpZq and translation invariant valuation

ðñD c0, c1, . . . , cn P R :

ZpPq � c0 L0pPq � � � � � cn LnpPq

for every P P PpZnq.

Corollary (L. & Reitzner: DCG 2017)

Z : Pn Ñ R is an SLpnq and translation invariant valuationðñ

D c0 P R and Cauchy function ζ : r0,8q Ñ R:

ZpPq � c0 V0pPq � ζ�VnpPq

�for every P P Pn

0 .

Monika Ludwig (TU Wien) Valuations on Convex Bodies 19 / 29

Page 43: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (L. & Boroczky: JEMS 2018)

Z : PpZnq Ñ Kn is an SLnpZq contravariant and translation invariantMinkowski valuation

ðñD c ¥ 0:

ZP � c ΠP

for every P P PpZnq.

Monika Ludwig (TU Wien) Valuations on Convex Bodies 20 / 29

Page 44: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Steps in the Proof

ZP � c ΠP

Inclusion-exclusion principle (Betke 1979, McMullen 2009)Reduction to basic simplices (Betke & Kneser 1985)

Determine ZTi for i � 0, . . . , nTi � r0, e1, . . . , ei s

ZP � tou for dimP ¤ n � 2

P � wK for w P Sn�1 ñ Dc : ZP � c Vn�1pPq r�w ,w s

Determine ZTn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 21 / 29

Page 45: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Steps in the Proof

ZP � c ΠP

Inclusion-exclusion principle (Betke 1979, McMullen 2009)Reduction to basic simplices (Betke & Kneser 1985)

Determine ZTi for i � 0, . . . , nTi � r0, e1, . . . , ei s

ZP � tou for dimP ¤ n � 2

P � wK for w P Sn�1 ñ Dc : ZP � c Vn�1pPq r�w ,w s

Determine ZTn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 21 / 29

Page 46: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Steps in the Proof

ZP � c ΠP

Inclusion-exclusion principle (Betke 1979, McMullen 2009)Reduction to basic simplices (Betke & Kneser 1985)

Determine ZTi for i � 0, . . . , nTi � r0, e1, . . . , ei s

ZP � tou for dimP ¤ n � 2

P � wK for w P Sn�1 ñ Dc : ZP � c Vn�1pPq r�w ,w s

Determine ZTn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 21 / 29

Page 47: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Steps in the Proof

ZP � c ΠP

Inclusion-exclusion principle (Betke 1979, McMullen 2009)Reduction to basic simplices (Betke & Kneser 1985)

Determine ZTi for i � 0, . . . , nTi � r0, e1, . . . , ei s

ZP � tou for dimP ¤ n � 2

P � wK for w P Sn�1 ñ Dc : ZP � c Vn�1pPq r�w ,w s

Determine ZTn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 21 / 29

Page 48: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Steps in the Proof

ZP � c ΠP

Inclusion-exclusion principle (Betke 1979, McMullen 2009)Reduction to basic simplices (Betke & Kneser 1985)

Determine ZTi for i � 0, . . . , nTi � r0, e1, . . . , ei s

ZP � tou for dimP ¤ n � 2

P � wK for w P Sn�1 ñ Dc : ZP � c Vn�1pPq r�w ,w s

Determine ZTn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 21 / 29

Page 49: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Steps in the Proof

Zr0, 1sn�1 � c r�en, ens

Zpk r0, 1snq � pkn � kn�1qn

i�1

c r�ei , ei s � kn Z r0, 1sn

Homogeneous decomposition ñ Z r0, 1sn � c Π r0, 1sn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 22 / 29

Page 50: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Steps in the Proof

Zr0, 1sn�1 � c r�en, ens

Zpk r0, 1snq � pkn � kn�1qn

i�1

c r�ei , ei s � kn Z r0, 1sn

Homogeneous decomposition ñ Z r0, 1sn � c Π r0, 1sn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 22 / 29

Page 51: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Steps in the Proof

Zr0, 1sn�1 � c r�en, ens

Zpk r0, 1snq � pkn � kn�1qn

i�1

c r�ei , ei s � kn Z r0, 1sn

Homogeneous decomposition ñ Z r0, 1sn � c Π r0, 1sn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 22 / 29

Page 52: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Steps in the Proof

Z r0, 1sn � c Π r0, 1sn

r0, 1sn � Tn Y Rn ñ

c Π r0, 1sn�c r�w ,w s � ZTn � ZRn

ñ ZTn Minkowski summand of c Π r0, 1sn�c r�w ,w s

Symmetries ñ ZTn � c ΠTn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 23 / 29

Page 53: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Steps in the Proof

Z r0, 1sn � c Π r0, 1sn

r0, 1sn � Tn Y Rn ñ

c Π r0, 1sn�c r�w ,w s � ZTn � ZRn

ñ ZTn Minkowski summand of c Π r0, 1sn�c r�w ,w s

Symmetries ñ ZTn � c ΠTn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 23 / 29

Page 54: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Steps in the Proof

Z r0, 1sn � c Π r0, 1sn

r0, 1sn � Tn Y Rn ñ

c Π r0, 1sn�c r�w ,w s � ZTn � ZRn

ñ ZTn Minkowski summand of c Π r0, 1sn�c r�w ,w s

Symmetries ñ ZTn � c ΠTn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 23 / 29

Page 55: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Steps in the Proof

Z r0, 1sn � c Π r0, 1sn

r0, 1sn � Tn Y Rn ñ

c Π r0, 1sn�c r�w ,w s � ZTn � ZRn

ñ ZTn Minkowski summand of c Π r0, 1sn�c r�w ,w s

Symmetries ñ ZTn � c ΠTn

Monika Ludwig (TU Wien) Valuations on Convex Bodies 23 / 29

Page 56: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (L.: TAMS 2005)

Z : Kn Ñ Kn is a continuous, SLpnq covariant and translation invariantMinkowski valuation

ðñD c ¥ 0:

ZK � c DK

for every K P Kn.

DK � K � p�K q difference body of K

Monika Ludwig (TU Wien) Valuations on Convex Bodies 24 / 29

Page 57: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (L.: TAMS 2005)

Z : Kn Ñ Kn is a continuous, SLpnq covariant and translation invariantMinkowski valuation

ðñD c ¥ 0:

ZK � c DK

for every K P Kn.

DK � K � p�K q difference body of K

Monika Ludwig (TU Wien) Valuations on Convex Bodies 24 / 29

Page 58: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (Haberl: JEMS 2012)

For n ¥ 3, the map Z : Kn0 Ñ Kn

0 is a continuous, SLpnq equivariantMinkowski valuation

ðñD c1, . . . , c4 ¥ 0:

ZK � c1 K � c2p�K q � c3M� K � c4M

� K

for every K P Kn0 .

Asymmetric moment bodies:

hpM� K , uq �³K pu � xq� dx , hpM� K , uq �

³K pu � xq� dx

Classification of GLpnq equivariant Minkowski valuations(L.: TAMS 2005)

Classification of Lp Minkowski valuations (Parapatits: JLMS 2014)

Monika Ludwig (TU Wien) Valuations on Convex Bodies 25 / 29

Page 59: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (Haberl: JEMS 2012)

For n ¥ 3, the map Z : Kn0 Ñ Kn

0 is a continuous, SLpnq equivariantMinkowski valuation

ðñD c1, . . . , c4 ¥ 0:

ZK � c1 K � c2p�K q � c3M� K � c4M

� K

for every K P Kn0 .

Asymmetric moment bodies:

hpM� K , uq �³K pu � xq� dx , hpM� K , uq �

³K pu � xq� dx

Classification of GLpnq equivariant Minkowski valuations(L.: TAMS 2005)

Classification of Lp Minkowski valuations (Parapatits: JLMS 2014)

Monika Ludwig (TU Wien) Valuations on Convex Bodies 25 / 29

Page 60: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (Haberl: JEMS 2012)

For n ¥ 3, the map Z : Kn0 Ñ Kn

0 is a continuous, SLpnq equivariantMinkowski valuation

ðñD c1, . . . , c4 ¥ 0:

ZK � c1 K � c2p�K q � c3M� K � c4M

� K

for every K P Kn0 .

Asymmetric moment bodies:

hpM� K , uq �³K pu � xq� dx , hpM� K , uq �

³K pu � xq� dx

Classification of GLpnq equivariant Minkowski valuations(L.: TAMS 2005)

Classification of Lp Minkowski valuations (Parapatits: JLMS 2014)

Monika Ludwig (TU Wien) Valuations on Convex Bodies 25 / 29

Page 61: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (Boroczky & L.: JEMS 2018)

Z : PpZnq Ñ Kn is an SLnpZq equivariant and translation invariantvaluation

ðñD a, b ¥ 0 :

ZP � apP � `1pPqq � bp�P � `1pPqq

for every P P PpZnq.

`1pPq discrete Steiner point of P

`pPq �¸

xPPXZn

x discrete moment vector of P

`pkPq �n�1

i�1

`i pPq ki for k P N

Monika Ludwig (TU Wien) Valuations on Convex Bodies 26 / 29

Page 62: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (Boroczky & L.: JEMS 2018)

Z : PpZnq Ñ Kn is an SLnpZq equivariant and translation invariantvaluation

ðñD a, b ¥ 0 :

ZP � apP � `1pPqq � bp�P � `1pPqq

for every P P PpZnq.

`1pPq discrete Steiner point of P

`pPq �¸

xPPXZn

x discrete moment vector of P

`pkPq �n�1

i�1

`i pPq ki for k P N

Monika Ludwig (TU Wien) Valuations on Convex Bodies 26 / 29

Page 63: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Classification of Minkowski Valuations

Theorem (L.: JDG 2010)

Z : Knp0q Ñ Kn is a continuous, GLpnq contravariant of weight q and

translation invariant Minkowski valuationðñ

D c0 P R, c1, c2 ¥ 0:

ZK �

$''''&''''%

c1 ΠK for q � 1

c1 K� � c2p�K

�q for q � 0

c0mpK�q � c1 MK� for q � �1

t0u otherwise

for every K P Knp0q.

mpK q �³K x dx moment vector

hpMK , uq �³K |u � x | dx moment body

Monika Ludwig (TU Wien) Valuations on Convex Bodies 27 / 29

Page 64: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Related Results

Classification of function valued valuations

Jin Li (IMRN 2018+, 2018+)

Classification of rigid motion equivariant Minkowski valuations

Schneider (TAMS 1974), Kiderlen (TAMS 2006), Schuster(Thesis 2005, . . . ), Abardia & Bernig (AiM 2011), Abardia(JFA 2012, IMRN 2015), Schuster & Wannerer (AJM 2015,JEMS 2018), . . .

Classification of translation invariant Minkowski valuations

Abardia, Colesanti, Saorın (AiM 2018)

Monika Ludwig (TU Wien) Valuations on Convex Bodies 28 / 29

Page 65: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Related Results

Classification of function valued valuations

Jin Li (IMRN 2018+, 2018+)

Classification of rigid motion equivariant Minkowski valuations

Schneider (TAMS 1974), Kiderlen (TAMS 2006), Schuster(Thesis 2005, . . . ), Abardia & Bernig (AiM 2011), Abardia(JFA 2012, IMRN 2015), Schuster & Wannerer (AJM 2015,JEMS 2018), . . .

Classification of translation invariant Minkowski valuations

Abardia, Colesanti, Saorın (AiM 2018)

Monika Ludwig (TU Wien) Valuations on Convex Bodies 28 / 29

Page 66: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Related Results

Classification of function valued valuations

Jin Li (IMRN 2018+, 2018+)

Classification of rigid motion equivariant Minkowski valuations

Schneider (TAMS 1974), Kiderlen (TAMS 2006), Schuster(Thesis 2005, . . . ), Abardia & Bernig (AiM 2011), Abardia(JFA 2012, IMRN 2015), Schuster & Wannerer (AJM 2015,JEMS 2018), . . .

Classification of translation invariant Minkowski valuations

Abardia, Colesanti, Saorın (AiM 2018)

Monika Ludwig (TU Wien) Valuations on Convex Bodies 28 / 29

Page 67: Valuations on Convex Bodies - UM · Minkowski Valuations Brunn-Minkowski theory Rolf Schneider (Convex Bodies: The Brunn Minkowski Theory, 1993; 2014) Merging two elementary notions

Thank you!

Monika Ludwig (TU Wien) Valuations on Convex Bodies 29 / 29