20
Introduction Preliminary comments Validation results Validation of FISPACT-II Decay Heat Predictions for LWR Spent Fuel Michael Fleming, Jean-Christophe Sublet Culham Centre for Fusion Energy Culham Science Centre Abingdon Oxfordshire OX14 3DB 29 April 2015 http://www.ccfe.ac.uk

Validation of FISPACT-II Decay Heat Predictions for LWR Spent … · 2016. 9. 8. · Introduction Preliminary comments Validation results I Prediction of fission decay heat is essential

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Introduction Preliminary comments Validation results

    Validation of FISPACT-II Decay Heat Predictionsfor LWR Spent Fuel

    Michael Fleming, Jean-Christophe Sublet

    Culham Centre for Fusion EnergyCulham Science Centre

    AbingdonOxfordshire OX14 3DB

    29 April 2015

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    Contents

    Introduction

    Preliminary comments

    Validation results

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    I Prediction of fission decay heat is essential in safety analysisof reactors and considerable e↵ort has resulted in large (butnarrow) experimental data-set for fissions (cf CCFE-R(15)25for fusion decay heat)

    I Decay heat simulation provides standard for validation offission yield data, decay data and simulation codes

    I No two libraries produce the same inventories – although DHcan show uncanny similarity

    I Complexity of inventory from fission makes deconvolution achallenge:

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    1E-06

    1E-05

    1E-04

    1E-03

    1E-02

    1E-01

    1E+00

    1E+01

    1E+02

    1E+03

    1E+04

    1E-01 1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06

    Hea

    t O

    utp

    ut

    (kW

    /kg)

    Time after irradiation (s)

    Heat Output (kW/kg) value/t-half for nuclide

    131mTe

    140Ba

    132Te

    129Sb

    132I

    91mY

    135Xe

    97mNb 97Zr

    133I97

    Nb

    93Y

    91Sr

    92Y141La

    135I

    88Rb

    88Kr

    131Te

    92Sr

    139Ba

    84Br

    87Kr

    130Sb

    133mTe

    101Tc

    142La

    146Pr

    134I

    134Te

    105Tc

    147Pr

    138Cs

    130mSb

    131Sb

    133Te

    104Tc

    132mSb

    90mRb

    89Rb

    141Ba

    143La

    101Mo

    94Y

    102Tc

    142Ba

    138Xe

    139Cs

    148Pr

    99mNb103Tc

    145Ce

    95Y

    132Sb

    133Sb

    93Sr

    137Xe

    147Ce

    90Rb

    85Se

    89Kr

    103Mo

    136I

    86Br

    87Br94

    Sr98Zr

    146mLa86

    Se 136mI

    140Cs

    91Rb

    144La

    136Te

    98Nb

    145La

    99Nb

    139Xe

    90Kr

    137I146

    La

    135Te88Br141Cs

    140Xe

    144Ba

    96mY 95Sr

    143Ba101Nb

    138I

    100Nb

    102Zr 100Zr89

    Br102Nb96

    Y

    97Y

    91Kr

    145Ba

    104mNb

    100mY

    93Kr

    100Y

    94Rb

    143Cs

    93Rb

    98Sr

    141Xe

    92Rb

    92Kr

    102mNb

    101Zr

    103Nb

    99Y99

    Zr98

    Y98m

    Y142

    Cs95

    Rb

    97nY 97m

    Y96

    Sr

    97Sr

    I 235Uth pulse using JEFF-3.1.1 DD+nFY

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    1E-06

    1E-05

    1E-04

    1E-03

    1E-02

    1E-01

    1E+00

    1E+01

    1E+02

    1E+03

    1E+04

    1E-01 1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06

    Hea

    t O

    utp

    ut

    (kW

    /kg)

    Time after irradiation (s)

    Heat Output (kW/kg) Greenwood

    93Rb

    95Sr

    143Ba144Ba

    145Ba

    95Y

    94Y

    93Sr

    94Sr

    91Rb

    90mRb

    90Rb

    89Rb

    138Cs

    139Cs

    140Cs

    141Cs

    146Pr

    147Pr

    148Pr

    141Ba

    142Ba

    145Ce

    147Ce

    142La

    143La

    144La

    145La

    WPEC SG 25 P1

    86Br

    87Br

    88Br

    89Kr

    90Kr

    100Nb

    101Nb

    105Tc

    104Tc

    103Tc

    103Mo

    102Tc

    99Nb

    98Nb

    132Sb

    136I

    136mI

    137I

    137Xe

    139Xe

    140Xe

    WPEC SG 25 P297Sr92

    Rb

    96Y

    102Nb

    WPEC SG 25 P399Zr142

    Cs

    I Greenwood/WPEC25 priority nuclides shown

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    Fission decay heat has been the subject of several experiments overseveral decades. Even those experiments with the same fissile areall unique, notably di↵ering in:

    I Irradiation duration and flux spectrum

    I Measurement techniques

    I Fission rate determination

    I Sample preparation/removal/post-irradiation processing

    I Contamination corrections (capture/epithermal/impurity)

    ICorrection methodology (finite to pulse, noble loss, etc)

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    Author Method Nuclide(s) Irr. (s) Year

    Yarnell, LANL Calor. 233U 235U 239Pu 2E4 1980Dickens, ORNL �,� 235U 239Pu 241Pu 1-100 1980Baumung, KfK Calor. 235U 200 1981Akiyama, YAYOI �,� 232Th 233U 235U 10-300 1982

    238U 239PuJohansson, Uppsala �,� 235U 238U 239Pu 4-120 1987

    Schier, Lowell �,� 235U 238U 239Pu

  • Introduction Preliminary comments Validation results

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1 10 100 1000 10000 100000

    Dec

    ay h

    eat

    (MeV

    /fis

    sion)

    Time (s)

    100 ms Irradiation1 s Irradiation

    10 s Irradiation100 s Irradiation

    1000 s IrradiationBurst Function

    Dickens total

    I 241Pu thermal fission

    I No individual experiment covers pulse

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0.1 1 10 100 1000 10000 100000

    Tota

    l dec

    ay h

    eat

    (MeV

    /fis

    sion)

    Time (s)

    JEFF3.1.1ENDFB7.1JENDL4.0DECAY12

    Tobias totalDickens total

    I Capture contamination depends upon preciseknowledge of inventory and spectrum (235U shown)

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    FISPACT-II is a general-purpose simulation code, completelyrewritten from legacy FISPACT in modern Fortran

    I Can use any ENDF-format nuclear data

    I Calculates numerous observables: activity, heat, various doses,detailed inventory, sophisticated pathway trees

    I RRR+URR self-shielding with PT from CALENDF

    I Generate sources with multi-di↵erential data

    I Developed to accommodate a complete, technological library(eg TENDL) with all isomeric states, HFR, double-di↵ ...

    I Provides robust simulation methodology that can be appliedto reactor operation, activation/transmutation, fusionapplications, high-energy, security, astrophysics ...

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0.1 1 10 100 1000 10000 100000

    Tota

    l dec

    ay h

    eat

    (MeV

    /fis

    sion)

    Time (s)

    JEFF3.1.1GEF4.2

    UKFY4.2Tobias total

    Dickens total

    I 235U thermal pulse total heat

    I Varied nFY with JEFF-3.1.1 DD simulation

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    0.1 1 10 100 1000 10000 100000

    Bet

    a d

    ecay

    hea

    t (M

    eV/f

    issi

    on

    )

    Time (s)

    JEFF3.1.1ENDFB7.1JENDL4.0DECAY12Tobias betaLowell beta

    Dickens beta

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.1 1 10 100 1000 10000 100000

    Gam

    ma

    dec

    ay h

    eat

    (MeV

    /fis

    sio

    n)

    Time (s)

    JEFF3.1.1ENDFB7.1JENDL4.0DECAY12

    Tobias gammaLowell gamma

    Dickens gamma

    I JEFF-3.1.1 nFY simulation 235U pulse beta (L) gamma (R)

    I Well-known Pandemonium �-deficiency can be probedthrough multi-library comparison

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    0.35

    0.4

    0.45

    0.5

    0.55

    0.6

    0.65

    0.7

    0.75

    0.8

    1 10 100

    Gam

    ma

    dec

    ay h

    eat

    (MeV

    /fis

    sion)

    Time (s)

    JEFF3.1.1ENDFB7.1JENDL4.0DECAY12

    Tobias gammaLowell gamma

    Dickens gamma

    I Example: isolate �-heat of 235U pulse at 10susing same nFY to compare DD

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    Nuclide JEFF3.1.1 ENDFB7.1 JENDL4.0 DECAY12

    Rb92 3.12 3.85 3.85 3.13Rb93 3.21 3.11 2.80 3.21Nb102 1.56 2.50 0.64 1.56Y96 0.15 0.15 2.23 0.15Kr91 1.98 1.99 2.00 1.98Y96m 1.93 1.85 1.85 1.93Ba143 2.13 2.13 1.81 1.77Nb102m 0.64 0.06 0.95 0.06

    I Normalised heat output in W/fission for 235U pulse at 10s

    I Some appear corrected only in JENDL/ENDF, some may bere(mis?)-allocation to isomer, such as Nb102m.

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    0.55

    0.6

    0.65

    0.7

    0.75

    0.8

    1 10 100

    Gam

    ma

    dec

    ay h

    eat

    (MeV

    /fis

    sion)

    Time (s)

    JEFF3.1.1GEF4.2

    UKFY4.2Tobias gammaLowell gamma

    Dickens gamma

    I Same story, but now variety of nFY for�-heat of 235U pulse at 10s

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    Nuclide JEFF3.1.1 GEF4.2 UKFY4.2

    Rb92 3.12 2.90 3.34Rb93 3.21 3.14 3.95Sr95 1.91 2.08 2.14Y97 1.14 1.88 1.64

    Nb102 1.56 1.23 0.58Kr91 1.98 1.87 1.64Y96m 1.93 0.38 4.37Ba143 2.13 1.99 1.97

    I Normalised heat output in W/fission for 235U pulse at 10s

    I Uncanny di↵erences in dominant fission production yields,isomeric yields?

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    10 100 1000 10000

    To

    tal

    dec

    ay h

    eat

    (MeV

    /fis

    sio

    n)

    Time (s)

    JEFF3.1.1ENDFB7.1JENDL4.0DECAY12

    Akiyama total

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    10 100 1000 10000

    To

    tal

    dec

    ay h

    eat

    (MeV

    /fis

    sio

    n)

    Time (s)

    JEFF3.1.1ENDFB7.1JENDL4.0DECAY12

    Akiyama total

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    10 100 1000 10000

    To

    tal

    dec

    ay h

    eat

    (MeV

    /fis

    sio

    n)

    Time (s)

    JEFF3.1.1ENDFB7.1JENDL4.0DECAY12

    Akiyama total

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    10 100 1000 10000

    To

    tal

    dec

    ay h

    eat

    (MeV

    /fis

    sio

    n)

    Time (s)

    JEFF3.1.1ENDFB7.1JENDL4.0DECAY12

    Akiyama total

    I Akiyama 3,5,8,9 vs 400keV (JEFF nFY)

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    10 100 1000 10000

    To

    tal

    dec

    ay h

    eat

    (MeV

    /fis

    sio

    n)

    Time (s)

    JEFF3.1.1GEF4.2

    UKFY4.2Akiyama total

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    10 100 1000 10000

    To

    tal

    dec

    ay h

    eat

    (MeV

    /fis

    sio

    n)

    Time (s)

    JEFF3.1.1GEF4.2

    UKFY4.2Akiyama total

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    10 100 1000 10000

    To

    tal

    dec

    ay h

    eat

    (MeV

    /fis

    sio

    n)

    Time (s)

    JEFF3.1.1GEF4.2

    UKFY4.2Akiyama total

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    10 100 1000 10000

    To

    tal

    dec

    ay h

    eat

    (MeV

    /fis

    sio

    n)

    Time (s)

    JEFF3.1.1GEF4.2

    UKFY4.2Akiyama total

    I Akiyama 3,5,8,9 vs 400keV nFY (JEFF DD)

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    Some thoughts:

    I Decay heat experiments are complex, old(er than me), andcould benefit from review for specific fuels/times

    I Meta-analysis of experiments with systematic challenges doesnot improve data quality

    I Integration of new decay data needed for �/� heat

    I Di�cult to assign superiority of files due to spread ofexperimental data

    I FISPACT-II allows versatile simulation which can probe DHsubtleties and expose unresolved issues with DD and/or nFY

    http://www.ccfe.ac.uk/EASY.aspx

    http://www.ccfe.ac.uk

  • Introduction Preliminary comments Validation results

    Thank you for your attention

    http://www.ccfe.ac.uk

    IntroductionPreliminary commentsValidation results