1
Validation of altimetry data near coast in the German Bight L. Fenoglio-Marc 1 , R. Weiβ 2 , M. Becker 1 1) Institut f¨ ur Physikalische Geod¨ asie, TU Darmstadt, Germany; 2) Bundesanstalt f¨ ur Gew¨ asserkunde - BfG, Koblenz, Germany Introduction Altimetry data near coast are validated in the German Bight using a network of tide gauge and GNSS stations maintained by the German Federal Institute of Hydrology (BfG), the Federal Agency for Cartography and Geodesy (BKG) and the Waterway and Shipping Administration (WSV). Data and Methodology Waterlevels More than 160 tide gauges (TG) are maintained by WSV, about 100 located on tidal rivers (e.g. Elbe, Weser and Ems) [4]. 1-minute data are available since 2000. 15-minute model data from a regional operational North Sea level model [1] of the Federal Maritime and Hydrographic Agency (BSH) GNSS at tide gauges 19 GNSS (permanent network of BfG) are directly installed at tide gauges. The benchmarks and GNSS-antennas are mounted on the same physical structure, i.e. the relative position of benchmarks and GNSS marker may be regarded as constant. 3 GNSS sites (BKG) are near tide gauges. The relative position of GNSS antenne and tide gauge datum is monitored by BfG and WSV, the sites are part of EUREF Per- manent GNSS Network (EPN) and of German Geodetic Reference Network (GREF). Altimetry Along-track altimetry data extracted from RADS Database [3], see Fig.1 for data availability (checked are the harware and dH status, and ocean/non-ocean flags). TOPEX (TX), Jason-1 (J1), Jason-2 (J2), pass: 137, 213 (ASC) and 18, 94 (DSC) ERS-2 (E2) and Envisat (N1), pass: 85 (ASC) and 474 (DSC) Methodology Five tide gauge stations are selected: Helgoland (HELG), Sylt (HOE2), Lighthouse Alte Weser (LHAW), Frontlight Dwargstat (FLDW) and B¨ usum (TGBU). The gauge datum heights were derived from GNSS measurements (2008-2010). The processing is based on approximately 30 GNSS-sites (IGS and EPN sites) and 10 IGS Frame sites as fiducial stations. Results are computed in IGS05 and transformed into the ITRF2005. The GNSS time series are too short to derive trends. " " " " " ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! FLDW LHAW TGBU HELG HOER 9°0'0"E 8°0'0"E 7°0'0"E 6°0'0"E 55°0'0"N 54°0'0"N 0 50 25 Kilometer 213 Altimetry % of data availability ! 5 - 10 ! 11 - 20 ! 21 - 30 ! 31 - 40 ! 41 - 50 ! 51 - 60 ! 61 - 70 ! 71 - 80 ! 81 - 90 ! 91 - 100 137 94 18 85 474 Fig. 1 Data availability from RADS " " " " " ! ! ! ! ! FLDW LHAW TGBU HELG HOER 8 69 71 84 5 9°0'0"E 8°0'0"E 7°0'0"E 55°0'0"N 54°0'0"N 0 50 25 Kilometer 85 ! Points " GNSS@TG EU-A US-B US-A 213 94 18 474 48km 60km 16km 41km Fig. 2 Selected altimetry points and tide gauges Conclusions Approach allows absolute comparison of SSH ell from GNSS-TG stations and altimetry Instantaneous SSH from TG and altimetry near island and continent (8 Km) show good agreement (corr 0.9 and std 6-7 cm), data gaps near continental coast for Envisat Monthly SSHs from TG and altimetry near island (8 Km) agree, with J1-J2a (corr=0.6- 0.7, std 11-17 cm), and N1 (corr=0.5, std 20 cm) Instantaneous altimetric and modelled SSHs agree with corr 0.8, std 16 cm in the German Bight, the agreement is higher in open sea (std 12-16 cm) Instantaneous comparison of altimetry and tide gauge data Ocean- and load-tide, inverse-barometer corrections are not applied to the altimetric sea surface heights (SSH). Environmental flags are not checked, wet-tropo ECMWF model correction is used to retain coastal data. The ionophere correction (IRI2007) is adopted for consistency. Minute-tide gauge data are uncorrected. Interval considered is 2000-2010. Helgoland, a open sea island at about 50 Km from the continent (Fig. 2) The time-series of the nearest altimeter points (8-10 km for E2-N1 and J1-J2-TX) are complete and agree with the tide gauge with correlation (corr) 0.9 and standard deviation (std) 6-7 cm. Mean difference of SSH ell (1-5 cm) is smaller that mean difference of SSH EGM 08 (6-9 cm), due to geoid slope. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 3700 3800 3900 4000 4100 4200 Year [cm] HELG TXA J1A J2A Fig. 3 Istantaneous SSH ell at altimetric point 8 (TX, J1 and J2) and at tide gauge Helgoland 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 3700 3800 3900 4000 4100 4200 Year [cm] HELG E2A N1A Fig. 4 Instantaneous SSH ell at altimetric point 84 (E2, N1) and at tide gauge Helgoland 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 -20 0 20 40 60 Year [cm] TXA J1A J2A Fig. 5 Differences between instantaneous SSH ell at altimetric point 8 and at tide gauge Helgoland (TG-ALT) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 -20 0 20 40 60 Year [cm] E2A N1A Fig. 6 Differences between instantaneous SSH ell at altimetric point 84 and at tide gauge Helgoland (TG-ALT) Mission Correlation Distance Difference SSH ell Difference SSH EGM 08 number of mean value std mean value std observations [km] [cm] [cm] [cm] [cm] obs./max. TX-A 0.9791 8.44 10.22 22.84 14.42 22.57 90/96 J1-A 0.9980 8.48 3.92 6.85 8.24 6.94 241/261 J2-A 0.9983 8.72 2.42 6.24 7.23 5.92 82/85 E2-A 0.9964 9.24 4.49 7.21 8.2 7.09 30/30 N1-A 0.9983 10.17 0.96 7.36 5.7 7.36 76/76 Tab 1: Tide gauge and altimeter at Helgoland with altimeter points 8 (TX-J1-J2) and 84 (E2-N1). LHAW and FLDW, two Light Houses at about 20-10 Km from coast (Fig. 2). The time-series for the nearest N1 altimeter point (8-10 km) have gaps (50% of data in LHAW and 20% in FLDW). The agreement between altimeter and the tide gauge is good (corr=0.9, std 6-10 cm). The mean difference of the instantaneous SSH ell (2-8 cm) is, like in HELG, smaller than the mean difference of the instantaneous SSH EGM 08 (3-10 cm). 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 3700 3800 3900 4000 4100 4200 Year [cm] LHAW E2A N1A Fig. 7 Instantaneous SSH ell at altimetric point 71 (E2, N1) and at tide gauge Alte Weser 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 3800 3900 4000 4100 4200 4300 Year [cm] FLDW E2A N1A Fig. 8 Instantaneous SSH ell at altimetric point 69 (E2, N1) and at tide gauge Dwarsgat 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 -20 0 20 40 60 Year [cm] E2A N1A Fig. 9 Differences between instantaneous SSH ell at altimetric point 71 (E2, N1) and at tide gauge Alte Weser (TG-ALT) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 -20 0 20 40 60 Year [cm] E2A N1A Fig. 10 Differences between instantaneous SSH ell at altimetric point 69 (E2, N1) and at tide gauge Dwarsgat (TG-ALT) Point/TG Mission Correlation Distance Difference SSH ell Difference SSH EGM 08 Number of mean value std mean value std observations [km] [cm] [cm] [cm] [cm] obs./max. 71/LHAW E2-A 0.9753 8.93 10.93 20.94 8.71 20.40 28/29 71/LHAW N1-A 0.9977 7.70 7.28 9.57 2.98 7.10 52/94 69/FLDW E2-A 0.9426 4.15 6.95 22.32 9.61 21.90 12/29 69/FLDW N1-A 0.9952 3.84 2.55 6.69 5.84 5.50 13/94 Tab 2: Tide gauge and altimeter at LHAW with altimeter points 71 and 69 (E2-N1). References [1] S. Dick, E. Kleine, S. Mueller-Navarra, H. Klein, and H. Komo. The Operational Circulation Model of BSH (BSHcmod). Model description and validation. Institute of Ocean Sciences, Berichte des BSH, Nr.29/2001, 2001). [2] L. Fenoglio-Marc, C. Braitenberg, and L. Tunini. Sea level variability and trends in the Adriatic Sea in 1993-2008 from tide gauges and satellite altimetry. Physics and Chemistry of the Earth, 2011. [3] M. Naeije, R. Scharroo, R. Doornbos, and E. Schrama. Global altimetry sea level service. report GO 52320, NIVR/DEOS, The Netherlands, The Netherlands, 2008. [4] A. von Gyldenfeldt, Christoph J. Blasi, A. Sudau, and G. Liebsch. National Report of Germany. GLOSS-Report, pages 1–5, April 2009. Monthly comparisons of altimetry and tide gauge data Differently than in istantaneous comparison, ocean-, load-tide and inverse barometer cor- rections have been applied to altimetry. Monthly tide gauge measurements are conform to the monthly averaged mean tide water (MMTW) derived from minute data. The interval considered is 1992-2010. Helgoland (Fig.1) The correlation between MMTW and the monthly SSHs is lower then for instantaneous data. The SSHs derived from TX-J1-J2 have higher correlation with TG (corr=0.6-0.7) then the SSHs derived from E2-N1 (corr=0.4-0.5). The std are larger than in [2]. 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 3850 3875 3900 3925 3950 3975 4000 Year [cm] HELG TXA J1A J2A Fig. 11 Monthly SSH ell at altimetric point 8 (TX, J1 and J2) and MTMW at tide gauge Helgoland 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 3850 3875 3900 3925 3950 3975 4000 Year [cm] HELG E2A N1A Fig. 12 Monthly SSH ell at altimetric point 84 (E2, N1) and MTMW at tide gauge Helgoland 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 -60 -40 -20 0 20 40 60 Year [cm] TXA J1A J2A Fig. 13 Differences between instantaneous SSH ell at altimetric point 8 and MTMW at tide gauge Helgoland 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 -60 -40 -20 0 20 40 60 Year [cm] TXA J1A J2A Fig. 14 Differences between instantaneous SSH ell at altimetric point 84 and MTMW at tide gauge Helgoland Mission Correlation Distance Difference SSH ell Difference SSH EGM 08 Number of mean value std mean value std observations [km] [cm] [cm] [cm] [cm] obs./max. TX-A 0.6432 8.36 2.86 16.57 7.15 16.42 319/365 J1-A 0.7039 8.28 0.86 11.89 5.11 12.03 246/261 J2-A 0.6616 8.61 2.12 13.00 6.88 12.70 82/85 E2-A 0.5394 10.16 -14.78 20.70 -9.93 20.57 154/160 N1-A 0.4838 10.12 -13.69 19.68 -8.93 19.84 78/94 Tab 3: Tide gauge and altimeter at Helgoland with altimeter points 8 (TX-J1-J2) and 84 (E2-N1). One altimeter location and four different tide gauges (Fig. 2) Correlations and std are similar (0.7, 14 cm) for all stations. The SSH ell differences (>100cm) are due to the geoid slope and to the distance between locations. 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 3850 3900 3950 4000 4050 Year [cm] HELG HOER TGBU LHAW TXA/J1A/J2A Fig. 15 Ellipsoidial sea surface heigths at different tide gauge sites 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 -60 0 60 120 180 Year [cm] HELG - ALT HOER - ALT TGBU - ALT LHAW - ALT Fig. 16 Ellipsoidial differences between monthly altimetry and different tide gauge sites Mission Correlation Distance Difference SSH ell Difference SSH EGM 08 Geoid Number of mean value std mean value std TG-ALT observations [km] [cm] [cm] [cm] [cm] [cm] obs./max. HELG 0.6878 16.24 1.32 14.37 5.01 14.34 -3.62 610/669 HOER 0.7024 60.47 104.55 14.59 12.42 14.56 92.20 610/669 TGBU 0.7025 47.74 53.60 14.30 12.86 14.28 40.80 610/669 LHAW 0.7038 40.90 36.71 14.00 3.35 13.97 33.42 610/669 Tab 4: Tide gauge and altimeter at Helgoland, Sylt, Buesum and Alte Weser with altimeter points 5 (TX-J1-J2). Modelled sea level and instantaneous altimetry Simulated SSHs are routinely compared to tide gauges, which are assimilated in the model. Instantaneous altimeter and model data are in agreement in the German Bight (corr 0.9, std 16) and in the North Sea (corr 0.7-0.9, std 12-18 cm) (Figs. 17, 18). -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ 0.0 0.2 0.4 0.6 0.8 1.0 -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ FINO3 FINO1 HELG TGBF HOE2 LFDW LHAW 137 18 94 213 Fig. 17 Correlation of modelled and altimeter instantaneous SSH ell at altimeter crossovers -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ 8 10 12 14 16 18 20 -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ -2˚ -2˚ 10˚ 10˚ 12˚ 12˚ 52˚ 52˚ 54˚ 54˚ 56˚ 56˚ 58˚ 58˚ FINO3 FINO1 HELG TGBF HOE2 LFDW LHAW 137 18 94 213 Fig. 18 Standard deviation (cm) of modelled and altimeter instantaneous SSH ell at altimeter crossovers Acknowledgements We acknowledge ESA and JPL/CNES, AVISO and the RADS database for the altimeter data, WSV for tide gauge data, BfG and BKG for GNSS-Data and BSH for model data. The study is part of the Project COSELE founded by the Deutsche Forschungsgemeinschaft (DFG) 5th Coastal Altimety Workshop 16 - 18 October San Diego U.S.A. JP03 Global and regional sea-level change

Validation of altimetry data near coast in the German Bight · Validation of altimetry data near coast ... Bundesanstalt fu¨r Gew¨asserkunde - BfG ... the relative position of benchmarks

Embed Size (px)

Citation preview

Page 1: Validation of altimetry data near coast in the German Bight · Validation of altimetry data near coast ... Bundesanstalt fu¨r Gew¨asserkunde - BfG ... the relative position of benchmarks

Validation of altimetry data near coast in the German Bight

L. Fenoglio-Marc1, R. Weiβ2, M. Becker1

1) Institut fur Physikalische Geodasie, TU Darmstadt, Germany; 2) Bundesanstalt fur Gewasserkunde - BfG, Koblenz, Germany

Introduction

Altimetry data near coast are validated in the German Bight using a network of tide gaugeand GNSS stations maintained by the German Federal Institute of Hydrology (BfG), theFederal Agency for Cartography and Geodesy (BKG) and the Waterway and ShippingAdministration (WSV).

Data and Methodology

Waterlevels–More than 160 tide gauges (TG) are maintained by WSV, about 100 located on tidalrivers (e.g. Elbe, Weser and Ems) [4]. 1-minute data are available since 2000.

– 15-minute model data from a regional operational North Sea level model [1] of theFederal Maritime and Hydrographic Agency (BSH)

GNSS at tide gauges– 19 GNSS (permanent network of BfG) are directly installed at tide gauges. Thebenchmarks and GNSS-antennas are mounted on the same physical structure, i.e.the relative position of benchmarks and GNSS marker may be regarded as constant.

– 3 GNSS sites (BKG) are near tide gauges. The relative position of GNSS antenne andtide gauge datum is monitored by BfG and WSV, the sites are part of EUREF Per-manent GNSS Network (EPN) and of German Geodetic Reference Network (GREF).

Altimetry–Along-track altimetry data extracted from RADS Database [3], see Fig.1 for dataavailability (checked are the harware and dH status, and ocean/non-ocean flags).

–TOPEX (TX), Jason-1 (J1), Jason-2 (J2), pass: 137, 213 (ASC) and 18, 94 (DSC)

–ERS-2 (E2) and Envisat (N1), pass: 85 (ASC) and 474 (DSC)

Methodology– Five tide gauge stations are selected: Helgoland (HELG), Sylt (HOE2), LighthouseAlte Weser (LHAW), Frontlight Dwargstat (FLDW) and Busum (TGBU).

–The gauge datum heights were derived from GNSS measurements (2008-2010). Theprocessing is based on approximately 30 GNSS-sites (IGS and EPN sites) and 10 IGSFrame sites as fiducial stations. Results are computed in IGS05 and transformed intothe ITRF2005. The GNSS time series are too short to derive trends.

"

""

"

"!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!

FLDW

LHAW

TGBUHELG

HOER

9°0'0"E8°0'0"E7°0'0"E6°0'0"E

55°0'0"N

54°0'0"N

0 5025Kilometer

213

Altimetry% of data availability

! 5 - 10

! 11 - 20

! 21 - 30

! 31 - 40

! 41 - 50

! 51 - 60

! 61 - 70

! 71 - 80

! 81 - 90

! 91 - 100

137

94

18

85

474

Fig. 1 Data availability from RADS

"

"

"

"

"

!!

!

!

!

FLDW

LHAW

TGBUHELG

HOER

8

69

71

84

5

9°0'0"E8°0'0"E7°0'0"E

55°0'0"N

54°0'0"N

0 5025Kilometer

85

! Points

" GNSS@TG

EU-A

US-B

US-A

213

94

18

474

48km

60km

16km

41km

Fig. 2 Selected altimetry points and tide gauges

Conclusions

•Approach allows absolute comparison of SSHell from GNSS-TG stations and altimetry

• Instantaneous SSH from TG and altimetry near island and continent (8 Km) show goodagreement (corr 0.9 and std 6-7 cm), data gaps near continental coast for Envisat

•Monthly SSHs from TG and altimetry near island (8 Km) agree, with J1-J2a (corr=0.6-0.7, std 11-17 cm), and N1 (corr=0.5, std 20 cm)

• Instantaneous altimetric and modelled SSHs agree with corr 0.8, std 16 cm in theGerman Bight, the agreement is higher in open sea (std 12-16 cm)

Instantaneous comparison of altimetry and tide gauge data

Ocean- and load-tide, inverse-barometer corrections are not applied to the altimetric sea surfaceheights (SSH). Environmental flags are not checked, wet-tropo ECMWF model correction is usedto retain coastal data. The ionophere correction (IRI2007) is adopted for consistency. Minute-tidegauge data are uncorrected. Interval considered is 2000-2010.

Helgoland, a open sea island at about 50 Km from the continent (Fig. 2)

The time-series of the nearest altimeter points (8-10 km for E2-N1 and J1-J2-TX) are completeand agree with the tide gauge with correlation (corr) 0.9 and standard deviation (std) 6-7 cm.Mean difference of SSHell (1-5 cm) is smaller that mean difference of SSHEGM08 (6-9 cm),due to geoid slope.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 20113700

3800

3900

4000

4100

4200

Year

[cm

]

HELG TXA J1A J2A

Fig. 3 Istantaneous SSHell at altimetric point 8 (TX, J1 andJ2) and at tide gauge Helgoland

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 20113700

3800

3900

4000

4100

4200

Year

[cm

]

HELG E2A N1A

Fig. 4 Instantaneous SSHell at altimetric point 84 (E2, N1)and at tide gauge Helgoland

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011-20

0

20

40

60

Year

[cm

]

TXA J1A J2A

Fig. 5 Differences between instantaneous SSHell at altimetricpoint 8 and at tide gauge Helgoland (TG-ALT)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011-20

0

20

40

60

Year

[cm

]

E2A N1A

Fig. 6 Differences between instantaneous SSHell at altimetricpoint 84 and at tide gauge Helgoland (TG-ALT)

Mission Correlation Distance Difference SSHell Difference SSHEGM08 number ofmean value std mean value std observations

[km] [cm] [cm] [cm] [cm] obs./max.TX-A 0.9791 8.44 10.22 22.84 14.42 22.57 90/96J1-A 0.9980 8.48 3.92 6.85 8.24 6.94 241/261J2-A 0.9983 8.72 2.42 6.24 7.23 5.92 82/85E2-A 0.9964 9.24 4.49 7.21 8.2 7.09 30/30N1-A 0.9983 10.17 0.96 7.36 5.7 7.36 76/76

Tab 1: Tide gauge and altimeter at Helgoland with altimeter points 8 (TX-J1-J2) and 84 (E2-N1).

LHAW and FLDW, two Light Houses at about 20-10 Km from coast (Fig. 2).

The time-series for the nearest N1 altimeter point (8-10 km) have gaps (50% of data in LHAWand 20% in FLDW). The agreement between altimeter and the tide gauge is good (corr=0.9,std 6-10 cm). The mean difference of the instantaneous SSHell (2-8 cm) is, like in HELG,smaller than the mean difference of the instantaneous SSHEGM08 (3-10 cm).

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 20113700

3800

3900

4000

4100

4200

Year

[cm

]

LHAW E2A N1A

Fig. 7 Instantaneous SSHell at altimetric point 71 (E2, N1)and at tide gauge Alte Weser

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 20113800

3900

4000

4100

4200

4300

Year

[cm

]

FLDW E2A N1A

Fig. 8 Instantaneous SSHell at altimetric point 69 (E2, N1)and at tide gauge Dwarsgat

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011-20

0

20

40

60

Year

[cm

]

E2A N1A

Fig. 9 Differences between instantaneous SSHell at altimetricpoint 71 (E2, N1) and at tide gauge Alte Weser (TG-ALT)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011-20

0

20

40

60

Year[c

m]

E2A N1A

Fig. 10 Differences between instantaneous SSHell at altimetricpoint 69 (E2, N1) and at tide gauge Dwarsgat (TG-ALT)

Point/TG Mission Correlation Distance Difference SSHell Difference SSHEGM08 Number ofmean value std mean value std observations

[km] [cm] [cm] [cm] [cm] obs./max.71/LHAW E2-A 0.9753 8.93 10.93 20.94 8.71 20.40 28/2971/LHAW N1-A 0.9977 7.70 7.28 9.57 2.98 7.10 52/9469/FLDW E2-A 0.9426 4.15 6.95 22.32 9.61 21.90 12/2969/FLDW N1-A 0.9952 3.84 2.55 6.69 5.84 5.50 13/94

Tab 2: Tide gauge and altimeter at LHAW with altimeter points 71 and 69 (E2-N1).

References[1] S. Dick, E. Kleine, S. Mueller-Navarra, H. Klein, and H. Komo. The Operational Circulation Model of BSH (BSHcmod). Model description and validation. Institute of Ocean Sciences,

Berichte des BSH, Nr.29/2001, 2001).

[2] L. Fenoglio-Marc, C. Braitenberg, and L. Tunini. Sea level variability and trends in the Adriatic Sea in 1993-2008 from tide gauges and satellite altimetry. Physics and Chemistry of theEarth, 2011.

[3] M. Naeije, R. Scharroo, R. Doornbos, and E. Schrama. Global altimetry sea level service. report GO 52320, NIVR/DEOS, The Netherlands, The Netherlands, 2008.

[4] A. von Gyldenfeldt, Christoph J. Blasi, A. Sudau, and G. Liebsch. National Report of Germany. GLOSS-Report, pages 1–5, April 2009.

Monthly comparisons of altimetry and tide gauge data

Differently than in istantaneous comparison, ocean-, load-tide and inverse barometer cor-rections have been applied to altimetry. Monthly tide gauge measurements are conform tothe monthly averaged mean tide water (MMTW) derived from minute data. The intervalconsidered is 1992-2010.

Helgoland (Fig.1)

The correlation between MMTW and the monthly SSHs is lower then for instantaneousdata. The SSHs derived from TX-J1-J2 have higher correlation with TG (corr=0.6-0.7)then the SSHs derived from E2-N1 (corr=0.4-0.5). The std are larger than in [2].

1992 1994 1996 1998 2000 2002 2004 2006 2008 20103850

3875

3900

3925

3950

3975

4000

Year

[cm

]

HELG TXA J1A J2A

Fig. 11 Monthly SSHell at altimetric point 8 (TX, J1 andJ2) and MTMW at tide gauge Helgoland

1992 1994 1996 1998 2000 2002 2004 2006 2008 20103850

3875

3900

3925

3950

3975

4000

Year

[cm

]

HELG E2A N1A

Fig. 12 Monthly SSHell at altimetric point 84 (E2, N1)and MTMW at tide gauge Helgoland

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010-60-40-20

0204060

Year

[cm

]

TXA J1A J2A

Fig. 13 Differences between instantaneous SSHell ataltimetric point 8 and MTMW at tide gauge Helgoland

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010-60-40-20

0204060

Year

[cm

]

TXA J1A J2A

Fig. 14 Differences between instantaneous SSHell ataltimetric point 84 and MTMW at tide gauge Helgoland

Mission Correlation Distance Difference SSHell Difference SSHEGM08 Number ofmean value std mean value std observations

[km] [cm] [cm] [cm] [cm] obs./max.TX-A 0.6432 8.36 2.86 16.57 7.15 16.42 319/365J1-A 0.7039 8.28 0.86 11.89 5.11 12.03 246/261J2-A 0.6616 8.61 2.12 13.00 6.88 12.70 82/85E2-A 0.5394 10.16 -14.78 20.70 -9.93 20.57 154/160N1-A 0.4838 10.12 -13.69 19.68 -8.93 19.84 78/94

Tab 3: Tide gauge and altimeter at Helgoland with altimeter points 8 (TX-J1-J2) and 84 (E2-N1).

One altimeter location and four different tide gauges (Fig. 2)

Correlations and std are similar (0.7, 14 cm) for all stations. The SSHell differences(>100cm) are due to the geoid slope and to the distance between locations.

1992 1994 1996 1998 2000 2002 2004 2006 2008 20103850

3900

3950

4000

4050

Year

[cm

]

HELG HOER TGBU LHAW TXA/J1A/J2A

Fig. 15 Ellipsoidial sea surface heigths at different tidegauge sites

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010-60

0

60

120

180

Year

[cm

]

HELG - ALT HOER - ALT TGBU - ALT LHAW - ALT

Fig. 16 Ellipsoidial differences between monthly altimetryand different tide gauge sites

Mission Correlation Distance Difference SSHell Difference SSHEGM08 Geoid Number ofmean value std mean value std TG-ALT observations

[km] [cm] [cm] [cm] [cm] [cm] obs./max.HELG 0.6878 16.24 1.32 14.37 5.01 14.34 -3.62 610/669HOER 0.7024 60.47 104.55 14.59 12.42 14.56 92.20 610/669TGBU 0.7025 47.74 53.60 14.30 12.86 14.28 40.80 610/669LHAW 0.7038 40.90 36.71 14.00 3.35 13.97 33.42 610/669

Tab 4: Tide gauge and altimeter at Helgoland, Sylt, Buesum and Alte Weser with altimeter points 5 (TX-J1-J2).

Modelled sea level and instantaneous altimetry

Simulated SSHs are routinely compared to tide gauges, which are assimilated in themodel. Instantaneous altimeter and model data are in agreement in the German Bight(corr 0.9, std 16) and in the North Sea (corr 0.7-0.9, std 12-18 cm) (Figs. 17, 18).

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

0.0

0.2

0.4

0.6

0.8

1.0

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

FINO3

FINO1HELG

TGBF

HOE2

LFDW

LHAW137

18

94

213

Fig. 17 Correlation of modelled and altimeter instantaneousSSHell at altimeter crossovers

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

8

10

12

14

16

18

20

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

!2˚

!2˚

10˚

10˚

12˚

12˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

58˚ 58˚

FINO3

FINO1HELG

TGBF

HOE2

LFDW

LHAW137

18

94

213

Fig. 18 Standard deviation (cm) of modelled and altimeterinstantaneous SSHell at altimeter crossovers

Acknowledgements

We acknowledge ESA and JPL/CNES, AVISO and the RADS database for the altimeter data, WSV for tide gauge data, BfG and BKG forGNSS-Data and BSH for model data. The study is part of the Project COSELE founded by the Deutsche Forschungsgemeinschaft (DFG)5th Coastal Altimety Workshop 16 - 18 October San Diego U.S.A.

JP03 Global and regional sea-level change