91
Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel Wilczak and Piotr Zgliczy ´ nski Jagiellonian University, Kraków, Poland Summer Workshop on Interval Methods June 21, 2016, Lyon, France

Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Validated integration of dissipative PDEs:chaos in the Kuramoto-Sivashinsky equations

Daniel Wilczak and Piotr Zgliczynski

Jagiellonian University, Kraków, Poland

Summer Workshop on Interval MethodsJune 21, 2016, Lyon, France

Page 2: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Trends in rigorous dynamics for PDEs

BVP, equilibria, periodic orbits F(x) = 0Arioli, Castelli, Figueras, Gameiro, James, Koch, Lessard, de la Llave,

Nakao, Plum, Wanner,...

Conley index, isolating segmentsZgliczynski & Mischaikow FoCM’2001

Czechowski & Zgliczynski Schedae Informaticae’2015

Trajectory integrationZgliczynski TMNA’2004, FoCM’2010

Arioli & Koch SIADS’2010

Cyranka SISC’2014

Page 3: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Trends in rigorous dynamics for PDEs

BVP, equilibria, periodic orbits F(x) = 0Arioli, Castelli, Figueras, Gameiro, James, Koch, Lessard, de la Llave,

Nakao, Plum, Wanner,...

Conley index, isolating segmentsZgliczynski & Mischaikow FoCM’2001

Czechowski & Zgliczynski Schedae Informaticae’2015

Trajectory integrationZgliczynski TMNA’2004, FoCM’2010

Arioli & Koch SIADS’2010

Cyranka SISC’2014

Page 4: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Trends in rigorous dynamics for PDEs

BVP, equilibria, periodic orbits F(x) = 0Arioli, Castelli, Figueras, Gameiro, James, Koch, Lessard, de la Llave,

Nakao, Plum, Wanner,...

Conley index, isolating segmentsZgliczynski & Mischaikow FoCM’2001

Czechowski & Zgliczynski Schedae Informaticae’2015

Trajectory integrationZgliczynski TMNA’2004, FoCM’2010

Arioli & Koch SIADS’2010

Cyranka SISC’2014

Page 5: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Integration

periodic orbits for ODEs, PDEsconnecting orbits for ODEs, PDEsinvariant manifoldsbifurcations for ODEs

Global dynamics:chain recurrent setsMorse decompositionchaos for ODEs, PDEsexistence and bifurcations of attractors

Page 6: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Integration

periodic orbits for ODEs, PDEsconnecting orbits for ODEs, PDEsinvariant manifoldsbifurcations for ODEs

Global dynamics:chain recurrent setsMorse decompositionchaos for ODEs, PDEsexistence and bifurcations of attractors

Page 7: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Global dynamics

Example (Rössler system)x ′ = −(y + z), y ′ = x + 0.2y , z ′ = 0.2 + z(x − 5.7)

There is a compact, connected invariant set which contains hyperbolichorseshoe.

-5

0

5

10

x

0

y

0

10

20

z

CAPD library (< 1sec)

Page 8: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Global dynamics

Uniformly hyperbolic chaotic attractor for a 4-dim ODEx = ω0u,u = −ω0x +

(A cos(2πt/T )− x2)u + (ε/ω0)y cos(ω0t),

y = 2ω0v ,v = −2ω0y +

(−A cos(2πt/T )− y2) v + (ε/2ω0)x2.

Parameters:

ω0 = 2π, A = 5, T = 6, ε = 0.5

DW, Uniformly hyperbolic attractor of the Smale-Williams type for a Poincaré map in theKuznetsov system, SIAM J. App. Dyn. Sys. 2010, Vol. 9, 1263–1283.

Page 9: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Global dynamics

Uniformly hyperbolic chaotic attractor for a 4-dim ODEx = ω0u,u = −ω0x +

(A cos(2πt/T )− x2)u + (ε/ω0)y cos(ω0t),

y = 2ω0v ,v = −2ω0y +

(−A cos(2πt/T )− y2) v + (ε/2ω0)x2.

Parameters:

ω0 = 2π, A = 5, T = 6, ε = 0.5DW, Uniformly hyperbolic attractor of the Smale-Williams type for a Poincaré map in theKuznetsov system, SIAM J. App. Dyn. Sys. 2010, Vol. 9, 1263–1283.

Page 10: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Kuramoto-Sivashinsky equations

ut = 2uux − uxx − νuxxxx

2π-periodic, odd

u(t , x) = −2∞∑

k=1

ak(t) sin(kx)

Infinite dimensional ODE

a′k = k2(1− νk2)ak − k

(k−1∑n=1

anak−n − 2∞∑

n=1

anan+k

)

Page 11: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Kuramoto-Sivashinsky equations

ut = 2uux − uxx − νuxxxx

2π-periodic, odd

u(t , x) = −2∞∑

k=1

ak(t) sin(kx)

Infinite dimensional ODE

a′k = k2(1− νk2)ak − k

(k−1∑n=1

anak−n − 2∞∑

n=1

anan+k

)

Page 12: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Kuramoto-Sivashinsky equations

ut = 2uux − uxx − νuxxxx

2π-periodic, odd

u(t , x) = −2∞∑

k=1

ak(t) sin(kx)

Infinite dimensional ODE

a′k = k2(1− νk2)ak − k

(k−1∑n=1

anak−n − 2∞∑

n=1

anan+k

)

Page 13: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

ν - large⇒ u(x) ≡ 0 is globally attracting

ν = 0.127 - nontrivial equilibriaZgliczynski & Mischaikow, FoCM’2001

Page 14: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

ν = 0.127 + [−1,1] · 10−7,ν = 0.125,ν = 0.1215,ν = 0.032,(branches of) (symmetric) periodic orbitsZgliczynski, FoCM’2004, TMNA’2010

ν=0.127

1.14 1.16 1.18 1.20 1.22 1.24

0.560

0.565

0.570

0.575

0.580

0.585

0.590

a2

a3

Page 15: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

ν = 4/150 ≈ 0.02666 . . . - saddle hyperbolic periodic orbitArioli & Koch, SIADS’2010

ν ∈ {4/150,0.02991,0.0266,0.111405} - periodic orbitsCastelli, Figueras, Gameiro, Lessard, de la Llave ’2016?

ν = 0.1212 - chaos, countable infinity of periodic orbitsDW, Zgliczynski ’2016?

Page 16: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

ν = 4/150 ≈ 0.02666 . . . - saddle hyperbolic periodic orbitArioli & Koch, SIADS’2010

ν ∈ {4/150,0.02991,0.0266,0.111405} - periodic orbitsCastelli, Figueras, Gameiro, Lessard, de la Llave ’2016?

ν = 0.1212 - chaos, countable infinity of periodic orbitsDW, Zgliczynski ’2016?

Page 17: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

ν = 4/150 ≈ 0.02666 . . . - saddle hyperbolic periodic orbitArioli & Koch, SIADS’2010

ν ∈ {4/150,0.02991,0.0266,0.111405} - periodic orbitsCastelli, Figueras, Gameiro, Lessard, de la Llave ’2016?

ν = 0.1212 - chaos, countable infinity of periodic orbitsDW, Zgliczynski ’2016?

Page 18: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Strategy of the proof1 Show that all (but finite number) of finite dimensional

projections of the system are chaotic2 invariant sets are compact3 conclude the same for the full system

New tools:automatic differentiation for infinite dimensional systemsvalidated integration of dPDEs

Page 19: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Strategy of the proof1 Show that all (but finite number) of finite dimensional

projections of the system are chaotic2 invariant sets are compact3 conclude the same for the full system

New tools:automatic differentiation for infinite dimensional systemsvalidated integration of dPDEs

Page 20: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Strategy of the proof1 Show that all (but finite number) of finite dimensional

projections of the system are chaotic2 invariant sets are compact3 conclude the same for the full system

New tools:automatic differentiation for infinite dimensional systemsvalidated integration of dPDEs

Page 21: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Strategy of the proof1 Show that all (but finite number) of finite dimensional

projections of the system are chaotic2 invariant sets are compact3 conclude the same for the full system

New tools:automatic differentiation for infinite dimensional systemsvalidated integration of dPDEs

Page 22: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Strategy of the proof1 Show that all (but finite number) of finite dimensional

projections of the system are chaotic2 invariant sets are compact3 conclude the same for the full system

New tools:automatic differentiation for infinite dimensional systemsvalidated integration of dPDEs

Page 23: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Infinite dimensional ODE

a′k = k2(1− νk2)ak − k

(k−1∑n=1

anak−n − 2∞∑

n=1

anan+k

)

M-dimensional Galerkin projection

a′k = k2(1− νk2)ak − k

(k−1∑n=1

anak−n − 2M−k∑n=1

anan+k

)ΠM = {a1 = 0 ∧ a′1 < 0} - Poincaré section

PM : ΠM → ΠM - Poincaré map

Page 24: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Infinite dimensional ODE

a′k = k2(1− νk2)ak − k

(k−1∑n=1

anak−n − 2∞∑

n=1

anan+k

)

M-dimensional Galerkin projection

a′k = k2(1− νk2)ak − k

(k−1∑n=1

anak−n − 2M−k∑n=1

anan+k

)ΠM = {a1 = 0 ∧ a′1 < 0} - Poincaré section

PM : ΠM → ΠM - Poincaré map

Page 25: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Observed chaotic attractor for PM

ν=0.1212

0.675 0.680 0.685 0.690 0.695 0.700

-0.61

-0.60

-0.59

-0.58

-0.57

a2

a3

Click here to run animation

Page 26: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Approximate heteroclinic orbits

blue→red

0.675 0.680 0.685 0.690 0.695 0.700

-0.61

-0.60

-0.59

-0.58

-0.57

a2

a3

red→blue

0.675 0.680 0.685 0.690 0.695 0.700

-0.61

-0.60

-0.59

-0.58

-0.57

a2

a3

Page 27: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Result for Galerkin projectionsTheorem

For M ∈ {12,14,16,20,25} the M-dimensionalGalerkin projection is chaotic:

There is an invariant set H ⊂ ΠM on which PM issemiconjugated to a subshift of finite with positivetopological entropy

H contains countable infinity of periodic orbits:every periodic sequence of symbols is realized bya periodic orbit of PM

Page 28: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Graph of symbolic dynamics

biinfinite path −→ trajectoryperiodic path −→ periodic orbit

Page 29: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Time of computation

M wall time (64CPUs)12 58 seconds14 2.03 minutes16 5.9 minutes20 54.74 minutes25 837 minutes

For all but M = 12 cases the same h-sets havebeen used.CAPD standard ODE solver used – not optimizedfor stiff problems

Page 30: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Time of computation

M wall time (64CPUs)12 58 seconds14 2.03 minutes16 5.9 minutes20 54.74 minutes25 837 minutes

For all but M = 12 cases the same h-sets havebeen used.CAPD standard ODE solver used – not optimizedfor stiff problems

Page 31: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Time of computation

M wall time (64CPUs)12 58 seconds14 2.03 minutes16 5.9 minutes20 54.74 minutes25 837 minutes

For all but M = 12 cases the same h-sets havebeen used.CAPD standard ODE solver used – not optimizedfor stiff problems

Page 32: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Main numerical result

Consider full infinite dimensional system:Π = {a1 = 0 ∧ a′1 < 0} P : Π→ Π

TheoremThere is an invariant set H ⊂ Π on which P issemiconjugated to a subshift of finite with positivetopological entropy

H contains countable infinity of periodic orbits

Wall time: 259 minutes on 64CPUsCorollary: the same result for all Galerkin projections M > 23.

Page 33: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Main numerical result

Consider full infinite dimensional system:Π = {a1 = 0 ∧ a′1 < 0} P : Π→ Π

TheoremThere is an invariant set H ⊂ Π on which P issemiconjugated to a subshift of finite with positivetopological entropy

H contains countable infinity of periodic orbits

Wall time: 259 minutes on 64CPUsCorollary: the same result for all Galerkin projections M > 23.

Page 34: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Main numerical result

Consider full infinite dimensional system:Π = {a1 = 0 ∧ a′1 < 0} P : Π→ Π

TheoremThere is an invariant set H ⊂ Π on which P issemiconjugated to a subshift of finite with positivetopological entropy

H contains countable infinity of periodic orbits

Wall time: 259 minutes on 64CPUsCorollary: the same result for all Galerkin projections M > 23.

Page 35: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

AlgorithmAutomatic differentiation for dPDEs

Hybrid high–order enclosure anddissipative enclosure

Quite sophisticated algorithm for Poincarémaps (from CAPD)

Page 36: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

AlgorithmAutomatic differentiation for dPDEs

Hybrid high–order enclosure anddissipative enclosure

Quite sophisticated algorithm for Poincarémaps (from CAPD)

Page 37: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

AlgorithmAutomatic differentiation for dPDEs

Hybrid high–order enclosure anddissipative enclosure

Quite sophisticated algorithm for Poincarémaps (from CAPD)

Page 38: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

AlgorithmAutomatic differentiation for dPDEs

Hybrid high–order enclosure anddissipative enclosure

Quite sophisticated algorithm for Poincarémaps (from CAPD)

Page 39: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Parameters of the algorithmm ≤ M - positive integers (14,23)

Representation of sequences (GeometricBound)k ≤ m - doubleton, tripleton, any known from ODEs

(a1, . . . ,am) ∈ x0 + Cr0 + Qr

k = m + 1, . . . ,M - interval

ak ∈ [a−k ,a+k ]

k > M - geometric decay (harmonic, mixed, . . .)

|ak | ≤ Cq−k

with q > 1 and C ≥ 0.

Page 40: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Parameters of the algorithmm ≤ M - positive integers (14,23)

Representation of sequences (GeometricBound)k ≤ m - doubleton, tripleton, any known from ODEs

(a1, . . . ,am) ∈ x0 + Cr0 + Qr

k = m + 1, . . . ,M - interval

ak ∈ [a−k ,a+k ]

k > M - geometric decay (harmonic, mixed, . . .)

|ak | ≤ Cq−k

with q > 1 and C ≥ 0.

Page 41: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Parameters of the algorithmm ≤ M - positive integers (14,23)

Representation of sequences (GeometricBound)k ≤ m - doubleton, tripleton, any known from ODEs

(a1, . . . ,am) ∈ x0 + Cr0 + Qr

k = m + 1, . . . ,M - interval

ak ∈ [a−k ,a+k ]

k > M - geometric decay (harmonic, mixed, . . .)

|ak | ≤ Cq−k

with q > 1 and C ≥ 0.

Page 42: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Parameters of the algorithmm ≤ M - positive integers (14,23)

Representation of sequences (GeometricBound)k ≤ m - doubleton, tripleton, any known from ODEs

(a1, . . . ,am) ∈ x0 + Cr0 + Qr

k = m + 1, . . . ,M - interval

ak ∈ [a−k ,a+k ]

k > M - geometric decay (harmonic, mixed, . . .)

|ak | ≤ Cq−k

with q > 1 and C ≥ 0.

Page 43: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

K-S equation in the Fourier basis

a′k = k2(1− νk2)ak − k

(k−1∑n=1

anak−n − 2∞∑

n=1

anan+k

)= Lkak + kEk(a) + kIk(a)

E - finite partI - infinite part

Each component is an univariate function

ak(t) =r∑

i=0

a[i]k t i + [Rk ].

Page 44: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

K-S equation in the Fourier basis

a′k = k2(1− νk2)ak − k

(k−1∑n=1

anak−n − 2∞∑

n=1

anan+k

)= Lkak + kEk(a) + kIk(a)

E - finite partI - infinite part

Each component is an univariate function

ak(t) =r∑

i=0

a[i]k t i + [Rk ].

Page 45: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Automatic differentiation

(i + 1)a[i+1]k = Lka[i]

k + kE [i]k (a) + kI [i]k (a)

= Lka[i]k + kE [i]

k (a) + Fk (a[0],a[1], . . . ,a[i])

Technical lemma(s):If

a[j] = GeometricBound (Cj ,qj)

for j = 0,1, . . . , i then

|Fk | ≤ Dk s min{qj}−k

LemmaThere are computable constants Ci+1 and 1 < qi+1 < qi suchthat

a[i+1] = GeometricBound (Ci+1,qi+1)

Page 46: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Automatic differentiation

(i + 1)a[i+1]k = Lka[i]

k + kE [i]k (a) + kI [i]k (a)

= Lka[i]k + kE [i]

k (a) + Fk (a[0],a[1], . . . ,a[i])

Technical lemma(s):If

a[j] = GeometricBound (Cj ,qj)

for j = 0,1, . . . , i then

|Fk | ≤ Dk s min{qj}−k

LemmaThere are computable constants Ci+1 and 1 < qi+1 < qi suchthat

a[i+1] = GeometricBound (Ci+1,qi+1)

Page 47: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Automatic differentiation

(i + 1)a[i+1]k = Lka[i]

k + kE [i]k (a) + kI [i]k (a)

= Lka[i]k + kE [i]

k (a) + Fk (a[0],a[1], . . . ,a[i])

Technical lemma(s):If

a[j] = GeometricBound (Cj ,qj)

for j = 0,1, . . . , i then

|Fk | ≤ Dk s min{qj}−k

LemmaThere are computable constants Ci+1 and 1 < qi+1 < qi suchthat

a[i+1] = GeometricBound (Ci+1,qi+1)

Page 48: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Automatic differentiation

(i + 1)a[i+1]k = Lka[i]

k + kE [i]k (a) + kI [i]k (a)

= Lka[i]k + kE [i]

k (a) + Fk (a[0],a[1], . . . ,a[i])

Technical lemma(s):If

a[j] = GeometricBound (Cj ,qj)

for j = 0,1, . . . , i then

|Fk | ≤ Dk s min{qj}−k

LemmaThere are computable constants Ci+1 and 1 < qi+1 < qi suchthat

a[i+1] = GeometricBound (Ci+1,qi+1)

Page 49: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Variational equations

∂ak

∂ac(t) = ak ,c(t) =

∞∑i=0

a[i]k ,ct i .

Then

a′k ,c = Lkak ,c − kk−1∑n=1

an,cak−n + anak−n,c

+ 2∞∑

n=1

an,can+k + anan+k ,c

= Lkak ,c + kEk ,c(a) + kIk ,c(a)

Automatic differentiation for variational equations

(i + 1)a[i+1]k ,c = Lka[i]

k ,c + kE [i]k ,c(a)

+ Fk ,c(a[0],a[1], . . . ,a[i],a[0]∗,c,a

[1]∗,c, . . . ,a

[i]∗,c)

Page 50: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Variational equations

∂ak

∂ac(t) = ak ,c(t) =

∞∑i=0

a[i]k ,ct i .

Then

a′k ,c = Lkak ,c − kk−1∑n=1

an,cak−n + anak−n,c

+ 2∞∑

n=1

an,can+k + anan+k ,c

= Lkak ,c + kEk ,c(a) + kIk ,c(a)

Automatic differentiation for variational equations

(i + 1)a[i+1]k ,c = Lka[i]

k ,c + kE [i]k ,c(a)

+ Fk ,c(a[0],a[1], . . . ,a[i],a[0]∗,c,a

[1]∗,c, . . . ,a

[i]∗,c)

Page 51: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Variational equations

∂ak

∂ac(t) = ak ,c(t) =

∞∑i=0

a[i]k ,ct i .

Then

a′k ,c = Lkak ,c − kk−1∑n=1

an,cak−n + anak−n,c

+ 2∞∑

n=1

an,can+k + anan+k ,c

= Lkak ,c + kEk ,c(a) + kIk ,c(a)

Automatic differentiation for variational equations

(i + 1)a[i+1]k ,c = Lka[i]

k ,c + kE [i]k ,c(a)

+ Fk ,c(a[0],a[1], . . . ,a[i],a[0]∗,c,a

[1]∗,c, . . . ,a

[i]∗,c)

Page 52: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Rough enclosure

x = f (x) - an ODEX – set of initial conditionsh > 0 – time step

X (h) ⊂∞∑

i=0

X [i]hi

X (h) ⊂p∑

i=0

X [i]hi + R

Page 53: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Rough enclosure

x = f (x) - an ODEX – set of initial conditionsh > 0 – time step

X (h) ⊂∞∑

i=0

X [i]hi

X (h) ⊂p∑

i=0

X [i]hi + R

Page 54: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Rough enclosure

x = f (x) - an ODEX – set of initial conditionsh > 0 – time step

X (h) ⊂∞∑

i=0

X [i]hi

X (h) ⊂p∑

i=0

X [i]hi + R

Page 55: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

High-order enclosure

TheoremIf Y is such that

p∑i=0

X [i][0,h]i + Y[p+1][0,h]p+1 ⊂ int(Y)

then for t ∈ [0,h], x ∈ X there holds

x(t) ∈ Y

We can bound

X (h) ⊂p∑

i=0

X [i]hi + Y[p+1][0,h]p+1

Important good prediction of h and Y

Page 56: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

High-order enclosure

TheoremIf Y is such that

p∑i=0

X [i][0,h]i + Y[p+1][0,h]p+1 ⊂ int(Y)

then for t ∈ [0,h], x ∈ X there holds

x(t) ∈ Y

We can bound

X (h) ⊂p∑

i=0

X [i]hi + Y[p+1][0,h]p+1

Important good prediction of h and Y

Page 57: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

High-order enclosure

TheoremIf Y is such that

p∑i=0

X [i][0,h]i + Y[p+1][0,h]p+1 ⊂ int(Y)

then for t ∈ [0,h], x ∈ X there holds

x(t) ∈ Y

We can bound

X (h) ⊂p∑

i=0

X [i]hi + Y[p+1][0,h]p+1

Important good prediction of h and Y

Page 58: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Example

x ′′ = − sin(x) + 0.1x ′, h = 0.25

0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

[X] = [1,2]× [0.4,0.5][Y] = [X ] + h[−.2,1.5] ∗ f ([X ]) ⊂ [0.9749,2.1875]× [0.04,0.548][Z] = [X ] + [0,h] ∗ f ([Y ]) ⊂ [1.0,2.137]× [0.1502,0.5] ⊂ int([Y ])

Page 59: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Example

x ′′ = − sin(x) + 0.1x ′, h = 0.25

0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

[X] = [1,2]× [0.4,0.5][Y] = [X ] + h[−.2,1.5] ∗ f ([X ]) ⊂ [0.9749,2.1875]× [0.04,0.548][Z] = [X ] + [0,h] ∗ f ([Y ]) ⊂ [1.0,2.137]× [0.1502,0.5] ⊂ int([Y ])

Page 60: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Example

x ′′ = − sin(x) + 0.1x ′, h = 0.25

0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

[X] = [1,2]× [0.4,0.5][Y] = [X ] + h[−.2,1.5] ∗ f ([X ]) ⊂ [0.9749,2.1875]× [0.04,0.548][Z] = [X ] + [0,h] ∗ f ([Y ]) ⊂ [1.0,2.137]× [0.1502,0.5] ⊂ int([Y ])

Page 61: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Example

x ′′ = − sin(x) + 0.1x ′, h = 0.25

0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

[X] = [1,2]× [0.4,0.5][Y] = [X ] + h[−.2,1.5] ∗ f ([X ]) ⊂ [0.9749,2.1875]× [0.04,0.548][Z] = [X ] + [0,h] ∗ f ([Y ]) ⊂ [1.0,2.137]× [0.1502,0.5] ⊂ int([Y ])

Page 62: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Enclosure algorithm for PDEs

Parametersp ≥ 1 - order of enclosure

D - positive integernumber of modes on which High–Order Enclosure acts

h0 - a candidate for the time step

Main steps1 predict enclosure on (a1, . . . ,aD) with h0

2 compute enclosure for k > D using isolation

3 validate enclosure on (a1, . . . ,aD)adjust final step h ≤ h0

Page 63: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Enclosure algorithm for PDEs

Parametersp ≥ 1 - order of enclosure

D - positive integernumber of modes on which High–Order Enclosure acts

h0 - a candidate for the time step

Main steps1 predict enclosure on (a1, . . . ,aD) with h0

2 compute enclosure for k > D using isolation

3 validate enclosure on (a1, . . . ,aD)adjust final step h ≤ h0

Page 64: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Enclosure algorithm for PDEs

Parametersp ≥ 1 - order of enclosure

D - positive integernumber of modes on which High–Order Enclosure acts

h0 - a candidate for the time step

Main steps1 predict enclosure on (a1, . . . ,aD) with h0

2 compute enclosure for k > D using isolation

3 validate enclosure on (a1, . . . ,aD)adjust final step h ≤ h0

Page 65: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Enclosure algorithm for PDEs

Parametersp ≥ 1 - order of enclosure

D - positive integernumber of modes on which High–Order Enclosure acts

h0 - a candidate for the time step

Main steps1 predict enclosure on (a1, . . . ,aD) with h0

2 compute enclosure for k > D using isolation

3 validate enclosure on (a1, . . . ,aD)adjust final step h ≤ h0

Page 66: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

ε - user specified tolerance per one step

Predict a high–order enclosure for k ≤ D

Yk =

p∑i=0

a[i]k [0,h0]i + [−ε, ε]

Page 67: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Conditional enclosure for k > D

Y = GeometricBound ((Y1, . . . ,YM),C,q)

Assume (Y1, . . . ,YD) is an enclosure for [0,h0]

Enlarge YD+1, . . . ,YM and C as long as vectorfield is pointing inwards the interval Yk , k > D

Lkak ∈ Θ(k4)q−k, Lk < 0Nk(a) ∈ O(k2)q−k

Page 68: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Conditional enclosure for k > D

Y = GeometricBound ((Y1, . . . ,YM),C,q)

Assume (Y1, . . . ,YD) is an enclosure for [0,h0]

Enlarge YD+1, . . . ,YM and C as long as vectorfield is pointing inwards the interval Yk , k > D

Lkak ∈ Θ(k4)q−k, Lk < 0Nk(a) ∈ O(k2)q−k

Page 69: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Conditional enclosure for k > D

Y = GeometricBound ((Y1, . . . ,YM),C,q)

Assume (Y1, . . . ,YD) is an enclosure for [0,h0]

Enlarge YD+1, . . . ,YM and C as long as vectorfield is pointing inwards the interval Yk , k > D

Lkak ∈ Θ(k4)q−k, Lk < 0Nk(a) ∈ O(k2)q−k

Page 70: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Conditional enclosure for k > D

Y = GeometricBound ((Y1, . . . ,YM),C,q)

Assume (Y1, . . . ,YD) is an enclosure for [0,h0]

Enlarge YD+1, . . . ,YM and C as long as vectorfield is pointing inwards the interval Yk , k > D

Lkak ∈ Θ(k4)q−k, Lk < 0Nk(a) ∈ O(k2)q−k

Page 71: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Validate (Y1, . . . ,YD)From prediction:

Yk =

p∑i=0

a[i]k [0,h0]i + [−ε, ε]

Check

Y [p+1]k [0,h0]p+1 ⊂ [−ε, ε]

If not satisfied then find h ≤ h0 such that

Y [p+1]k [0,h]p+1 ⊂ [−ε, ε]

Page 72: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Validate (Y1, . . . ,YD)From prediction:

Yk =

p∑i=0

a[i]k [0,h0]i + [−ε, ε]

Check

Y [p+1]k [0,h0]p+1 ⊂ [−ε, ε]

If not satisfied then find h ≤ h0 such that

Y [p+1]k [0,h]p+1 ⊂ [−ε, ε]

Page 73: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Validate (Y1, . . . ,YD)From prediction:

Yk =

p∑i=0

a[i]k [0,h0]i + [−ε, ε]

Check

Y [p+1]k [0,h0]p+1 ⊂ [−ε, ε]

If not satisfied then find h ≤ h0 such that

Y [p+1]k [0,h]p+1 ⊂ [−ε, ε]

Page 74: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Initial condition

5 10 15 20 k0

2

4

6

8

10

12

ak

Adjust h if necessary

Page 75: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Initial condition

HOE prediction

5 10 15 20 k0

2

4

6

8

10

12

ak

Adjust h if necessary

Page 76: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Initial condition

HOE prediction

Isolation

5 10 15 20 k0

2

4

6

8

10

12

ak

Adjust h if necessary

Page 77: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Initial condition

HOE prediction

Isolation

5 10 15 20 k0

2

4

6

8

10

12

ak

Adjust h if necessary

Page 78: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Taylor method

a(h) =

p∑i=0

a[i]hi + Y [p+1][0,h]p+1 = Φ(h,a) + R.

Split initial condition

a = (a1, . . . ,aM ,aM+1,aM+2, . . .) = (x0 + ∆x , y)

One step enclosure for k = 1, . . . ,M:

Φk (h,a) ⊂ Φk (h, (x0, y)) + Dx Φk (h,a) · (∆x , y)

One step enclosure for j > M:

Y ′k < LkYk + C ⇒ ak (h) <

(Yk (0)− C

−Lk

)ehLk +

C−Lk

Page 79: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Taylor method

a(h) =

p∑i=0

a[i]hi + Y [p+1][0,h]p+1 = Φ(h,a) + R.

Split initial condition

a = (a1, . . . ,aM ,aM+1,aM+2, . . .) = (x0 + ∆x , y)

One step enclosure for k = 1, . . . ,M:

Φk (h,a) ⊂ Φk (h, (x0, y)) + Dx Φk (h,a) · (∆x , y)

One step enclosure for j > M:

Y ′k < LkYk + C ⇒ ak (h) <

(Yk (0)− C

−Lk

)ehLk +

C−Lk

Page 80: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Taylor method

a(h) =

p∑i=0

a[i]hi + Y [p+1][0,h]p+1 = Φ(h,a) + R.

Split initial condition

a = (a1, . . . ,aM ,aM+1,aM+2, . . .) = (x0 + ∆x , y)

One step enclosure for k = 1, . . . ,M:

Φk (h,a) ⊂ Φk (h, (x0, y)) + Dx Φk (h,a) · (∆x , y)

One step enclosure for j > M:

Y ′k < LkYk + C ⇒ ak (h) <

(Yk (0)− C

−Lk

)ehLk +

C−Lk

Page 81: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Taylor method

a(h) =

p∑i=0

a[i]hi + Y [p+1][0,h]p+1 = Φ(h,a) + R.

Split initial condition

a = (a1, . . . ,aM ,aM+1,aM+2, . . .) = (x0 + ∆x , y)

One step enclosure for k = 1, . . . ,M:

Φk (h,a) ⊂ Φk (h, (x0, y)) + Dx Φk (h,a) · (∆x , y)

One step enclosure for j > M:

Y ′k < LkYk + C ⇒ ak (h) <

(Yk (0)− C

−Lk

)ehLk +

C−Lk

Page 82: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Important property of the algorithm:

The algorithm integrates simultaneously allN–dimensional Galerkin projections with N > M.

Page 83: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Proof of stable periodic orbitResult reproduced from Zgliczynski FoCM’2004

ν=0.127

1.14 1.16 1.18 1.20 1.22 1.24

0.560

0.565

0.570

0.575

0.580

0.585

0.590

a2

a3

Page 84: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

ui Pi(u) λi

[−1,1] · 10−5 [−5.45,5.45] · 10−6 0.5258[−1,1] · 10−5 [−9.85,9.81] · 10−7 0.0903[−1,1] · 10−5 [−5.86,4.67] · 10−9 3.5 · 10−8

[−1,1] · 10−5 [−6.61,4.32] · 10−9 1.65 · 10−8

[−1,1] · 10−5 [−8.02,5.65] · 10−9 −3.77 · 10−9

[−1,1] · 10−5 [−6.62,8.19] · 10−9 −4.01 · 10−11

[−1,1] · 10−5 [−7.30,9.62] · 10−9 −8.94 · 10−10

[−1,1] · 10−5 [−2.15,1.53] · 10−9 −6.69 · 10−11

. . . . . .k > 23 k > 23

10−5(1.5)−k 5.01 · 10−8(1.5)−k

Page 85: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Topological tool for chaos

Covering relationsP. Zgliczynski, M. Gidea, JDE’2004

M+

f(N−)

f(N−)

One unstable direction

M+

M−M−

f(N)f(N )−

Two unstable directions

Page 86: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Theorem (Zgliczynski, Gidea)Every binifinite (periodic) sequence of covering relations is realised bya (periodic) trajectory.

Model 2D situation:N covers M and itselfM covers N and itself

There are points jumping between N and M in any prescribedorder {N,M}Z

periodic sequence {N,M}Z periodic point

Page 87: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Chaos in the KS equations:

1 Find approximate two periodic orbits P1 and P2

2 find approximate finite trajectories(a) H12: starting very close to P1 and ending very close to P2(b) H21: starting very close to P2 and ending very close to P1

3 construct sequence of covering relations:(a) P1 =⇒ P1 =⇒ H1

12 =⇒ · · · =⇒ Hn12 =⇒ P2

(b) P2 =⇒ P2 =⇒ H121 · · · =⇒ · · ·Hm

21 =⇒ P1

Page 88: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Approximate heteroclinic orbits

blue→red

0.675 0.680 0.685 0.690 0.695 0.700

-0.61

-0.60

-0.59

-0.58

-0.57

a2

a3

red→blue

0.675 0.680 0.685 0.690 0.695 0.700

-0.61

-0.60

-0.59

-0.58

-0.57

a2

a3

Page 89: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Unstable periodic orbit for ν = 0.1212

ν=0.1212

0.675 0.680 0.685 0.690 0.695 0.700

-0.61

-0.60

-0.59

-0.58

-0.57

a2

a3

Page 90: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Data from the proof of blue=⇒blue

ui Pi(u) λi

3.8[−1,1] · 10−6 [−8.09,8.09] · 10−6 −1.77041.9[−1,1] · 10−7 [−4.33,4.59] · 10−8 −0.065111.9[−1,1] · 10−7 [−2.35,1.68] · 10−8 −2.92 · 10−16

1.9[−1,1] · 10−7 [−0.718,1.13] · 10−8 ≈ 01.9[−1,1] · 10−7 [−0.982,1.40] · 10−8 ≈ 01.9[−1,1] · 10−7 [−1.33,2.04] · 10−8 ≈ 01.9[−1,1] · 10−7 [−2.86,3.64] · 10−9 ≈ 01.9[−1,1] · 10−7 [−2.75,1.67] · 10−9 ≈ 01.9[−1,1] · 10−7 [−3.64,4.31] · 10−10 ≈ 0

. . . . . .k > 23 k > 23

1.9 · 10−7(1.5)−k 2.64 · 10−9(1.5)−k

Page 91: Validated integration of dissipative PDEs: chaos in the Kuramoto … · 2016-07-27 · Validated integration of dissipative PDEs: chaos in the Kuramoto-Sivashinsky equations Daniel

Thank you for your attention