17
V1 Computational Theory Lateral view Retinogeniculate visual pathway Ventral view optic nerve optic chiasm optic tract LGN optic radiation primary visual cortex Retinogeniculate visual pathway

V1 Computational Theory - Center for Neural ScienceV1 Computational Theory Lateral view Retinogeniculate visual pathway Ventral view optic nerve optic chiasm optic tract LGN optic

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • V1 Computational Theory

    Lateral view

    Retinogeniculate visual pathway

    Ventral view

    optic nerve

    optic chiasm

    optic tract

    LGN

    optic radiation

    primary visual cortex

    Retinogeniculate visual pathway

  • Stimulus drive & response selectivity

    V1 orientation tuning

    Neu

    ral r

    espo

    nse

    (spi

    kes/

    sec)

    Stimulus orientation (deg)

    Simple cell

  • Complex cell

    Hubel & Wiesel movie

    V1 physiology

    Simple cells:• orientation selective• some are direction selective• some are disparity selective• monocular or binocular• separate ON and OFF subregions• length summation(best response to long bar)

    Complex cells:• orientation selective• some are direction selective• some are disparity selective• nearly all are binocular• no separate ON and OFF subregions• length summation

    Hypercomplex cells:end-stopping (best response to short bar)

  • No stimulus in receptive field: no response

    Non-preferred stimulus: no response

    Preferred stimulus: large response

    Orientation selectivity model

    Stimulus: vertical bar

    Responses of each of severalorientation tuned neurons.

    Peak (distribution mean) codesfor stimulus orientation.

    Distributed representation of orientation

    Broad tuning can code for small changes

  • Neural code depends on multiple factors

    linearweighting function

    rectification

    firing ratestimulus

    Complementaryreceptive fields

    Rectification and squaring

    Rectification and squaring

    Rectification approximates relationship between membrane potential and spiking

  • Greg DeAngelis

    Complex cells: theory

    Complex cells & position invarianceOriented stimulus as seen by both subunits at two different locations:

  • Theory of spatial pattern analysis by the visual system

    Input image(cornea)

    “Neural image”(retinal ganglion cells)

    Neural image: retinal ganglion cell responses

    Array of center-surround receptive fields

    Neural image: simple cell responses

    Input image(cornea)

    “Neural image”(V1 simple cells)

    Array of orientation-selective receptive fields

  • Lots of neural images: V1 simple cells

    A

    B

    C

    Lots of neural images

    V1 simple cells

    V1 complex cells

    Psychophysical/perceptual evidence for spatial-frequency and orientation selective channels

  • ++

    Orientation selective adaptation

    Orientation selective adaptation

    +

    +

    Orientation selective adaptation

    +

  • Normalization in monkey V1

    Response saturation and phase advance

    25%

    50%

    0 1540

    Time (ms)

    Res

    pons

    e (s

    p/s)

    100%

    12.5%

    2

    5

    10

    20

    50

    100

    Ampl

    itude

    (sp/

    s)

    5 10 20 50 100-90

    -45

    0

    Contrast (%)

    Rel

    ativ

    e ph

    ase

    (deg

    )

    Time (ms)

    Resp

    onse

    (sp/

    s)

    Contrast (%)

    Rela

    tive

    pha

    se (d

    eg)

    Am

    plit

    ude

    (sp/

    s)

    Can no longer discriminate orientations near vertical

    Failure of invariance with saturation?

  • 10 20 50 100

    0.5

    1

    2

    5

    10

    20

    50

    Contrast of grating 1 (%)

    Res

    pons

    e A

    mpl

    itude

    (sp

    /s)

    10 20 50 100

    Contrast of grating 2 (%)

    6.25%

    25%

    50%

    6.25% 25%

    0%

    50%

    6130

    76

    Time (ms)

    Res

    pons

    e (s

    p/s)

    0%

    0

    Masking

    Normalization model

    Σ( )normalizedresponse

    (unnormalized response)2

    unnormalized 2responses + σ

    2

    =

    Response saturation and cross-orientation suppression

    25%

    50%

    0 1540

    Time (ms)

    Res

    pons

    e (s

    p/s)

    100%

    12.5%

    2

    5

    10

    20

    50

    100

    Ampl

    itude

    (sp/

    s)

    5 10 20 50 100-90

    -45

    0

    Contrast (%)

    Rel

    ativ

    e ph

    ase

    (deg

    ) Contrast (%)

    Am

    plit

    ude

    (sp/

    s)

    r = α c2

    c2 +σ 2

    10 20 50 100

    0.5

    1

    2

    5

    10

    20

    50

    Contrast of grating 1 (%)

    Res

    pons

    e A

    mpl

    itude

    (sp

    /s)

    10 20 50 100

    Contrast of grating 2 (%)

    6.25%

    25%

    50%

    6.25% 25%

    0%

    50%

    6130

    76

    Time (ms)

    Res

    pons

    e (s

    p/s)

    0%

    0

    r = α ct2

    ct2 + cm

    2 +σ 2

    Resp

    onse

    am

    plit

    ude

    (sp/

    s)

    Contrast of grating 1 (%)

  • Ratio of responses to pref and non-pref directions constant overfull range of contrasts.

    Contrast invariance

    Contrast

    Resp

    onse

    (spi

    kes/

    sec)

    Tolhurst & Dean (1980) Model

    Surround suppression

    CRF

    SurroundSurround ck

    sk

    CRF

    Surround

    0 < β < 1 surround suppression

    80

    60

    40

    20

    0

    0 1 2 3 4 5 6452l021.p05

    Grating patch diameter (deg)

    Res

    pons

    e (im

    p/se

    c)

    Suppression

    Surrounddiameter

    Optimaldiameter

    Surround suppression

    CRF

    SurroundSurround ck

    sk

    CRF

    Surround

  • Psychophysical/perceptual evidence for normalization

    Masking

    Target Surround masking

    Overlay masking

  • Canonical computation hypothesis: normalization in other brain areas

    Light adaptation in the retina (revisited)

    R =α ItIt + Ib +σ

    1 10 1000

    50

    100

    150

    200

    1 10 100ORN response (spikes/sec)

    PN r

    espo

    nse

    (spi

    kes/

    sec)

    Normalization in fruit fly olfaction

    R = α Itn

    Itn + Im

    n +σ n

    Mask odor Test odorORN: olfactory receptor neuronPN: projection neuron

    Test only Mask + Test

  • Also...

    •Visual cortical areas V4 (pattern), MT (motion perception), and IT (object recognition).

    •Other sensory modalities: auditory cortex; multisensory integration (visual motion and vesibular system) in MST.

    •Encoding of value in posterior parietal cortex.•Superior colliculus: saccade averaging.•Attention: modulation of activity in visual cortex.

    Why normalize?

    • Limited dynamic range (Heeger, Vis Neurosci, 1992).•Simplify read-out, thinking of population code as a probability

    density (Simoncelli & Heeger, Vis Res, 1998; Simoncelli, in The Visual Neurosciences, 2003; Beck, Latham & Pouget, J Neurosci, 2011).

    • Invariance w.r.t. one or more stimulus dimensions, e.g., contrast, odorant concentration (Heeger, Vis Neurosci, 1992; Heeger, Simoncelli & Movshon, PNAS, 1996; Simoncelli & Heeger, Vis Res, 1998; Ringach, Vis Res, 2009; Olsen, Bhandawat & Wilson, Neuron, 2010).

    •Averaging vs. winner-take-all (Busse, Wade & Carandini, Neuron, 2009).•Decorrelation & statistical independence (Schwartz & Simoncelli, Nat

    Neurosci, 2001; Lyu & Simoncelli, Neural Comput, 2009; Olsen, Bhandawat & Wilson, Neuron, 2010; Lyu, Axel & Abbott, PNAS, 2010).

    Possible circuits & mechanisms

    •Might be feedforward, feedback, or a combination of the two (Heeger, J Neurophysiol, 1993)

    •Shunting inhibition (Carandini & Heeger, Science, 1994; Carandini, Heeger & Movshon, J Neurosci, 1997)

    •Synaptic depression (Carandini, Heeger & Senn, J Neurosci, 2002)• Presynaptic inhibition (Olsen & Wilson, Nature 2008)•Balanced amplification (Murphy & Miller, Neuron, 2009)•Background synaptic activity (Chance, Abbott & Reyes, Neuron, 2002)•Saturation of the inputs combined with spike threshold and

    spike-rate rectification (Priebe & Ferster, Neuron, 2008)

    •Etc.

  • From circuits & mechanisms to behavior

    Computation

    Circuits & cellular/molecular mechanisms Behavior

    Carandini, Nat Neurosci (2012)

    Mechanism?

    Canonical computation deficit hypothesis

    Possible dysfunction of normalization underlying schizophrenia, epilepsy, and other developmental and neurological disorders.

  • Schizophrenia: a dysfunction of normalization?

    Dakin, Carlin & Hemsley, Curr Biol, 2005

    Possible mechanism for normalization deficit

    MR spectroscopy

    Yoon et al, J Neurosci, 2010