75
MC33204 MC33204 MC33204 MC33204 IC1A IC1B IC1C IC1D + 1 2 -- 3 + INPUT Virtual Ground C1 0.1uF 47k 1M GND C2 4.7uF 4 13 -- 12 + 14 11 +12V 20k 20k 20k 8 7 1k 680 560k V-GND 0.0022uF 0.0022uF TREBLE (~3kHz) 9 10 -- + V-GND 680 1k 0.01uF 0.01uF 560k 6 5+ -- MID (~900Hz) V-GND 1k 680 0.047uF 0.047uF 560k BASS (~100Hz) + 2.2uF 39k 1N4002 1uF 100k 2N3904 1k 1k Yellow LEDs +12V + 2.2uF 39k 1N4002 4.7uF 100k 2N3904 470 470 +12V RED LEDs + + 2.2uF 1N4002 39k 100k 2N3904 + + 22uF +12V BLUE LEDs 1 8 3+ 2-- 4 V-GND +12V V+ 100k 100k 0.1uF MC34072P (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2-- 3+ 7 6 4 +12V V-GND V+ 100k 100k 0.1uF TS921 (original wiring) Virtual Ground 160 160

V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33204

MC33204

MC33204

MC33204

IC1A

IC1B

IC1C

IC1D

+

12 --

3 +

INPU

T

Virtual Ground

C1

0.1u

F

47k

1M

GND

C2 4.7uF

413 --

12 +

14

11

+12V

20k

20k

20k

8

7

1k

680

560k

V-GND

0.0022uF

0.0022uF

TREBLE (~3kHz)

9

10

--

+

V-GND

680

1k

0.01uF

0.01uF

560k

6

5 +

--

MID (~900Hz)

V-GND

1k

680

0.047uF

0.047uF

560k

BASS (~100Hz)

+

2.2uF

39k

1N4002

1uF

100k

2N3904

1k

1kYellow LEDs

+12V

+

2.2uF

39k

1N4002

4.7uF

100k

2N3904

470

470

+12V

RED LEDs

+

+

2.2uF 1N4002

39k

100k

2N3904+

+ 22uF

+12V

BLUE LEDs

18

3+

2--4

V-GND

+12VV+

100k

100k

0.1u

F

MC34072P

(important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp)

2--

3+7

6

4

+12V

V-GND

V+

100k

100k

0.1u

F

TS921

(original wiring) Virtual Ground

160

160

Page 2: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

1/10

RAIL TO RAIL INPUT AND OUTPUT LOW NOISE : 9nV/√(Hz) LOW DISTORTION HIGH OUTPUT CURRENT : 80mA

(able to drive 32Ω loads) HIGH SPEED : 4MHz, 1V/µs OPERATING FROM 2.7V to 12V ESD INTERNAL PROTECTION : 1.5KV LATCH-UP IMMUNITY MACROMODEL INCLUDED IN THIS SPECI-

FICATION

DESCRIPTION

The TS921 is a RAIL TO RAIL single BiCMOSoperational amplifier optimized and fully specifiedfor 3V and 5V operation.High output current allows low load impedances tobe driven.The TS921 exhibits a very low noise, low distor-tion, low offset and high ouput current capabilitymaking this device an excellent choice for highquality, low voltage or battery operated audio sys-tems.The device is stable for capacitive loads up to500pF.

APPLICATIONS

headphone amplifier piezoelectric speaker driver sound cards, multimedia systems line driver, actuator driver servo amplifier mobile phone and portable communication

sets instrumentation with low noise as key factor

ORDER CODE

N = Dual in Line Package (DIP)D = Small Outline Package (SO) - also available in Tape & Reel (DT)P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape & Reel (PT)

PIN CONNECTIONS (top view)

Part Number

Temperature Range

Package

N D P

TS921I -40°C, +125°C • • •

NDIP8

(Plastic Package)

DSO8

(Plastic Micropackage)

PTSSOP8

(Thin Shrink Small Outline Package)

1

2

3

4 5

6

7

8

-

+

Inverting Input

N.C.

Non-inverting Input

VCC

VCC+

Output

N.C.

N.C.

TS921RAIL TO RAIL HIGH OUTPUT CURRENT

SINGLE OPERATIONAL AMPLIFIER

February 2001

Page 3: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

TS921

2/10

ABSOLUTE MAXIMUM RATINGS

OPERATING CONDITIONS

Symbol Parameter Value Unit

VCC Supply voltage 1) 14 V

Vid Differential Input Voltage 2) ±1 V

Vi Input Voltage 3) -0.3 to 14 V

Toper Operating Free Air Temperature Range -40 to +125 °C

Istg Storage Temperature -65 to +150 °C

Tj Maximum Junction Temperature 150 °C

Output Short Circuit Duration see note 4) °C1. All voltages values, except differential voltage are with respect to network ground terminal.2. Differential voltagesare the non-inverting input terminal with respect to the inverting input terminal.3. The magnitude of input and output voltages must never exceed VCC

+ +0.3V.4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers

Symbol Parameter Value Unit

VCC Supply voltage 2.7 to 12 V

Vicm Common Mode Input Voltage Range VCC- -0.2 to VCC

+ +0.2 V

Page 4: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

TS921

3/10

ELECTRICAL CHARACTERISTICSVCC

+ = 3V, Tamb = 25°C (unless otherwise specified)

Symbol Parameter Min. Typ. Max. Unit

VioInput Offset Voltage

Tmin. ≤ Tamb ≤ Tmax.35

mV

DVio Input Offset Voltage Drift 2 µV/°C

IioInput Offset Current

Vout = 1.5V 30nA

IibInput Bias Current

Vout = 1.5V 15 100nA

VOHHigh Level Output Voltage RL = 600Ω

RL = 32Ω2.87

2.63V

VOLLow Level Output Voltage RL = 600Ω

RL = 32Ω 180100

mV

AvdLarge Signal Voltage Gain (Vout = 2Vpk-pk) RL = 600Ω

RL = 32Ω3516

V/mV

ICCSupply Current no load, Vout = Vcc/2 1 1.5

mA

GBPGain Bandwith Product

RL = 600Ω 4MHz

CMR Common Mode Rejection Ratio 60 80 dB

SVRSupply Voltage Rejection RatioVcc = 2.7 to 3.3 V 60 80

dB

Io Output Short Circuit Current 50 80 mA

SR Slew Rate 0.7 1.3 V/µs

φmPhase Margin at Unit Gain

RL = 600Ω, CL =100pF 68Degrees

GmGain Margin

RL = 600Ω, CL =100pF 12dB

enEquivalent Input Noise Voltage

f = 1kHz 9

THDTotal Harmonic Distortion

Vout = 2Vpk-pk, F = 1kHz, Av = 1, RL =600Ω 0.005%

nV

Hz------------

Page 5: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

TS921

4/10

ELECTRICAL CHARACTERISTICSVCC

+ = 5V, Tamb = 25°C (unless otherwise specified)

Symbol Parameter Min. Typ. Max. Unit

VioInput Offset Voltage

Tmin. ≤ Tamb ≤ Tmax.

35

mV

DVio Input Offset Voltage Drift 2 µV/°C

IioInput Offset Current

Vout = 1.5V 30nA

IibInput Bias Current

Vout = 1.5V 15 100nA

VOHHigh Level Output Voltage RL = 600Ω

RL = 32Ω4.85

4.4V

VOLLow Level Output Voltage RL = 600Ω

RL = 32Ω 300120

mV

AvdLarge Signal Voltage Gain (Vout = 2Vpk-Vpk) RL = 600Ω

RL = 32Ω3516

V/mV

IccSupply Current

no load, Vout = Vcc/2 1 1.5mA

GBPGain Bandwith Product

RL = 600Ω 4MHz

CMR Common Mode Rejection Ratio 60 80 dB

SVRSupply Voltage Rejection Ratio

Vcc = 4.5 to 5.5V 60 80dB

Io Output Short Circuit Current 50 80 mA

SR Slew Rate 0.7 1.3 V/µs

φmPhase Margin at Unit Gain

RL = 600Ω, CL =100pF 68Degrees

GmGain Margin

RL = 600Ω, CL =100pF 12dB

enEquivalent Input Noise Voltage

f = 1kHz9

THDTotal Harmonic Distortion

Vout = 2Vpk-pk, F = 1kHz, Av = 1, RL =600Ω 0.005%

nV

Hz------------

Page 6: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

TS921

5/10

MACROMODELS

** Standard Linear Ics Macromodels, 1996.** CONNECTIONS :* 1 INVERTING INPUT* 2 NON-INVERTING INPUT* 3 OUTPUT* 4 POSITIVE POWER SUPPLY* 5 NEGATIVE POWER SUPPLY

.SUBCKT TS921 1 3 2 4 5 (analog) ********************************************************* .MODEL MDTH D IS=1E-8 KF=2.664234E-16 CJO=10F* INPUT STAGECIP 2 5 1.000000E-12CIN 1 5 1.000000E-12EIP 10 5 2 5 1EIN 16 5 1 5 1RIP 10 11 8.125000E+00RIN 15 16 8.125000E+00RIS 11 15 2.238465E+02DIP 11 12 MDTH 400E-12DIN 15 14 MDTH 400E-12VOFP 12 13 DC 153.5uVOFN 13 14 DC 0IPOL 13 5 3.200000E-05CPS 11 15 1e-9DINN 17 13 MDTH 400E-12VIN 17 5 -0.100000e+00DINR 15 18 MDTH 400E-12VIP 4 18 0.400000E+00FCP 4 5 VOFP 1.865000E+02FCN 5 4 VOFN 1.865000E+02FIBP 2 5 VOFP 6.250000E-03FIBN 5 1 VOFN 6.250000E-03* GM1 STAGE ***************FGM1P 119 5 VOFP 1.1FGM1N 119 5 VOFN 1.1RAP 119 4 2.6E+06RAN 119 5 2.6E+06* GM2 STAGE *************** G2P 19 5 119 5 1.92E-02

G2N 19 5 119 4 1.92E-02R2P 19 4 1E+07R2N 19 5 1E+07**************************VINT1 500 0 5GCONVP 500 501 119 4 19.38 !envoie ds VP, I(VP)=(V119-V4)/2/Ut VP 501 0 0GCONVN 500 502 119 5 19.38 !envoie ds VN, I(VN)=(V119-V5)/2/Ut VN 502 0 0********* orientation isink isource *******VINT2 503 0 5FCOPY 503 504 VOUT 1DCOPYP 504 505 MDTH 400E-9VCOPYP 505 0 0DCOPYN 506 504 MDTH 400E-9VCOPYN 0 506 0***************************F2PP 19 5 poly(2) VCOPYP VP 0 0 0 0 0.5 !multiplie I(vout)*I(VP)=Iout*(V119-V4)/2/UtF2PN 19 5 poly(2) VCOPYP VN 0 0 0 0 0.5 !multiplie I(vout)*I(VN)=Iout*(V119-V5)/2/UtF2NP 19 5 poly(2) VCOPYN VP 0 0 0 0 1.75 !multiplie I(vout)*I(VP)=Iout*(V119-V4)/2/UtF2NN 19 5 poly(2) VCOPYN VN 0 0 0 0 1.75 !multiplie I(vout)*I(VN)=Iout*(V119-V5)/2/Ut* COMPENSATION ************CC 19 119 25p* OUTPUT***********DOPM 19 22 MDTH 400E-12DONM 21 19 MDTH 400E-12HOPM 22 28 VOUT 6.250000E+02VIPM 28 4 5.000000E+01HONM 21 27 VOUT 6.250000E+02VINM 5 27 5.000000E+01VOUT 3 23 0ROUT 23 19 6COUT 3 5 1.300000E-10DOP 19 25 MDTH 400E-12VOP 4 25 1.052DON 24 19 MDTH 400E-12VON 24 5 1.052.ENDS

ELECTRICAL CHARACTERISTICSVCC

+ = 3V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)

Symbol Conditions Value Unit

Vio 0 mV

Avd RL = 10kΩ 200 V/mV

ICC No load, per operator 1.2 mA

Vicm -0.2 to 3.2 V

VOH RL = 10kΩ 2.95 V

VOL RL = 10kΩ 25 mV

Isink VO = 3V 80 mA

Isource VO = 0V 80 mA

GBP RL = 600kΩ 4 MHz

SR RL = 10kΩ, CL = 100pF 1.3 V/µs

φm RL = 600kΩ 68 Degrees

Page 7: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

TS921

6/10

OUTPUT SHORT CIRCUIT CURRENT vs OUTPUT VOLTAGE

OUTPUT SHORT CIRCUIT CURRENT vs OUTPUT VOLTAGE

OUTPUT SUPPLY CURRENT vs SUPPLY VOLTAGE

VOLTAGE GAIN AND PHASE vs FREQUENCY

EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

THD + NOISE vs FREQUENCY

0 1 2 3 4 5-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

Output Voltage (V)

Out

putS

hort

-Cir

cuit

Cur

rent

(mA)

Source

Sink

Vcc=0/5V

0 0,5 1 1,5 2 2,5 3-100

-80

-60

-40

-20

0

20

40

60

80

100

Output Voltage (V)

Ou

tpu

tS

ho

rt-C

ircu

itC

urr

en

t(m

A)

Source

Sink

Vcc=0/3V

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08-20

0

20

40

60

-60

0

60

120

180

Frequency (Hz)

Gai

n(d

B)

Ph

ase

(De

g)

gain

phase

Rl=10kCl=100pF

0.01 0.1 1 10 100

Frequency (kHz)

0

5

10

15

20

25

30

Equ

ival

entI

nput

Noi

se(n

V/s

qrt(

Hz)

VCC=±1.5VRL=100Ω

0.01 0.1 1 10 100

Frequency (kHz)

0

0.005

0.01

0.015

0.02

TH

D+N

oise

(%)

RL=2k Vo=10VppVCC=±6V Av= 1

Page 8: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

TS921

7/10

THD + NOISE vs FREQUENCY

THD + NOISE vs FREQUENCY

THD + NOISE vs OUTPUT VOLTAGE

THD + NOISE vs OUTPUT VOLTAGE

THD + NOISE vs OUTPUT VOLTAGE

OPEN LOOP GAIN AND PHASE vs FREQUENCY

0.01 0.1 1 10 100

Frequency (kHz)

0

0.008

0.016

0.024

0.032

0.04

TH

D+N

oise

(%) RL=32Ω Vo=4Vpp

VCC=±2.5V Av= 1

0.01 0.1 1 10 100

Frequency (kHz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TH

D+N

oise

(%)

RL=32Ω Vo=2VppVCC=±1.5V Av= 10

0 0,2 0,4 0,6 0,8 1 1,20,001

0,010

0,100

1,000

10,000

Vout (Vrms)

THD

+No

ise

(%)

RL=600Ω f=1kHzVCC=0/3V Av= -1

0 0.2 0.4 0.6 0.8 1

Vout (Vrms)

0.01

0.1

1

10

TH

D+N

ois

e(%

) RL=32Ω f=1kHzVCC=±1.5V Av= -1

0 0.2 0.4 0.6 0.8 1 1.2

Vout (Vrms)

0.001

0.01

0.1

1

10

TH

D+

Noi

se(%

) RL=2kΩ f=1kHzVCC=±1.5V Av= -1

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8

Frequency (Hz)

0

10

20

30

40

50

Gai

n(d

B)

0

60

120

180

Pha

se(D

eg)

CL=500pF

Page 9: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

TS921

8/10

PACKAGE MECHANICAL DATA8 PINS - PLASTIC DIP

Dim.Millimeters Inches

Min. Typ. Max. Min. Typ. Max.

A 3.32 0.131

a1 0.51 0.020

B 1.15 1.65 0.045 0.065

b 0.356 0.55 0.014 0.022

b1 0.204 0.304 0.008 0.012

D 10.92 0.430

E 7.95 9.75 0.313 0.384

e 2.54 0.100

e3 7.62 0.300

e4 7.62 0.300

F 6.6 0260

i 5.08 0.200

L 3.18 3.81 0.125 0.150

Z 1.52 0.060

Page 10: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

TS921

9/10

PACKAGE MECHANICAL DATA8 PINS - PLASTIC MICROPACKAGE (SO)

Dim.Millimeters Inches

Min. Typ. Max. Min. Typ. Max.

A 1.75 0.069

a1 0.1 0.25 0.004 0.010

a2 1.65 0.065

a3 0.65 0.85 0.026 0.033

b 0.35 0.48 0.014 0.019

b1 0.19 0.25 0.007 0.010

C 0.25 0.5 0.010 0.020

c1 45° (typ.)

D 4.8 5.0 0.189 0.197

E 5.8 6.2 0.228 0.244

e 1.27 0.050

e3 3.81 0.150

F 3.8 4.0 0.150 0.157

L 0.4 1.27 0.016 0.050

M 0.6 0.024

S 8° (max.)

Page 11: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

TS921

10/10

PACKAGE MECHANICAL DATA8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for theconsequences of use of such information nor for any infringement of patents or other rights of third parties which may result fromits use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specificationsmentioned in this publication are subject to change without notice. This publication supersedes and replaces all informationpreviously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices orsystems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights ReservedSTMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom

© http://www.st.com

Dim.Millimeters Inches

Min. Typ. Max. Min. Typ. Max.

A 1.20 0.05

A1 0.05 0.15 0.01 0.006

A2 0.80 1.00 1.05 0.031 0.039 0.041

b 0.19 0.30 0.007 0.15

c 0.09 0.20 0.003 0.012

D 2.90 3.00 3.10 0.114 0.118 0.122

E 6.40 0.252

E1 4.30 4.40 4.50 0.169 0.173 0.177

e 0.65 0.025

k 0° 8° 0° 8°

l 0.50 0.60 0.75 0.09 0.0236 0.030

L 0.45 0.600 0.75 0.018 0.024 0.030

L1 1.000 0.039

C

L

14

85

L1

c0.25mm.010 inch

GAGE PLANE

E1

k

LL1

E

SE

ATIN

GP

LAN

E

A

A2

D

A1

b

5

8

4

1

PIN 1 IDENTIFICATION

e

Page 12: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

Semiconductor Components Industries, LLC, 2004

January, 2004 − Rev. 61 Publication Order Number:

MC34071/D

MC34071,2,4,AMC33071,2,4,A

Single Supply 3.0 V to 44 VOperational Amplifiers

Quality bipolar fabrication with innovative design concepts areemployed for the MC33071/72/74, MC34071/72/74 series ofmonolithic operational amplifiers. This series of operationalamplifiers offer 4.5 MHz of gain bandwidth product, 13 V/s slew rateand fast settling time without the use of JFET device technology.Although this series can be operated from split supplies, it isparticularly suited for single supply operation, since the commonmode input voltage range includes ground potential (VEE). With aDarlington input stage, this series exhibits high input resistance, lowinput offset voltage and high gain. The all NPN output stage,characterized by no deadband crossover distortion and large outputvoltage swing, provides high capacitance drive capability, excellentphase and gain margins, low open loop high frequency outputimpedance and symmetrical source/sink AC frequency response.

The MC33071/72/74, MC34071/72/74 series of devices areavailable in standard or prime performance (A Suffix) grades and arespecified over the commercial, industrial/vehicular or militarytemperature ranges. The complete series of single, dual and quadoperational amplifiers are available in plastic DIP, SOIC and TSSOPsurface mount packages.• Wide Bandwidth: 4.5 MHz

• High Slew Rate: 13 V/s

• Fast Settling Time: 1.1 s to 0.1%

• Wide Single Supply Operation: 3.0 V to 44 V

• Wide Input Common Mode Voltage Range: Includes Ground (VEE)

• Low Input Offset Voltage: 3.0 mV Maximum (A Suffix)

• Large Output Voltage Swing: −14.7 V to +14 V (with ±15 VSupplies)

• Large Capacitance Drive Capability: 0 pF to 10,000 pF

• Low Total Harmonic Distortion: 0.02%

• Excellent Phase Margin: 60°• Excellent Gain Margin: 12 dB

• Output Short Circuit Protection

• ESD Diodes/Clamps Provide Input Protection for Dual and Quad

• Pb−Free Package May be Available. The G−Suffix Denotes aPb−Free Lead Finish

http://onsemi.com

See detailed ordering and shipping information in the packagedimensions section on page 17 of this data sheet.

ORDERING INFORMATION

PDIP−8P SUFFIXCASE 626

18

SO−8D SUFFIXCASE 751

1

8

PDIP−14P SUFFIXCASE 646

1

14

SO−14D SUFFIX

CASE 751A1

14

TSSOP−14DTB SUFFIXCASE 948G

114

See general marking information in the device markingsection on page 18 of this data sheet.

DEVICE MARKING INFORMATION

http://onsemi.com

jmendiola
MC34071,2,4,A
jmendiola
Jameco Part Number 251061
Page 13: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com2

CASE 626/CASE 751

PIN CONNECTIONS

(Single, Top View)

(Dual, Top View)

Offset Null

VEE

NC

VCC

Output

Offset Null

Inputs

VEE

Inputs 1

Inputs 2

Output 2

Output 1 VCC

1

2

3

4

8

7

6

5

+

+

1

2

3

4

8

7

6

5

+ Inputs 1

Output 1

VCC

Inputs 2

Output 2

Output 4

Inputs 4

VEE

Inputs 3

Output 3

(Quad, Top View)

4

2 3

1

1

2

3

4

5

6

7 8

9

10

11

12

13

14

−+

−+

+−

+

CASE 646/CASE 751A/CASE 948G

Offset Null(MC33071, MC34071 only)

Q1

Q2

Q3 Q4 Q5 Q6 Q7

Q17

Q18D2

C2 D3

R6 R7

R8

R5

Q15 Q16Q14Q13

Q11Q10

R2C1R1

Q9Q8

Q12

D1

R3 R4

Inputs

VCC

Output

CurrentLimit

VEE/Gnd

BaseCurrent

Cancellation

+

Q19

Bias

Figure 1. Representative Schematic Diagram(Each Amplifier)

MAXIMUM RATINGS

Rating Symbol Value Unit

Supply Voltage (from VEE to VCC) VS +44 V

Input Differential Voltage Range VIDR Note 1 V

Input Voltage Range VIR Note 1 V

Output Short Circuit Duration (Note 2) tSC Indefinite sec

Operating Junction Temperature TJ +150 °C

Storage Temperature Range Tstg −60 to +150 °C

1. Either or both input voltages should not exceed the magnitude of VCC or VEE.2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2).

Page 14: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com3

ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, RL = connected to ground, unless otherwise noted. See Note 3 forTA = Tlow to Thigh)

A Suffix Non−Suffix

Characteristics Symbol Min Typ Max Min Typ Max Unit

Input Offset Voltage (RS = 100 , VCM = 0 V, VO = 0 V)VCC = +15 V, VEE = −15 V, TA = +25°CVCC = +5.0 V, VEE = 0 V, TA = +25°CVCC = +15 V, VEE = −15 V, TA = Tlow to Thigh

VIO

−−

− 0.50.5−

3.03.05.0

−−

−1.01.5−

5.05.07.0

mV

Average Temperature Coefficient of Input OffsetVoltageRS = 10 , VCM = 0 V, VO = 0 V, TA = Tlow to Thigh

VIO/T − 10 − − 10 − V/°C

Input Bias Current (VCM = 0 V, VO = 0 V)TA = +25°CTA = Tlow to Thigh

IIB−−

100−

500700

−−

100−

500700

nA

Input Offset Current (VCM = 0 V, VO = 0V)TA = +25°CTA = Tlow to Thigh

IIO−−

6.0−

50300

−−

6.0−

75300

nA

Input Common Mode Voltage RangeTA = +25°CTA = Tlow to Thigh

VICRVEE to (VCC −1.8)VEE to (VCC −2.2)

VEE to (VCC −1.8)VEE to (VCC −2.2)

V

Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 k)TA = +25°CTA = Tlow to Thigh

AVOL5025

100−

−−

2520

100−

−−

V/mV

Output Voltage Swing (VID = ±1.0 V)VCC = +5.0 V, VEE = 0 V, RL = 2.0 k, TA = +25°CVCC = +15 V, VEE = −15 V, RL = 10 k, TA = +25°CVCC = +15 V, VEE = −15 V, RL = 2.0 k,

TA = Tlow to Thigh

VOH3.713.613.4

4.014−

−−−

3.713.613.4

4.014−

−−−

V

VCC = +5.0 V, VEE = 0 V, RL = 2.0 k, TA = +25°CVCC = +15 V, VEE = −15 V, RL = 10 k, TA = +25°CVCC = +15 V, VEE = −15 V, RL = 2.0 k,

TA = Tlow to Thigh

VOL −−−

0.1−14.7

0.3−14.3−13.5

−−−

0.1−14.7

0.3−14.3−13.5

V

Output Short Circuit Current (VID = 1.0 V, VO = 0 V,TA = 25°C)

SourceSink

ISC

1020

3030

−−

1020

3030

−−

mA

Common Mode RejectionRS ≤ 10 k, VCM = VICR, TA = 25°C

CMR 80 97 − 70 97 − dB

Power Supply Rejection (RS = 100 )VCC/VEE = +16.5 V/−16.5 V to +13.5 V/−13.5 V,

TA = 25°C

PSR 80 97 − 70 97 − dB

Power Supply Current (Per Amplifier, No Load)VCC = +5.0 V, VEE = 0 V, VO = +2.5 V, TA = +25°CVCC = +15 V, VEE = −15 V, VO = 0 V, TA = +25°CVCC = +15 V, VEE = −15 V, VO = 0 V,

TA = Tlow to Thigh

ID−−−

1.61.9−

2.02.52.8

−−−

1.61.9−

2.02.52.8

mA

3. Tlow = −40°C for MC33071, 2, 4, /A Thigh = +85°C for MC33071, 2, 4, /A= 0°C for MC34071, 2, 4, /A = +70°C for MC34071, 2, 4, /A= −40°C for MC34072, 4/V = +125°C for MC34072, 4/V

Page 15: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com4

AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, RL = connected to ground. TA = +25°C, unless otherwise noted.)

A Suffix Non−Suffix

Characteristics Symbol Min Typ Max Min Typ Max Unit

Slew Rate (Vin = −10 V to +10 V, RL = 2.0 k, CL = 500 pF)AV = +1.0AV = −1.0

SR8.0−

1013

−−

8.0−

1013

−−

V/s

Setting Time (10 V Step, AV = −1.0)To 0.1% (+1/2 LSB of 9−Bits)To 0.01% (+1/2 LSB of 12−Bits)

ts−−

1.12.2

−−

−−

1.12.2

−−

s

Gain Bandwidth Product (f = 100 kHz) GBW 3.5 4.5 − 3.5 4.5 − MHz

Power BandwidthAV = +1.0, RL = 2.0 k, VO = 20 Vpp, THD = 5.0%

BW − 160 − − 160 − kHz

Phase marginRL = 2.0 kRL = 2.0 k, CL = 300 pF

fm−−

6040

−−

−−

6040

−−

Deg

Gain MarginRL = 2.0 kRL = 2.0 k, CL = 300 pF

Am−−

124.0

−−

−−

124.0

−−

dB

Equivalent Input Noise VoltageRS = 100 , f = 1.0 kHz

en − 32 − − 32 − nV/ Hz√

Equivalent Input Noise Currentf = 1.0 kHz

in − 0.22 − − 0.22 − pA/ Hz√

Differential Input ResistanceVCM = 0 V

Rin − 150 − − 150 − M

Differential Input CapacitanceVCM = 0 V

Cin − 2.5 − − 2.5 − pF

Total Harmonic DistortionAV = +10, RL = 2.0 k, 2.0 Vpp ≤ VO ≤ 20 Vpp, f = 10 kHz

THD − 0.02 − − 0.02 − %

Channel Separation (f = 10 kHz) − − 120 − − 120 − dB

Open Loop Output Impedance (f = 1.0 MHz) |ZO| − 30 − − 30 − W

Figure 2. Power Supply Configurations Figure 3. Offset Null Circuit

Single Supply Split Supplies

1

2

3

4

VCC

VEE

VCC

VCC

VEE

VEE

1

2

3

4

3.0 V to 44 V VCC+|VEE|≤44 V

Offset nulling range is approximately ± 80 mV with a 10 kpotentiometer (MC33071, MC34071 only).

VCC

VEE

1

2

3

4

5

6

7

10 k

+

Page 16: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com5

RL Connectedto Ground TA = 25°C

RL = 10 k RL = 2.0 k

V O, O

UTP

UT

VO

LTA

GE

SW

ING

(Vpp

)

Figure 4. Maximum Power Dissipation versusTemperature for Package Types

Figure 5. Input Offset Voltage versusTemperature for Representative Units

Figure 6. Input Common Mode VoltageRange versus Temperature

Figure 7. Normalized Input Bias Currentversus Temperature

Figure 8. Normalized Input Bias Current versusInput Common Mode Voltage

Figure 9. Split Supply Output VoltageSwing versus Supply Voltage

TA, AMBIENT TEMPERATURE (°C)

DP

, M

AX

IMU

M P

OW

ER

DIS

SIP

ATIO

N (m

W)

−55 −40 −20 0 20 40 60 80 100 120 140 160

8 & 14 Pin Plastic PkgSO−14 Pkg

SO−8 Pkg

TA, AMBIENT TEMPERATURE (°C)

IOV

,

INP

UT

OFF

SE

T V

OLT

AG

E (m

V)

−55 −25 0 25 50 75 100 125

VCC = +15 VVEE = −15 VVCM = 0

TA, AMBIENT TEMPERATURE (°C)

ICR

V

, I

NP

UT

CO

MM

ON

MO

DE

VO

LTA

GE

RA

NG

E (V

)

−55 −25 0 25 50 75 100 125

VCC VCC/VEE = +1.5 V/ −1.5 V to +22 V/ −22 V

VEE

TA, AMBIENT TEMPERATURE (°C)

IBI, I

NP

UT

BIA

S C

UR

RE

NT

(NO

RM

ALI

ZED

)

−55 −25 0 25 50 75 100 125

VCC = +15 VVEE = −15 VVCM = 0

VIC, INPUT COMMON MODE VOLTAGE (V)

−12 −8.0 −4.0 0 4.0 8.0 12

VCC = +15 VVEE = −15 VTA = 25°C

VCC, |VEE|, SUPPLY VOLTAGE (V)

0 5.0 10 15 20 25

V

IBI, I

NP

UT

BIA

S C

UR

RE

NT

(NO

RM

ALI

ZED

)2400

2000

1600

1200

800

400

0

4.0

2.0

0

−2.0

−4.0

VCC

VCC −0.8

VCC −1.6

VCC −2.4

VEE +0.01

VEE

1.3

1.2

1.1

1.0

0.9

0.8

0.7

1.4

1.2

1.0

0.8

0.6

50

40

30

20

10

0

Page 17: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com6

VCC

VCC = +15 VRL to VCCTA = 25°C

Gnd

VCC

VCC = +15 VRL = GndTA = 25°C

Gnd

V O, O

UTP

UT

VO

LTA

GE

SW

ING

(Vpp

)

Figure 10. Single Supply Output Saturationversus Load Resistance to V CC

60

Figure 11. Split Supply Output Saturationversus Load Current

Figure 12. Single Supply Output Saturationversus Load Resistance to Ground

Figure 13. Output Short Circuit Currentversus Temperature

Figure 14. Output Impedance versus Frequency

Figure 15. Output Voltage Swingversus Frequency

0 5.0 10 15 20

IL, LOAD CURRENT (± mA)

VCC

VEE

Sink

VCC/VEE = +5.0 V/ −5.0 V to +22 V/ −22 VTA = 25°C

Source

RL, LOAD RESISTANCE TO GROUND ()

100 1.0 k 10 k 100 k

sat

V

, O

UTP

UT

SAT

UR

ATIO

N V

OLT

AG

E (V

)

RL, LOAD RESISTANCE TO VCC ()

100 1.0 k 10 k 100 k

TA, AMBIENT TEMPERATURE (°C)

SC

I

, O

UTP

UT

CU

RR

EN

T (m

A)

−55 −25 0 25 50 75 100 125

VCC = +15 VVEE = −15 VRL ≤ 0.1 Vin = 1.0 V

Sink

Source

f, FREQUENCY (Hz)

OZ

, O

UTP

UT

IMP

ED

AN

CE

()

Ω

1.0 k 10 k 100 1.0 M 10 M

AV = 1000 AV = 100 AV = 10 AV = 1.0

VCC = +15 VVEE = −15 VVCM = 0VO = 0IO = ±0.5 mATA = 25°C

f, FREQUENCY (Hz)

3.0 k 10 k 30 k 100 k 300 k 1.0 M 3.0 M

VCC = +15 VVEE = −15 VAV = +1.0RL = 2.0 kTHD ≤ 1.0%TA = 25°C

sat

V

, O

UTP

UT

SAT

UR

ATIO

N V

OLT

AG

E (V

)

sat

V

, O

UTP

UT

SAT

UR

ATIO

N V

OLT

AG

E (V

)VCC

VCC −1.0

VCC −2.0

VEE +2.0

VEE +1.0

VEE

VCC−2.0

VCC−4.0

VCC

0.2

0.1

0

0

−0.4

−0.8

2.0

1.0

50

40

30

20

10

0

50

40

30

20

10

0

28

24

20

16

12

8.0

4.0

0

Page 18: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com7

1. Phase RL = 2.0 k2. Phase RL = 2.0 k, CL = 300 pF3. Gain RL = 2.0 k4. Gain RL = 2.0 k, CL = 300 pFVCC = +15 VVEE = 15 VVO = 0 VTA = 25°C

PhaseMargin = 60°

GainMargin = 12 dB

3

4

1

2

Gain

VCC = +15 VVEE = −15 VVO = 0 VRL = 2.0 kTA = 25°C

Phase

PhaseMargin= 60°

Figure 16. Total Harmonic Distortionversus Frequency

Figure 17. Total Harmonic Distortionversus Output Voltage Swing

Figure 18. Open Loop Voltage Gainversus Temperature

Figure 19. Open Loop Voltage Gain andPhase versus Frequency

Figure 20. Open Loop Voltage Gain andPhase versus Frequency

Figure 21. Normalized Gain BandwidthProduct versus Temperature

f, FREQUENCY (Hz)

10 100 1.0 k 10 k 100 k

AV = 1000

AV = 100

AV = 10

AV = 1.0

VCC = +15 VVEE = −15 VVO = 2.0 VppRL = 2.0 kTA = 25°C

VO, OUTPUT VOLTAGE SWING (Vpp)

THD

, TO

TAL

HA

RM

ON

IC D

ISTO

RTI

ON

(%)

0 4.0 8.0 12 16 20

VCC = +15 VVEE = −15 VRL = 2.0 kTA = 25°C

AV = 1000

AV = 100

AV = 10

AV = 1.0

TA, AMBIENT TEMPERATURE (°C)

−55 −25 0 25 50 75 100 125

VCC = +15 VVEE = −15 VVO= −10 V to +10 VRL = 10 kf ≤ 10Hz

f, FREQUENCY (Hz)

1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M 100 M

, EX

CE

SS

PH

AS

E (D

EG

RE

ES

, EX

CE

SS

PH

AS

E (D

EG

RE

ES

f, FREQUENCY (MHz)

1.0 2.0 3.0 5.0 7.0 10 20 30

TA, AMBIENT TEMPERATURE (°C)

GB

W, G

AIN

BA

ND

WID

TH P

RO

DU

CT

(NO

RM

ALI

ED

)

−55 −25 0 25 50 75 100 125

VCC = +15 VVEE = −15 VRL = 2.0 k

VO

LA

, OP

EN

LO

OP

VO

LTA

GE

GA

IN (d

B)

0.4

0.3

0.2

0.1

0

4.0

3.0

2.0

1.0

0

116

112

108

104

100

96

100

80

60

40

20

0

20

10

0

−10

−20

−30

−40

1.15

1.1

1.05

1.0

0.95

0.9

0.85

0

45

90

135

180

100

120

140

160

180

THD

, TO

TAL

HA

RM

ON

IC D

ISTO

RTI

ON

(%)

VO

LA

, OP

EN

LO

OP

VO

LTA

GE

GA

IN (d

B)

VO

LA

, OP

EN

LO

OP

VO

LTA

GE

GA

IN (d

B)

Page 19: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com8

VCC = +15 VVEE = −15 VAV = +1.0RL = 2.0 k to VO = −10 V to +10 VTA = 25°C

Figure 22. Percent Overshoot versusLoad Capacitance

Figure 23. Phase Margin versusLoad Capacitance

Figure 24. Gain Margin versus Load Capacitance Figure 25. Phase Margin versus Temperature

Figure 26. Gain Margin versus Temperature Figure 27. Phase Margin and Gain Marginversus Differential Source Resistance

PE

RC

EN

T O

VE

RS

HO

OT

CL, LOAD CAPACITANCE (pF)

10 100 1.0 k 10 k

VCC = +15 VVEE = −15 VRL = 2.0 kVO = −10 V to +10 VTA = 25°C

CL, LOAD CAPACITANCE (pF)

, PH

AS

E M

AR

GIN

(DE

GR

EE

S)

φm

10 100 1.0 k 10 k

VCC = +15 VVEE = −15 VAV = +1.0RL = 2.0 k to ∞VO = −10 V to +10 VTA = 25°C

CL, LOAD CAPACITANCE (pF)

mA

, G

AIN

MA

RG

IN (d

B)

10 100 1.0 k 10 k

, PH

AS

E M

AR

GIN

(DE

GR

EE

S)

φm

TA, AMBIENT TEMPERATURE (°C)

−55 −25 0 25 50 75 100 125

VCC = +15 VVEE = −15 VAV = +1.0RL = 2.0 k to ∞VO = −10 V to +10 V

CL = 10 pF

CL = 100 pF

CL = 1,000 pF

CL = 10,000 pF

TA, AMBIENT TEMPERATURE (°C)

−55 −25 0 25 50 75 100 125

VCC = +15 V

VEE = −15 VAV = +1.0RL = 2.0 k to ∞VO = −10 V to +10 V

CL = 10 pF

CL = 1,000 pF

mA

, G

AIN

MA

RG

IN (d

B)

CL = 100 pF

CL = 10,000 pFPhase

mA

, G

AIN

MA

RG

IN (d

B)

RT, DIFFERENTIAL SOURCE RESISTANCE ()

1.0 100 1.0 k 10 k10 100 k

R1

R2

VO

+

VCC = +15 VVEE = −15 VRT = R1 + R2AV = +100VO = 0 VTA = 25°C

Gain, P

HA

SE

MA

RG

IN (D

EG

RE

ES

m

100

80

60

40

20

0

70

60

50

40

30

20

10

0

14

12

10

8.0

6.0

2.0

0

4.0

80

60

40

20

0

16

12

8.0

4.0

0

12

10

8.0

6.0

4.0

2.0

0

60

50

40

30

20

10

0

70

Page 20: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com9

Figure 28. Normalized Slew Rateversus Temperature

Figure 29. Output Settling Time

Figure 30. Small Signal Transient Response Figure 31. Large Signal Transient Response

Figure 32. Common Mode Rejectionversus Frequency

Figure 33. Power Supply Rejectionversus Frequency

TA, AMBIENT TEMPERATURE (°C)

SR

, SLE

W R

ATE

(NO

RM

ALI

ZED

)

−55 −25 0 25 50 75 100 125

VCC = +15 VVEE = −15 VAV = +1.0RL = 2.0 kCL = 500 pF

ts, SETTLING TIME (s)

OV

, O

UTP

UT

VO

LTA

GE

SW

ING

FR

OM

0 V

(V)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

VCC = +15 VVEE = −15 VAV = −1.0TA = 25°C

10 mV1.0 mV

1.0 mV

Compensated

Uncompensated

10 mV1.0 mV

1.0 mV

50 m

V/D

IV

2.0 s/DIV

VCC = +15 VVEE = −15 VAV = +1.0RL = 2.0 kCL = 300 pFTA = 25°C

5.0

V/D

IV

1.0 s/DIV

f, FREQUENCY (Hz)

CM

R, C

OM

MO

N M

OD

E R

EJE

CTI

ON

(dB

)

0.1 1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M

TA = 25°C

TA = 125°C

TA = −55°C

VCC = +15 VVEE = −15 VVCM = 0 VVCM = ±1.5 V

f, FREQUENCY (Hz)

PS

R, P

OW

ER

SU

PP

LY R

EJE

CTI

ON

(dB

)

0.1 1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M

VCC = +15 VVEE = −15 VTA = 25°C

(VCC = +1.5 V)

(VEE = +1.5 V)

+PSR

−PSR

VCC = +15 VVEE = −15 VAV = +1.0RL = 2.0 kCL = 300 pFTA = 25°C

1.15

1.1

1.05

1.0

0.95

0.9

0.85

10

5.0

0

−5.0

−10

0 0

100

80

60

40

20

0

100

80

60

40

20

0

VCM VOADM

CMR = 20 LogVCM

VOx ADM

+

VOADM+

VCC

VEE

VO/ADM

VCC

+PSR = 20 Log

VO/ADM

VEE

−PSR = 20 Log

Page 21: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com10

Figure 34. Supply Current versusSupply Voltage

Figure 35. Power Supply Rejectionversus Temperature

Figure 36. Channel Separation versus Frequency Figure 37. Input Noise versus Frequency

VCC, |VEE|, SUPPLY VOLTAGE (V)

CC

I ,

SU

PP

LY C

UR

RE

NT

(mA

)

0 5.0 10 15 20 25

TA = 25°C

TA = 125°C

TA = −55°C

TA, AMBIENT TEMPERATURE (°C)

PS

R, P

OW

ER

SU

PP

LY R

EJE

CTI

ON

(dB

)

−55 −25 0 25 50 75 100 125

VCC = +15 VVEE = −15 V

(VCC = +1.5 V)

(VEE = +1.5 V)

+PSR

−PSR

f, FREQUENCY (kHz)

CH

AN

NE

L S

EPA

RAT

ION

(dB

)

10 20 30 50 70 100 200 300

VCC = +15 VVEE = −15 VTA = 25°C

f, FREQUENCY (kHz)

ne,

INP

UT

NO

ICE

VO

LTA

GE

(

i, I

NP

UT

NO

ISE

CU

RR

EN

T (p

A

)

10 100 1.0 k 10 k 100 k

nVH

z)

√ Hz

√n

Voltage

Current

9.0

8.0

7.0

6.0

5.0

4.0

105

95

85

75

65

120

100

80

60

40

20

0

70

60

50

40

30

20

10

0

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0

VOADM+

VCC

VEE

VO/ADM

VCC+PSR = 20 Log

VO/ADM

VEE−PSR = 20 Log

VCC = +15 VVEE = −15 VVCM = 0TA = 25°C

APPLICATIONS INFORMATIONCIRCUIT DESCRIPTION/PERFORMANCE FEATURES

Although the bandwidth, slew rate, and settling time of theMC34071 amplifier series are similar to op amp productsutilizing JFET input devices, these amplifiers offer otheradditional distinct advantages as a result of the PNPtransistor differential input stage and an all NPN transistoroutput stage.

Since the input common mode voltage range of this inputstage includes the VEE potential, single supply operation isfeasible to as low as 3.0 V with the common mode inputvoltage at ground potential.

The input stage also allows differential input voltages upto ±44 V, provided the maximum input voltage range is notexceeded. Specifically, the input voltages must rangebetween VEE and VCC supply voltages as shown by themaximum rating table. In practice, although notrecommended, the input voltages can exceed the VCCvoltage by approximately 3.0 V and decrease below the VEEvoltage by 0.3 V without causing product damage, althoughoutput phase reversal may occur. It is also possible to source

up to approximately 5.0 mA of current from VEE througheither inputs clamping diode without damage or latching,although phase reversal may again occur.

If one or both inputs exceed the upper common modevoltage limit, the amplifier output is readily predictable andmay be in a low or high state depending on the existing inputbias conditions.

Since the input capacitance associated with the smallgeometry input device is substantially lower (2.5 pF) thanthe typical JFET input gate capacitance (5.0 pF), betterfrequency response for a given input source resistance canbe achieved using the MC34071 series of amplifiers. Thisperformance feature becomes evident, for example, in fastsettling D−to−A current to voltage conversion applicationswhere the feedback resistance can form an input pole withthe input capacitance of the op amp. This input pole createsa 2nd order system with the single pole op amp and istherefore detrimental to its settling time. In this context,lower input capacitance is desirable especially for higher

Page 22: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com11

values of feedback resistances (lower current DACs). Thisinput pole can be compensated for by creating a feedbackzero with a capacitance across the feedback resistance, ifnecessary, to reduce overshoot. For 2.0 k of feedbackresistance, the MC34071 series can settle to within 1/2 LSBof 8 bits in 1.0 s, and within 1/2 LSB of 12−bits in 2.2 sfor a 10 V step. In a inverting unity gain fast settlingconfiguration, the symmetrical slew rate is ±13 V/s. In theclassic noninverting unity gain configuration, the outputpositive slew rate is +10 V/s, and the correspondingnegative slew rate will exceed the positive slew rate as afunction of the fall time of the input waveform.

Since the bipolar input device matching characteristicsare superior to that of JFETs, a low untrimmed maximumoffset voltage of 3.0 mV prime and 5.0 mV downgrade canbe economically offered with high frequency performancecharacteristics. This combination is ideal for low costprecision, high speed quad op amp applications.

The all NPN output stage, shown in its basic form on theequivalent circuit schematic, offers unique advantages overthe more conventional NPN/PNP transistor Class AB outputstage. A 10 k load resistance can swing within 1.0 V of thepositive rail (VCC), and within 0.3 V of the negative rail(VEE), providing a 28.7 Vpp swing from ±15 V supplies.This large output swing becomes most noticeable at lowersupply voltages.

The positive swing is limited by the saturation voltage ofthe current source transistor Q7, and VBE of the NPN pull uptransistor Q17, and the voltage drop associated with the shortcircuit resistance, R7. The negative swing is limited by thesaturation voltage of the pull−down transistor Q16, thevoltage drop ILR6, and the voltage drop associated withresistance R7, where IL is the sink load current. For smallvalued sink currents, the above voltage drops are negligible,allowing the negative swing voltage to approach withinmillivolts of VEE. For large valued sink currents (>5.0 mA),diode D3 clamps the voltage across R6, thus limiting thenegative swing to the saturation voltage of Q16, plus theforward diode drop of D3 (≈VEE +1.0 V). Thus for a givensupply voltage, unprecedented peak−to−peak output voltageswing is possible as indicated by the output swingspecifications.

If the load resistance is referenced to VCC instead ofground for single supply applications, the maximumpossible output swing can be achieved for a given supplyvoltage. For light load currents, the load resistance will pullthe output to VCC during the positive swing and the outputwill pull the load resistance near ground during the negativeswing. The load resistance value should be much less thanthat of the feedback resistance to maximize pull upcapability.

Because the PNP output emitter−follower transistor hasbeen eliminated, the MC34071 series offers a 20 mA

minimum current sink capability, typically to an outputvoltage of (VEE +1.8 V). In single supply applications theoutput can directly source or sink base current from acommon emitter NPN transistor for fast high currentswitching applications.

In addition, the all NPN transistor output stage isinherently fast, contributing to the bipolar amplifier’s highgain bandwidth product and fast settling capability. Theassociated high frequency low output impedance (30 typ@ 1.0 MHz) allows capacitive drive capability from 0 pF to10,000 pF without oscillation in the unity closed loop gainconfiguration. The 60° phase margin and 12 dB gain marginas well as the general gain and phase characteristics arevirtually independent of the source/sink output swingconditions. This allows easier system phase compensation,since output swing will not be a phase consideration. Thehigh frequency characteristics of the MC34071 series alsoallow excellent high frequency active filter capability,especially for low voltage single supply applications.

Although the single supply specifications is defined at5.0 V, these amplifiers are functional to 3.0 V @ 25°Calthough slight changes in parametrics such as bandwidth,slew rate, and DC gain may occur.

If power to this integrated circuit is applied in reversepolarity or if the IC is installed backwards in a socket, largeunlimited current surges will occur through the device thatmay result in device destruction.

Special static precautions are not necessary for thesebipolar amplifiers since there are no MOS transistors on thedie.

As with most high frequency amplifiers, proper leaddress, component placement, and PC board layout should beexercised for optimum frequency performance. Forexample, long unshielded input or output leads may result inunwanted input−output coupling. In order to preserve therelatively low input capacitance associated with theseamplifiers, resistors connected to the inputs should beimmediately adjacent to the input pin to minimize additionalstray input capacitance. This not only minimizes the inputpole for optimum frequency response, but also minimizesextraneous “pick up” at this node. Supply decoupling withadequate capacitance immediately adjacent to the supply pinis also important, particularly over temperature, since manytypes of decoupling capacitors exhibit great impedancechanges over temperature.

The output of any one amplifier is current limited and thusprotected from a direct short to ground. However, undersuch conditions, it is important not to allow the device toexceed the maximum junction temperature rating. Typicallyfor ±15 V supplies, any one output can be shortedcontinuously to ground without exceeding the maximumtemperature rating.

Page 23: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com12

Figure 38. AC Coupled Noninverting Amplifier Figure 39. AC Coupled Inverting Amplifier

(Typical Single Supply Applications V CC = 5.0 V)

Figure 40. DC Coupled Inverting AmplifierMaximum Output Swing

Figure 41. Unity Gain Buffer TTL Driver

Figure 42. Active High−Q Notch Filter Figure 43. Active Bandpass Filter

+

VCC

5.1 M

20 k Cin

Vin

1.0 M

MC34071

VO

0 3.7 Vpp

RL

10 k

AV = 101

100 k

1.0 k

BW (−3.0 dB) = 45 kHz

CO VO

36.6 mVpp−

+

3.7 Vpp0VCC

VO

100 k

Cin 10 k

100 k

CO

RL

10 k

68 k

Vin 370 mVpp

AV = 10 BW (−3.0 dB) = 450 kHz

+

4.75 Vpp

VO

VO

VCC

RL

100 k

91 k

5.1 k

1.0 M

AV = 10Vin

2.63 V

5.1 k

BW (−3.0 dB) = 450 kHz

+Vin

2.5 V

0 0 to 10,000 pF

Cable TTL Gate

+Vin

VO

16 kC

0.01

32 k 2.0 R

2.0 C0.02

fo = 1.0 kHz

fo =

Vin ≥ 0.2 Vdc

1

4RC

2.0 C0.02

16 k

RR

+

VinVO

VCC

R32.2 k

C0.047

R25.6 k

0.4 VCC

R1

fo = 30 kHzHo = 10Ho = 1.0

1.1 k

Given fo = Center FrequencyAO = Gain at Center FrequencyChoose Value fo, Q, Ao, C

R3 = R1 = R2 =Q R3 R1 R3

2Ho 4Q2R1−R3foC

For less than 10% error from operational amplifierQofo

GBW< 0.1

where fo and GBW are expressed in Hz.

C0.047

MC34071

MC34071

MC34071

MC34071

MC34071

MC54/74XX

Then:

GBW = 4.5 MHz Typ.

Page 24: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com13

Figure 44. Low Voltage Fast D/A Converter Figure 45. High Speed Low Voltage Comparator

Figure 46. LED Driver Figure 47. Transistor Driver

Figure 48. AC/DC Ground Current Monitor Figure 49. Photovoltaic Cell Amplifier

5.0 k

10 k

BitSwitches

CF

RF

VO

VCC

(R−2R) Ladder Network

Settling Time1.0 s (8−Bits, 1/2 LSB)

+

5.0 k5.0 k

10 k 10 k

+

VO

VO

Vin

1.0 V

2.0 kRL

2.0 V

4.0 V

0.1

t

25 V/s

0.2 sDelay

Delay1.0 s

Vin

t

13 V/s

+

VCC

Vref

ON"

Vin < Vref

ON"

Vin > Vref

Vin

+

VCC

VCC

RL

RL

(A) PNP (B) NPN

+

+

VO

ILoad

R1

R2

RSGround CurrentSense Resistor

VO = ILoad RS

BW ( −3.0 dB) = GBW

For VO > 0.1V

R1

R2

R1+R2

R2

+

VO

MC34071

ICell

VCell = 0 VVO = ICell RFVO > 0.1 V

RF

1+

MC34071

MC34071

MC34071 MC34071

MC34071

MC34071

Page 25: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com14

Figure 50. Low Input Voltage Comparatorwith Hysteresis

Figure 51. High Compliance Voltage toSink Current Converter

Figure 52. High Input ImpedanceDifferential Amplifier

Figure 53. Bridge Current Amplifier

Figure 54. Low Voltage Peak Detector Figure 55. High Frequency PulseWidth Modulation

Vref

R2

VO

VOH

VOL

VinL VinH

Vref

Hysteresis

VinVin

R1

MC34071

VinL = (VOL−Vref)+VrefR1

R1+R2

VinH = (VOH−Vref)+Vref

VH = (VOH −VOL)

+

R1

R1+R

R1

R1+R2

Vin

Iout

R

+

Iout =Vin±VIO

R

1/2MC34072 −

+

+

R1 R2

R3

R4

VO

+V1

+V2

R2 R4

R3R1(Critical to CMRR)

VO = 1 V2−V1

For (V2 ≥ V1), V > 0

=

+R4

R3

R4

R3

+

+Vref

RF

VO

R R

RR = R

R < < R

RF > > R (VO ≥ 0.1 V)

RF

VO = Vref

R RF

2R2

+Vin

Vin

RL VP 10,000 pF

VO = Vin (pk)

+

VP

t

−+

+

VP

t

t

Iout

VP

+

0

+ISC

Base ChargeRemoval

±IB

V+

47 k100 k

C

R

Pulse WidthControl Group

OSC Comparator High CurrentOutput

fOSC V

0.85

RC

100 k

IB

MC34071

MC34071

MC34071

1/2MC34072

1/2MC34072

1/2MC34072

Page 26: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com15

Figure 56. Second Order Low−Pass Active Filter Figure 57. Second Order High−Pass Active Filter

GENERAL ADDITIONAL APPLICATIONS INFORMATION V S = ±15.0 V

Figure 58. Fast Settling Inverter Figure 59. Basic Inverting Amplifier

Figure 60. Basic Noninverting Amplifier Figure 61. Unity Gain Buffer (A V = +1.0)

+

R1 R3560 510

C2

C10.44

0.02

R25.6 k

MC34071

fo = 1.0 kHzHo = 10

Choose: fo, Ho, C2

Then: C1 = 2C2 (Ho+1)

R2 = R3 = R1 =R2

HoHo+14foC2

R2

+

C20.05 C1

1.0

R146.1 k

R21.1 k

fo = 100 HzHo = 20

Choose: fo, Ho, C1 Then: R1 =

R2 =

C2 =

Ho+0.5

foC1

2foC1 (1/Ho+2)

C

Ho

C11.0

+

CF*

VO = 10 VStepRF

2.0 k

I

High SpeedDAC

*Optional Compensation

Uncompensated

Compensated

ts = 1.0 s

to 1/2 LSB (8−Bits)

ts = 2.2 s

to 1/2 LSB (12−Bits)

SR = 13 V/s

VO

+

−R1

R2

VO

Vin

RL

BW (−3.0 dB) = GBW=

SR = 13 V/s

VO

Vin

R2

R1 R1 +R2

R1

BW (−3.0 dB) = GBWR1 +R2

R1

+

−Vin

VO

R2

RL

R1

=VO

Vin

R2

R11 +

+

Vin

VO

BWp = 200 kHzVO = 20 VppSR = 10 V/s

MC34071

MC34071MC34071

MC34071

MC34071

2

2

2

Page 27: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com16

Figure 62. High Impedance Differential Amplifier

Figure 63. Dual Voltage Doubler

R

RE

Example:Let: R = RE = 12 kThen: AV = 3.0BW = 1.5 MHz

AV = 1 +2R

RE

+

+

+

VO

R

R

R R

R

MC34074

+

+

100 k 10

+10

−10

220 pF

−VO

+VO

RL +VO −VO

18.93 −18.78

10 k 18 −18

5.0 k 15.4 −15.4

RL

100 k

100 k

RL

+

+

+

+

+

10

10

10

MC34074

MC34074

MC34074

MC34074

MC34074

Page 28: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com17

ORDERING INFORMATIONOp AmpFunction Device

OperatingTemperature Range Package Shipping †

Single MC34071P, MC34071APMC34071D, MC34071ADMC34071DR2, MC34071ADR2

TA = 0° to +70°CDIP−8SO−8

SO−8 / Tape & Reel

50 Units / Rail98 Units / Rail

2500 Units / Tape & Reel

MC33071P, MC33071APMC33071D, MC33071ADMC33071DR2, MC33071ADR2

TA = −40° to +85°CDIP−8SO−8

SO−8 / Tape & Reel

50 Units / Rail98 Units / Rail

2500 Units / Tape & Reel

Dual MC34072P, MC34072APMC34072D, MC34072ADMC34072DR2, MC34072ADR2

TA = 0° to +70°CDIP−8SO−8

SO−8 / Tape & Reel

50 Units / Rail98 Units / Rail

2500 Units / Tape & Reel

MC33072P, MC33072APMC33072D, MC33072ADMC33072DR2, MC33072DR2G,MC33072ADR2

TA = −40° to +85°C

DIP−8SO−8

SO−8 / Tape & Reel

50 Units / Rail98 Units / Rail

2500 Units / Tape & Reel

MC34072VDMC34072VDR2MC34072VP

TA = −40° to +125°CSO−8

SO−8 / Tape & ReelDIP−8

98 Units / Rail2500 Units / Tape & Reel

50 Units / Rail

Quad MC34074P, MC34074APMC34074D, MC34074ADMC34074DR2, MC34074ADR2

TA = 0° to +70°CDIP−14SO−14

SO−14 / Tape & Reel

25 Units / Rail55 Units / Rail

2500 Units / Tape & Reel

MC33074P, MC33074APMC33074D, MC33074ADMC33074DR2, MC33074ADR2MC33074DTB, MC33074ADTBMC33074DTBR2, MC33074ADTBR2

TA = −40° to +85°C

DIP−14SO−14

SO−14 / Tape & ReelTSSOP−14

TSSOP−14 / Tape & Reel

25 Units / Rail55 Units / Rail

2500 Units / Tape & Reel96 Units / Rail

2500 Units / Tape & Reel

MC34074VDMC34074VDR2MC34074VP

TA = −40° to +125°CSO−14

SO−14 / Tape & ReelDIP−14

55 Units / Rail2500 Units / Tape & Reel

25 Units / Rail

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel PackagingSpecifications Brochure, BRD8011/D.

Page 29: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com18

MARKING DIAGRAMS

AWLMC3x071P

1

8

YYWWAWL

MC3x071AP

1

8

YYWW

ALYW3x071

1

8

ALYWA3x071

1

8

x = 3 or 4A = Assembly LocationWL, L = Wafer LotYY, Y = YearWW, W = Work Week

AWLMC3x072P

1

8

YYWW

PDIP−8P SUFFIXCASE 626

AWLMC3x072AP

1

8

YYWW

ALYW3x072

1

8

ALYWA3x072

1

8

SO−8D SUFFIXCASE 751

ALYWV3x072

1

8

1

14

MC3x074PAWLYYWW

PDIP−14P SUFFIXCASE 646

1

14

MC3x074APAWLYYWW

1

14

MC3x074DAWLYWW

1

14

MC3x074ADAWLYWW

MC33074

ALYW

1

14

TSSOP−14DTB SUFFIXCASE 948G

MC33074AALYW

1

14

SO−14D SUFFIX

CASE 751A

1

14

MC34074VDAWLYWW

AWLMC34072VP

1

8

YYWW

1

14

MC34074VPAWLYYWW

Page 30: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com19

PACKAGE DIMENSIONS

PDIP−8P SUFFIX

CASE 626−05ISSUE L

NOTES:1. DIMENSION L TO CENTER OF LEAD WHEN

FORMED PARALLEL.2. PACKAGE CONTOUR OPTIONAL (ROUND OR

SQUARE CORNERS).3. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.

1 4

58

F

NOTE 2 −A−

−B−

−T−SEATINGPLANE

H

J

G

D K

N

C

L

M

MAM0.13 (0.005) B MT

DIM MIN MAX MIN MAX

INCHESMILLIMETERS

A 9.40 10.16 0.370 0.400B 6.10 6.60 0.240 0.260C 3.94 4.45 0.155 0.175D 0.38 0.51 0.015 0.020F 1.02 1.78 0.040 0.070G 2.54 BSC 0.100 BSCH 0.76 1.27 0.030 0.050J 0.20 0.30 0.008 0.012K 2.92 3.43 0.115 0.135L 7.62 BSC 0.300 BSCM −−− 10 −−− 10 N 0.76 1.01 0.030 0.040

Page 31: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com20

PACKAGE DIMENSIONS

SO−8D SUFFIX

CASE 751−07ISSUE AA

SEATINGPLANE

1

4

58

N

J

X 45

K

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSION A AND B DO NOT INCLUDE MOLD

PROTRUSION.4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER

SIDE.5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTAL INEXCESS OF THE D DIMENSION AT MAXIMUMMATERIAL CONDITION.

6. 751−01 THRU 751−06 ARE OBSOLETE. NEWSTANDARD IS 751−07.

A

B S

DH

C

0.10 (0.004)

DIM

A

MIN MAX MIN MAX

INCHES

4.80 5.00 0.189 0.197

MILLIMETERS

B 3.80 4.00 0.150 0.157C 1.35 1.75 0.053 0.069D 0.33 0.51 0.013 0.020G 1.27 BSC 0.050 BSCH 0.10 0.25 0.004 0.010J 0.19 0.25 0.007 0.010K 0.40 1.27 0.016 0.050M 0 8 0 8 N 0.25 0.50 0.010 0.020S 5.80 6.20 0.228 0.244

−X−

−Y−

G

MYM0.25 (0.010)

−Z−

YM0.25 (0.010) Z S X S

M

SO−8

1.520.060

7.00.275

0.60.024

1.2700.050

4.00.155

mminches

SCALE 6:1

*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering andMounting Techniques Reference Manual, SOLDERRM/D.

SOLDERING FOOTPRINT*

Page 32: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com21

PACKAGE DIMENSIONS

PDIP−14P SUFFIX

CASE 646−06ISSUE M

1 7

14 8

B

A DIM MIN MAX MIN MAX

MILLIMETERSINCHES

A 0.715 0.770 18.16 18.80B 0.240 0.260 6.10 6.60C 0.145 0.185 3.69 4.69D 0.015 0.021 0.38 0.53F 0.040 0.070 1.02 1.78G 0.100 BSC 2.54 BSCH 0.052 0.095 1.32 2.41J 0.008 0.015 0.20 0.38K 0.115 0.135 2.92 3.43L

M −−− 10 −−− 10 N 0.015 0.039 0.38 1.01

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: INCH.3. DIMENSION L TO CENTER OF LEADS WHEN

FORMED PARALLEL.4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.5. ROUNDED CORNERS OPTIONAL.

F

H G DK

C

SEATINGPLANE

N

−T−

14 PL

M0.13 (0.005)

L

MJ

0.290 0.310 7.37 7.87

SO−14D SUFFIX

CASE 751A−03ISSUE F

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSIONS A AND B DO NOT INCLUDE

MOLD PROTRUSION.4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)

PER SIDE.5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTALIN EXCESS OF THE D DIMENSION ATMAXIMUM MATERIAL CONDITION.

−A−

−B−

G

P 7 PL

14 8

71M0.25 (0.010) B M

SBM0.25 (0.010) A ST

−T−

FR X 45

SEATINGPLANE

D 14 PL K

C

JM

DIM MIN MAX MIN MAX

INCHESMILLIMETERS

A 8.55 8.75 0.337 0.344B 3.80 4.00 0.150 0.157C 1.35 1.75 0.054 0.068D 0.35 0.49 0.014 0.019F 0.40 1.25 0.016 0.049G 1.27 BSC 0.050 BSCJ 0.19 0.25 0.008 0.009K 0.10 0.25 0.004 0.009M 0 7 0 7 P 5.80 6.20 0.228 0.244R 0.25 0.50 0.010 0.019

Page 33: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC34071,2,4,A MC33071,2,4,A

http://onsemi.com22

PACKAGE DIMENSIONS

SU0.15 (0.006) T

2X L/2

SUM0.10 (0.004) V ST

L−U−

SEATING

PLANE

0.10 (0.004)

−T−

ÇÇÇÇ

SECTION N−N

DETAIL E

J J1

K

K1

ÉÉÉÉ

DETAIL E

F

M

−W−

0.25 (0.010)814

71

PIN 1IDENT.

HG

A

D

C

B

SU0.15 (0.006) T

−V−

14X REFK

N

N

TSSOP−14DTB SUFFIX

CASE 948G−01ISSUE O

DIM MIN MAX MIN MAX

INCHESMILLIMETERS

A 4.90 5.10 0.193 0.200B 4.30 4.50 0.169 0.177C −−− 1.20 −−− 0.047D 0.05 0.15 0.002 0.006F 0.50 0.75 0.020 0.030G 0.65 BSC 0.026 BSCH 0.50 0.60 0.020 0.024J 0.09 0.20 0.004 0.008J1 0.09 0.16 0.004 0.006K 0.19 0.30 0.007 0.012K1 0.19 0.25 0.007 0.010L 6.40 BSC 0.252 BSCM 0 8 0 8

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,

PROTRUSIONS OR GATE BURRS. MOLD FLASHOR GATE BURRS SHALL NOT EXCEED 0.15(0.006) PER SIDE.

4. DIMENSION B DOES NOT INCLUDE INTERLEADFLASH OR PROTRUSION. INTERLEAD FLASH ORPROTRUSION SHALL NOT EXCEED0.25 (0.010) PER SIDE.

5. DIMENSION K DOES NOT INCLUDE DAMBARPROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.08 (0.003) TOTAL INEXCESS OF THE K DIMENSION AT MAXIMUMMATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FORREFERENCE ONLY.

7. DIMENSION A AND B ARE TO BE DETERMINEDAT DATUM PLANE −W−.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further noticeto any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liabilityarising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. Alloperating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rightsnor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applicationsintended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. ShouldBuyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or deathassociated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an EqualOpportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATIONN. American Technical Support : 800−282−9855 Toll FreeUSA/Canada

Japan : ON Semiconductor, Japan Customer Focus Center2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051Phone : 81−3−5773−3850

MC34071/D

LITERATURE FULFILLMENT :Literature Distribution Center for ON SemiconductorP.O. Box 5163, Denver, Colorado 80217 USAPhone : 303−675−2175 or 800−344−3860 Toll Free USA/CanadaFax: 303−675−2176 or 800−344−3867 Toll Free USA/CanadaEmail : [email protected]

ON Semiconductor Website : http://onsemi.com

Order Literature : http://www.onsemi.com/litorder

For additional information, please contact yourlocal Sales Representative.

Page 34: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

Semiconductor Components Industries, LLC, 2003

July, 2003 - Rev. 91 Publication Order Number:

MC33201/D

MC33201, MC33202,MC33204, NCV33202,NCV33204

Low Voltage, Rail−to−RailOperational Amplifiers

The MC33201/2/4 family of operational amplifiers providerail-to-rail operation on both the input and output. The inputs can bedriven as high as 200 mV beyond the supply rails without phasereversal on the outputs, and the output can swing within 50 mV of eachrail. This rail-to-rail operation enables the user to make full use of thesupply voltage range available. It is designed to work at very lowsupply voltages (± 0.9 V) yet can operate with a supply of up to +12 Vand ground. Output current boosting techniques provide a high outputcurrent capability while keeping the drain current of the amplifier to aminimum. Also, the combination of low noise and distortion with ahigh slew rate and drive capability make this an ideal amplifier foraudio applications.

• Low Voltage, Single Supply Operation(+1.8 V and Ground to +12 V and Ground)

• Input Voltage Range Includes both Supply Rails

• Output Voltage Swings within 50 mV of both Rails

• No Phase Reversal on the Output for Over-driven Input Signals

• High Output Current (ISC = 80 mA, Typ)

• Low Supply Current (ID = 0.9 mA, Typ)

• 600 Output Drive Capability

• Extended Operating Temperature Ranges(-40° to +105°C and -55° to +125°C)

• Typical Gain Bandwidth Product = 2.2 MHz

See detailed ordering and shipping information in the packagedimensions section on page 11 of this data sheet.

ORDERING INFORMATION

PDIP-8P, VP SUFFIX

CASE 6268

1

SO-8D, VD SUFFIX

CASE 7518

1

PDIP-14P, VP SUFFIX

CASE 64614

1

SO-14D, VD SUFFIXCASE 751A14

1

TSSOP-14DTB SUFFIXCASE 948G

14

1

Micro-8DM SUFFIXCASE 846A

81

See general marking information in the device markingsection on page 12 of this data sheet.

DEVICE MARKING INFORMATION

http://onsemi.com

Page 35: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com2

PIN CONNECTIONS

6

7

8

5

3

2

1

4

NC

Inputs

VEE

NC

VCC

NC

Output

(Top View)

MC33201All Case Styles

MC33202All Case Styles

Output 1

Inputs 1

VEE

VCC

Output 2

Inputs 2

1

2

6

7

8

5

3

2

1

4

(Top View)

MC33204All Case Styles

(Top View)

Output 1

Inputs 1

VCC

Output 4

Inputs 41

12

13

14

11

3

2

1

4

105

96

Output 2 87

Inputs 2 2

4

3

VEE

Inputs 3

Output 3

Vin−Vout

Figure 1. Circuit Schematic(Each Amplifier)

VEE

VCC

VCC

VCC

VCC

Vin+

VEEThis device contains 70 active transistors (each amplifier).

Page 36: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com3

MAXIMUM RATINGS

Rating Symbol Value Unit

Supply Voltage (VCC to VEE) VS +13 V

Input Differential Voltage Range VIDR Note 1 V

Common Mode Input Voltage Range (Note 2) VCM VCC + 0.5 V toVEE - 0.5 V

V

Output Short Circuit Duration ts Note 3 sec

Maximum Junction Temperature TJ +150 °C

Storage Temperature Tstg - 65 to +150 °C

Maximum Power Dissipation PD Note 3 mW

DC ELECTRICAL CHARACTERISTICS (TA = 25°C)

Characteristic VCC = 2.0 V VCC = 3.3 V VCC = 5.0 V Unit

Input Offset VoltageVIO (max)MC33201MC33202, NCV33202MC33204

± 8.0±10±12

± 8.0±10±12

± 6.0± 8.0±10

mV

Output Voltage SwingVOH (RL = 10 k)VOL (RL = 10 k)

1.90.10

3.150.15

4.850.15

VminVmax

Power Supply Currentper Amplifier (ID) 1.125 1.125 1.125

mA

Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = GND.

DC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)

Characteristic Figure Symbol Min Typ Max Unit

Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V)MC33201: TA = + 25°CMC33201: TA = - 40° to +105°CMC33201V: TA = - 55° to +125°CMC33202: TA = + 25°CMC33202: TA = - 40° to +105°CMC33202V: TA = - 55° to +125°CNCV33202V: TA = - 55° to +125°C (Note 4)MC33204: TA = + 25°CMC33204: TA = - 40° to +105°CMC33204V: TA = - 55° to +125°C

3 VIO----------

---------

6.09.0138.0111414101317

mV

Input Offset Voltage Temperature Coefficient (RS = 50 )TA = - 40° to +105°CTA = - 55° to +125°C

4 VIO/T--

2.02.0

--

V/°C

Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)TA = + 25°CTA = - 40° to +105°CTA = - 55° to +125°C

5, 6 IIB---

80100

-

200250500

nA

Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)TA = + 25°CTA = - 40° to +105°CTA = - 55° to +125°C

- IIO---

5.010-

50100200

nA

Common Mode Input Voltage Range - VICR VEE - VCC V

1. The differential input voltage of each amplifier is limited by two internal parallel back- to-back diodes. For additional differential input voltagerange, use current limiting resistors in series with the input pins.

2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltageon either input must not exceed either supply rail by more than 500 mV.

3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2)4. NCV33202 and NCV33204 are qualified for automotive use.

Page 37: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com4

DC ELECTRICAL CHARACTERISTICS (cont.) (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)

Characteristic Figure Symbol Min Typ Max Unit

Large Signal Voltage Gain (VCC = + 5.0 V, VEE = - 5.0 V)RL = 10 kRL = 600

7 AVOL5025

300250

--

kV/V

Output Voltage Swing (VID = ± 0.2 V)RL = 10 kRL = 10 kRL = 600 RL = 600

8, 9, 10VOHVOLVOHVOL

4.85-

4.75-

4.950.054.850.15

-0.15

-0.25

V

Common Mode Rejection (Vin = 0 V to 5.0 V) 11 CMR 60 90 - dB

Power Supply Rejection RatioVCC/VEE = 5.0 V/GND to 3.0 V/GND

12 PSRR500 25 -

V/V

Output Short Circuit Current (Source and Sink) 13, 14 ISC 50 80 - mA

Power Supply Current per Amplifier (VO = 0 V)TA = - 40° to +105°CTA = - 55° to +125°C

15 ID--

0.90.9

1.1251.125

mA

AC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)

Characteristic Figure Symbol Min Typ Max Unit

Slew Rate(VS = ± 2.5 V, VO = - 2.0 V to + 2.0 V, RL = 2.0 k, AV = +1.0)

16, 26 SR0.5 1.0 -

V/s

Gain Bandwidth Product (f = 100 kHz) 17 GBW - 2.2 - MHz

Gain Margin (RL = 600 , CL = 0 pF) 20, 21, 22 AM - 12 - dB

Phase Margin (RL = 600 , CL = 0 pF) 20, 21, 22 M - 65 - Deg

Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100) 23 CS - 90 - dB

Power Bandwidth (VO = 4.0 Vpp, RL = 600 , THD ≤ 1 %) BWP - 28 - kHz

Total Harmonic Distortion (RL = 600 , VO = 1.0 Vpp, AV = 1.0)f = 1.0 kHzf = 10 kHz

24 THD--

0.0020.008

--

%

Open Loop Output Impedance(VO = 0 V, f = 2.0 MHz, AV = 10)

ZO- 100 -

Differential Input Resistance (VCM = 0 V) Rin - 200 - k

Differential Input Capacitance (VCM = 0 V) Cin - 8.0 - pF

Equivalent Input Noise Voltage (RS = 100 )f = 10 Hzf = 1.0 kHz

25 en--

2520

-- Hz

nV/

Equivalent Input Noise Currentf = 10 Hzf = 1.0 kHz

25 in--

0.80.2

--

pA/Hz

Page 38: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com5

300

260

220

180

TA, AMBIENT TEMPERATURE (°C)

100

140

PE

RC

EN

TAG

E O

F A

MP

LIFI

ER

S (%

)

TCVIO, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (V/°C)

50

30

0

40

10

20

AV

OL

, OP

EN

LO

OP

VO

LTA

GE

GA

IN (k

V/V

)

Figure 2. Maximum Power Dissipation versus Temperature

Figure 3. Input Offset Voltage Distribution

PE

RC

EN

TAG

E O

F A

MP

LIFI

ER

S (%

)

40

35

VIO, INPUT OFFSET VOLTAGE (mV)

30

25

15

0

20

Figure 4. Input Offset Voltage Temperature Coefficient Distribution

2500

2000

1000

500

0

TA, AMBIENT TEMPERATURE (°C)

Figure 5. Input Bias Current versus Temperature

Figure 6. Input Bias Current versus Common Mode Voltage

Figure 7. Open Loop Voltage Gain versusTemperature

150

50

0

−50

VCM, INPUT COMMON MODE VOLTAGE (V)

1500

PD

(max

), MA

XIM

UM

PO

WE

R D

ISS

IPAT

ION

(mW

200

160

120

80

TA, AMBIENT TEMPERATURE (°C)

0

I IB, I

NP

UT

BIA

S C

UR

RE

NT

(nA

)

40

5.0

10

VCC = +5.0 VVEE = Gnd

VCM > 1.0 V

VCM = 0 V to 0.5 V

I IB, I

NP

UT

BIA

S C

UR

RE

NT

(nA

) 100

−100

−150

−200

−250−55 −40 −25 0 25 70 85 125

−50 0 20 40 50−10 10 30−30−40 −20

−10 0 4.0 8.0 10−55 −40 −25 0 25 50 85 125

2.0 4.0

−2.0 2.0 6.0−6.0−8.0 −4.0

−55 −40 −25 0 25 70 85 125

0 6.0 8.0 10 12 105

8 and 14 Pin DIP Pkg

SO−14 Pkg

SO−8 Pkg

360 amplifiers tested from3 (MC33204) wafer lotsVCC = +5.0 VVEE = GndTA = 25°CDIP Package

360 amplifiers tested from3 (MC33204) wafer lotsVCC = +5.0 VVEE = GndTA = 25°CDIP Package

VCC = +5.0 VVEE = GndRL = 600 VO = 0.5 V to 4.5 V

VCC = 12 VVEE = GndTA = 25°C

TSSOP−14 Pkg

Page 39: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com6

VO

,OU

TPU

T V

OLT

AG

E (V

)pp

VO

,OU

TPU

T V

OLT

AG

E (V

)pp

40

20

100

80

60

Vout , OUTPUT VOLTAGE (V)

0

f, FREQUENCY (Hz)

12

0

9.0

3.0

6.0

VCC = +6.0 VVEE = −6.0 VRL = 600 AV = +1.0TA = 25°C

Figure 8. Output Voltage Swingversus Supply Voltage

Figure 9. Output Saturation Voltageversus Load Current

V

IL, LOAD CURRENT (mA)

VEE

Figure 10. Output Voltageversus Frequency

12

10

6.0

2.0

0

VCC, VEE SUPPLY VOLTAGE (V)

Figure 11. Common Mode Rejectionversus Frequency

Figure 12. Power Supply Rejectionversus Frequency

Figure 13. Output Short Circuit Currentversus Output Voltage

120

80

60

f, FREQUENCY (Hz)

8.0

100

80

60

40

f, FREQUENCY (Hz)

0

CM

R, C

OM

MO

N M

OD

E R

EJE

CTI

ON

(dB

)

20

VCC = +6.0 VVEE = −6.0 VTA = −55° to +125°C

PS

R, P

OW

ER

SU

PP

LY R

EJE

CTI

ON

(dB

)

100

40

20

0

VCC = +6.0 VVEE = −6.0 VTA = −55° to +125°C

VCC = +6.0 VVEE = −6.0 VTA = 25°C

4.0

SAT

, OU

TPU

T S

ATU

RAT

ION

VO

LTA

GE

(V)

TA = 25°C

TA = −55°C

PSR+

PSR−

I SC

, OU

TPU

T S

HO

RT

CIR

CU

IT C

UR

RE

NT

(mA

)

Source

Sink

VCC = +5.0 VVEE = −5.0 V

TA = 125°C

TA = 125°C

TA = −55°C

TA = 25°C

10 100 1.0 k 10 k 100 k 1.0 M 0 1.0 2.0 3.0 4.0 5.0 6.0

1.0 k 100 k 1.0 M10 k

0 15 20±1.0 ±2.0 105.0

10 100 1.0 k 10 k 100 k 1.0 M

±3.0 ±4.0 ±5.0 ±6.0

RL = 600 TA = 25°C

VCC

VCC − 0.2 V

VCC − 0.4 V

VEE + 0.4 V

VEE + 0.2 V

Page 40: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com7

, EX

CE

SS

PH

AS

E (D

EG

RE

ES

)

VCC, VEE , SUPPLY VOLTAGE (V)

I SC

, OU

TPU

T S

HO

RT

CIR

CU

IT C

UR

RE

NT

(mA

)S

R, S

LEW

RAT

E (V

/ s

TA, AMBIENT TEMPERATURE (°C)

VCC = +2.5 VVEE = −2.5 VVO = ±2.0 V

Figure 14. Output Short Circuit Currentversus Temperature

Figure 15. Supply Current per Amplifierversus Supply Voltage with No Load

I

Figure 16. Slew Rateversus Temperature

TA, AMBIENT TEMPERATURE (°C)

Figure 17. Gain Bandwidth Productversus Temperature

Figure 18. Voltage Gain and Phaseversus Frequency

Figure 19. Voltage Gain and Phaseversus Frequency

f, FREQUENCY (Hz)

GB

W, G

AIN

BA

ND

WID

TH P

RO

DU

CT

(MH

z)

A

, O

PE

N L

OO

P V

OLT

AG

E G

AIN

(dB

)

VCC = +5.0 VVEE = Gnd

CC

, SU

PP

LY C

UR

RE

NT

PE

R A

MP

LIFI

ER

(mA

)

TA = 125°C

TA = −55°C

Source

SinkTA = 25°C

+Slew Rate

−Slew Rate

TA, AMBIENT TEMPERATURE (°C)

VCC = +2.5 VVEE = −2.5 Vf = 100 kHz

VO

L , EX

CE

SS

PH

AS

E (D

EG

RE

ES

)

f, FREQUENCY (Hz)

70

50

30

10

−10

−30

2.0

0

1.5

0.5

1.0

2.0

1.6

0

150

125

75

25

0

70

50

30

100

4.0

3.0

2.0

0

1.0

10

−10

−30

50

1.2

0.8

0.4

±1.0 ±2.0 ±3.0 ±4.0 ±5.0 ±6.0

10 k 100 k 1.0 M 10 M

−55 −40 −25 25 70 1250 85 105 ±0

−55 −40 −25 25 70 1250 85 105 −55 −40 −25 25 70 1250 85 105

10 k 100 k 1.0 M 10 M240

40

80

120

160

200

40

80

120

160

200

240

A

, O

PE

N L

OO

P V

OLT

AG

E G

AIN

(dB

)V

OL

1A − Phase, CL = 0 pF1B − Gain, CL = 0 pF2A − Phase, CL = 300 pF2B − Gain, CL = 300 pF

1A − Phase, VS = ±6.0 V1B − Gain, VS = ±6.0 V2A − Phase, VS = ±1.0 V2B − Gain, VS = ±1.0 V

VS = ±6.0 VTA = 25°CRL = 600

CL = 0 pFTA = 25°CRL = 600

1A2A

2B

1B

1A

2A

2B

1B

Page 41: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com8

M, P

HA

SE

MA

RG

IN (D

EG

RE

ES

)

i ,

INP

UT

RE

FER

RE

D N

OIS

E C

UR

RE

NT

(pA

/ H

z)n

50

40

30

e ,

EQ

UIV

ALE

NT

INP

UT

NO

ISE

VO

LTA

GE

(nV

/ H

z)

20

10

0

n

RT, DIFFERENTIAL SOURCE RESISTANCE ()

CL, CAPACITIVE LOAD (pF)

80

0

70

40

Figure 20. Gain and Phase Marginversus Temperature

Figure 21. Gain and Phase Marginversus Differential Source Resistance

75

60

0

Figure 22. Gain and Phase Marginversus Capacitive Load

70

60

40

10

0

TA, AMBIENT TEMPERATURE (°C)

Figure 23. Channel Separationversus Frequency

Figure 24. Total Harmonic Distortionversus Frequency

Figure 25. Equivalent Input Noise Voltageand Current versus Frequency

10

1.0

0.1

f, FREQUENCY (Hz)

50

150

90

60

0

CS

, CH

AN

NE

L S

EPA

RAT

ION

(dB

)

30

THD

, TO

TAL

HA

RM

ON

IC D

ISTO

RTI

ON

(%)

0.01

0.001

20

45

30

15

Phase Margin

Gain Margin

f, FREQUENCY (Hz)

f, FREQUENCY (Hz)

M, P

HA

SE

MA

RG

IN (D

EG

RE

ES

)

30

AM

, GA

IN M

AR

GIN

(dB

)

AM

, GA

IN M

AR

GIN

(dB

)

60

10

20

30

50

AM

, GA

IN M

AR

GIN

(dB

)

AV = 10

120

AV = 100

AV = 10

AV = 1.0

AV = 100

M, P

HA

SE

MA

RG

IN (D

EG

RE

ES

)

100 1.0 k 10 k 100 k

10 100 1.0 k 100 k

−55 −40 −25 25 70 1250 85 105 10

10 100 1.0 k 100 1.0 k 10 k

10 100 10 k 100 k10 k 1.0 k

5.0

4.0

3.0

2.0

1.0

0

70

60

40

10

0

50

20

30

75

60

0

45

30

15

16

0

14

8.0

12

2.0

4.0

6.0

10

VCC = +6.0 VVEE = −6.0 VRL = 600 CL = 100 pF

VCC = +6.0 VVEE = −6.0 VTA = 25°C

Phase Margin

Phase Margin

Gain Margin

VCC = +6.0 VVEE = −6.0 VRL = 600 AV = 100TA = 25°C

Gain Margin

VCC = +6.0 VVEE = −6.0 VVO = 8.0 VppTA = 25°C

VCC = +5.0 VTA = 25°CVO = 2.0 Vpp

VEE = −5.0 VRL = 600

VCC = +6.0 VVEE = −6.0 VTA = 25°C

Noise Voltage

Noise Current

AV = 1000

Page 42: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com9

DETAILED OPERATING DESCRIPTION

General Information

The MC33201/2/4 family of operational amplifiers areunique in their ability to swing rail-to-rail on both the inputand the output with a completely bipolar design. This offerslow noise, high output current capability and a widecommon mode input voltage range even with low supplyvoltages. Operation is guaranteed over an extendedtemperature range and at supply voltages of 2.0 V, 3.3 V and5.0 V and ground.

Since the common mode input voltage range extends fromVCC to VEE, it can be operated with either single or splitvoltage supplies. The MC33201/2/4 are guaranteed not tolatch or phase reverse over the entire common mode range,however, the inputs should not be allowed to exceedmaximum ratings.

Circuit Information

Rail-to-rail performance is achieved at the input of theamplifiers by using parallel NPN-PNP differential inputstages. When the inputs are within 800 mV of the negativerail, the PNP stage is on. When the inputs are more than 800mV greater than VEE, the NPN stage is on. This switching ofinput pairs will cause a reversal of input bias currents (seeFigure 6). Also, slight differences in offset voltage may benoted between the NPN and PNP pairs. Cross-couplingtechniques have been used to keep this change to a minimum.

In addition to its rail-to-rail performance, the output stageis current boosted to provide 80 mA of output current,enabling the op amp to drive 600 loads. Because of thishigh output current capability, care should be taken not toexceed the 150°C maximum junction temperature.

O, O

UTP

UT

VO

LTA

GE

(50

mV

/DIV

)V

t, TIME (10 s/DIV)

Figure 26. Noninverting Amplifier Slew Rate Figure 27. Small Signal Transient Response

t, TIME (5.0 s/DIV)

Figure 28. Large Signal Transient Response

VCC = +6.0 VVEE = −6.0 VRL = 600 CL = 100 pFTA = 25°C

O, O

UTP

UT

VO

LTA

GE

(2.0

mV

/DIV

)

VCC = +6.0 VVEE = −6.0 VRL = 600 CL = 100 pFAV = 1.0TA = 25°C

V

VCC = +6.0 VVEE = −6.0 VRL = 600 CL = 100 pFTA = 25°C

t, TIME (10 s/DIV)

O, O

UTP

UT

VO

LTA

GE

(2.0

V/D

IV)

V

Page 43: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com10

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the totaldesign. The footprint for the semiconductor packages must bethe correct size to ensure proper solder connection interface

between the board and the package. With the correct padgeometry, the packages will self-align when subjected to asolder reflow process.

mm

inches

0.0411.04

0.2085.28

0.0150.38

0.02560.65

0.1263.20

Micro-8

Page 44: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com11

ORDERING INFORMATION

OperationalAmplifier Function Device

OperatingTemperature Range Package Shipping

MC33201D SO-8 98 Units / Rail

SingleMC33201DR2 TA= -40° to +105°C SO-8 2500 Units / Tape & Reel

SingleMC33201P

A

Plastic DIP 50 Units / Rail

MC33201VD TA = -55° to 125°C SO-8 98 Units / Rail

MC33202D SO-8 98 Units / Rail

MC33202DR2TA= 40 ° to +105°C

SO-8 2500 Units / Tape & Reel

MC33202DMR2TA= -40 ° to +105°C

Micro-8 4000 Units / Tape & Reel

DualMC33202P Plastic DIP 50 Units / Rail

DualMC33202VD SO-8 98 Units / Rail

MC33202VDR2TA 55° to 125°C

SO-8 2500 Units / Tape & Reel

NCV33202VDR2*TA = -55° to 125°C

SO-8 2500 Units / Tape & Reel

MC33202VP Plastic DIP 50 Units / Rail

MC33204D SO-14 55 Units / Rail

MC33204DR2 SO-14 2500 Units / Tape & Reel

MC33204DTB TA= -40 ° to +105°C TSSOP-14 96 Units / Rail

MC33204DTBR2

A

TSSOP-14 2500 Units / Tape & Reel

QuadMC33204P Plastic DIP 25 Units / Rail

QuadMC33204VD SO-14 55 Units / Rail

MC33204VDR2 SO-14 2500 Units / Tape & Reel

NCV33204DR2* TA = -55° to 125°C SO-14 2500 Units / Tape & Reel

NCV33204DTBR2*

A

TSSOP-14 2500 Units / Tape & Reel

MC33204VP Plastic DIP 25 Units / Rail

*NCV33202 and NCV33204 are qualified for automotive use.

Page 45: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com12

SO-8D SUFFIXCASE 751

PDIP-8P SUFFIXCASE 626

SO-8VD SUFFIXCASE 751

x = 1 or 2A = Assembly LocationWL, L = Wafer LotYY, Y = YearWW, W = Work Week

PDIP-8VP SUFFIXCASE 626

SO-14D SUFFIX

CASE 751A

TSSOP-14DTB SUFFIXCASE 948G

PDIP-14P SUFFIXCASE 646

SO-14VD SUFFIXCASE 751A

PDIP-14VP SUFFIXCASE 646

MARKING DIAGRAMS

Micro-8DM SUFFIXCASE 846A

3202AYW

1

8

ALYW3320x

1

8

ALYW320xV

1

8

1

8

MC3320xP AWL YYWW

1

8

MC33202VP AWL YYWW

1

14

MC33204DAWLYWW

1

14

MC33204VDAWLYWW

1

14

MC33204PAWLYYWW

1

14

MC33204VPAWLYYWW

1

14

MC33204

ALYW

*

*This marking diagram applies to NCV3320x

*

*

1

14

MC33204VALYW

Page 46: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com13

PACKAGE DIMENSIONS

PDIP-8P, VP SUFFIXCASE 626-05

ISSUE L

NOTES:1. DIMENSION L TO CENTER OF LEAD WHEN

FORMED PARALLEL.2. PACKAGE CONTOUR OPTIONAL (ROUND OR

SQUARE CORNERS).3. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.

1 4

58

F

NOTE 2 -A-

-B-

-T-SEATINGPLANE

H

J

G

D K

N

C

L

M

MAM0.13 (0.005) B MT

DIM MIN MAX MIN MAX

INCHESMILLIMETERS

A 9.40 10.16 0.370 0.400B 6.10 6.60 0.240 0.260C 3.94 4.45 0.155 0.175D 0.38 0.51 0.015 0.020F 1.02 1.78 0.040 0.070G 2.54 BSC 0.100 BSCH 0.76 1.27 0.030 0.050J 0.20 0.30 0.008 0.012K 2.92 3.43 0.115 0.135L 7.62 BSC 0.300 BSCM −−− 10 −−− 10 N 0.76 1.01 0.030 0.040

SO-8D, VD SUFFIXCASE 751-07

ISSUE AA

SEATINGPLANE

1

4

58

N

J

X 45

K

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSION A AND B DO NOT INCLUDE MOLD

PROTRUSION.4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER

SIDE.5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTAL INEXCESS OF THE D DIMENSION AT MAXIMUMMATERIAL CONDITION.

6. 751−01 THRU 751−06 ARE OBSOLETE. NEWSTANDAARD IS 751−07

A

B S

DH

C

0.10 (0.004)

DIM

A

MIN MAX MIN MAX

INCHES

4.80 5.00 0.189 0.197

MILLIMETERS

B 3.80 4.00 0.150 0.157C 1.35 1.75 0.053 0.069D 0.33 0.51 0.013 0.020G 1.27 BSC 0.050 BSCH 0.10 0.25 0.004 0.010J 0.19 0.25 0.007 0.010K 0.40 1.27 0.016 0.050M 0 8 0 8 N 0.25 0.50 0.010 0.020S 5.80 6.20 0.228 0.244

-X-

-Y-

G

MYM0.25 (0.010)

-Z-

YM0.25 (0.010) Z S X S

M

Page 47: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com14

PACKAGE DIMENSIONS

PDIP-14P, VP SUFFIXCASE 646-06

ISSUE M

1 7

14 8

B

A DIM MIN MAX MIN MAX

MILLIMETERSINCHES

A 0.715 0.770 18.16 18.80B 0.240 0.260 6.10 6.60C 0.145 0.185 3.69 4.69D 0.015 0.021 0.38 0.53F 0.040 0.070 1.02 1.78G 0.100 BSC 2.54 BSCH 0.052 0.095 1.32 2.41J 0.008 0.015 0.20 0.38K 0.115 0.135 2.92 3.43L

M −−− 10 −−− 10 N 0.015 0.039 0.38 1.01

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: INCH.3. DIMENSION L TO CENTER OF LEADS WHEN

FORMED PARALLEL.4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.5. ROUNDED CORNERS OPTIONAL.

F

H G DK

C

SEATINGPLANE

N

-T-

14 PL

M0.13 (0.005)

L

MJ

0.290 0.310 7.37 7.87

SO-14D, VD SUFFIXCASE 751A-03

ISSUE F

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSIONS A AND B DO NOT INCLUDE

MOLD PROTRUSION.4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)

PER SIDE.5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTALIN EXCESS OF THE D DIMENSION ATMAXIMUM MATERIAL CONDITION.

-A-

-B-

G

P 7 PL

14 8

71M0.25 (0.010) B M

SBM0.25 (0.010) A ST

-T-

FR X 45

SEATINGPLANE

D 14 PL K

C

JM

DIM MIN MAX MIN MAX

INCHESMILLIMETERS

A 8.55 8.75 0.337 0.344B 3.80 4.00 0.150 0.157C 1.35 1.75 0.054 0.068D 0.35 0.49 0.014 0.019F 0.40 1.25 0.016 0.049G 1.27 BSC 0.050 BSCJ 0.19 0.25 0.008 0.009K 0.10 0.25 0.004 0.009M 0 7 0 7 P 5.80 6.20 0.228 0.244R 0.25 0.50 0.010 0.019

Page 48: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com15

PACKAGE DIMENSIONS

TSSOP-14DTB SUFFIX

CASE 948G-01ISSUE O

SU0.15 (0.006) T

2X L/2

SUM0.10 (0.004) V ST

L-U-

SEATING

PLANE

0.10 (0.004)

-T-

ÇÇÇÇ

SECTION N-N

DETAIL E

J J1

K

K1

ÉÉÉÉ

DETAIL E

F

M

-W-

0.25 (0.010)814

71

PIN 1IDENT.

HG

A

D

C

B

SU0.15 (0.006) T

-V-

14X REFK

N

N

DIM MIN MAX MIN MAX

INCHESMILLIMETERS

A 4.90 5.10 0.193 0.200B 4.30 4.50 0.169 0.177C −−− 1.20 −−− 0.047D 0.05 0.15 0.002 0.006F 0.50 0.75 0.020 0.030G 0.65 BSC 0.026 BSCH 0.50 0.60 0.020 0.024J 0.09 0.20 0.004 0.008J1 0.09 0.16 0.004 0.006K 0.19 0.30 0.007 0.012K1 0.19 0.25 0.007 0.010L 6.40 BSC 0.252 BSCM 0 8 0 8

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,

PROTRUSIONS OR GATE BURRS. MOLD FLASHOR GATE BURRS SHALL NOT EXCEED 0.15(0.006) PER SIDE.

4. DIMENSION B DOES NOT INCLUDE INTERLEADFLASH OR PROTRUSION. INTERLEAD FLASH ORPROTRUSION SHALL NOT EXCEED0.25 (0.010) PER SIDE.

5. DIMENSION K DOES NOT INCLUDE DAMBARPROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.08 (0.003) TOTAL INEXCESS OF THE K DIMENSION AT MAXIMUMMATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FORREFERENCE ONLY.

7. DIMENSION A AND B ARE TO BE DETERMINEDAT DATUM PLANE −W−.

Page 49: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

MC33201, MC33202, MC33204, NCV33202, NCV33204

http://onsemi.com16

PACKAGE DIMENSIONS

SBM0.08 (0.003) A STDIM MIN MAX MIN MAX

INCHESMILLIMETERS

A 2.90 3.10 0.114 0.122B 2.90 3.10 0.114 0.122C −−− 1.10 −−− 0.043D 0.25 0.40 0.010 0.016G 0.65 BSC 0.026 BSCH 0.05 0.15 0.002 0.006J 0.13 0.23 0.005 0.009K 4.75 5.05 0.187 0.199L 0.40 0.70 0.016 0.028

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,

PROTRUSIONS OR GATE BURRS. MOLD FLASH,PROTRUSIONS OR GATE BURRS SHALL NOTEXCEED 0.15 (0.006) PER SIDE.

4. DIMENSION B DOES NOT INCLUDE INTERLEADFLASH OR PROTRUSION. INTERLEAD FLASH ORPROTRUSION SHALL NOT EXCEED 0.25 (0.010)PER SIDE.

5. 846A−01 OBSOLETE, NEW STANDARD 846A−02.

-B-

-A-

D

K

GPIN 1 ID

8 PL

0.038 (0.0015)

-T-SEATINGPLANE

C

H J L

STYLE 1:PIN 1. SOURCE

2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN

STYLE 2:PIN 1. SOURCE 1

2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1

STYLE 3:PIN 1. N−SOURCE

2. N−GATE 3. P−SOURCE 4. P−GATE 5. P−DRAIN 6. P−DRAIN 7. N−DRAIN 8. N−DRAIN

Micro-8DM SUFFIX

CASE 846A-02ISSUE F

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to makechanges without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for anyparticular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and allliability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/orspecifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must bevalidated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applicationsintended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or deathmay occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLCand its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney feesarising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges thatSCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATIONJAPAN : ON Semiconductor, Japan Customer Focus Center4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031Phone : 81-3-5740-2700Email : [email protected]

ON Semiconductor Website : http://onsemi.com

For additional information, please contact your localSales Representative.

MC33201/D

Literature Fulfillment :Literature Distribution Center for ON SemiconductorP.O. Box 5163, Denver, Colorado 80217 USAPhone : 303-675-2175 or 800-344-3860 Toll Free USA/CanadaFax: 303-675-2176 or 800-344-3867 Toll Free USA/CanadaEmail : [email protected]

N. American Technical Support : 800-282-9855 Toll Free USA/Canada

Page 50: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

1N4001-1N

4007

1N4001-1N4007, Rev. C1 2003 Fairchild Semiconductor Corporation

1N4001 - 1N4007

General Purpose Rectifiers

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Electrical Characteristics TA = 25°C unless otherwise noted

Features• Low forward voltage drop.

• High surge current capability.

Symbol

Parameter

Device

Units 4001 4002 4003 4004 4005 4006 4007

VF Forward Voltage @ 1.0 A 1.1 V Irr Maximum Full Load Reverse Current, Full

Cycle TA = 75°C 30 µA

IR Reverse Current @ rated VR TA = 25°C TA = 100°C

5.0 500

µA µA

CT Total Capacitance VR = 4.0 V, f = 1.0 MHz

15 pF

DO-41COLOR BAND DENOTES CATHODE

Symbol

Parameter

Value

Units 4001 4002 4003 4004 4005 4006 4007

VRRM Peak Repetitive Reverse Voltage 50 100 200 400 600 800 1000 V IF(AV) Average Rectified Forward Current,

.375 " lead length @ TA = 75°C 1.0 A

IFSM Non-repetitive Peak Forward Surge Current

8.3 ms Single Half-Sine-Wave 30 A

Tstg Storage Temperature Range -55 to +175 °C TJ Operating Junction Temperature -55 to +175 °C

Symbol

Parameter

Value

Units PD Power Dissipation 3.0 W RθJA Thermal Resistance, Junction to Ambient 50 °C/W

Thermal Characteristics

Page 51: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

1N4001-1N

4007

1N4001-1N4007, Rev. C1 2003 Fairchild Semiconductor Corporation

General Purpose Rectifiers (continued)

Typical Characteristics

Forward Characteristics

0.6 0.8 1 1.2 1.40.010.020.04

0.10.20.4

124

1020

FORWARD VOLTAGE (V)

FORW

ARD

CUR

REN

T (A

)

T = 25 C Pulse Width = 300µµµµS2% Duty Cycle

ºJ

Non-Repetitive Surge Current

1 2 4 6 8 10 20 40 60 1000

6

12

18

24

30

NUMBER OF CYCLES AT 60Hz

FORW

AR

D SU

RGE

CUR

RENT

(A) p

k

Forward Current Derating Curve

0 20 40 60 80 100 120 140 160 1800

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

AMBIENT TEMPERATURE ( C)

FOR

WA

RD C

URR

ENT

(A)

º

SINGLE PHASE HALF WAVE

60HZRESISTIVE OR

INDUCTIVE LOAD.375" 9.0 mm LEAD

LENGTHS

Reverse Characteristics

0 20 40 60 80 100 120 1400.01

0.1

1

10

100

1000

RATED PEAK REVERSE VOLTAGE (%)

REVE

RSE

CUR

RENT

( A

)

T = 25 CºJ

T = 150 CºJ

T = 100 CºJ

µ µµµ

Page 52: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

!"#$%"&'(%& %)'"%&'!%*$%('((!'&$$%"'+'%,'*- %& ''.$'-'($$%+!% !"'*%("&%%$%%( /0!11 2 2345 123 4511 3 45 1 1 1 2 1 3 21 6 2

7 12111 2 1 21 11 23 2

$ 2

((

%

1 1 1122

1 2311 21 2 1

1 2 1

11 2 1 2

"

$

$

($

!"# !

$ %

& '() *

+

,-./,0

"""! "# !1+# !%

!

0#23#24#25((+

# 6%6

7! 0!$8!#! 0!,80!,!0+$! '!

Page 53: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

CB E

TO-92

C

B

E

BC

C

SOT-223

E

NPN General Purpose AmplifierThis device is designed as a general purpose amplifier and switch.The useful dynamic range extends to 100 mA as a switch and to100 MHz as an amplifier.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:1) These ratings are based on a maximum junction temperature of 150 degrees C.2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Symbol Parameter Value UnitsVCEO Collector-Emitter Voltage 40 VVCBO Collector-Base Voltage 60 VVEBO Emitter-Base Voltage 6.0 VIC Collector Current - Continuous 200 mATJ, Tstg Operating and Storage Junction Temperature Range -55 to +150 °C

2001 Fairchild Semiconductor Corporation

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol Characteristic Max Units2N3904 *MMBT3904 **PZT3904

PD Total Device DissipationDerate above 25°C

6255.0

3502.8

1,0008.0

mWmW/°C

RθJC Thermal Resistance, Junction to Case 83.3 °C/WRθJA Thermal Resistance, Junction to Ambient 200 357 125 °C/W

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

**Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm2.

2N3904 MMBT3904

SOT-23Mark: 1A

PZT3904

2N3904 / M

MB

T3904 / PZT3904

2N3904/MMBT3904/PZT3904, Rev A

jmendiola
Jameco Part Number 178597
Page 54: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

Electrical Characteristics TA = 25°C unless otherwise noted

Symbol Parameter Test Conditions Min Max Units

V(BR)CEO Collector-Emitter BreakdownVoltage

IC = 1.0 mA, IB = 0 40 V

V(BR)CBO Collector-Base Breakdown Voltage IC = 10 µA, IE = 0 60 VV(BR)EBO Emitter-Base Breakdown Voltage IE = 10 µA, IC = 0 6.0 VIBL Base Cutoff Current VCE = 30 V, VEB = 3V 50 nAICEX Collector Cutoff Current VCE = 30 V, VEB = 3V 50 nA

OFF CHARACTERISTICS

ON CHARACTERISTICS*

SMALL SIGNAL CHARACTERISTICS

SWITCHING CHARACTERISTICS

*Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%

NPN (Is=6.734f Xti=3 Eg=1.11 Vaf=74.03 Bf=416.4 Ne=1.259 Ise=6.734 Ikf=66.78m Xtb=1.5 Br=.7371 Nc=2Isc=0 Ikr=0 Rc=1 Cjc=3.638p Mjc=.3085 Vjc=.75 Fc=.5 Cje=4.493p Mje=.2593 Vje=.75 Tr=239.5n Tf=301.2pItf=.4 Vtf=4 Xtf=2 Rb=10)

Spice Model

fT Current Gain - Bandwidth Product IC = 10 mA, VCE = 20 V,f = 100 MHz

300 MHz

Cobo Output Capacitance VCB = 5.0 V, IE = 0,f = 1.0 MHz

4.0 pF

Cibo Input Capacitance VEB = 0.5 V, IC = 0,f = 1.0 MHz

8.0 pF

NF Noise Figure IC = 100 µA, VCE = 5.0 V,RS =1.0kΩ,f=10 Hz to 15.7kHz

5.0 dB

td Delay Time VCC = 3.0 V, VBE = 0.5 V, 35 nstr Rise Time IC = 10 mA, IB1 = 1.0 mA 35 ns

ts Storage Time VCC = 3.0 V, IC = 10mA 200 nstf Fall Time IB1 = IB2 = 1.0 mA 50 ns

hFE DC Current Gain IC = 0.1 mA, VCE = 1.0 VIC = 1.0 mA, VCE = 1.0 VIC = 10 mA, VCE = 1.0 VIC = 50 mA, VCE = 1.0 VIC = 100 mA, VCE = 1.0 V

40701006030

300

VCE(sat) Collector-Emitter Saturation Voltage IC = 10 mA, IB = 1.0 mAIC = 50 mA, IB = 5.0 mA

0.20.3

VV

VBE(sat) Base-Emitter Saturation Voltage IC = 10 mA, IB = 1.0 mAIC = 50 mA, IB = 5.0 mA

0.65 0.850.95

VV

2N3904 / M

MB

T3904 / PZT3904NPN General Purpose Amplifier

(continued)

Page 55: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

2N3904 / M

MB

T3904 / P

ZT

3904

Typical Characteristics

Base-Emitter ON Voltage vsCollector Current

0.1 1 10 1000.2

0.4

0.6

0.8

1

I - COLLECTOR CURRENT (mA)V

-

BA

SE

-EM

ITT

ER

ON

VO

LTA

GE

(V

)B

E(O

N)

C

V = 5VCE

25 °C

125 °C

- 40 °C

NPN General Purpose Amplifier(continued)

Base-Emitter SaturationVoltage vs Collector Current

0.1 1 10 100

0.4

0.6

0.8

1

I - COLLECTOR CURRENT (mA)

V

-

BA

SE

-EM

ITT

ER

VO

LTA

GE

(V)

BE

SA

T

C

β = 10

25 °C

125 °C

- 40 °C

Collector-Emitter SaturationVoltage vs Collector Current

0.1 1 10 100

0.05

0.1

0.15

I - COLLECTOR CURRENT (mA)V

-

CO

LL

EC

TOR

-EM

ITT

ER

VO

LTA

GE

(V

)C

ES

AT

25 °C

C

β = 10

125 °C

- 40 °C

Collector-Cutoff Currentvs Ambient Temperature

25 50 75 100 125 150

0.1

1

10

100

500

T - AMBIENT TEMPERATURE ( C)

I

- C

OL

LE

CTO

R C

UR

RE

NT

(n

A)

A

V = 30VCB

CB

O

°

Capacitance vs Reverse Bias Voltage

0.1 1 10 1001

2

3

4

5

10

REVERSE BIAS VOLTAGE (V)

CA

PAC

ITA

NC

E (

pF)

C obo

C ibo

f = 1.0 MHz

Typical Pulsed Current Gainvs Collector Current

0.1 1 10 1000

100

200

300

400

500

I - COLLECTOR CURRENT (mA)h

- T

YP

ICA

L P

UL

SE

D C

UR

RE

NT

GA

INF

E

- 40 °C

25 °C

C

V = 5VCE

125 °C

Page 56: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

Power Dissipation vsAmbient Temperature

0 25 50 75 100 125 1500

0.25

0.5

0.75

1

TEMPERATURE ( C)

P

- PO

WE

R D

ISS

IPAT

ION

(W)

D

o

SOT-223

SOT-23

TO-92

Typical Characteristics (continued)

Noise Figure vs Frequency

0.1 1 10 1000

2

4

6

8

10

12

f - FREQUENCY (kHz)

NF

- N

OIS

E F

IGU

RE

(d

B)

V = 5.0VCE

I = 100 µA, R = 500 ΩC S

I = 1.0 mA R = 200ΩC

S

I = 50 µA

R = 1.0 kΩCS

I = 0.5 mA R = 200ΩC

S

Noise Figure vs Source Resistance

0.1 1 10 1000

2

4

6

8

10

12

R - SOURCE RESISTANCE ( )

NF

- N

OIS

E F

IGU

RE

(d

B)

I = 100 µAC

I = 1.0 mAC

S

I = 50 µAC

I = 5.0 mAC

θ - DE

GR

EE

S

0

406080100120

140160

20

180

Current Gain and Phase Anglevs Frequency

1 10 100 10000

5

10

15

20

25

30

35

40

45

50

f - FREQUENCY (MHz)

h

-

CU

RR

EN

T G

AIN

(d

B)

θ

V = 40VCE

I = 10 mAC

h fe

fe

Turn-On Time vs Collector Current

1 10 1005

10

100

500

I - COLLECTOR CURRENT (mA)

TIM

E (

nS

)

I = I = B1

C

B2I c

1040V

15V

2.0V

t @ V = 0VCBd

t @ V = 3.0VCCr

Rise Time vs Collector Current

1 10 1005

10

100

500

I - COLLECTOR CURRENT (mA)

t

- R

ISE

TIM

E (

ns)

I = I = B1

C

B2I c

10

T = 125°C

T = 25°CJ

V = 40VCC

r

J

2N3904 / M

MB

T3904 / P

ZT

3904NPN General Purpose Amplifier

(continued)

Page 57: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

2N3904 / M

MB

T3904 / P

ZT

3904NPN General Purpose Amplifier

(continued)

Typical Characteristics (continued)

Storage Time vs Collector Current

1 10 1005

10

100

500

I - COLLECTOR CURRENT (mA)

t

- S

TOR

AG

E T

IME

(n

s)

I = I = B1

C

B2I c

10

S

T = 125°C

T = 25°CJ

J

Fall Time vs Collector Current

1 10 1005

10

100

500

I - COLLECTOR CURRENT (mA)

t

- FA

LL

TIM

E (

ns)

I = I = B1

C

B2I c

10V = 40VCC

f

T = 125°C

T = 25°CJ

J

Current Gain

0.1 1 1010

100

500

I - COLLECTOR CURRENT (mA)

h

- C

UR

RE

NT

GA

IN

V = 10 VCE

C

fe

f = 1.0 kHzT = 25 CA

o

Output Admittance

0.1 1 101

10

100

I - COLLECTOR CURRENT (mA)

h

- O

UT

PU

T A

DM

ITTA

NC

E (

mho

s) V = 10 VCE

C

oe

f = 1.0 kHzT = 25 CA

Input Impedance

0.1 1 100.1

1

10

100

I - COLLECTOR CURRENT (mA)

h

- IN

PU

T IM

PE

DA

NC

E (

k )

V = 10 VCE

C

ie

f = 1.0 kHzT = 25 CA

Voltage Feedback Ratio

0.1 1 101

2

3

4

5

7

10

I - COLLECTOR CURRENT (mA)

h

- V

OLT

AG

E F

EE

DB

AC

K R

AT

IO (

x10

)

V = 10 VCE

C

re

f = 1.0 kHzT = 25 CA

o

_4

Page 58: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

Test Circuits

10 KΩΩΩΩΩ

3.0 V

275 ΩΩΩΩΩ

t1

C1 <<<<< 4.0 pF

Duty Cycle ===== 2%

Duty Cycle ===== 2%

<<<<< 1.0 ns

- 0.5 V

300 ns

10.6 V

10 < < < < < t1 <<<<< 500 µµµµµs

10.9 V

- 9.1 V

<<<<< 1.0 ns

0

0

10 KΩΩΩΩΩ

3.0 V

275 ΩΩΩΩΩ

C1 <<<<< 4.0 pF

1N916

FIGURE 2: Storage and Fall Time Equivalent Test Circuit

FIGURE 1: Delay and Rise Time Equivalent Test Circuit

2N3904 / M

MB

T3904 / P

ZT

3904NPN General Purpose Amplifier

(continued)

Page 59: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

TO-92 (FS PKG Code 92, 94, 96)

TO-92 Package Dimensions

January 2000, Rev. B

1:1Scale 1:1 on letter size paper

Dimensions shown below are in:inches [millimeters]

Part Weight per unit (gram): 0.1977

©2000 Fairchild Semiconductor International

Page 60: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

SOT-23 (FS PKG Code 49)

SOT-23 Package Dimensions

September 1998, Rev. A1

1:1Scale 1:1 on letter size paper

Dimensions shown below are in:inches [millimeters]

Part Weight per unit (gram): 0.0082

©2000 Fairchild Semiconductor International

Page 61: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

SOT-223 (FS PKG Code 47)

SOT-223 Package Dimensions

1 : 1

Scale 1:1 on letter size paper

Part Weight per unit (gram): 0.1246

September 1999, Rev. C©2000 Fairchild Semiconductor International

Page 62: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

TRADEMARKSThe following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and isnot intended to be an exhaustive list of all such trademarks.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.As used herein:1. Life support devices or systems are devices orsystems which, (a) are intended for surgical implant intothe body, or (b) support or sustain life, or (c) whosefailure to perform when properly used in accordancewith instructions for use provided in the labeling, can bereasonably expected to result in significant injury to theuser.

2. A critical component is any component of a lifesupport device or system whose failure to perform canbe reasonably expected to cause the failure of the lifesupport device or system, or to affect its safety oreffectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status Definition

Advance Information

Preliminary

No Identification Needed

Obsolete

This datasheet contains the design specifications forproduct development. Specifications may change inany manner without notice.

This datasheet contains preliminary data, andsupplementary data will be published at a later date.Fairchild Semiconductor reserves the right to makechanges at any time without notice in order to improvedesign.

This datasheet contains final specifications. FairchildSemiconductor reserves the right to make changes atany time without notice in order to improve design.

This datasheet contains specifications on a productthat has been discontinued by Fairchild semiconductor.The datasheet is printed for reference information only.

Formative orIn Design

First Production

Full Production

Not In Production

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHERNOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILDDOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCTOR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENTRIGHTS, NOR THE RIGHTS OF OTHERS.

PowerTrenchQFET™QS™QT Optoelectronics™Quiet Series™SILENT SWITCHERSMART START™SuperSOT™-3SuperSOT™-6SuperSOT™-8

FASTr™GlobalOptoisolator™GTO™HiSeC™ISOPLANAR™MICROWIRE™OPTOLOGIC™OPTOPLANAR™PACMAN™POP™

Rev. G

ACEx™Bottomless™CoolFET™CROSSVOLT™DOME™E2CMOSTM

EnSignaTM

FACT™FACT Quiet Series™FAST

SyncFET™TinyLogic™UHC™VCX™

Page 63: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+
Page 64: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

LEDTECH ELECTRONICS CORP.

SPECIFICATION

PART NO. : UT1813-83-UJE1-P22-TAA 5.0mm ROUND LED LAMP

OBSERVE PRECAUTION FOR HANDLING ELECTRO STATIC SENSITIVE DEVICES

ATTENTION

Approved by Checked by Prepared by

Sam Yang Min Bao

Natalya
Ledtech address
Page 65: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

UT1813-83-UJE1-P22-TAA 5.0 mm ROUND LED LAMP

REV.: 01 Date: 2006/08/05 Page: 1/6

Description

This hyper red lamp is made with AlGaInP/GaAs chip and water clear

epoxy resin.

5.9

8.7

24.0

MIN

.

1.5

TYP.

0.5

MA

X.

A K Notes:

1. ALL DIMENSIONS ARE IN mm.

2. TOLERANCE IS ±0.25mm UNLESS OTHERWISE NOTED.

Description

LED Chip Part No.

Material Emitting Color Lens Color

UT1813-83-UJE1-P22-TAA AlGaInP/GaAs Hyper red Water clear

Page 66: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

UT1813-83-UJE1-P22-TAA 5.0 mm ROUND LED LAMP

REV.: 01 Date: 2006/08/05 Page: 2/6

Absolute Maximum Ratings at Ta=25

Parameter Symbol Rating Unit

Power Dissipation PD 75 mW

Reverse Voltage VR 5 V

D.C. Forward Current If 30 mA

Reverse (Leakage) Current Ir 100 μA

Peak Current(1/10Duty Cycle,0.1ms Pulse Width.) If(Peak) 100 mA

Operating Temperature Range Topr. -25 to +85

Storage Temperature Range Tstg. -40 to +100

Lead Soldering Temp.(1.6mm from body) for 5 seconds Tsol. 260

Electrostatic discharge ESD. 300 V

Electrical and Optical Characteristics:

Parameter Symbol Condition Min. Typ. Max. Unit

Luminous Intensity IV If=20mA 3000 5500 mcd

Forward Voltage Vf If=20mA 2.1 2.5 V

Peak Wavelength λP If=20mA 632 nm

Dominant Wavelength λD If=20mA 625 nm

Reverse (Leakage) Current Ir Vr=5V 100 µA

Viewing Angle 2θ1/2 If=20mA 25 deg

Spectrum Line Halfwidth ∆λ If=20mA 20 nm

1. NOTE: THE DATAS TESTED BY IS TESTER 2. Customer’s special requirements are also welcome.

Page 67: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

UT1813-83-UJE1-P22-TAA 5.0 mm ROUND LED LAMP

REV.: 01 Date: 2006/08/05 Page: 3/6

Typical Electrical / Optical Characteristics Curves :

Applied Voltage (V)FORWARD CURRENT VS.APPLIED VOLTAGE

Forw

ard

Cur

rent

IF(m

A)

10

20

40

30

50

1.2 1.6 2.0 2.4 2.8 3.0

20.0

Forward Current (mA) FORWARD CURRENT VS. LUMINOUS INTENSITY

Rel

ativ

e Lu

min

ous I

nten

sity

10.00

2000

4000

6000

30.00.0

10000

8000

FORWARD CURRENT VS. AMBIENT TEMPERATURE

0 20 40 60 10080

Forw

ard

Cur

rent

IF(m

A)

10

20

40

30

50

Temperature ( )

0.1 0.4 0.60.30.5 0.2

90°

70°

80°

60°

50°

40°

0° 10° 20°

30°

0.7

0.8

1.00.9

RADIATION DIAGRAM

Page 68: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

UT1813-83-UJE1-P22-TAA 5.0 mm ROUND LED LAMP

REV.: 01 Date: 2006/08/05 Page: 4/6

Precautions: TAKE NOTE OF THE FOLLOWING IN USE OF LED

1. Temperature in use

Since the light generated inside the LED needs to be emitted to outside efficiently, a resin with

high light transparency is used; therefore, additives to improve the heat resistance or moisture

resistance (silica gel , etc) which are used for semiconductor products such as transistors

cannot be added to the resin.

Consequently, the heat resistant ability of the resin used for LED is usually low; therefore,

please be careful on the following during use.

Avoid applying external force, stress, and excessive vibration to the resins and terminals at

high temperature. The glass transition temperature of epoxy resin used for the LED is

approximately 120-130.

At a temperature exceeding this limit, the coefficient of liner expansion of the resin doubles or

more compared to that at normal temperature and the resin is softened.

If external force or stress is applied at that time, it may cause a wire rupture.

2. Soldering

Please be careful on the following at soldering.

After soldering, avoided applying external force, stress, and excessive vibration until the

products go to cooling process (normal temperature), <Same for products with terminal leads>

(1) Soldering measurements:

Distance between melted solder side to bottom of resin shall be 1.6mm or longer.

(2) Solder dip: Preheat: 90 max. (Backside of PCB), Within 60 seconds

Solder bath: 260±5 (Solder temperature), Within 5 seconds

(3) Soldering iron : 350 max. (Temperature of soldering iron tip), Within 3 seconds

3. Insertion

Pitch of the LED leads and pitch of mounting holes need to be same

4. Others

Since the heat resistant ability of the LED resin is low, SMD components are used on the same

PCB, please mount the LED after adhesive baking process for SMD components. In case

adhesive baking is done after LED lamp insertion due to a production process reason, make

sure not to apply external force, stress, and excessive vibration to the LED and follow the

conditions below.

Baking temperature: 120 max. Baking time: Within 60 seconds

If soldering is done sequentially after the adhesive baking, please perform the soldering after cooling down

the LED to normal temperature.

Page 69: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

8.7(.34)

5.0(.197)

24.0(0.92) Min.

1.0(.04)

1.0(.04)Min.

5.9(.227)

Flat Denotes Cathode

2.54(.100) Nom

MCDL-513SBC4 (5MM 470nm Blue 25°°°°)

Lens Color: Water ClearLens Dimension: 5 mm

Absolute Maximum Ratings At Ta = 25°°°° C

Parameter Max UnitDC Forward Current (mA) 20 mAReverse Voltage 5 VPower Dissipation (mW) 200 mWContinuous forward Current (mW) 100 mWPeak Forward Current, tw ,=1 msec. Duty ,= 1/20 500 mAOperation Temperature (°C) -40°°°° - +85°°°°Storage Temperature (°C) -40°°°° +100°°°°Solder DIP (5 seconds, 1.6 mm from body) Temperature 260 ±±±± 5°°°°C

Electrical Characteristics At Ta= 25°°°°C

Symbol Parameter Test Cond. Min. Typ. Max. UnitVF Forward Voltage IF = 20mA 3.20 3.60 4.30 VIR Reverse Current VR=5V ** ** 10 µµµµA

Part Number Emitted Color Peak Wavelengthλλλλ PEAK

Viewing Angle2θθθθ Degrees

IV (IF = 20mA)MCD

Min Typ MaxMCDL-513SBC4 InGaN Blue 470 25 2,000 3,000 3,500

Notes:1. All Dimensions are in millimeters (inches).2. Tolerance is ± 0.25mm (0.010") unless otherwise specified.3. Protruded resin under flange is 1.5mm (0.059") max.4. Lead spacing is measured where the leads emerge from the package.

jmendiola
Jameco Part Number 183222
Page 70: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+
Page 71: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

LEDTECH ELECTRONICS CORP.

SPECIFICATION

PART NO. : UT1813-83-UJE1-P22-TAA 5.0mm ROUND LED LAMP

OBSERVE PRECAUTION FOR HANDLING ELECTRO STATIC SENSITIVE DEVICES

ATTENTION

Approved by Checked by Prepared by

Sam Yang Min Bao

Natalya
Ledtech address
Page 72: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

UT1813-83-UJE1-P22-TAA 5.0 mm ROUND LED LAMP

REV.: 01 Date: 2006/08/05 Page: 1/6

Description

This hyper red lamp is made with AlGaInP/GaAs chip and water clear

epoxy resin.

5.9

8.7

24.0

MIN

.

1.5

TYP.

0.5

MA

X.

A K Notes:

1. ALL DIMENSIONS ARE IN mm.

2. TOLERANCE IS ±0.25mm UNLESS OTHERWISE NOTED.

Description

LED Chip Part No.

Material Emitting Color Lens Color

UT1813-83-UJE1-P22-TAA AlGaInP/GaAs Hyper red Water clear

Page 73: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

UT1813-83-UJE1-P22-TAA 5.0 mm ROUND LED LAMP

REV.: 01 Date: 2006/08/05 Page: 2/6

Absolute Maximum Ratings at Ta=25

Parameter Symbol Rating Unit

Power Dissipation PD 75 mW

Reverse Voltage VR 5 V

D.C. Forward Current If 30 mA

Reverse (Leakage) Current Ir 100 μA

Peak Current(1/10Duty Cycle,0.1ms Pulse Width.) If(Peak) 100 mA

Operating Temperature Range Topr. -25 to +85

Storage Temperature Range Tstg. -40 to +100

Lead Soldering Temp.(1.6mm from body) for 5 seconds Tsol. 260

Electrostatic discharge ESD. 300 V

Electrical and Optical Characteristics:

Parameter Symbol Condition Min. Typ. Max. Unit

Luminous Intensity IV If=20mA 3000 5500 mcd

Forward Voltage Vf If=20mA 2.1 2.5 V

Peak Wavelength λP If=20mA 632 nm

Dominant Wavelength λD If=20mA 625 nm

Reverse (Leakage) Current Ir Vr=5V 100 µA

Viewing Angle 2θ1/2 If=20mA 25 deg

Spectrum Line Halfwidth ∆λ If=20mA 20 nm

1. NOTE: THE DATAS TESTED BY IS TESTER 2. Customer’s special requirements are also welcome.

Page 74: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

UT1813-83-UJE1-P22-TAA 5.0 mm ROUND LED LAMP

REV.: 01 Date: 2006/08/05 Page: 3/6

Typical Electrical / Optical Characteristics Curves :

Applied Voltage (V)FORWARD CURRENT VS.APPLIED VOLTAGE

Forw

ard

Cur

rent

IF(m

A)

10

20

40

30

50

1.2 1.6 2.0 2.4 2.8 3.0

20.0

Forward Current (mA) FORWARD CURRENT VS. LUMINOUS INTENSITY

Rel

ativ

e Lu

min

ous I

nten

sity

10.00

2000

4000

6000

30.00.0

10000

8000

FORWARD CURRENT VS. AMBIENT TEMPERATURE

0 20 40 60 10080

Forw

ard

Cur

rent

IF(m

A)

10

20

40

30

50

Temperature ( )

0.1 0.4 0.60.30.5 0.2

90°

70°

80°

60°

50°

40°

0° 10° 20°

30°

0.7

0.8

1.00.9

RADIATION DIAGRAM

Page 75: V+ (important note) use this wiring diagram for ICS if you ... · (important note) use this wiring diagram for ICS if you are using MC34072 (dual op amp) 2--3+ 7 6 4 +12V V-GND V+

UT1813-83-UJE1-P22-TAA 5.0 mm ROUND LED LAMP

REV.: 01 Date: 2006/08/05 Page: 4/6

Precautions: TAKE NOTE OF THE FOLLOWING IN USE OF LED

1. Temperature in use

Since the light generated inside the LED needs to be emitted to outside efficiently, a resin with

high light transparency is used; therefore, additives to improve the heat resistance or moisture

resistance (silica gel , etc) which are used for semiconductor products such as transistors

cannot be added to the resin.

Consequently, the heat resistant ability of the resin used for LED is usually low; therefore,

please be careful on the following during use.

Avoid applying external force, stress, and excessive vibration to the resins and terminals at

high temperature. The glass transition temperature of epoxy resin used for the LED is

approximately 120-130.

At a temperature exceeding this limit, the coefficient of liner expansion of the resin doubles or

more compared to that at normal temperature and the resin is softened.

If external force or stress is applied at that time, it may cause a wire rupture.

2. Soldering

Please be careful on the following at soldering.

After soldering, avoided applying external force, stress, and excessive vibration until the

products go to cooling process (normal temperature), <Same for products with terminal leads>

(1) Soldering measurements:

Distance between melted solder side to bottom of resin shall be 1.6mm or longer.

(2) Solder dip: Preheat: 90 max. (Backside of PCB), Within 60 seconds

Solder bath: 260±5 (Solder temperature), Within 5 seconds

(3) Soldering iron : 350 max. (Temperature of soldering iron tip), Within 3 seconds

3. Insertion

Pitch of the LED leads and pitch of mounting holes need to be same

4. Others

Since the heat resistant ability of the LED resin is low, SMD components are used on the same

PCB, please mount the LED after adhesive baking process for SMD components. In case

adhesive baking is done after LED lamp insertion due to a production process reason, make

sure not to apply external force, stress, and excessive vibration to the LED and follow the

conditions below.

Baking temperature: 120 max. Baking time: Within 60 seconds

If soldering is done sequentially after the adhesive baking, please perform the soldering after cooling down

the LED to normal temperature.