28
UWB Amplifier UWB Amplifier Sarah Kief and Saif Anwar Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry Advisor: Dr. Prasad Shastry 2008 Senior Project 2008 Senior Project Bradley University Electrical Bradley University Electrical Engineering Engineering

UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

Page 1: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

UWB Amplifier UWB Amplifier

Sarah Kief and Saif AnwarSarah Kief and Saif Anwar

Advisor: Dr. Prasad ShastryAdvisor: Dr. Prasad Shastry

2008 Senior Project2008 Senior Project

Bradley University Electrical Bradley University Electrical EngineeringEngineering

Page 2: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

OutlineOutline

Where we left offWhere we left off Distributed Amplifier DesignDistributed Amplifier Design Microstrip Line DesignMicrostrip Line Design Coplanar Wave Guide DesignCoplanar Wave Guide Design M-derive Design M-derive Design Near future activitiesNear future activities

Page 3: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Where we left offWhere we left off

Picked transistor - NE4210S01Picked transistor - NE4210S01 Cutoff max at 20 GHzCutoff max at 20 GHz

Designed lumped element Designed lumped element componentscomponents Design EquationsDesign Equations

Page 4: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Design EquationsDesign Equations

Page 5: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Where we left offWhere we left off

Picked transistor - NE4210S01Picked transistor - NE4210S01 Cutoff max at 20 GHzCutoff max at 20 GHz

Designed lumped element Designed lumped element componentscomponents

Chose biasing parameters from the Chose biasing parameters from the DC-IV curvesDC-IV curves Vds=1[V], Vgs=-.45[V]Vds=1[V], Vgs=-.45[V]

Page 6: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Bias Point SelectionBias Point Selection

0.5 1.0 1.5 2.0 2.5 3.0 3.50.0 4.0

10

20

30

40

50

60

0

70

VDS

I_P

robe

1.i,

mA

Readout

m1

3.9800.061

m2

4.0000.055

m3

2.0100.010

m4

m1VDS=I_Probe1.i=0.032VGS=-0.520000

3.980m2VDS=I_Probe1.i=0.029VGS=-0.560000

3.980m3VDS=I_Probe1.i=0.026VGS=-0.600000

4.000m4VDS=I_Probe1.i=0.010VGS=-0.680000

2.010Vds of 2 volts and Ids of 10mA for noise figure.

Page 7: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Where we left offWhere we left off

Picked transistor - NE4210S01Picked transistor - NE4210S01 Cutoff max at 20 GHzCutoff max at 20 GHz

Designed lumped element Designed lumped element componentscomponents

Chose biasing parameters from the Chose biasing parameters from the DC-IV curvesDC-IV curves Vds=1[V], Vgs=-.45[V]Vds=1[V], Vgs=-.45[V]

Built / simulated lumped element Built / simulated lumped element model with 1 transistormodel with 1 transistor 7 dB7 dB

Page 8: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Distributed Amplifier Distributed Amplifier DesignDesign

Lumped element model built in ADSLumped element model built in ADS 2 and 3 transistor designs2 and 3 transistor designs Simulations Simulations

Gain flatnessGain flatness Phase linearity Phase linearity StabilityStability

Page 9: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

3 Transistor M-derived 3 Transistor M-derived Lumped Element NetworkLumped Element Network

LGLG/2-

LG/2 LG

LDLDLD/2

LD/2

LL9

R=L=.424 nH

CC5C=.0954 pF

LL8

R=L=.238 nHTerm

Term1

Z=50 OhmNum=1

CC6C=2400 pF

LL19

R=L=.395 nH

LL11

R=L=.238 nH

LL3

R=L=.79 nH

LL17

R=L=.79 nH

LL2

R=L=.395 nH

LL14

R=L=2200 nH

CC9C=2400 pF

CC11C=2400 pF

V_DCSRC2Vdc=-.45 V

RR2R=50 Ohm

CC8C=.0954 pF

LL13

R=L=.424 nH

LL25

R=L=56.31 pH

LL24

R=L=56.31 pH

LL23

R=L=56.31 pH

CC3C=2400 pF

LL7

R=L=2200 nH

CC4C=2400 pF

RR3R=50 Ohm

CC2C=.0954 pF

LL6

R=L=.424 nH

LL5

R=L=.238 nH

V_DCSRC1Vdc=1 V

S_ParamSP1

Step=Stop=10.6 GHzStart=3.1 GHz

S-PARAMETERS

TechInclude_NEC_ACTIVELIBRARYNEC_ACTIVELIBRARY_LibFile=Nominal

LL1

R=L=.395 nH

LL18

R=L=.395 nH

LL4

R=L=.79 nH

LL15

R=L=.79 nH

LL20

R=L=56.31 pH

LL21

R=L=56.31 pH

LL22

R=L=56.31 pH

NEC_FETQ2partName=NE4210S01_v116

NEC_FETQ3partName=NE4210S01_v116

NEC_FETQ1partName=NE4210S01_v116

LL12

R=L=.424 nH

CC7C=.0954 pF

LL10

R=L=.238 nH

TermTerm2

Z=50 OhmNum=2

CC12C=2400 pF

Page 10: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

SimulationsSimulations

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.53.0 11.0

-10

-5

0

5

10

-15

15

freq, GHz

dB(S

(2,1

))

Readout

m1

m1freq=dB(S(2,1))=14.857Max

7.649GHz

4 5 6 7 8 9 103 11

-100

0

100

-200

200

freq, GHz

phas

e(S

(2,1

))

Page 11: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

SimulationsSimulations

Eqnk = stab_fact(S)Eqnk1=stab_meas(S)m2freq=k=0.543Min

9.623GHz

4 5 6 7 8 9 103 11

50

100

150

0

200

freq, GHz

k

Readout

m2

m2freq=k=0.543Min

9.623GHz

4 5 6 7 8 9 103 11

0.8

1.0

0.6

1.2

freq, GHz

k1

Page 12: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Microstrip Line DesignMicrostrip Line Design

Translated lumped element Translated lumped element components into respective lengths components into respective lengths and widths in the MSTRIP programand widths in the MSTRIP program Capacitors Zo=30 ohmsCapacitors Zo=30 ohms Inductor Zo=90 ohmsInductor Zo=90 ohms

Built layout in ADS and simulatedBuilt layout in ADS and simulated Compared microstrip simulation Compared microstrip simulation

results to lumped element results to lumped element simulationssimulations

Page 13: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Component Values Component Values

Capacitors (pF) Capacitors (pF) width(mm)width(mm) length (mm)length (mm) Inductors (nH) Inductors (nH) width(mm)width(mm)

length length (mm(mm

))

9.54E-149.54E-14 2.670222.67022 0.53350.5335 6.34E-106.34E-10 0.7035560.703556 1.38201.3820

1.50E-131.50E-13 2.670222.67022 0.83610.8361 7.90E-107.90E-10 0.7035560.703556 1.72341.7234

2.40E-092.40E-09 2.670222.67022 13422.240013422.2400 4.24E-104.24E-10 0.7035560.703556 0.92490.9249

         2.20E-062.20E-06 0.7035560.7035564799.2264799.226

77

         5.63E-115.63E-11 0.7035560.703556 0.12280.1228

                 

Lambda EFF (mm)Lambda EFF (mm)       Lambda EFF (mm)Lambda EFF (mm)      

15.53515.535       16.36116.361      

1.9418751.941875       2.0451252.045125      

FrequencyFrequency               

1.20E+101.20E+10               

Zo (ohms)Zo (ohms)       Zo (ohms)Zo (ohms)      

3030       9090      

                 

                 

                 

Cap = f * lambda eff * cap Cap = f * lambda eff * cap * zo* zo      

L = f * lambda eff * L = f * lambda eff * in/zoin/zo      

Page 14: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Microstrip LayoutMicrostrip Layout

MSUBMSub1

Rough=0 milTanD=0.0012T=35 umHu=3.9e+034 milCond=5.8E7Mur=1Er=2.94H=20.0 mil

MSub

TechInclude_NEC_ACTIVELIBRARYNEC_ACTIVELIBRARY_LibFile=Nominal

S_ParamSP1

Step=Stop=10.6 GHzStart=3.1 GHz

S-PARAMETERS

MTEE_ADSTee3

W3=.703556 mmW2=25.0 milW1=.703556 mmSubst="MSub1"

MLINL12

L=.9249 mmW=.703556 mmSubst="MSub1"

MSTEPStep5

W2=.703556 mmW1=2.67022 mmSubst="MSub1"

MLINC7

L=.5335 mmW=2.67022 mmSubst="MSub1"

TermTerm1

Z=50 OhmNum=2

CC14C=2400 pF

MLINL17+L11

L=1.3820 mmW=.703556 mmSubst="MSub1"

VIAGNDV14

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

VIAGNDV11

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

MLINL15+L10

L=1.3820 mmW=.703556 mmSubst="MSub1"MTEE_ADS

Tee9

W3=.703556 mmW2=.703556 mmW1=.703556 mmSubst="MSub1"

MLINTL5

L=.1228 mmW=.703556 mmSubst="MSub1"

NEC_FETQ3partName=NE4210S01_v116

MLINTL6

L=.1228 mmW=.703556 mmSubst="MSub1"

MTEE_ADSTee10

W3=.703556 mmW2=.703556 mmW1=.703556 mmSubst="MSub1"

MLINTL4

L=.1228 mmW=.703556 mmSubst="MSub1"

MLINL20

L=1.7234 mmW=.703556 mmSubst="MSub1"

VIAGNDV3

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

VIAGNDV13

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

NEC_FETQ2partName=NE4210S01_v116

MLINTL1

L=.1228 mmW=.703556 mmSubst="MSub1"

MTEE_ADSTee5

W3=.703556 mmW2=.703556 mmW1=.703556 mmSubst="MSub1"

MLINL4

L=1.7234 mmW=.703556 mmSubst="MSub1"MTEE_ADS

Tee6

W3=.703556 mmW2=.703556 mmW1=.703556 mmSubst="MSub1"

MLINTL2

L=.1228 mmW=.703556 mmSubst="MSub1" VIAGND

V12

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

VIAGNDV2

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

MTEE_ADSTee8

W3=.703556 mmW2=.703556 mmW1=.703556 mmSubst="MSub1"

MLINL8+L2

L=1.3820 mmW=.703556 mmSubst="MSub1"

NEC_FETQ1partName=NE4210S01_v116

MLINTL3

L=.1228 mmW=.703556 mmSubst="MSub1"

MTEE_ADSTee7

W3=.703556 mmW2=.703556 mmW1=.703556 mmSubst="MSub1"

MLINL21

L=1.7234 mmW=.703556 mmSubst="MSub1"

VIAGNDV6

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

VIAGNDV5

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

MTEE_ADSTee4

W3=.703556 mmW2=25.0 milW1=.703556 mmSubst="MSub1"

MLINC8

L=.5335 mmW=2.67022 mmSubst="MSub1"

MSTEPStep6

W2=.703556 mmW1=2.67022 mmSubst="MSub1"

MLINL13

L=.9249 mmW=.703556 mmSubst="MSub1"

V_DCSRC2Vdc=-.45 V

CC16C=2400 pF

LL19

R=L=2200 nH

RR2R=50 Ohm

CC15C=2400 pF

MLINL3

L=1.7234 mmW=.703556 mmSubst="MSub1"

VIAGNDV10

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

CC10C=2400 pF

LL18

R=L=2200 nH

V_DCSRC1Vdc=1.0 V

MLINL5+L1

L=1.3820 mmW=.703556 mmSubst="MSub1"

MLINC2

L=.5335 mmW=2.67022 mmSubst="MSub1"

MSTEPStep1

W2=.703556 mmW1=2.67022 mmSubst="MSub1"

MLINL6

L=.9249 mmW=.703556 mmSubst="MSub1"

MTEE_ADSTee2

W3=.703556 mmW2=.703556 mmW1=25.0 milSubst="MSub1"

CC11C=2400 pF

RR1R=50 Ohm

VIAGNDV8

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

MTEE_ADSTee1

W3=.703556 mmW2=.703556 mmW1=25.0 milSubst="MSub1"

MLINC5

L=.5335 mmW=2.67022 mmSubst="MSub1"

MSTEPStep7

W2=.703556 mmW1=2.67022 mmSubst="MSub1"

MLINL9

L=.9249 mmW=.703556 mmSubst="MSub1"

TermTerm2

Z=50 OhmNum=1

CC9C=2400 pF

Page 15: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

SimulationsSimulations

3.54.04.55.05.56.06.57.07.58.08.59.09.510.010.53.0 11.0123456789

1011

0

12

freq, GHzdB

(S(2

,1))

Readout

m1m1freq=dB(S(2,1))=11.717Max7.085GHz4 5 6 7 8 9 103 11

-100

0

100

-200

200

freq, GHz

ph

ase

(S(2

,1))

Page 16: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

SimulationsSimulations

Eqn k = stab_fact(S) m2freq=k=1.477Min

10.60GHz

4 5 6 7 8 9 103 11

2

3

4

5

1

6

freq, GHz

k

Readout

m2

m2freq=k=1.477Min

10.60GHzEqn k1=stab_meas(S)

m3freq=k1=0.868Min

10.60GHz

4 5 6 7 8 9 103 11

0.88

0.90

0.92

0.94

0.86

0.96

freq, GHz

k1

Readout

m3

m3freq=k1=0.868Min

10.60GHz

Page 17: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Coplanar Wave Guide Coplanar Wave Guide DesignDesign

Chose RT/Duriod 6002 boardChose RT/Duriod 6002 board Thickness : 20 mils, .508 mmThickness : 20 mils, .508 mm Dielectric Constant : 2.94 Dielectric Constant : 2.94 1 oz copper plating1 oz copper plating High mechanical strength High mechanical strength

Page 18: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Coplanar Wave Guide Coplanar Wave Guide DesignDesign

Design wave guide to test transistorsDesign wave guide to test transistors LayoutLayout

Designed width and length of the Designed width and length of the layout using Line calclayout using Line calc DimensionsDimensions

Width = 1.017 mmWidth = 1.017 mm Air Gap = .808 mmAir Gap = .808 mm Length = 10 mmLength = 10 mm

Constructed layout in ADS Constructed layout in ADS Tested and simulated in ADSTested and simulated in ADS

Page 19: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

NE4210S01 Transistor Pad NE4210S01 Transistor Pad LayoutLayout

Page 20: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Full Coplanar Wave Full Coplanar Wave GuideGuide

Page 21: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Half Coplanar Wave Guide Half Coplanar Wave Guide LayoutLayout

Page 22: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

ADS Schematic of Coplanar ADS Schematic of Coplanar WaveguideWaveguide

Page 23: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Layout SimulationLayout Simulation

Page 24: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Lm

Cm

Constant-k LPF M-Derived LPF

Need for M-Derived Filter Design• To avoid padding capacitor.

• Useful in the layout design.

• Easier for optimization purpose.

M-Derive Design LayoutM-Derive Design Layout

Page 25: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

• Lm = L*(k-m2)/4*m

• k = m*Cg or Cd / Cm

where Cm = Cin or Cout

• Cin=.33 pF, Cout=.1686 pF

• Lmd = 1.42 nH (for drain side)

• Lmg = 0.004nH (for gate side)

M-Derive EquationsM-Derive Equations

Page 26: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

M-Derived Microstrip M-Derived Microstrip LayoutLayout

MSUBMSub1

Rough=0 milTanD=0.0012T=35 umHu=3.9e+034 milCond=5.8E7Mur=1Er=2.94H=20.0 mil

MSub

TechInclude_NEC_ACTIVELIBRARYNEC_ACTIVELIBRARY_LibFile=Nominal

S_ParamSP1

Step=Stop=10.6 GHzStart=3.1 GHz

S-PARAMETERS

MTEE_ADSTee3

W3=.703556 mmW2=25.0 milW1=.703556 mmSubst="MSub1"

MLINL12

L=.9249 mmW=.703556 mmSubst="MSub1"

MSTEPStep5

W2=.703556 mmW1=2.67022 mmSubst="MSub1"

MLINC7

L=.5335 mmW=2.67022 mmSubst="MSub1"

TermTerm1

Z=50 OhmNum=2

CC14C=2400 pF

MLINL17+L11

L=1.3820 mmW=.703556 mmSubst="MSub1"

VIAGNDV14

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

VIAGNDV11

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

MLINL15+L10

L=1.3820 mmW=.703556 mmSubst="MSub1"MTEE_ADS

Tee9

W3=.703556 mmW2=.703556 mmW1=.703556 mmSubst="MSub1"

MLINTL5

L=.1228 mmW=.703556 mmSubst="MSub1"

NEC_FETQ3partName=NE4210S01_v116

MLINTL6

L=.1228 mmW=.703556 mmSubst="MSub1"

MTEE_ADSTee10

W3=.703556 mmW2=.703556 mmW1=.703556 mmSubst="MSub1"

MLINTL4

L=.1228 mmW=.703556 mmSubst="MSub1"

MLINL20

L=1.7234 mmW=.703556 mmSubst="MSub1"

VIAGNDV3

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

VIAGNDV13

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

NEC_FETQ2partName=NE4210S01_v116

MLINTL1

L=.1228 mmW=.703556 mmSubst="MSub1"

MTEE_ADSTee5

W3=.703556 mmW2=.703556 mmW1=.703556 mmSubst="MSub1"

MLINL4

L=1.7234 mmW=.703556 mmSubst="MSub1"MTEE_ADS

Tee6

W3=.703556 mmW2=.703556 mmW1=.703556 mmSubst="MSub1"

MLINTL2

L=.1228 mmW=.703556 mmSubst="MSub1" VIAGND

V12

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

VIAGNDV2

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

MTEE_ADSTee8

W3=.703556 mmW2=.703556 mmW1=.703556 mmSubst="MSub1"

MLINL8+L2

L=1.3820 mmW=.703556 mmSubst="MSub1"

NEC_FETQ1partName=NE4210S01_v116

MLINTL3

L=.1228 mmW=.703556 mmSubst="MSub1"

MTEE_ADSTee7

W3=.703556 mmW2=.703556 mmW1=.703556 mmSubst="MSub1"

MLINL21

L=1.7234 mmW=.703556 mmSubst="MSub1"

VIAGNDV6

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

VIAGNDV5

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

MTEE_ADSTee4

W3=.703556 mmW2=25.0 milW1=.703556 mmSubst="MSub1"

MLINC8

L=.5335 mmW=2.67022 mmSubst="MSub1"

MSTEPStep6

W2=.703556 mmW1=2.67022 mmSubst="MSub1"

MLINL13

L=.9249 mmW=.703556 mmSubst="MSub1"

V_DCSRC2Vdc=-.45 V

CC16C=2400 pF

LL19

R=L=2200 nH

RR2R=50 Ohm

CC15C=2400 pF

MLINL3

L=1.7234 mmW=.703556 mmSubst="MSub1"

VIAGNDV10

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

CC10C=2400 pF

LL18

R=L=2200 nH

V_DCSRC1Vdc=1.0 V

MLINL5+L1

L=1.3820 mmW=.703556 mmSubst="MSub1"

MLINC2

L=.5335 mmW=2.67022 mmSubst="MSub1"

MSTEPStep1

W2=.703556 mmW1=2.67022 mmSubst="MSub1"

MLINL6

L=.9249 mmW=.703556 mmSubst="MSub1"

MTEE_ADSTee2

W3=.703556 mmW2=.703556 mmW1=25.0 milSubst="MSub1"

CC11C=2400 pF

RR1R=50 Ohm

VIAGNDV8

W=25.0 milRho=1.0T=0.15 milD=15.0 milSubst="MSub1"

MTEE_ADSTee1

W3=.703556 mmW2=.703556 mmW1=25.0 milSubst="MSub1"

MLINC5

L=.5335 mmW=2.67022 mmSubst="MSub1"

MSTEPStep7

W2=.703556 mmW1=2.67022 mmSubst="MSub1"

MLINL9

L=.9249 mmW=.703556 mmSubst="MSub1"

TermTerm2

Z=50 OhmNum=1

CC9C=2400 pF

Page 27: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Updated ScheduleUpdated ScheduleWeek of Tasks to complete

January 25th Designing the microstrip version of lumped element model.

February 7th Board , microstrip simulations and designing

February 14th M-derived simulations, coplanar wave guide design

February 21st Coplanar wave guide design simulation

February 28th Coplanar wave guide optimization and finalizing

March 6th Transistor optimization, coplanar wave guide finalizing

March 13th Transistor optimization, coplanar wave guide fabrication

March 20th Spring break, coplanar wave guide fabrication

March 27th Testing of transistor using coplanar wave guide

April 3rd Testing of transistor using coplanar wave guide, de-embedding

April 10th Amplifier fabrication

April 17th Amplifier fabrication

April 24th Testing amplifier

May 1st Testing amplifier

May 8th presentations

Page 28: UWB Amplifier Sarah Kief and Saif Anwar Advisor: Dr. Prasad Shastry 2008 Senior Project Bradley University Electrical Engineering

Near future Activities Near future Activities

Do De-embedding to find S-Parameters Do De-embedding to find S-Parameters on Coplanar Waveguideon Coplanar Waveguide

Determine the optimal number of Determine the optimal number of transistorstransistors

Order RT/Duriod BoardOrder RT/Duriod Board Test the S-Parameters of the Test the S-Parameters of the

TransistorsTransistors Optimize the final layoutOptimize the final layout Fabricate and test the circuitFabricate and test the circuit