Click here to load reader

UvA-DARE (Digital Academic Repository) Hybrid resonators ... · PDF file UvA-DARE (Digital Academic Repository) Hybrid resonators for light trapping and emission control Doeleman,

  • View
    3

  • Download
    0

Embed Size (px)

Text of UvA-DARE (Digital Academic Repository) Hybrid resonators ... · PDF file UvA-DARE (Digital...

  • UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

    UvA-DARE (Digital Academic Repository)

    Hybrid resonators for light trapping and emission control

    Doeleman, H.M.

    Link to publication

    Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses): Other

    Citation for published version (APA): Doeleman, H. M. (2019). Hybrid resonators for light trapping and emission control.

    General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

    Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

    Download date: 18 Aug 2020

    https://dare.uva.nl/personal/pure/en/publications/hybrid-resonators-for-light-trapping-and-emission-control(ee9a7127-73ed-4b8a-9845-d68bdf52999e).html

  • References

    [1] J. N. Tinsley, M. I. Molodtsov, R. Prevedel, D. Wartmann, J. Espigulé-Pons, M. Lauwers, and A. Vaziri, Direct detection of a single photon by humans, Nat. Commun. 7, 12172 (2016).

    [2] J. Hecht, City of light: The story of fiber optics (Oxford University Press, New York, 1999), 2nd ed.

    [3] F. Vollmer, and S. Arnold, Whispering-gallery-mode biosensing: Label-free detection down to single molecules, Nat. Methods 5, 591 (2008).

    [4] P. Zijlstra, P. M. R. Paulo, and M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod, Nat. Nanotechnol. 7, 379 (2012).

    [5] E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Arch. für Mikroskopische Anat. 9, 413 (1873).

    [6] D. E. Chang, V. Vuletić, and M. D. Lukin, Quantum nonlinear optics - photon by photon, Nat. Photonics 8, 685 (2014).

    [7] K. J. Vahala, Optical microcavities, Nature 424, 839 (2003). [8] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer,

    Giessen, 1988).

    [9] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424, 824 (2003).

    [10] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9, 193 (2010).

    [11] G. Grynberg, A. Aspect, and C. Fabre, Introduction to quantum optics: from the semi-classical approach to quantized light (Cambridge University Press, New York, 2010).

    [12] L. Novotny, and B. Hecht, Principles of nano-optics (Cambridge University Press, New York, 2012), 2nd ed.

    [13] F. Marquier, C. Sauvan, and J.-J. Greffet, Revisiting quantum optics with surface plasmons and plasmonic resonators, ACS Photonics 4, 2091 (2017).

    [14] E. M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69, 681 (1946).

    [15] S. M. S. M. Dutra, Cavity quantum electrodynamics : the strange theory of light in a box (John Wiley & Sons, Hoboken, New Jersey, 2005).

    [16] A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, Controlling the dynamics of a coupled atom-cavity system by pure dephasing, Phys. Rev. B 81, 245419 (2010).

    [17] R. Sprik, B. A. van Tiggelen, and A. Lagendijk, Optical emission in periodic dielectrics, Europhys. Lett. 35, 265 (1996).

    [18] P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and quenching of single- molecule fluorescence, Phys. Rev. Lett. 96, 113002 (2006).

    196

  • References

    [19] K. H. Drexhage, Influence of a dielectric interface on fluorescence decay time, J. Lumin. 1,2, 693 (1970).

    [20] D. J. Heinzen, and M. S. Feld, Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator, Phys. Rev. Lett. 59, 2623 (1987).

    [21] D. Miller, Device requirements for optical interconnects to silicon chips, Proc. IEEE 97, 1166 (2009).

    [22] K. L. Tsakmakidis, R. W. Boyd, E. Yablonovitch, and X. Zhang, Large spontaneous- emission enhancements in metallic nanostructures: Towards LEDs faster than lasers, Opt. Express 24, 17916 (2016).

    [23] P. Lodahl, S. Mahmoodian, and S. Stobbe, Interfacing single photons and single quantum dots with photonic nanostructures, Rev. Mod. Phys. 87, 347 (2015).

    [24] S. A. Mann, R. R. Grote, R. M. Osgood, A. Alù, and E. C. Garnett, Opportunities and limitations for nanophotonic structures to exceed the Shockley-Queisser limit, ACS Nano 10, 8620 (2016).

    [25] M. T. Hill, and M. C. Gather, Advances in small lasers, Nat. Photonics 8, 908 (2014). [26] F. Vollmer, and L. Yang, Label-free detection with high-Q microcavities: a review of

    biosensing mechanisms for integrated devices, Nanophotonics 1, 267 (2012). [27] H. Bethe, and J. Schwinger, Perturbation theory for cavities (Massachusetts Institute

    of Technology, Radiation Laboratory, Cambridge, MA, 1943).

    [28] P. Zoller, T. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, et al., Quantum information processing and communication, Eur. Phys. J. D 36, 203 (2005).

    [29] H. J. Kimble, The quantum internet, Nature 453, 1023 (2008). [30] J. L. O’Brien, A. Furusawa, and J. Vučković, Photonic quantum technologies, Nat.

    Photonics 3, 687 (2009). [31] B. Lounis, and M. Orrit, Single-photon sources, Rep. Prog. Phys. 68, 1129 (2005). [32] P. Senellart, G. Solomon, and A. White, High-performance semiconductor quantum-

    dot single-photon sources, Nat. Nanotechnol. 12, 1026 (2017). [33] C. Santori, D. Fattal, and Y. Yamamoto, Single-photon devices and applications (John

    Wiley & Sons, Weinheim, 2010).

    [34] J. M. Raimond, M. Brune, and S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73, 565 (2001).

    [35] G. Rempe, H. Walther, and N. Klein, Observation of quantum collapse and revival in a one-atom maser, Phys. Rev. Lett. 58, 353 (1987).

    [36] R. J. Thompson, G. Rempe, and H. J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity, Phys. Rev. Lett. 68, 1132 (1992).

    [37] A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoǧlu, Strongly correlated photons on a chip, Nat. Photonics 6, 93 (2012).

    [38] D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, High- Q measurements of fused-silica microspheres in the near infrared, Opt. Lett. 23, 247 (1998).

    [39] S. John, Localization of light, Phys. Today 44, 32 (1991).

    197

  • References

    [40] G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, Vacuum Rabi splitting in semiconductors, Nat. Phys. 2, 81 (2006).

    [41] F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, Anomalous spontaneous emission time in a microscopic optical cavity, Phys. Rev. Lett. 59, 2955 (1987).

    [42] A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, Observation of the vacuum Rabi spectrum for one trapped atom, Phys. Rev. Lett. 93, 233603 (2004).

    [43] O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, Bright solid-state sources of indistinguishable single photons, Nat. Commun. 4, 1425 (2013).

    [44] X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar, Phys. Rev. Lett. 116, 020401 (2016).

    [45] S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, High-frequency single-photon source with polarization control, Nat. Photonics 1, 704 (2007).

    [46] J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, Strong coupling in a single quantum dot-semiconductor microcavity system, Nature 432, 197 (2004).

    [47] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip, Appl. Phys. Lett. 85, 6113 (2004).

    [48] K. Srinivasan, and O. Painter, Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system, Nature 450, 862 (2007).

    [49] E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.-M. Gérard, and J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity, Phys. Rev. Lett. 95, 067401 (2005).

    [50] T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, Ultralow-threshold microcavity Raman laser on a microelectronic chip, Opt. Lett. 29, 1224 (2004).

    [51] T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, Photonic crystal nanocavity with a Q-factor exceeding eleven million, Opt. Express 25, 1769 (2017).

    [52] S. Noda, M. Fujita, and T. Asano, Spontaneous-emission control by photonic crys