34
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) UvA-DARE (Digital Academic Repository) GFAP as an understudy in adult neurogenesis Martina-Mamber, C.E. Publication date 2014 Link to publication Citation for published version (APA): Martina-Mamber, C. E. (2014). GFAP as an understudy in adult neurogenesis. Boxpress. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date:19 Jun 2021

UvA-DARE (Digital Academic Repository) GFAP as an understudy … · Reynolds R, Hardy R (1997) Oligodendroglial progenitors labeled with the O4 antibody persist in the adult rat cerebral

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

    UvA-DARE (Digital Academic Repository)

    GFAP as an understudy in adult neurogenesis

    Martina-Mamber, C.E.

    Publication date2014

    Link to publication

    Citation for published version (APA):Martina-Mamber, C. E. (2014). GFAP as an understudy in adult neurogenesis. Boxpress.

    General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an opencontent license (like Creative Commons).

    Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, pleaselet the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the materialinaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letterto: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. Youwill be contacted as soon as possible.

    Download date:19 Jun 2021

    https://dare.uva.nl/personal/pure/en/publications/gfap-as-an-understudy-in-adult-neurogenesis(f8028a3c-0cff-439c-83bb-42f2f9f1db24).html

  • References

    254

    References1. Allen E (1912) The cessation of mitosis in the central nervous system of the albino rat. J Comp

    Neurol 22: 547–568.

    2. Smart I (1961) The subependymal layer of the mouse brain and its cell production as shown by radioautography after thymidine-H3 injection. J Comp Neurol 116: 325–347.

    3. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124: 319–335.

    4. Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA 93: 14895–14900.

    5. Nakaguchi K, Masuda H, Kaneko N, Sawamoto K (2011) Strategies for Regenerating Striatal Neurons in the Adult Brain by Using Endogenous Neural Stem Cells. Neurol Res Int 2011: 1–10.

    6. Sun D, Bullock MR, Altememi N, Zhou Z, Hagood S, et al. (2010) The Effect of Epidermal growth factor in the Injured Brain after Trauma in Rats. J Neurotrauma 27: 923–938.

    7. Spassky N, Merkle FT, Flames N, Tramontin AD, García-Verdugo JM, et al. (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25: 10–18.

    8. Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86: 342–367.

    9. Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, et al. (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132: 5329–5339.

    10. Petreanu L, Alvarez-Buylla A (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci 22: 6106–6113.

    11. Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317: 381–384.

    12. Mouret A, Lepousez G, Gras J, Gabellec M-M, Lledo P-M (2009) Turnover of newborn olfactory bulb neurons optimizes olfaction. J Neurosci 29: 12302–12314.

    13. Shingo T, Gregg C, Enwere E, Fujikawa H, Hassam R, et al. (2003) Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299: 117–120.

    14. Danilov AI, Gomes-Leal W, Ahlenius H, Kokaia Z, Carlemalm E, et al. (2009) Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia 57: 136–152.

    15. Gritti A, Bonfanti L, Doetsch F, Caille I, Alvarez-Buylla A, et al. (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 22: 437–445.

    16. Lois C, Garc a-Verdugo J-M, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271: 978–981.

    17. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: The dual role of microglia. Neuroscience 158: 1021–1029.

    18. Hellström NAK, Lindberg OR, Ståhlberg A, Swanpalmer J, Pekny M, et al. (2011) Unique gene expression patterns indicate microglial contribution to neural stem cell recovery following irradiation. Mol Cell Neurosci 46: 710–719.

  • References

    255

    19. Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, et al. (2006) Microglia instruct subventricular zone neurogenesis. Glia 54: 815–825.

    20. Komitova M, Zhu X, Serwanski DR, Nishiyama A (2009) NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J Comp Neurol 512: 702–716.

    21. Platel J-C, Gordon V, Heintz T, Bordey A (2009) GFAP-GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche. Glia 57: 66–78.

    22. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, et al. (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26: 7907–7918.

    23. Bansal R, Warrington AE, Gard AL, Ranscht B, Pfeiffer SE (1989) Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J Neurosci Res 24: 548–557.

    24. Panagiotakos G, Alshamy G, Chan B, Abrams R, Greenberg E, et al. (2007) Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS ONE 2: e588.

    25. Reynolds R, Hardy R (1997) Oligodendroglial progenitors labeled with the O4 antibody persist in the adult rat cerebral cortex in vivo. J Neurosci Res 47: 455–470.

    26. Calaora V, Chazal G, Nielsen PJ, Rougon G, moreau H (1996) mCD24 expression in the developing mouse brain and in zones of secondary neurogenesis in the adult. Neuroscience 73: 581–594.

    27. Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17: 5046–5061.

    28. Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, et al. (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467: 1–10.

    29. Saaltink D-J, Håvik B, Verissimo CS, Lucassen PJ, Vreugdenhil E (2012) Doublecortin and doublecortin-like are expressed in overlapping and non-overlapping neuronal cell population: Implications for neurogenesis. J Comp Neurol 520: 2805–2823.

    30. Temple S (2001) The development of neural stem cells. Nature 414: 112–117.

    31. Shen Q, Wang Y, Kokovay E, Lin G, Chuang S-M, et al. (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3: 289–300.

    32. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, et al. (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3: 279–288.

    33. Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13: 543–550.

    34. Lacar B, Young SZ, Platel J-C, Bordey A (2011) Gap junction-mediated calcium waves define communication networks among murine postnatal neural progenitor cells. Eur J Neurosci 34: 1895–1905.

    35. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3: 265–278.

    36. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, et al. (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304: 1338–1340.

    37. Bouab M, Paliouras GN, Aumont A, Forest-Bérard K, Fernandes KJL (2011) Aging of the subventricular zone neural stem cell niche: evidence for quiescence-associated changes between early and mid-adulthood. Neuroscience 173: 135–149.

  • References

    256

    38. Morshead CM, Craig CG, Kooy D van der (1998) In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 125: 2251–2261.

    39. Sajad M, Chawla R, Zargan J, Umar S, Sadaqat M, et al. (2011) Cytokinetics of adult rat SVZ after EAE. Brain Res 1371: 140–149.

    40. Menezes JRL, Smith CM, Nelson KC, Luskin MB (1995) The division of neuronal progenitor cells during migration in the neonatal mammalian forebrain. Mol Cell Neurosci 6: 496–508.

    41. Zhang RL, LeTourneau Y, Gregg SR, Wang Y, Toh Y, et al. (2007) Neuroblast division during migration toward the ischemic striatum: a study of dynamic migratory and proliferative characteristics of neuroblasts from the subventricular zone. J Neurosci 27: 3157–3162.

    42. Obermair F-J, Fiorelli R, Schroeter A, Beyeler S, Blatti C, et al. (2010) A novel classification of quiescent and transit amplifying adult neural stem cells by surface and metabolic markers permits a defined simultaneous isolation. Stem Cell Res 5: 131–143.

    43. Corti S, Locatelli F, Papadimitriou D, Donadoni C, Salani S, et al. (2006) Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells 24: 975–985.

    44. Andreu-Agullo C, Maurin T, Thompson CB, Lai EC (2012) Ars2 maintains neural stem-cell identity through direct transcriptional activation of Sox2. Nature 481: 195–198.

    45. Fanarraga ML, Avila J, Zabala JC (1999) Expression of unphosphorylated class III β-tubulin isotype in neuroepithelial cells demonstrates neuroblast commitment and differentiation. Eur J Neurosci 11: 516–527.

    46. Webster TJ, Lee, Khang, Kim, Moon, et al. (2012) Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke. Int J Nanomedicine: 2751.

    47. Goings GE, Kozlowski DA, Szele FG (2006) Differential activation of microglia in neurogenic versus non-neurogenic regions of the forebrain. Glia 54: 329–342.

    48. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36: 1021–1034.

    49. Khodosevich K, Watanabe Y, Monyer H (2011) EphA4 preserves postnatal and adult neural stem cells in an undifferentiated state in vivo. J Cell Sci 124: 1268–1279.

    50. Goldshmit Y, Galea MP, Bartlett PF, Turnley AM (2006) EphA4 regulates central nervous system vascular formation. J Comp Neurol 497: 864–875.

    51. Pastrana E, Cheng L-C, Doetsch F (2009) Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA 106: 6387–6392.

    52. Young KM, Mitsumori T, Pringle N, Grist M, Kessaris N, et al. (2010) An Fgfr3-iCreER(T2) transgenic mouse line for studies of neural stem cells and astrocytes. Glia 58: 943–953.

    53. Mamber C, Kamphuis W, Haring NL, Peprah N, Middeldorp J, et al. (2012) GFAPd expression in glia of the developmental and adolescent mouse brain. PLoS ONE 7: e52659.

    54. Kamphuis W, Mamber C, Moeton M, Kooijman L, Sluijs A, et al. (2012) GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in a mouse model of Alzheimer disease. PLoS ONE 7: e42823.

    55. Imura T, Nakano I, Kornblum HI, Sofroniew MV (2006) Phenotypic and functional heterogeneity of GFAP-expressing cells in vitro: differential expression of LeX/CD15 by GFAP-expressing multipotent neural stem cells and non-neurogenic astrocytes. Glia 53: 277–293.

  • References

    257

    56. L’Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, et al. (2012) Plasticity of subventricular zone neuroprogenitors in MPTP (1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine) mouse model of parkinson’s disease involves cross talk between inflammatory and Wnt/β-Catenin signaling pathways: functional consequences for neuroprotection and repair. J Neurosci 32: 2062–2085.

    57. Nam H, Benezra R (2009) High levels of Id1 expression define B1 type adult neural stem cells. Cell Stem Cell 5: 515–526.

    58. Kim EJ, Ables JL, Dickel LK, Eisch AJ, Johnson JE (2011) Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS ONE 6: e18472.

    59. Parras CM, Galli R, Britz O, Soares S, Galichet C, et al. (2004) Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J 23: 4495–4505.

    60. Walker AS, Goings GE, Kim Y, Miller RJ, Chenn A, et al. (2010) Nestin reporter transgene labels multiple central nervous system precursor cells. Neural Plast 2010: 894374.

    61. Lagace DC, Whitman MC, Noonan MA, Ables JL, DeCarolis NA, et al. (2007) Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J Neurosci 27: 12623–12629.

    62. Kohwi M, Osumi N, Rubenstein JLR, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25: 6997–7003.

    63. Jones KS, Connor B (2011) Proneural transcription factors Dlx2 and Pax6 are altered in adult SVZ neural precursor cells following striatal cell loss. Mol Cell Neurosci 47: 53–60.

    64. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, et al. (2006) PDGFRa-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51: 187–199.

    65. Chojnacki A, Mak G, Weiss S (2011) PDGFRa expression distinguishes GFAP-expressing neural stem cells from PDGF-responsive neural precursors in the adult periventricular area. J Neurosci 31: 9503–9512.

    66. Coskun V, Wu H, Blanchi B, Tsao S, Kim K, et al. (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105: 1026–1031.

    67. Corti S, Nizzardo M, Nardini M, Donadoni C, Locatelli F, et al. (2007) Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Experimental Neurology 205: 547–562.

    68. Sheikh BN, Dixon MP, Thomas T, Voss AK (2012) Querkopf is a key marker of self-renewal and multipotency of adult neural stem cells. J Cell Sci 125: 295–309.

    69. Ferri ALM, Cavallaro M, Braida D, Di Cristofano A, Canta A, et al. (2004) Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131: 3805–3819.

    70. Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, et al. (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26: 148–165.

    71. Kamphuis W, Orre M, Kooijman L, Dahmen M, Hol EM (2012) Differential cell proliferation in the cortex of the appsweps1de9 Alzheimer’s disease mouse model. Glia 60: 615–629.

    72. Kokovay E, Wang Y, Kusek G, Wurster R, Lederman P, et al. (2012) VCAM1 is essential to maintain the structure of the SVZ niche and acts as an environmental sensor to regulate SVZ lineage progression. Cell Stem Cell 11: 220–230.

  • References

    258

    73. Gratzner HG, Leif RC, Ingram DJ, Castro A (1975) The use of antibody specific for bromodeoxyuridine for the immunofluorescent determination of DNA replication in single cells and chromosomes. Exp Cell Res 95: 88–94.

    74. Leif RC, Stein JH, Zucker RM (2004) A short history of the initial application of anti-5-BrdU to the detection and measurement of S phase. Cytometry 58A: 45–52.

    75. Hayes NL, Nowakowski RS (2000) Exploiting the Dynamics of S-Phase Tracers in Developing Brain: Interkinetic Nuclear Migration for Cells Entering versus Leavingthe S-Phase. Dev Neurosci 22: 44–55.

    76. Vega CJ, Peterson DA (2005) Stem cell proliferative history in tissue revealed by temporal halogenated thymidine analog discrimination. Nat Meth 2: 167–169.

    77. Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35: 865–875.

    78. Horn PA, Tesch H, Staib P, Kube D, Diehl V, et al. (1999) Expression of AC133, a novel hematopoietic precursor antigen, on acute myeloid leukemia cells. Blood 93: 1435–1437.

    79. Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353: 811–822.

    80. Shmelkov SV, St Clair R, Lyden D, Rafii S (2005) AC133/CD133/Prominin-1. Int J Biochem Cell Biol 37: 715–719.

    81. Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, et al. (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67: 5727–5736.

    82. Bagley RG, Walter-Yohrling J, Cao X, Weber W, Simons B, et al. (2003) Endothelial precursor cells as a model of tumor endothelium: characterization and comparison with mature endothelial cells. Cancer Res 63: 5866–5873.

    83. Saha B, Jyothi Prasanna S, Chandrasekar B, Nandi D (2010) Gene modulation and immunoregulatory roles of interferon gamma. Cytokine 50: 1–14.

    84. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.

    85. Boon K, Edwards JB, Eberhart CG, Riggins GJ (2004) Identification of astrocytoma associated genes including cell surface markers. BMC Cancer 4: 39.

    86. Pallari H-M, Eriksson JE (2006) Intermediate filaments as signaling platforms. Sci STKE 2006: pe53.

    87. Toivola DM, Tao G-Z, Habtezion A, Liao J, Omary MB (2005) Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol 15: 608–617.

    88. Goldman RD, Khuon S, Chou YH, Opal P, Steinert PM (1996) The function of intermediate filaments in cell shape and cytoskeletal integrity. J Cell Biol 134: 971–983.

    89. Schnitzer J, Franke WW, Schachner M (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90: 435–447.

    90. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60: 585–595.

    91. Michalczyk K, Ziman M (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20: 665–671.

  • References

    259

    92. Park D, Xiang AP, Mao FF, Zhang L, Di C-G, et al. (2010) Nestin is required for the proper self-renewal of neural stem cells. Stem Cells 28: 2162–2171.

    93. Wilhelmsson U, Faiz M, de Pablo Y, Sjöqvist M, Andersson D, et al. (2012) Astrocytes negatively regulate neurogenesis through the Jagged1-mediated notch pathway. Stem Cells 30: 2320–2329.

    94. Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93: 421–443.

    95. Nielsen AL, Holm IE, Johansen M, Bonven B, Jørgensen P, et al. (2002) A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J Biol Chem 277: 29983–29991.

    96. Imura T, Kornblum HI, Sofroniew MV (2003) The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci 23: 2824–2832.

    97. Roelofs RF, Fischer DF, Houtman SH, Sluijs JA, Van Haren W, et al. (2005) Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia 52: 289–300.

    98. Middeldorp J, Boer K, Sluijs JA, De Filippis L, Encha-Razavi F, et al. (2010) GFAPdelta in radial glia and subventricular zone progenitors in the developing human cortex. Development 137: 313–321.

    99. Malatesta P, Hartfuss E, Götz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127: 5253–5263.

    100. Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, et al. (2011) A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25: 930–945.

    101. Kiparissides A, Koutinas M, Moss T, Newman J, Pistikopoulos EN, et al. (2011) Modelling the Delta1/Notch1 pathway: in search of the mediator(s) of neural stem cell differentiation. PLoS ONE 6: e14668.

    102. Mumm JS, Kopan R (2000) Notch signaling: from the outside in. Dev Biol 228: 151–165.

    103. Wilson MD, Wang D, Wagner R, Breyssens H, Gertsenstein M, et al. (2008) ARS2 is a conserved eukaryotic gene essential for early mammalian development. Mol Cell Biol 28: 1503–1514.

    104. Kiriyama M, Kobayashi Y, Saito M, Ishikawa F, Yonehara S (2009) Interaction of FLASH with arsenite resistance protein 2 is involved in cell cycle progression at S phase. Mol Cell Biol 29: 4729–4741.

    105. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, et al. (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17: 126–140.

    106. Pevny LH, Nicolis SK (2010) Sox2 roles in neural stem cells. Int J Biochem Cell Biol 42: 421–424.

    107. Kang W, Hébert JM (2012) A Sox2 BAC transgenic approach for targeting adult neural stem cells. PLoS ONE 7: e49038.

    108. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, et al. (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401: 670–677.

    109. Niola F, Zhao X, Singh D, Castano A, Sullivan R, et al. (2012) Id proteins synchronize stemness and anchorage to the niche of neural stem cells. Nat Cell Biol 14: 477–487.

    110. Jeon H-M, Jin X, Lee J-S, Oh S-Y, Sohn Y-W, et al. (2008) Inhibitor of differentiation 4 drives brain tumor-initiating cell genesis through cyclin E and notch signaling. Genes Dev 22: 2028–2033.

  • References

    260

    111. Ruzinova MB, Benezra R (2003) Id proteins in development, cell cycle and cancer. Trends Cell Biol 13: 410–418.

    112. Kim Y, Comte I, Szabo G, Hockberger P, Szele FG (2009) Adult mouse subventricular zone stem and progenitor cells are sessile and Epidermal growth factor receptor negatively regulates neuroblast migration. PLoS ONE 4: e8122.

    113. Allendoerfer KL, Durairaj A, Matthews GA, Patterson PH (1999) Morphological domains of Lewis-X/FORSE-1 immunolabeling in the embryonic neural tube are due to developmental regulation of cell surface carbohydrate expression. Dev Biol 211: 208–219.

    114. Bartsch D, Mai JK (1991) Distribution of the 3-fucosyl-N-acetyl-lactosamine (FAL) epitope in the adult mouse brain. Cell Tissue Res 263: 353–366.

    115. Katoh M, Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13: 4042–4045.

    116. Corti S, Locatelli F, Papadimitriou D, Donadoni C, Bo RD, et al. (2005) Multipotentiality, homing properties, and pyramidal neurogenesis of CNS-derived LeX(ssea-1)+/CXCR4+ stem cells. FASEB J 19: 1860–1862.

    117. Panchision DM, Chen H-L, Pistollato F, Papini D, Ni H-T, et al. (2007) Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24. Stem Cells 25: 1560–1570.

    118. Gritti A, Frölichsthal-Schoeller P, Galli R, Parati EA, Cova L, et al. (1999) Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci 19: 3287–3297.

    119. Palmer A, Klein R (2003) Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. Genes Dev 17: 1429–1450.

    120. Zimmer G, Rudolph J, Landmann J, Gerstmann K, Steinecke A, et al. (2011) Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence- and preoptic area-derived interneurons in the deep and superficial migratory stream. J Neurosci 31: 18364–18380.

    121. Conover JC, Doetsch F, Garcia-Verdugo J-M, Gale NW, Yancopoulos GD, et al. (2000) Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nature Neurosci 3: 1091–1097.

    122. Jing X, Miwa H, Sawada T, Nakanishi I, Kondo T, et al. (2012) Ephrin-A1-mediated dopaminergic neurogenesis and angiogenesis in a rat model of Parkinson’s disease. PLoS ONE 7: e32019.

    123. Carpenter G, Cohen S (1990) Epidermal growth factor. J Biol Chem 265: 7709–7712.

    124. Fallon JH, Seroogy KB, Loughlin SE, Morrison RS, Bradshaw RA, et al. (1984) Epidermal growth factor immunoreactive material in the central nervous system: location and development. Science 224: 1107–1109.

    125. Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59: 21–26.

    126. Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, et al. (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13: 1071–1082.

    127. Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, et al. (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3: e283.

  • References

    261

    128. Fallon J, Reid S, Kinyamu R, Opole I, Opole R, et al. (2000) In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci USA 97: 14686–14691.

    129. Golestaneh N, Tang Y, Katuri V, Jogunoori W, Mishra L, et al. (2006) Cell cycle deregulation and loss of stem cell phenotype in the subventricular zone of TGF-beta adaptor elf-/- mouse brain. Brain Res 1108: 45–53.

    130. Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467: 323–327.

    131. Gonzalez-Perez O, Quiñones-Hinojosa A, Garcia-Verdugo JM (2010) Immunological control of adult neural stem cells. J Stem Cells 5: 23–31.

    132. Bambrick LL, de Grip A, Seenivasan V, Krueger BK, Yarowsky PJ (1996) Expression of glial antigens in mouse astrocytes: Species differences and regulation in vitro. J Neurosci Res 46: 305–315.

    133. Tao Y, Black IB, DiCicco-Bloom E (1997) In vivo neurogenesis is inhibited by neutralizing antibodies to basic fibroblast growth factor. J Neurobiol 33: 289–296.

    134. Chadashvili T, Peterson DA (2006) Cytoarchitecture of fibroblast growth factor receptor 2 (FGFR-2) immunoreactivity in astrocytes of neurogenic and non-neurogenic regions of the young adult and aged rat brain. J Comp Neurol 498: 1–15.

    135. Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, et al. (2001) FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci USA 98: 5874–5879.

    136. Itoh N, Yazaki N, Tagashira S, Miyake A, Ozaki K, et al. (1994) Rat FGF receptor-4 mRNA in the brain is expressed preferentially in the medial habenular nucleus. Brain Res Mol Brain Res 21: 344–348.

    137. Gonzalez AM, Berry M, Maher PA, Logan A, Baird A (1995) A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Res 701: 201–226.

    138. Frinchi M, Bonomo A, Trovato-Salinaro A, Condorelli DF, Fuxe K, et al. (2008) Fibroblast growth factor-2 and its receptor expression in proliferating precursor cells of the subventricular zone in the adult rat brain. Neurosci Lett 447: 20–25.

    139. Pringle NP, Yu W-P, Howell M, Colvin JS, Ornitz DM, et al. (2003) Fgfr3 expression by astrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains. Development 130: 93–102.

    140. Lobsiger CS, Schweitzer B, Taylor V, Suter U (2000) Platelet-derived growth factor-BB supports the survival of cultured rat Schwann cell precursors in synergy with neurotrophin-3. Glia 30: 290–300.

    141. Zachrisson O, Zhao M, Andersson A, Dannaeus K, Häggblad J, et al. (2011) Restorative effects of platelet derived growth factor-BB in rodent models of Parkinson’s disease. Journal of Parkinson’s Disease 1: 49–63.

    142. Ishii Y, Matsumoto Y, Watanabe R, Elmi M, Fujimori T, et al. (2008) Characterization of neuroprogenitor cells expressing the PDGF beta-receptor within the subventricular zone of postnatal mice. Mol Cell Neurosci 37: 507–518.

    143. Sohn J, Selvaraj V, Wakayama K, Orosco L, Lee E, et al. (2012) PEDF is a novel oligodendrogenic morphogen acting on the adult SVZ and corpus callosum. J Neurosci 32: 12152–12164.

    144. McKinnon RD, Matsui T, Dubois-Dalcq M, Aaronsont SA (1990) FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron 5: 603–614.

  • References

    262

    145. Parras CM, Hunt C, Sugimori M, Nakafuku M, Rowitch D, et al. (2007) The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J Neurosci 27: 4233–4242.

    146. Pringle NP, Mudhar HS, Collarini EJ, Richardson WD (1992) PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development 115: 535–551.

    147. Labrecque J, Bhat PV, Lacroix A (1993) Purification and partial characterization of a rat kidney aldehyde dehydrogenase that oxidizes retinal to retinoic acid. Biochem Cell Biol 71: 85–89.

    148. Rasper M, Schäfer A, Piontek G, Teufel J, Brockhoff G, et al. (2010) Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro-oncology 12: 1024–1033.

    149. Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, et al. (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96: 9118–9123.

    150. Utley RT, Côté J (2003) The MYST family of histone acetyltransferases. Curr Top Microbiol Immunol 274: 203–236.

    151. Merson TD, Dixon MP, Collin C, Rietze RL, Bartlett PF, et al. (2006) The transcriptional coactivator Querkopf controls adult neurogenesis. J Neurosci 26: 11359–11370.

    152. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8: 486–498.

    153. Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, et al. (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427: 740–744.

    154. Van den Berge SA, Middeldorp J, Zhang CE, Curtis MA, Leonard BW, et al. (2010) Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-delta. Aging Cell 9: 313–326.

    155. Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, et al. (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neuroscience 7: 726–735.

    156. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res 25: 1439–1451.

    157. Lepekhin EA, Eliasson C, Berthold CH, Berezin V, Bock E, et al. (2001) Intermediate filaments regulate astrocyte motility. J Neurochem 79: 617–625.

    158. Kim J-S, Kim J, Kim Y, Yang M, Jang H, et al. (2011) Differential patterns of nestin and glial fibrillary acidic protein expression in mouse hippocampus during postnatal development. J Vet Sci 12: 1–6.

    159. Mellodew K, Suhr R, Uwanogho DA, Reuter I, Lendahl U, et al. (2004) Nestin expression is lost in a neural stem cell line through a mechanism involving the proteasome and notch signalling. Brain Res Dev Brain Res 151: 13–23.

    160. Woodhams PL, Bascó E, Hajós F, Csillág A, Balázs R (1981) Radial glia in the developing mouse cerebral cortex and hippocampus. Anat Embryol 163: 331–343.

    161. Maslov AY, Barone TA, Plunkett RJ, Pruitt SC (2004) Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci 24: 1726–1733.

    162. Condorelli DF, Nicoletti VG, Dell’Albani P, Barresi V, Caruso A, et al. (1999) GFAPbeta mRNA expression in the normal rat brain and after neuronal injury. Neurochem Res 24: 709–714.

  • References

    263

    163. Singh R, Nielsen AL, Johansen MG, Jørgensen AL (2003) Genetic polymorphism and sequence evolution of an alternatively spliced exon of the glial fibrillary acidic protein gene, GFAP. Genomics 82: 185–193.

    164. Perng M-D, Wen S-F, Gibbon T, Middeldorp J, Sluijs J, et al. (2008) Glial fibrillary acidic protein filaments can tolerate the incorporation of assembly-compromised GFAP-delta, but with consequences for filament organization and alphaB-crystallin association. Mol Biol Cell 19: 4521–4533.

    165. Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193: 815–840.

    166. Soriano E, Del Río JA, Martínez A, Supèr H (1994) Organization of the embryonic and early postnatal murine hippocampus. I. immunocytochemical characterization of neuronal populations in the subplate and marginal zone. J Comp Neurol 342: 571–595.

    167. Misson JP, Edwards MA, Yamamoto M, Caviness VS Jr (1988) Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Brain Res Dev Brain Res 44: 95–108.

    168. Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, et al. (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145: 1142–1155.

    169. Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, et al. (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37: 751–764.

    170. Pinto L, Götz M (2007) Radial glial cell heterogeneity--the source of diverse progeny in the CNS. Prog Neurobiol 83: 2–23.

    171. Ge W-P, Miyawaki A, Gage FH, Jan YN, Jan LY (2012) Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484: 376–380.

    172. Burns KA, Murphy B, Danzer SC, Kuan C-Y (2009) Developmental and post-injury cortical gliogenesis: a genetic fate-mapping study with Nestin-CreER mice. Glia 57: 1115–1129.

    173. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32: 149–184.

    174. Fox I, Paucar A, Nakano I, Mottahedeh J, Dougherty J, et al. (2004) Developmental expression of glial fibrillary acidic protein mRNA in mouse forebrain germinal zones? Implications for stem cell biology. Dev Brain Res 153: 121–125.

    175. Götz M, Barde Y-A (2005) Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 46: 369–372.

    176. Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105: 7–17.

    177. Brenner M, Kisseberth WC, Su Y, Besnard F, Messing A (1994) GFAP promoter directs astrocyte-specific expression in transgenic mice. J Neurosci 14: 1030–1037.

    178. Andrae J, Bongcam-Rudloff E, Hansson I, Lendahl U, Westermark B, et al. (2001) A 1.8kb GFAP-promoter fragment is active in specific regions of the embryonic CNS. Mech Dev 107: 181–185.

    179. Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90: 2074–2077.

    180. Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36: 249–266.

  • References

    264

    181. Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126: 337–389.

    182. Leonard BW, Mastroeni D, Grover A, Liu Q, Yang K, et al. (2009) Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease. J Comp Neurol 515: 269–294.

    183. Van Strien ME, Brevé JJP, Fratantoni S, Schreurs MWJ, Bol JGJM, et al. (2011) Astrocyte-derived tissue transglutaminase interacts with fibronectin: a role in astrocyte adhesion and migration? PLoS ONE 6: e25037.

    184. Dijk F, Kraal-Muller E, Kamphuis W (2004) Ischemia-induced changes of AMPA-type glutamate receptor subunit expression pattern in the rat retina: a real-time quantitative PCR study. IOVS 45: 330–341.

    185. Duprey P, Paulin D (1995) What can be learned from intermediate filament gene regulation in the mouse embryo. Int J Dev Biol 39: 443–457.

    186. Sarnat HB (1998) Histochemistry and immunocytochemistry of the developing ependyma and choroid plexus. Microsc Res Tech 41: 14–28.

    187. Pontious A, Kowalczyk T, Englund C, Hevner RF (2008) Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci 30: 24–32.

    188. Bignami A, Dahl D (1989) Vimentin-GFAP transition in primary dissociated cultures of rat embryo spinal cord. Int J Dev Neurosci 7: 343–357.

    189. Vallés S, Pitarch J, Renau-Piqueras J, Guerri C (2002) Ethanol exposure affects glial fibrillary acidic protein gene expression and transcription during rat brain development. J Neurochem 69: 2484–2493.

    190. Oland LA, Tolbert LP (2011) Roles of glial cells in neural circuit formation: insights from research in insects. Glia 59: 1273–1295.

    191. Lindwall C, Fothergill T, Richards LJ (2007) Commissure formation in the mammalian forebrain. Curr Opin Neurobiol 17: 3–14.

    192. Barry G, Piper M, Lindwall C, Moldrich R, Mason S, et al. (2008) Specific glial populations regulate hippocampal morphogenesis. J Neurosci 28: 12328–12340.

    193. Bruni JE (1998) Ependymal development, proliferation, and functions: a review. Microsc Res Tech 41: 2–13.

    194. Von Bohlen und Halbach O (2011) Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res 345: 1–19.

    195. Rolland B, Le Prince G, Fages C, Nunez J, Tardy M (1990) GFAP turnover during astroglial proliferation and differentiation. Brain Res Dev Brain Res 56: 144–149.

    196. Sancho-Tello M, Vallés S, Montoliu C, Renau-Piqueras J, Guerri C (1995) Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures. Glia 15: 157–166.

    197. Baba H, Nakahira K, Morita N, Tanaka F, Akita H, et al. (1997) GFAP gene expression during development of astrocyte. Dev Neurosci 19: 49–57.

    198. Zhou M, Schools GP, Kimelberg HK (2000) GFAP mRNA positive glia acutely isolated from rat hippocampus predominantly show complex current patterns. Mol Brain Res 76: 121–131.

    199. Takemura M, Gomi H, Colucci-Guyon E, Itohara S (2002) Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice. J Neurosci 22: 6972–6979.

  • References

    265

    200. Kimelberg HK (2004) The problem of astrocyte identity. Neurochem Int 45: 191–202.

    201. Leprince P, Chanas-Sacré G (2001) Regulation of radial glia phenotype. Prog Brain Res 132: 13–22.

    202. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119: 7–35.

    203. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72: 335–355.

    204. Seth P, Koul N (2008) Astrocyte, the star avatar: redefined. J Biosci 33: 405–421.

    205. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814: 23–45.

    206. Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97: 703–716.

    207. Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, et al. (2010) Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 31: 578–590.

    208. Kato S, Gondo T, Hoshii Y, Takahashi M, Yamada M, et al. (1998) Confocal observation of senile plaques in Alzheimer’s disease: senile plaque morphology and relationship between senile plaques and astrocytes. Pathol Int 48: 332–340.

    209. Hyder CL, Isoniemi KO, Torvaldson ES, Eriksson JE (2011) Insights into intermediate filament regulation from development to ageing. J Cell Sci 124: 1363–1372.

    210. Elobeid A, Bongcam-Rudloff E, Westermark B, Nistér M (2000) Effects of inducible glial fibrillary acidic protein on glioma cell motility and proliferation. J Neurosci Res 60: 245–256.

    211. Yoshida T, Tomozawa Y, Arisato T, Okamoto Y, Hirano H, et al. (2007) The functional alteration of mutant GFAP depends on the location of the domain: morphological and functional studies using astrocytoma-derived cells. J Hum Genet 52: 362–369.

    212. Liem RKH, Messing A (2009) Dysfunctions of neuronal and glial intermediate filaments in disease. J Clin Invest 119: 1814–1824.

    213. Bandyopadhyay U, Sridhar S, Kaushik S, Kiffin R, Cuervo AM (2010) Identification of regulators of chaperone-mediated autophagy. Mol Cell 39: 535–547.

    214. Middeldorp J, Kamphuis W, Sluijs JA, Achoui D, Leenaars CHC, et al. (2009) Intermediate filament transcription in astrocytes is repressed by proteasome inhibition. FASEB J 23: 2710–2726.

    215. Pekny M, Levéen P, Pekna M, Eliasson C, Berthold CH, et al. (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14: 1590–1598.

    216. Nawashiro H, Messing A, Azzam N, Brenner M (1998) Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury. Neuroreport 9: 1691–1696.

    217. Tanaka H, Katoh A, Oguro K, Shimazaki K, Gomi H, et al. (2002) Disturbance of hippocampal long-term potentiation after transient ischemia in GFAP deficient mice. J Neurosci Res 67: 11–20.

    218. Otani N, Nawashiro H, Fukui S, Ooigawa H, Ohsumi A, et al. (2006) Enhanced hippocampal neurodegeneration after traumatic or kainate excitotoxicity in GFAP-null mice. J Clin Neurosci 13: 934–938.

    219. Xu K, Malouf AT, Messing A, Silver J (1999) Glial fibrillary acidic protein is necessary for mature astrocytes to react to beta-amyloid. Glia 25: 390–403.

    220. Feinstein DL, Weinmaster GA, Milner RJ (1992) Isolation of cDNA clones encoding rat glial fibrillary acidic protein: expression in astrocytes and in schwann cells. J Neurosci Res 32: 1–14.

  • References

    266

    221. Zelenika D, Grima B, Brenner M, Pessac B (1995) A novel glial fibrillary acidic protein mRNA lacking exon 1. Brain Res Mol Brain Res 30: 251–258.

    222. Hol EM, Roelofs RF, Moraal E, Sonnemans MAF, Sluijs JA, et al. (2003) Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol Psychiatry 8: 786–796.

    223. Blechingberg J, Holm IE, Nielsen KB, Jensen TH, Jørgensen AL, et al. (2007) Identification and characterization of GFAPkappa, a novel glial fibrillary acidic protein isoform. Glia 55: 497–507.

    224. Boer K, Middeldorp J, Spliet WGM, Razavi F, van Rijen PC, et al. (2010) Immunohistochemical characterization of the out-of frame splice variants GFAP delta164/deltaexon 6 in focal lesions associated with chronic epilepsy. Epilepsy Res 90: 99–109.

    225. Middeldorp J, van den Berge SA, Aronica E, Speijer D, Hol EM (2009) Specific human astrocyte subtype revealed by affinity purified GFAP antibody; unpurified serum cross-reacts with neurofilament-L in Alzheimer. PLoS ONE 4: e7663.

    226. Andreiuolo F, Junier M-P, Hol EM, Miquel C, Chimelli L, et al. (2009) GFAPdelta immunostaining improves visualization of normal and pathologic astrocytic heterogeneity. Neuropathology 29: 31–39.

    227. Choi K-C, Kwak S-E, Kim J-E, Sheen SH, Kang T-C (2009) Enhanced glial fibrillary acidic protein-delta expression in human astrocytic tumor. Neurosci Lett 463: 182–187.

    228. Heo DH, Kim SH, Yang K-M, Cho YJ, Kim KN, et al. (2012) A histopathological diagnostic marker for human spinal astrocytoma: expression of glial fibrillary acidic protein-d. J Neurooncol 108: 45–52.

    229. Bugiani M, Boor I, van Kollenburg B, Postma N, Polder E, et al. (2011) Defective glial maturation in vanishing white matter disease. J Neuropathol Exp Neurol 70: 69–82.

    230. Martí-Fàbregas J, Romaguera-Ros M, Gómez-Pinedo U, Martínez-Ramírez S, Jiménez-Xarrié E, et al. (2010) Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology 74: 357–365.

    231. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, et al. (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13: 159–170.

    232. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24: 1063–1070.

    233. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, et al. (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39: 409–421.

    234. Mastrangelo MA, Bowers WJ (2008) Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer’s disease-related pathologies in male triple-transgenic mice. BMC Neurosci 9: 81.

    235. Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58: 831–838.

    236. Sarria AJ, Lieber JG, Nordeen SK, Evans RM (1994) The presence or absence of a vimentin-type intermediate filament network affects the shape of the nucleus in human SW-13 cells. J Cell Sci 107 (Pt 6): 1593–1607.

    237. Westermark B, Pontén J, Hugosson R (1973) Determinants for the establishment of permanent tissue culture lines from human gliomas. Acta Pathol Microbiol Scand A 81: 791–805.

  • References

    267

    238. Xue ZG, Cheraud Y, Brocheriou V, Izmiryan A, Titeux M, et al. (2004) The mouse synemin gene encodes three intermediate filament proteins generated by alternative exon usage and different open reading frames. Exp Cell Res 298: 431–444.

    239. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, et al. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28: 264–278.

    240. Seri B, García-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478: 359–378.

    241. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82: 373–428.

    242. Wong E, Cuervo AM (2010) Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2: a006734.

    243. Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49: 73–96.

    244. Nielsen AL, Jørgensen AL (2004) Self-assembly of the cytoskeletal glial fibrillary acidic protein is inhibited by an isoform-specific C terminus. J Biol Chem 279: 41537–41545.

    245. Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12: 495–508.

    246. Kim S, Coulombe PA (2010) Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat Rev Mol Cell Biol 11: 75–81.

    247. Rodríguez JJ, Olabarria M, Chvatal A, Verkhratsky A (2009) Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 16: 378–385.

    248. Kashon ML, Ross GW, O’Callaghan JP, Miller DB, Petrovitch H, et al. (2004) Associations of cortical astrogliosis with cognitive performance and dementia status. J Alzheimers Dis 6: 595–604; discussion 673–681.

    249. Wharton SB, O’Callaghan JP, Savva GM, Nicoll JAR, Matthews F, et al. (2009) Population variation in glial fibrillary acidic protein levels in brain ageing: relationship to Alzheimer-type pathology and dementia. Dement Geriatr Cogn Disord 27: 465–473.

    250. Fuller S, Münch G, Steele M (2009) Activated astrocytes: a therapeutic target in Alzheimer’s disease? Expert Rev Neurother 9: 1585–1594.

    251. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, et al. (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9: 453–457.

    252. Nielsen HM, Veerhuis R, Holmqvist B, Janciauskiene S (2009) Binding and uptake of A beta1-42 by primary human astrocytes in vitro. Glia 57: 978–988.

    253. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323: 1211–1215.

    254. Peters O, Schipke CG, Philipps A, Haas B, Pannasch U, et al. (2009) Astrocyte function is modified by Alzheimer’s disease-like pathology in aged mice. J Alzheimers Dis 18: 177–189.

    255. Allaman I, Gavillet M, Bélanger M, Laroche T, Viertl D, et al. (2010) Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J Neurosci 30: 3326–3338.

    256. Salmina AB (2009) Neuron-glia interactions as therapeutic targets in neurodegeneration. J Alzheimers Dis 16: 485–502.

  • References

    268

    257. Mei X, Ezan P, Giaume C, Koulakoff A (2010) Astroglial connexin immunoreactivity is specifically altered at b-amyloid plaques in b-amyloid precursor protein/presenilin1 mice. Neuroscience 171: 92–105.

    258. Vincent AJ, Gasperini R, Foa L, Small DH (2010) Astrocytes in Alzheimer’s disease: emerging roles in calcium dysregulation and synaptic plasticity. J Alzheimers Dis 22: 699–714.

    259. Muramori F, Kobayashi K, Nakamura I (1998) A quantitative study of neurofibrillary tangles, senile plaques and astrocytes in the hippocampal subdivisions and entorhinal cortex in Alzheimer’s disease, normal controls and non-Alzheimer neuropsychiatric diseases. Psychiatry Clin Neurosci 52: 593–599.

    260. Noppe M, Crols R, Andries D, Lowenthal A (1986) Determination in human cerebrospinal fluid of glial fibrillary acidic protein, S-100 and myelin basic protein as indices of non-specific or specific central nervous tissue pathology. Clin Chim Acta 155: 143–150.

    261. Hanzel DK, Trojanowski JQ, Johnston RF, Loring JF (1999) High-throughput quantitative histological analysis of Alzheimer’s disease pathology using a confocal digital microscanner. Nat Biotechnol 17: 53–57.

    262. Vehmas AK, Kawas CH, Stewart WF, Troncoso JC (2003) Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging 24: 321–331.

    263. Allaman I, Bélanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34: 76–87.

    264. Buffo A, Rolando C, Ceruti S (2010) Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol 79: 77–89.

    265. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32: 638–647.

    266. Lin RC, Matesic DF, Marvin M, McKay RD, Brüstle O (1995) Re-expression of the intermediate filament nestin in reactive astrocytes. Neurobiol Dis 2: 79–85.

    267. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20: 570–577.

    268. Eng LF, Yu AC, Lee YL (1992) Astrocytic response to injury. Prog Brain Res 94: 353–365.

    269. Arnold SE, Franz BR, Trojanowski JQ, Moberg PJ, Gur RE (1996) Glial fibrillary acidic protein-immunoreactive astrocytosis in elderly patients with schizophrenia and dementia. Acta Neuropathol 91: 269–277.

    270. Yamada T, Kawamata T, Walker DG, McGeer PL (1992) Vimentin immunoreactivity in normal and pathological human brain tissue. Acta Neuropathol 84: 157–162.

    271. Rutka JT, Ivanchuk S, Mondal S, Taylor M, Sakai K, et al. (1999) Co-expression of nestin and vimentin intermediate filaments in invasive human astrocytoma cells. Int J Dev Neurosci 17: 503–515.

    272. Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, et al. (2013) Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci USA 110: e1045–e1054.

    273. Lledo P-M, Merkle FT, Alvarez-Buylla A (2008) Origin and function of olfactory bulb interneuron diversity. Trends Neurosci 31: 392–400.

    274. Larsson A, Wilhelmsson U, Pekna M, Pekny M (2004) Increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of old GFAP(-/-)Vim(-/-) mice. Neurochem Res 29: 2069–2073.

  • References

    269

    275. Widestrand A, Faijerson J, Wilhelmsson U, Smith PLP, Li L, et al. (2007) Increased neurogenesis and astrogenesis from neural progenitor cells grafted in the hippocampus of GFAP-/- Vim-/- mice. Stem Cells 25: 2619–2627.

    276. Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, et al. (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28: 468–481.

    277. Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML (2004) Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res 124: 114–123.

    278. Menet V, Giménez y Ribotta M, Chauvet N, Drian MJ, Lannoy J, et al. (2001) Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. J Neurosci 21: 6147–6158.

    279. Wilhelmsson U, Li L, Pekna M, Berthold C-H, Blom S, et al. (2004) Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci 24: 5016–5021.

    280. McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, et al. (1996) Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci USA 93: 6361–6366.

    281. Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, et al. (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16: 587–599.

    282. Giménez Y Ribotta M, Langa F, Menet V, Privat A (2000) Comparative anatomy of the cerebellar cortex in mice lacking vimentin, GFAP, and both vimentin and GFAP. Glia 31: 69–83.

    283. Ponti G, Reitano E, Aimar P, Cattaneo E, Conti L, et al. (2010) Neural-specific inactivation of ShcA functions results in anatomical disorganization of subventricular zone neural stem cell niche in the adult brain. Neuroscience 168: 314–322.

    284. Luzzati F, Peretto P, Aimar P, Ponti G, Fasolo A, et al. (2003) Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. PNAS 100: 13036–13041.

    285. Peretto P, Giachino C, Aimar P, Fasolo A, Bonfanti L (2005) Chain formation and glial tube assembly in the shift from neonatal to adult subventricular zone of the rodent forebrain. J Comp Neurol 487: 407–427.

    286. Tuttle AH, Rankin MM, Teta M, Sartori DJ, Stein GM, et al. (2010) Immunofluorescent detection of two thymidine analogues (CldU and IdU) in primary tissue. J Vis Exp: 2166.

    287. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9: 671–675.

    288. Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: research0034.

    289. Mamber C, Kozareva DA, Kamphuis W, Hol EM (2013) Shades of gray: the delineation of marker expression within the adult rodent subventricular zone. Prog Neurobiol: 111, 1–16.

    290. Thored P, Heldmann U, Gomes-Leal W, Gisler R, Darsalia V, et al. (2009) Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57: 835–849.

    291. Kawataki T, Yamane T, Naganuma H, Rousselle P, Andurén I, et al. (2007) Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin. Exp Cell Res 313: 3819–3831.

  • References

    270

    292. Zagzag D, Friedlander DR, Dosik J, Chikramane S, Chan W, et al. (1996) Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res 56: 182–189.

    293. Brazel CY, Nuñez JL, Yang Z, Levison SW (2005) Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 131: 55–65.

    294. Platel J-C, Dave KA, Bordey A (2008) Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain. J Physiol 586: 3739–3743.

    295. Platel J-C, Dave KA, Gordon V, Lacar B, Rubio ME, et al. (2010) NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 65: 859–872.

    296. Young SZ, Taylor MM, Bordey A (2011) Neurotransmitters couple brain activity to subventricular zone neurogenesis: brain activity and subventricular zone neurogenesis. Eur J Neurosci 33: 1123–1132.

    297. Sorci G (2013) S100B protein in tissue development, repair and regeneration. World J Biol Chem 26: 1–12.

    298. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, et al. (2000) Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275: 40096–40105.

    299. Lin J, Blake M, Tang C, Zimmer D, Rustandi RR, et al. (2001) Inhibition of p53 transcriptional activity by the S100B calcium-binding protein. J Biol Chem 276: 35037–35041.

    300. Böttner M, Krieglstein K, Unsicker K (2000) The transforming growth factor-bs. J Neurochem 75: 2227–2240.

    301. Hofmann M-C, Braydich-Stolle L, Dym M (2005) Isolation of male germ-line stem cells; influence of GDNF. Dev Biol 279: 114–124.

    302. Pozas E, Ibáñez CF (2005) GDNF and GFRalpha1 promote differentiation and tangential migration of cortical GABAergic neurons. Neuron 45: 701–713.

    303. Shin SY, Song H, Kim CG, Choi Y-K, Lee KS, et al. (2009) Egr-1 is necessary for fibroblast growth factor-2-induced transcriptional activation of the glial cell line-derived neurotrophic factor in murine astrocytes. J Biol Chem 284: 30583–30593.

    304. Duarte EP, Curcio M, Canzoniero LM, Duarte CB (2012) Neuroprotection by GDNF in the ischemic brain. Growth Factors 30: 242–257.

    305. Quintino L, Manfré G, Wettergren EE, Namislo A, Isaksson C, et al. (2013) Functional neuroprotection and efficient regulation of GDNF using destabilizing domains in a rodent model of parkinson’s disease. Mol Ther 21: 2169–2180.

    306. Paratcha G, Ibáñez CF, Ledda F (2006) GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Mol Cell Neurosci 31: 505–514.

    307. Paratcha G, Ledda F, Ibáñez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113: 867–879.

    308. Cremer H, Lange R, Christoph A, Plomann M, Vopper G, et al. (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367: 455–459.

    309. Conover JC, Allen RL (2002) The subventricular zone: new molecular and cellular developments. Cell Mol Life Sci 59: 2128–2135.

    310. Zhu H, Dahlström A (2007) Glial fibrillary acidic protein-expressing cells in the neurogenic regions in normal and injured adult brains. J Neurosci Res 85: 2783–2792.

  • References

    271

    311. García-Verdugo JM, Doetsch F, Wichterle H, Lim DA, Alvarez-Buylla A (1998) Architecture and cell types of the adult subventricular zone: In search of the stem cells. J Neurobiol 36: 234–248.

    312. Alvarez-Buylla A, García-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2: 287–293.

    313. Wichterle H, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18: 779–791.

    314. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11: 173–189.

    315. Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 98: 4752–4757.

    316. Whitman MC, Greer CA (2009) Adult neurogenesis and the olfactory system. Prog Neurobiol 89: 162–175.

    317. Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22: 629–634.

    318. Jin K, Sun Y, Xie L, Peel A, Mao XO, et al. (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24: 171–189.

    319. Yamashita T, Ninomiya M, Hernández Acosta P, García-Verdugo JM, Sunabori T, et al. (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26: 6627–6636.

    320. Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 97: 13883–13888.

    321. Lledo P-M, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7: 179–193.

    322. Curtis MA, Waldvogel HJ, Synek B, Faull RLM (2005) A histochemical and immunohistochemical analysis of the subependymal layer in the normal and Huntington’s disease brain. J Chem Neuroanat 30: 55–66.

    323. Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, et al. (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494: 415–434.

    324. Gilyarov AV (2008) Nestin in central nervous system cells. Neurosci Behav Physiol 38: 165–169.

    325. Martinian L, Boer K, Middeldorp J, Hol EM, Sisodiya SM, et al. (2009) Expression patterns of glial fibrillary acidic protein (GFAP)-delta in epilepsy-associated lesional pathologies. Neuropathol Appl Neurobiol 35: 394–405.

    326. Garcia ADR, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neurosci 7: 1233–1241.

    327. Liu X, Bolteus AJ, Balkin DM, Henschel O, Bordey A (2006) GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 54: 394–410.

    328. Raponi E, Agenes F, Delphin C, Assard N, Baudier J, et al. (2007) S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia 55: 165–177.

  • References

    272

    329. Komitova M, Eriksson PS (2004) Sox-2 is expressed by neural progenitors and astroglia in the adult rat brain. Neurosci Lett 369: 24–27.

    330. Kuo CT, Mirzadeh Z, Soriano-Navarro M, Rasin M, Wang D, et al. (2006) Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell 127: 1253–1264.

    331. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, García-Verdugo JM, et al. (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28: 713–726.

    332. Atchison RW, Castro BC, Hammon WM (1965) Adenovirus-associated defective virus particles. Science 149: 754–756.

    333. Aucoin MG, Perrier M, Kamen AA (2008) Critical assessment of current adeno-associated viral vector production and quantification methods. Biotechnol Adv 26: 73–88.

    334. Terzi D, Zachariou V (2008) Adeno-associated virus-mediated gene delivery approaches for the treatment of CNS disorders. Biotechnol J 3: 1555–1563.

    335. Kaludov N, Brown KE, Walters RW, Zabner J, Chiorini JA (2001) Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol 75: 6884–6893.

    336. McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ (1996) Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 713: 99–107.

    337. Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, et al. (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118: 1955–1964.

    338. Grieger JC, Samulski RJ (2005) Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol 79: 9933–9944.

    339. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18: 80–86.

    340. McCarty DM, Young SM Jr, Samulski RJ (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 38: 819–845.

    341. Young SM Jr, McCarty DM, Degtyareva N, Samulski RJ (2000) Roles of adeno-associated virus Rep protein and human chromosome 19 in site-specific recombination. J Virol 74: 3953–3966.

    342. Han Z, Zhong L, Maina N, Hu Z, Li X, et al. (2008) Stable integration of recombinant adeno-associated virus vector genomes after transduction of murine hematopoietic stem cells. Hum Gene Ther 19: 267–278.

    343. Paz H, Wong CA, Li W, Santat L, Wong KK, et al. (2007) Quiescent subpopulations of human CD34-positive hematopoietic stem cells are preferred targets for stable recombinant adeno-associated virus type 2 transduction. Hum Gene Ther 18: 614–626.

    344. Belur LR, Kaemmerer WF, McIvor RS, Low WC (2008) Adeno-associated virus type 2 vectors: transduction and long-term expression in cerebellar purkinje cells in vivo is mediated by the fibroblast growth factor receptor 1 : bFGFR-1 mediates AAV2 transduction of purkinje cells. Arch Virol 153: 2107–2110.

    345. Haberman RP, McCown TJ, Samulski RJ (1998) Inducible long-term gene expression in brain with adeno-associated virus gene transfer. Gene Ther 5: 1604–1611.

    346. Stieger K, Schroeder J, Provost N, Mendes-Madeira A, Belbellaa B, et al. (2009) Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates. Mol Ther 17: 516–523.

  • References

    273

    347. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16: 1073–1080.

    348. Kwon I, Schaffer DV (2008) Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 25: 489–499.

    349. Parks WP, Melnick JL, Rongey R, Mayor HD (1967) Physical assay and growth cycle studies of a defective adeno-satellite virus. J Virol 1: 171–180.

    350. Bantel-Schaal U, zur Hausen H (1984) Characterization of the DNA of a defective human parvovirus isolated from a genital site. Virology 134: 52–63.

    351. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, et al. (2004) Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 78: 6381–6388.

    352. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, et al. (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: Transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA 97: 3428–3432.

    353. Liu G, Martins IH, Chiorini JA, Davidson BL (2005) Adeno-associated virus type 4 (AAV4) targets ependyma and astrocytes in the subventricular zone and RMS. Gene Ther 12: 1503–1508.

    354. Hommel JD, Sears RM, Georgescu D, Simmons DL, DiLeone RJ (2003) Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med 9: 1539–1544.

    355. Di Pasquale G, Davidson BL, Stein CS, Martins I, Scudiero D, et al. (2003) Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med 9: 1306–1312.

    356. Sevin C, Benraiss A, Van Dam D, Bonnin D, Nagels G, et al. (2006) Intracerebral adeno-associated virus-mediated gene transfer in rapidly progressive forms of metachromatic leukodystrophy. Hum Mol Genet 15: 53–64.

    357. Watson DJ, Passini MA, Wolfe JH (2005) Transduction of the choroid plexus and ependyma in neonatal mouse brain by vesicular stomatitis virus glycoprotein-pseudotyped lentivirus and adeno-associated virus type 5 vectors. Hum Gene Ther 16: 49–56.

    358. Besnard F, Perraud F, Sensenbrenner M, Labourdette G (1987) Platelet-derived growth factor is a mitogen for glial but not for neuronal rat brain cells in vitro. Neurosci Lett 73: 287–292.

    359. Nait Oumesmar B, Vignais L, Baron-Van Evercooren A (1997) Developmental expression of platelet-derived growth factor alpha-receptor in neurons and glial cells of the mouse CNS. J Neurosci 17: 125–139.

    360. Wegner M (2008) A matter of identity: transcriptional control in oligodendrocytes. J Mol Neurosci 35: 3–12.

    361. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, et al. (2009) Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 17: 1187–1196.

    362. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, et al. (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27: 59–65.

    363. Akache B, Grimm D, Pandey K, Yant SR, Xu H, et al. (2006) The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 80: 9831–9836.

    364. Jucker M, Bialobok P, Kleinman HK, Walker LC, Hagg T, et al. (1993) Laminin-like and laminin-binding protein-like immunoreactive astrocytes in rat hippocampus after transient ischemia. Antibody to laminin-binding protein is a sensitive marker of neural injury and degeneration. Ann N Y Acad Sci 679: 245–252.

    365. Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 13: 528–537.

  • References

    274

    366. Klein RL, Dayton RD, Tatom JB, Henderson KM, Henning PP (2008) AAV8, 9, Rh10, Rh43 vector gene transfer in the rat brain: effects of serotype, promoter and purification method. Mol Ther 16: 89–96.

    367. Koerber JT, Klimczak R, Jang J-H, Dalkara D, Flannery JG, et al. (2009) Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol Ther 17: 2088–2095.

    368. Feng X, Eide FF, Jiang H, Reder AT (2004) Adeno-associated viral vector-mediated ApoE expression in Alzheimer’s disease mice: low CNS immune response, long-term expression, and astrocyte specificity. Front Biosci 9: 1540–1546.

    369. Aitken ML, Moss RB, Waltz DA, Dovey ME, Tonelli MR, et al. (2001) A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease. Hum Gene Ther 12: 1907–1916.

    370. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, et al. (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369: 2097–2105.

    371. Marks WJ Jr, Ostrem JL, Verhagen L, Starr PA, Larson PS, et al. (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7: 400–408.

    372. Hajjar RJ, Zsebo K, Deckelbaum L, Thompson C, Rudy J, et al. (2008) Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail 14: 355–367.

    373. Wang WCH, Mihlbachler KA, Brunnett AC, Liggett SB (2009) Targeted transgenesis reveals discrete attenuator functions of GRK and PKA in airway beta2-adrenergic receptor physiologic signaling. Proc Natl Acad Sci USA 106: 15007–15012.

    374. Van den Driessche T (2009) Muscling through AAV immunity. Blood 114: 2009–2010.

    375. Gray SJ, Samulski RJ (2008) Optimizing gene delivery vectors for the treatment of heart disease. Expert Opin Biol Ther 8: 911–922.

    376. Shevtsova Z, Malik JMI, Michel U, Bähr M, Kügler S (2005) Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 90: 53–59.

    377. Peel AL, Klein RL (2000) Adeno-associated virus vectors: activity and applications in the CNS. J Neurosci Methods 98: 95–104.

    378. Reich SJ, Auricchio A, Hildinger M, Glover E, Maguire AM, et al. (2003) Efficient trans-splicing in the retina expands the utility of adeno-associated virus as a vector for gene therapy. Hum Gene Ther 14: 37–44.

    379. Azzouz M, Kingsman SM, Mazarakis ND (2004) Lentiviral vectors for treating and modeling human CNS disorders. J Gene Med 6: 951–962.

    380. Teschemacher AG, Paton JFR, Kasparov S (2005) Imaging living central neurones using viral gene transfer. Adv Drug Deliv Rev 57: 79–93.

    381. Chang LJ, Gay EE (2001) The molecular genetics of lentiviral vectors--current and future perspectives. Curr Gene Ther 1: 237–251.

    382. Stein CS, Martins I, Davidson BL (2005) The lymphocytic choriomeningitis virus envelope glycoprotein targets lentiviral gene transfer vector to neural progenitors in the murine brain. Mol Ther 11: 382–389.

    383. Jakobsson J, Lundberg C (2006) Lentiviral vectors for use in the central nervous system. Mol Ther 13: 484–493.

  • References

    275

    384. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, et al. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72: 9873–9880.

    385. Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol 72: 811–816.

    386. Naldini L, Blömer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93: 11382–11388.

    387. Meunier A, Pohl M (2009) Lentiviral vectors for gene transfer into the spinal cord glial cells. Gene Ther 16: 476–482.

    388. Mitchell RS, Beitzel BF, Schroder ARW, Shinn P, Chen H, et al. (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2: E234.

    389. Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, et al. (2006) Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci USA 103: 17684–17689.

    390. Yáñez-Muñoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, et al. (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12: 348–353.

    391. Lichty BD, Power AT, Stojdl DF, Bell JC (2004) Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 10: 210–216.

    392. Bonthius DJ, Mahoney J, Buchmeier MJ, Karacay B, Taggard D (2002) Critical role for glial cells in the propagation and spread of lymphocytic choriomeningitis virus in the developing rat brain. J Virol 76: 6618–6635.

    393. Ogunkoya AB, Beran GW, Umoh JU, Gomwalk NE, Abdulkadir IA (1990) Serological evidence of infection of dogs and man in Nigeria by lyssaviruses (family Rhabdoviridae). Trans R Soc Trop Med Hyg 84: 842–845.

    394. Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, et al. (2001) Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 10: 2109–2121.

    395. Watson DJ, Kobinger GP, Passini MA, Wilson JM, Wolfe JH (2002) Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther 5: 528–537.

    396. Lai Z, Brady RO (2002) Gene transfer into the central nervous system in vivo using a recombinanat lentivirus vector. J Neurosci Res 67: 363–371.

    397. Kang Y, Stein CS, Heth JA, Sinn PL, Penisten AK, et al. (2002) In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J Virol 76: 9378–9388.

    398. Consiglio A, Gritti A, Dolcetta D, Follenzi A, Bordignon C, et al. (2004) Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc Natl Acad Sci USA 101: 14835–14840.

    399. Geraerts M, Eggermont K, Hernandez-Acosta P, Garcia-Verdugo J-M, Baekelandt V, et al. (2006) Lentiviral vectors mediate efficient and stable gene transfer in adult neural stem cells in vivo. Hum Gene Ther 17: 635–650.

    400. Miletic H, Fischer YH, Neumann H, Hans V, Stenzel W, et al. (2004) Selective transduction of malignant glioma by lentiviral vectors pseudotyped with lymphocytic choriomeningitis virus glycoproteins. Hum Gene Ther 15: 1091–1100.

    401. Colin A, Faideau M, Dufour N, Auregan G, Hassig R, et al. (2009) Engineered lentiviral vector targeting astrocytes in vivo. Glia 57: 667–679.

  • References

    276

    402. Alonso M, Ortega-Pérez I, Grubb MS, Bourgeois J-P, Charneau P, et al. (2008) Turning astrocytes from the rostral migratory stream into neurons: a role for the olfactory sensory organ. J Neurosci 28: 11089–11102.

    403. Baekelandt V, Claeys A, Eggermont K, Lauwers E, De Strooper B, et al. (2002) Characterization of lentiviral vector-mediated gene transfer in adult mouse brain. Hum Gene Ther 13: 841–853.

    404. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1: 841–845.

    405. Haas K, Sin WC, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29: 583–591.

    406. Rols MP, Delteil C, Golzio M, Dumond P, Cros S, et al. (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 16: 168–171.

    407. Bloquel C, Fabre E, Bureau MF, Scherman D (2004) Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J Gene Med 6 Suppl 1: S11–23.

    408. Swartz M, Eberhart J, Mastick GS, Krull CE (2001) Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev Biol 233: 13–21.

    409. Bigey P, Bureau MF, Scherman D (2002) In vivo plasmid DNA electrotransfer. Curr Opin Biotechnol 13: 443–447.

    410. Barnabé-Heider F, Meletis K, Eriksson M, Bergmann O, Sabelström H, et al. (2008) Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation. Nat Methods 5: 189–196.

    411. Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P, et al. (2006) Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci 26: 1045–1056.

    412. Kreiss P, Cameron B, Rangara R, Mailhe P, Aguerre-Charriol O, et al. (1999) Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res 27: 3792–3798.

    413. Slotkin JR, Chakrabarti L, Dai HN, Carney RSE, Hirata T, et al. (2007) In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev Dyn 236: 3393–3401.

    414. De Leeuw B, Su M, ter Horst M, Iwata S, Rodijk M, et al. (2006) Increased glia-specific transgene expression with glial fibrillary acidic protein promoters containing multiple enhancer elements. J Neurosci Res 83: 744–753.

    415. Hagiwara T, Tanaka K, Takai S, Maeno-Hikichi Y, Mukainaka Y, et al. (1996) Genomic organization, promoter analysis, and chromosomal localization of the gene for the mouse glial high-affinity glutamate transporter Slc1a3. Genomics 33: 508–515.

    416. Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, et al. (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27: 6607–6619.

    417. Romera C, Hurtado O, Mallolas J, Pereira MP, Morales JR, et al. (2007) Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARgamma target gene involved in neuroprotection. J Cereb Blood Flow Metab 27: 1327–1338.

    418. Su Z, Leszczyniecka M, Kang D, Sarkar D, Chao W, et al. (2003) Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Proc Natl Acad Sci USA 100: 1955–1960.

    419. Wang CY, Wang S (2006) Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter. Gene Ther 13: 1447–1456.

  • References

    277

    420. Su M, Hu H, Lee Y, d’ Azzo A, Messing A, et al. (2004) Expression specificity of GFAP transgenes. Neurochem Res 29: 2075–2093.

    421. Tenenbaum L, Chtarto A, Lehtonen E, Velu T, Brotchi J, et al. (2004) Recombinant AAV-mediated gene delivery to the central nervous system. J Gene Med 6 Suppl 1: S212–222.

    422. Lee Y, Messing A, Su M, Brenner M (2008) GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56: 481–493.

    423. Neymeyer V, Tephly TR, Miller MW (1997) Folate and 10-formyltetrahydrofolate dehydrogenase (FDH) expression in the central nervous system of the mature rat. Brain Res 766: 195–204.

    424. Anthony TE, Heintz N (2007) The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects. J Comp Neurol 500: 368–383.

    425. Buffo A, Rite I, Tripathi P, Lepier A, Colak D, et al. (2008) Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci USA 105: 3581–3586.

    426. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, et al. (1994) Localization of neuronal and glial glutamate transporters. Neuron 13: 713–725.

    427. Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89: 10955–10959.

    428. Mori T, Tanaka K, Buffo A, Wurst W, Kühn R, et al. (2006) Inducible gene deletion in astroglia and radial glia--a valuable tool for functional and lineage analysis. Glia 54: 21–34.

    429. Desilva TM, Kinney HC, Borenstein NS, Trachtenberg FL, Irwin N, et al. (2007) The glutamate transporter EAAT2 is transiently expressed in developing human cerebral white matter. J Comp Neurol 501: 879–890.

    430. Schipani E (2002) Conditional gene inactivation using Cre recombinase. Calcif Tissue Int 71: 100–102.

    431. Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2: 743–755.

    432. Camp S, Zhang L, Marquez M, de la Torre B, Long JM, et al. (2005) Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion. Chem Biol Interact 157-158: 79–86.

    433. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26: 99–109.

    434. Zhuo L, Theis M, Alvarez-Maya I, Brenner M, Willecke K, et al. (2001) hGFAP-Cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31: 85–94.

    435. Slezak M, Göritz C, Niemiec A, Frisén J, Chambon P, et al. (2007) Transgenic mice for conditional gene manipulation in astroglial cells. Glia 55: 1565–1576.

    436. Ganat YM, Silbereis J, Cave C, Ngu H, Anderson GM, et al. (2006) Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J Neurosci 26: 8609–8621.

    437. Chow LML, Zhang J, Baker SJ (2008) Inducible Cre recombinase activity in mouse mature astrocytes and adult neural precursor cells. Transgenic Res 17: 919–928.

    438. Ahmed BY, Chakravarthy S, Eggers R, Hermens WTJMC, Zhang JY, et al. (2004) Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci 5: 4.

  • References

    278

    439. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, et al. (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311: 864–868.

    440. Pilpel N, Landeck N, Klugmann M, Seeburg PH, Schwarz MK (2009) Rapid, reproducible transduction of select forebrain regions by targeted recombinant virus injection into the neonatal mouse brain. J Neurosci Methods 182: 55–63.

    441. Loonstra A, Vooijs M, Beverloo HB, Allak BA, van Drunen E, et al. (2001) Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci USA 98: 9209–9214.

    442. Casper KB, McCarthy KD (2006) GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci 31: 676–684.

    443. Johnson MA, Ables JL, Eisch AJ (2009) Cell-intrinsic signals that regulate adult neurogenesis in vivo: insights from inducible approaches. BMB Rep 42: 245–259.

    444. Follenzi A, Santambrogio L, Annoni A (2007) Immune responses to lentiviral vectors. Curr Gene Ther 7: 306–315.

    445. Oehmig A, Fraefel C, Breakefield XO, Ackermann M (2004) Herpes simplex virus type 1 amplicons and their hybrid virus partners, EBV, AAV, and retrovirus. Curr Gene Ther 4: 385–408.

    446. Condorelli DF, Nicoletti VG, Barresi V, Conticello SG, Caruso A, et al. (1999) Structural features of the rat GFAP gene and identification of a novel alternative transcript. J Neurosci Res 56: 219–228.

    447. Paddison PJ (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & Development 16: 948–958.

    448. Shen H-L, Xu W, Wu Z-Y, Zhou L-L, Qin R-J, et al. (2007) Vector-based RNAi approach to isoform-specific downregulation of vascular endothelial growth factor (VEGF)165 expression in human leukemia cells. Leukemia R