7
Utilizing Nature’s Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature… …build with chemistry ANL Photosynthesis Group Fundamental Studies Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy

Utilizing Nature's Designs for Solar Energy Conversion · 2013-11-21 · Utilizing Nature's Designs for Solar Energy Conversion Author: Lisa M. Utschig, Argonne National Laboratory

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Utilizing Nature's Designs for Solar Energy Conversion · 2013-11-21 · Utilizing Nature's Designs for Solar Energy Conversion Author: Lisa M. Utschig, Argonne National Laboratory

Utilizing Nature’s Designs for Solar Energy Conversion

Create new materials that:

capture, convert, store sunlight

Learn from Nature…

…build with chemistry

ANL Photosynthesis Group

Fundamental Studies

Solar energy conversion in

natural and artificial

photosynthesis

Resolve mechanisms, design

principles

Unique capabilities

Time-resolved, multi-frequency

EPR

Time-resolved synchrotron X-ray

Ultrafast spectroscopy

Page 2: Utilizing Nature's Designs for Solar Energy Conversion · 2013-11-21 · Utilizing Nature's Designs for Solar Energy Conversion Author: Lisa M. Utschig, Argonne National Laboratory

Multi-molecular:

Artificial systems for H2 photocatalysis

Limitations:

Large solvent, molecular

dependencies

Diffusion

Lifetimes

Uncontrolled back-reactions

Most PS contain noble metals

Organic solvent/high proton

requirements.

Ph

oto

se

nsitiz

er

Cata

lyst

Supra-molecular:

Linked Molecular Modules

Linker

Mulfort, Tiede. J. Phys. Chem. B, 2010, 114, 14572.

Axial Linkage

• Solution heterogeneity

• Path for fast back ET

PS = photosensitizer

molecule

Fihri, et. al. Angew. Chem. Int. Ed. 2008, 47, 564

Page 3: Utilizing Nature's Designs for Solar Energy Conversion · 2013-11-21 · Utilizing Nature's Designs for Solar Energy Conversion Author: Lisa M. Utschig, Argonne National Laboratory

Photosystem I

chlorophyll

e-

e-

light

Biohybrids for Solar Hydrogen Production

abiotic catalyst

H+ ½ H2

P700+FB

-

~60 ms

FB-

-580 mV (vs. NHE)

Fundamental Scientific Challenges:

•Efficient coupling of photons to fuels

•Sustainable

•Cheap processing, scalable

RC charge separation driven chemistry

Page 4: Utilizing Nature's Designs for Solar Energy Conversion · 2013-11-21 · Utilizing Nature's Designs for Solar Energy Conversion Author: Lisa M. Utschig, Argonne National Laboratory

ANL Photosystem I-Pt Nanoparticle hybrid

2e-

• Noncovalent, Self-Assembly

• Native Photosystem I

• Best PSI-Pt photo H2 evolution to date

• Out performs currently reported rates

for photosensitizer-catalyst systems

L. M. Utschig, et. al. J. Phys. Chem. Lett. 2011, 2, 236-241

• Mimic acceptor protein

• Eliminate paths for fast charge

recombination?

• Direct wire to cofactor not necessary

Functional ↔ Spectroscopy ↔ Mechanism

Page 5: Utilizing Nature's Designs for Solar Energy Conversion · 2013-11-21 · Utilizing Nature's Designs for Solar Energy Conversion Author: Lisa M. Utschig, Argonne National Laboratory

Photosystem I- transition metal catalyst hybrids

e-

cyt c6

ascorbate

e-

Co(II)

Co(I)

H+

Co(III) e-

H

e- + H+

H2

cobaloxime

First-of-a-kind hybrid that combines: Synthetic molecular catalyst:

• first-row transition metal

• inexpensive, earth abundant

• O2 tolerant

• enables tunability

Nature’s Reaction Center Proteins:

• optimized solar capture and conversion

Rapid, light-induced H2 Production • out-performs artificial systems

• completely aqueous

L. M. Utschig, S. C. Silver, K. L. Mulfort, D. M. Tiede J. Amer. Chem. Soc. 2011, 133, 16334-16337

Page 6: Utilizing Nature's Designs for Solar Energy Conversion · 2013-11-21 · Utilizing Nature's Designs for Solar Energy Conversion Author: Lisa M. Utschig, Argonne National Laboratory

S. C. Silver, J. Niklas, P. Du, O. G. Poluektov, D. M. Tiede, L. M. Utschig J. Amer. Chem. Soc., 2013, 135, 13246-13249

• 102 x H2 evolution rate vs.

reported photosensitizer

system

• Unprecedented chemistry

for Ni diphosphine catalyst

• Protein stabilization of

catalyst

• Strategy for self-repair

• EPR spectra of Ni(I)/protein

Protein directed delivery of catalyst to PSI

Issues: catalyst stability

where & how bind to PSI

Ni-PSI and Ni-apoFld + PSI:

Page 7: Utilizing Nature's Designs for Solar Energy Conversion · 2013-11-21 · Utilizing Nature's Designs for Solar Energy Conversion Author: Lisa M. Utschig, Argonne National Laboratory

Solar Energy Conversion Group David Tiede, Group Leader

Staff Scientists:

Lisa Utschig/Bioinorganic Chemistry

Oleg Poluektov/Advanced EPR Spectroscopy

Karen Mulfort/Inorganic Synthesis

Lin Chen/Ultrafast optical & XAFS

This work was funded by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of

Basic Energy Sciences of the U.S. Department of Energy through Grant DE-AC02-06CH11357.

ANL’s New Energy Science Building