61
INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA INPA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA Uso de classes topográficas para descrever habitat de aves florestais amazônicas MAÍRA REMONATTO RIZZI Manaus, Amazonas Outubro, 2013

Uso de classes topográficas para descrever habitat de aves

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Uso de classes topográficas para descrever habitat de aves

INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA

PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA

Uso de classes topográficas para descrever habitat de aves

florestais amazônicas

MAÍRA REMONATTO RIZZI

Manaus, Amazonas

Outubro, 2013

Page 2: Uso de classes topográficas para descrever habitat de aves

MAÍRA REMONATTO RIZZI

Orientadora: Dra. Marina Anciães

Co-orientador: Dr. Mario Cohn-Haft

Manaus, Amazonas

Outubro, 2013

Uso de classes topográficas para descrever habitat de

aves florestais amazônicas

Dissertação apresentada ao Instituto

Nacional de Pesquisas da Amazônia,

como parte dos requisitos para

obtenção do título de Mestre em

Biologia (Ecologia).

Page 3: Uso de classes topográficas para descrever habitat de aves

i

Banca examinadora do trabalho escrito

Dr. Victor Lemes Landeiro

(Universidade Federal do Mato Grosso)

Aprovada com correções

Dr. Luciano Nicolas Naka

(Universidade Federal de Pernambuco)

Aprovada com correções

Banca examinadora da defesa oral pública

Dr. Erik Johnson

(Audubon Society)

Dr. Marcelo Menin

(Universidade Federal do Amazonas)

Dr. Fabricio Beggiato Baccaro

(Universidade Federal do Amazonas)

Aprovada por unanimidade

Page 4: Uso de classes topográficas para descrever habitat de aves

ii

R627 Rizzi, Maíra Remonatto Uso de classes topográficas para descrever habitat de aves

florestais amazônicas. / Maíra Remonatto Rizzi. --- Manaus : [s.n],

2013.

vi, 53 f. : il. color.

Dissertação (Mestrado) --- INPA, Manaus, 2013.

Orientador : Marina Anciães.

Coorientador : Mario Cohn-Haft.

Área de concentração : Ecologia.

1. Aves neotropicais. 2. Aves - Habitat. 3. Aves – Distribuição geográfica. I. Título.

CDD 598.29

Sinopse

Avaliamos o uso das classes topográficas baixio, vertente e platô, para descrever habitat por aves

florestais amazônicas, em seis parcelas de floresta de terra firme ao Norte de Manaus. Foi utilizada a

abordagem de uso de ambientes versus sua disponibilidade. Os dados de registro de aves foram

provenientes do banco de dados de aves do Projeto TEAM, sendo as áreas classificadas nos três

ambientes utilizando dados e ferramentas de SIG.

Palavras-chave: Amazônia, Ponto de escuta, avifauna, topografia, SIG, Reserva Ducke, PDBFF, ZF-

2.

Page 5: Uso de classes topográficas para descrever habitat de aves

iii

Agradecimentos

À minha orientadora, Dra Marina Anciães, pela orientação e confiança desde que cheguei em

Manaus, muito obrigada pela compreensão e apoio.

Ao Dr. Mario Cohn-Haft, co-orientador, pelo acolhimento e por toda a dedicação na

construção desta ideia.

Ao Projeto TEAM, pelos dados, e ao Christian B. Andretti, pelo incentivo e entusiasmo em

desenvolver a parceria.

Ao Instituto Nacional de Pesquisas da Amazônia e à Pós-graduação de Ecologia.

Ao CNPq pela concessão da bolsa de estudos.

Às amigas e companheiras, panteras, Nayara Tartari Soto e Stéphany Wátzel, pelo imenso

companheirismo e ajuda durante todo o processo. Obrigada pela paciência, ajuda, e parceria.

Obrigada aos amigos de todas as horas: Julia V. Tavares, Carolina Freitas, Juliana

Bonannomi, Francisco C. Diniz, Gabriel McCrate, Thiago Belissário. Obrigada aos amigos e

colegas de turma de Ecologia 2011.

À minha família, por ter me incentivado e apoiado em cada momento, pela compreensão em

todo o processo, e que mesmo a 3.000km de distância, estiveram por perto. Obrigada mãe

(Isete C. R. Rizzi), pai (Nivaldo E. Rizzi) e irmão (Solo R. Rizzi), por todo carinho, visitas,

paciência e amor.

Ao Renato de S. P. Lemgruber, querido parceiro e companheiro de tudo. Obrigada pela

paciência, ajuda, alegrias e grandes momentos proporcionados durante todo esse processo e

muitos outros.

Page 6: Uso de classes topográficas para descrever habitat de aves

iv

Resumo Baixios, vertentes e platôs são ambientes que agregam características de solo e vegetação

distintas, importantes para a seleção de habitat em aves, podendo ser reconhecidos como

habitats pelas espécies da avifauna amazônica. Para testar se espécies de aves florestais

amazônicas selecionam, são especializadas em, ou evitam algum desses ambientes, utilizamos

a abordagem de uso dessas classes topográficas versus sua disponibilidade. O ambiente

disponível correspondeu à frequência de cada classe topográfica em 600 ha de floresta

primária ao norte de Manaus, que foram classificadas utilizando valores de altitude e

declividade através de ferramentas de SIG. Baixios foram áreas com baixa altitude, já

vertentes e platôs, em altitude acima do definido para baixio, foram separados usando

declividade. Os dados de aves, pertencentes ao Projeto TEAM foram coletados através de

censos por pontos de escuta em seis parcelas de 100 ha, visitadas de uma a quatro vezes por

ano, ao longo de cinco anos. Essas seis parcelas continham, cada uma, 36 pontos distantes

entre si 200 m, totalizando 216 pontos amostrados. Vertente foi o ambiente mais abundante

(47%), seguido de platô (33%) e baixio (20%). Das 160 espécies analisadas, 50 (31%)

selecionaram pelo menos um ambiente, nenhuma foi especializada e 16 (32%) evitaram

baixio ou platô, sendo vertente nunca evitada pelas espécies. Nossos resultados mostram que,

para algumas espécies típicas de igarapés, a classe topográfica “baixio” foi selecionada,

estando de acordo com as descrições de habitat na literatura ornitológica. Para outras espécies,

as associações com as classes topográficas representam novas hipóteses que devem ser

investigadas em maior detalhe. O conhecimento prévio de história natural sugere que a

relação entre as categorias topográficas e requisitos específicos de habitat é indireta, e o uso

dessas classes para descrever o habitat não deve sobrepujar descrições mais detalhadas de

micro-habitat. Nosso trabalho representou uma tentativa de quantificar o uso do ambiente

versus sua disponibilidade com o intuito de encontrar uma classificação funcional e mais

refinada de habitat para aves dentro da floresta de terra firme, o que proporcionará uma base

de comparação para futuros estudos sobre o uso de habitats pelas aves na Amazônia.

PALAVRAS - CHAVE: Aves Neotropicais, relevo, SIG, pontos de escuta, floresta de terra-

firme.

Page 7: Uso de classes topográficas para descrever habitat de aves

v

Abstract

Use of topographic classes to describe habitat of Amazon forest birds

Bottomlands, slopes, and plateaus are landscape classes that aggregate distinct characteristics

of soil and vegetation, which in turn are important for habitat selection by birds, making these

classes potentially recognizable as habitats for Amazon bird species. To test whether species

of terra firme forest birds select, are specialized in, or avoid any of these environments, we

use the approach of the use of topographic classes versus its availability. Available

environment corresponded to the frequency of each class in 600 ha of primary forest north of

Manaus, Brazil, classified using height and percent of slope with GIS tools. Bottomlands were

the lowest areas, and slopes and plateaus were defined by percent of slope above elevation

limit for bottomlands. Bird data, from the TEAM Project database, were obtained in point

count censuses in six 100-ha plots visited one to four times per year, for five years. These six

plots comprised 36 points, each one, separated 200 m apart from each other, for a total of 216

sampled points. Slope was the most abundant class (47%), followed by plateaus (33%) and

bottomlands (20%). In 160 species analyzed, 50 (31%) selected topographical classes, none of

them were specialized and 16 (32%) avoided bottomland or plateau, but never slope. Our

results showed that for a few species typical of forest streams, the topographic class

“bottomland” represents preferred habitat. For other species, these topographical habitat

associations represent novel hypotheses and should be investigated in greater detail. In

general, previous natural history knowledge of these species suggests that the relationship

between topographical category and specific habitat requirements are indirect, and the use of

these classes to describe habitat should also consider relevant micro-habitat features for birds.

Finally, our work represented an attempt to quantify the use of environment versus its

availability to find out a more refined and functional habitat classification for birds within the

terra firme forest, providing comparison base for further studies about habitat use by birds in

the Amazon.

KEYWORDS: Neotropical birds, relief, GIS, point-counts, “terra-firme” forest.

Page 8: Uso de classes topográficas para descrever habitat de aves

vi

Sumário

Resumo....................................................................................................................................iii

Abstract..................................................................................................................... ...............iv

Introdução.................................................................................................................................1

Objetivos...................................................................................................................................2

Capítulo único – Artigo: Use of topographic classes to describe habitat of Amazon forest

birds……………….....................................................................4

Conclusões..............................................................................................................................49

Apêndices.................................................................................................................... ...........50

Page 9: Uso de classes topográficas para descrever habitat de aves

1

Introdução

Reconhecer o habitat das espécies permite o entendimento dos requisitos necessários para sua

sobrevivência, distribuição, monitoramento e conservação. Aves em geral mostram notável

especialização de habitat de acordo com fitofisionomias (Terborgh et al. 1990, Stotz et al.

1996). Na Amazônia, a grande diversidade de espécies de aves ocorre no que parece ser um

ambiente relativamente homogêneo conhecido como “floresta tropical úmida” (Holdridge

1967), que se estende por milhares de quilômetros quadrados. Na realidade a floresta

amazônica inclui diversas formações vegetais distintas. Mesmo assim, as classificações de

habitat de aves amazônicas se resumem atualmente em fitofisionomias amplas, como “mata

de terra firme”, “várzea”, “campina”, “campinarana” e “capoeira” e, dentro dessas, estratos

como “sub-bosque”, “estrato médio”, “dossel”, “borda de mata” (Terborgh 1985, Terborgh et

al. 1990; Hilty e Brown 1986; Ridgely e Tudor 1994; Stotz et al.1996).

No entanto, a floresta amazônica pode ser mais finamente classificada. Por exemplo,

Veloso et al. (1991) subdivide fitofisionomias brasileiras hierarquicamente em até cinquenta

tipos diferentes. Sendo a floresta amazônica principalmente classificada como “Floresta

Ombrófila Densa”, subdividida em cinco formações de acordo com uma hierarquia

topográfica, que reflete fitofisionomias. No entanto, ao considerar uma mesma fitofisionomia,

ainda podem ser reconhecidos ambientes com características vegetacionais distintas em escala

fina. Por exemplo, índios no Alto Rio Negro identificam seis tipos diferentes de

fitofisionomias dentro do que é tipicamente chamado de campinarana (Abraão et al. 2008).

Na Amazônia, existe diferenciação na avifauna entre pontos e entre locais dentro da mesma

fitofisionomia (Terborgh et al. 1990, Menger 2011). Portanto, se as classificações dentro da

mesma fitofisionomia fossem claramente definidas e mapeadas seria interessante aplicá-las ao

conhecimento da preferência e especialização das aves pelo ambiente.

Nas escalas mais finas dentro de uma mesma fitofisionomia, o habitat para aves é

tipicamente classificado usando estrutura de vegetação (MacArthur et al. 1966, Cody 1981,

Holmes e Robinson 1981, Terborgh 1985), que, por sua vez, está relacionada à mudanças na

composição de comunidades de aves (e g. MacArthur et al. 1966, Cody 1981, Cintra e Naka

2012). De fato, a vegetação é o fator dominante na seleção de habitat pelas aves, embora elas

também selecionem um ambiente de acordo com outras características bióticas e abióticas

(Karr e Freemark 1983). Isso porque a vegetação influencia tanto a disponibilidade de

Page 10: Uso de classes topográficas para descrever habitat de aves

2

recursos como a estrutura do habitat e condições ambientais, como luminosidade, temperatura

e umidade (Karr e Freemark 1983, Terborgh et al. 1990, Pomara et.al 2012).

A topografia está relacionada à diferenças geoquímicas, drenagem e hidrologia dos

solos, o que influencia a estrutura e composição da vegetação em formações topográficas

como platôs, vertentes e baixios na floresta amazônica (Lucas e Chauvel 1992, Laurance et al.

1999, Castilho et al. 2006, Zuquim et al. 2008), o que permite o reconhecimento de

fitofisionomias referentes às unidades topográficas. Mudanças na topografia foram

relacionadas a variações na comunidade de aves (Bueno 2010, Cintra e Naka 2012), e a

composição de espécies de aves pode ser atribuída à diferenças intrínsecas dos habitats

(Terborgh 1985). Neste contexto, é presumível propor que as formações conhecidas como

florestas de platôs, florestas de vertentes e florestas de baixio (Prance et al. 1976, Hopkins

2005) possam representar habitats distintos para as aves.

Neste estudo procuramos investigar se essas classes topográficas representam habitat

para aves amazônicas, utilizando a abordagem de uso de cada ambiente versus sua

disponibilidade em áreas de floresta primária contínua ao Norte de Manaus. Dentro deste

escopo, pretendemos identificar preferências e especializações de espécies de aves por estes

ambientes e assim associá-las a habitats que representam uma classificação usual mais

específica dentro da floresta de terra firme.

Objetivos

Investigar se classes de relevo topográfico descrevem habitat de aves de terra firme

amazônicas.

Objetivos específicos

1) Testar se existe diferença no uso das classes topográficas platô, vertente, baixio pelas

espécies de aves;

2) identificar preferência das espécies de aves nessas classes ou combinação de duas classes;

3) identificar especialização das espécies de aves nessas classes ou combinação de duas

classes e;

4) testar se espécies associadas a igarapés na literatura mostram preferência ou especialização

a baixios.

Page 11: Uso de classes topográficas para descrever habitat de aves

3

Capítulo único

________________________________

Rizzi, M.R., Anciães, M., Soto, N.T., Watzel, S.,

Andretti, C.B., Vargas, C., Costa, T., & Cohn-

Haft, M. Use of topographic classes to

describe habitat of Amazon forest birds.

Manuscrito formatado para Oecologia.

Page 12: Uso de classes topográficas para descrever habitat de aves

4

Author Contributions: MRR developed GIS methodology and analyzed the data. MA collaborated in developing

methodology and analyses. MCH conceived and designed fieldwork. CBA, TVVC, CV performed fieldwork.

MCH, MRR originally formulated the idea and wrote the manuscript; other authors provided editorial advice.

Use of topographic classes to describe habitat of Amazon forest birds 1

2

Maíra Remonatto RIZZI1*

, Marina ANCIÃES2, Nayara Tartari SOTO

1, Stéphany WATZEL

1, 3

Christian Borges ANDRETTI3,4

, Claudeir VARGAS4, Thiago Vernaschi Vieira da COSTA

5, 4

& Mario COHN-HAFT4 5

6

1 Programa de Pós graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia – 7

INPA, Rua Efigênio Sales, 2239, Aleixo, CEP 69060-020 Manaus- AM, Brazil. 8

2 Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia – INPA, Rua 9

Efigênio Sales, 2239, Aleixo, CEP 69060-020 Manaus- AM, Brazil. 10

3 Instituto Pró-Pampa (IPPAMPA), Rua Uruguai, 1242, Centro, CEP 96010-630, Pelotas, RS, 11

Brazil. 12

4 Departamento de Biodiversidade e Coleções Zoológicas - Aves, Instituto Nacional de 13

Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, CEP 69067-375 14

Manaus, AM, Brazil. 15

5 Museu de Zoologia da Universidade de São Paulo (USP) – Coleções Zoológicas (Aves), Av. 16

Nazaré, 481, Ipiranga, CEP 04263-000, São Paulo, SP, Brazil. 17

* Corresponding author: [email protected] 18

19

ABSTRACT 20

Bottomlands, slopes, and plateaus are classes that harbor distinct characteristics of soil and 21

vegetation, which are important for habitat selection by birds, being potentially recognizable 22

as habitat by Amazon bird species. To test whether species of terra firme forest birds select, 23

Page 13: Uso de classes topográficas para descrever habitat de aves

5

are specialized in, or avoid any of these environments, we considered the approach of use of 24

topographic classes versus its availability. Available environment was the frequency of each 25

class in 600 ha of primary forest analyzed. The classification was performed using GIS tools 26

and considered the height and percent of slope. Bottomlands were defined as the lowest areas, 27

and slopes and plateaus were defined by the percent of slope above elevation limit for 28

bottomlands. Bird data were obtained in point count censuses in six 100-ha plots, each 29

containing 36 points, visited one to four times per year from 2005 to 2009. Slope was the 30

most abundant class (47%), followed by plateaus (33%) and bottomlands (20%). In 160 31

species analyzed, 50 (31%) selected topographical classes, none were specialized and 16 32

(32%) avoided bottomland or plateau, but never slope. Our results showed that for a few 33

species typically found in forest streams, the bottomland class was the preferred. For other 34

species, these classes associations represented novel hypotheses to be investigated in greater 35

detail. Previous natural history knowledge of these species suggests that the relationship 36

between topographical category and specific habitat requirements are indirect, and the use of 37

these classes to describe habitat should also consider relevant micro-habitat features for birds. 38

KEYWORDS: Neotropical birds, relief, GIS, point-counts, “terra-firme” forest. 39

40

INTRODUCTION 41

Recognizing species habitat allows the understanding of necessary requirements for their 42

survival, distribution, monitoring and conservation. Birds generally show noteworthy 43

specialization of habitat according to vegetation types (Terborgh et al. 1990, Stotz et al. 44

1996). In Amazon, the great diversity of bird species usually occurs in a commonly known 45

relatively homogeneous "rainforest" (Holdridge 1967), extending over thousands of 46

kilometers. However, the Amazon rainforest contains several distinct vegetal formations, and 47

Page 14: Uso de classes topográficas para descrever habitat de aves

6

the classifications of Amazonian bird habitats are summarized currently in broad vegetation 48

types, such as terra firme, várzea (flood forests), campina, campinarana (white sand forests) 49

and capoeira (second grow forests) and, within these, strata such as "understory", "midstory", 50

"canopy", "forest edge" (Terborgh 1985, Terborgh et al. 1990, Hilty and Brown 1986, Ridgely 51

and Tudor 1994, Stotz et al.1996). 52

But, the Amazon rainforest can be more finely classified since was classified as "Rain 53

Forest" and subdivided into five formations according to topographic hierarchy, which reflect 54

vegetation types (Veloso et al. 1991). In fact, when considering the same vegetation 55

environments distinct features in fine-scale can be recognized. For example, Indians in the 56

Upper Rio Negro identify six different types of vegetation within typically called 57

campinarana (Abraão et al. 2008). In the Amazon, there is no differentiation in composition 58

of bird community between locations within the same vegetation type at local scales 59

(Terborgh et al. 1990, Menger 2011). Therefore, if the classifications within the same 60

vegetation type were clearly defined and mapped, they would be useful to study the 61

preference and specialization of the environment and then refining habitat descriptions for 62

birds. 63

Within the same vegetation type, habitat for birds is typically classified using 64

vegetation structure (MacArthur et al. 1966, Cody 1981, Holmes and Robinson 1981, 65

Terborgh 1985), which in turn is related to changes in the composition of the bird 66

communities (e. g. MacArthur et al. 1966, Cody 1981, Cintra and Naka 2012). As well, the 67

vegetation is the dominant factor in habitat selection by birds, although they also select 68

habitat according to other biotic and abiotic characteristics (Karr and Freemark 1983). Indeed 69

vegetation structure influences the availability of resources, habitat structure and 70

Page 15: Uso de classes topográficas para descrever habitat de aves

7

environmental conditions such as light, temperature and humidity (Karr and Freemark 1983, 71

Terborgh et al. 1990, Pomara et al. 2012). 72

In the Amazon rainforest, topography is related to geochemical composition, drainage 73

and hydrology differences of soil properties, which influences the structure and composition 74

of vegetation in topographic classes known as plateaus, slopes and bottomlands (Lucas and 75

Chauvel 1992, Laurance et al. 1999, Castilho et al. 2006, Zuquim et al. 2008) enabling the 76

recognition of vegetation types related to these topographic environments. By definition, 77

plateaus are recognized as the higher areas with flat terrain, clayed and well drained soils 78

(Chauvel 1982). Bottomlands comprise lower areas of the terrain, being close to streams, 79

where the soil stays soggy mainly in the rainy season. Slopes are transitional environments, or 80

ecotones, between bottomlands and plateaus, having a high degree of declivity. Slopes soils 81

are composed by clay in the higher portions and by sandy-loamy in the lower portions, 82

varying with the maturity of slopes (Lucas and Chauvel 1992). Usually, transition between 83

bottomland and slopes are more abrupt than between plateaus and slopes (Hopkins 2005, 84

Zuquim et al. 2008). 85

The differences between each topographic class represent distinct vegetation 86

formations. Plateau forests contain the oldest and largest trees. The canopy height varies 87

between 30 and 40 m, with occasional emergent trees reaching 50 or 60 m. In slope forests 88

the plant species composition and tree canopy height are similar to the plateau forests, 89

however there are smaller amount of emergent trees. Finally, bottomland forests occur along 90

streams. Most part of the trees species have shallow roots and the canopy height is relatively 91

lower, ranging from 25 to 30 m, with predominance of palm trees (Prance et al. 1976, Bravard 92

and Righi 1989, Ranzani 1980, Luizão and Vasconcelos 2002, Hopkins 2005). These changes 93

in topography are related to changes in bird community (Bueno 2010, Cintra and Naka 2012), 94

Page 16: Uso de classes topográficas para descrever habitat de aves

8

and the composition of bird species can be attributed to intrinsic differences of habitats 95

(Terborgh 1985). 96

It is plausible to propose that the formations known as plateaus, slopes and bottomland 97

forests may represent distinct environments that may be differently occupied by birds. In this 98

study, we investigated whether these classes could allow us to describe variation in habitat 99

use by Amazonian birds, based in the use of each environment by bird species versus its 100

availability in continuous primary forest. To quantify availability of each environment we 101

used elevation models derived from Geographic Information System (GIS) tolls. Within this 102

scope, we aimed to identify preferences and specializations of bird species for these 103

environments. We also associated it with previous habitats description in literature in order to 104

verify if our topographic classification could represent a more specific usual classification 105

within the upland forest. 106

107

MATERIAL AND METHODS 108

Studied Area 109

Sampling was conducted in six plots in primary forest studied by the Tropical Ecology 110

Assessment and Monitoring Network (TEAM) project, located at north of Manaus. These 111

plots were located in three research areas of Instituto Nacional de Pesquisas da Amazônia 112

(INPA), being two plots per area. One area is the Reserva Ducke, comprising “Ducke Base” 113

(W59.95, S2.93) and “Ipiranga”(W59.90, S2.97) plots. The other two were located into two 114

dirt roads located in opposite sides of the highway BR 174 (Manaus - Boa Vista): ZF2 (next 115

to the Large Scale Biosphere - Atmosphere Experiment in Amazonia - LBA) and ZF3 (the 116

Biological Dynamics of Fragment Forest - PDBFF), comprising “Km 34 LBA” (W60.21, 117

Page 17: Uso de classes topográficas para descrever habitat de aves

9

S2.62) and “Km 14 LBA” (W60.11, S2.60), and "Cabo Frio" (W59.90, S2.44) and "Km 37" 118

(W59.79, S2.43) plots, respectively (Figure 1). 119

The region of the sampled areas has annual rainfall varying between 1,800 and 2,500 120

mm, with an average annual temperature of 26 º C. The rainy season is from November to 121

May, with the wettest months in March and April. The dry season is from June to October, 122

and the month of September is usually the driest (Chauvel 1982, Rankin-de-Merona et al. 123

1992, Oliveira et al. 2008). The topography consists of plateaus dissected by streams and the 124

soils are nutrient-poor sandy or clay-rich ferrasols (Chauvel et al. 1987). Vegetation is 125

characterized by terra firme lowland rainforest. The canopy ranges from 30 to 40 m height 126

with emergent reaching 55 m (Chauvel 1982, Guillaumet and Kahn 1982). 127

128

Bird Sampling 129

Data were obtained from bird database of the TEAM Project (Tropical Ecology 130

Assessment & Monitoring Network) collected by a group of experienced ornithologists from 131

Instituto Nacional de Pesquisas da Amazônia, composed by: C. Andretti, C. Vargas, T. Costa, 132

coordinated by M. Cohn-Haft. The samples were taken in six plots of 100 ha (1 km x 1 km), 133

one located in each sampling area described above, thereby totaling 600 ha of primary forest. 134

In each plot there were 36 points separated by 200 m from each other, in a total of 216 points 135

(72 points per area). The plots were sampled during the years 2005-2009, one to four times a 136

year, for a total of 14 sampling campaigns. Data collection of birds followed the method of 137

variable-radius point counts, described in Protocol Birds 3.1 Project TEAM 138

(www.teamnetwork.org/files/protocols/avian/TEAMAvian-PT-EN-3.1.pdf). Each bird 139

recorded was also associated in different position according to its distance from the sampling 140

point (the observer). In this study we considered only registers up to 50 m away from the 141

Page 18: Uso de classes topográficas para descrever habitat de aves

10

observer, due to an increase of uncertainty to identify the birds associated with longer 142

distances from the observer in this method (Buckland et al. 2001). 143

144

Topographic classes 145

In this study, plateaus, slopes and bottomlands classes were classified through 146

imagery products generated by Digital Elevation Models (DEM) derived from Shuttle Radar 147

Topography Mission (SRTM), data provided by the Instituto Nacional de Pesquisas Espaciais 148

(INPE), in Brazil. Derivation of original SRTM data, whose spatial resolution is 3 arc-seconds 149

(approximately 90 m), includes steps of gap filling, refinement, derivation and post-150

processing, resulting in a digital elevation model (DEM) of height with spatial resolution of 1 151

arc-second (approximately 30 m), which was acquired free of cost from the Geomorphometric 152

Database TOPODATA project of Instituto Nacional de Pesquisas Espaciais (INPE) (more 153

details at: http://www.dsr.inpe.br/topodata/). We used this method, because the data from 154

satellite imagery captures the topographical variation of the land and are widely available. 155

This enabled its use in ecological studies, being consistent with data obtained by traditional 156

methods, but at lower cost (Dent and Yung 1981, Valeriano 2004, Pic et al. 2007, Schietti et 157

al. 2007, Carvalho 2009, Nobre et al. 2011). 158

From these images, the classes were created using two topographic terrain attributes: 159

percent of slope and height. The percent of slope was generated using the slope tool from 160

ArcMap 9.3 software, obtaining a product in percent of inclination. Height data were obtained 161

from the project TOPODATA and processed to obtain the height above the nearest drainage 162

(HAND) (Rennó et al. 2008, Nobre et al. 2011), which normalizes the topography in respect 163

to the drainage network, providing an image with continuous height values in meters. The 164

height above the nearest drainage (HAND) product was generated using a script tool (Figure 165

Page 19: Uso de classes topográficas para descrever habitat de aves

11

2, more details in Online Resource 1) in the ArcGIS 9.3 software. The height data obtained 166

with height above the nearest drainage (HAND) product were matched to percent of slope 167

data to delineate topographic classes. Then, for each plot, the classes were created according 168

to maximum and minimum thresholds of height and percent of slope (Table 1). 169

Bottomland was defined as the portion of the terrain below a height threshold, which 170

varied between areas. For the portion of the land above this bottomland height threshold, 171

slopes and plateaus were defined using percent of slope. Determination of height and percent 172

of slope thresholds involved visual examination of each area. Slope was preliminarily 173

established as having percent of slope greater than or equal to 7.6% (Nobre et al. 2011). 174

Bottomland was preliminarily established as having height lower than or equal to 8 m (B. 175

Nelson pers. communication). Both values were adjusted for each area in order to classify all 176

image pixels in one of the three topographical classes. This was done taking in account the 177

gradients of height and percent of slope of original digital elevation model (DEM) of each 178

plot. Thus, for bottomland, the final threshold value of height was set from 7.61 to 7.96 m, 179

depending on the analyzed plot. Whereas, for slope, the final threshold value of percent of 180

slope ranged from 7.60 to 7.66% (Table 1). Plateau was subsequently defined as that class 181

with height greater than that found to define bottomland and with percent of slope lower than 182

that found to define slope class. 183

Then, in each of the six plots, the georreferenced sampled points (36 points per plot) 184

were matched to the respectively classified image product to obtain the topographic class 185

associated with those points. After the topographic class was obtained for each point of the six 186

plots, the plots were grouped together, totalizing 216 points and 600 ha of primary forest. 187

188

189

Page 20: Uso de classes topográficas para descrever habitat de aves

12

Analyses 190

Analysis of habitat selection was performed considering only those species that 191

occurred in more than three points, having at least nine records and, as mentioned above, were 192

found within 50 m of the observer. These parameters were set to decrease the chance of 193

species with limited information being classified as species that select some of the 194

topographic classes. Higher set parameters could eliminate those species that have been 195

poorly sampled and also have been found in some less frequent topographic classes. 196

Each species was analyzed individually using two ways: considering the number of 197

records and considering each point where the species was recorded at least once (presence). 198

The first way may bias the results in favor of classes where the species detection could be 199

easier or where the territory of one individual (or couple) could include few sampled points. 200

On the other hand, if all points of occurrence for a species were considered equally, i. e. 201

regardless the number of records for each point, it could bias in favor of points rarely 202

occupied, mainly if a species is normally concentrated in a few points (as lek species). 203

Thus, to test the selection of topographic classes by species, we used the Forage Ratio 204

test (Krebs 1999), which is indicated to measures of preference for resources such as food and 205

habitat. This analysis can identify the preference for different classes in terms of its use versus 206

its availability. In this study, available environment was considered as the proportion of each 207

of the three topographic classes present in 600 ha of forest sampled. 208

Following the analysis proposed in Krebs (1999), we performed a G test to evaluate if 209

each species used the topographic classes differently. Thus, those species that used the 210

environment as expected by chance (i.e. G test not significant), were considered as species 211

generalists in the use of the environment Species that had not been recorded in a particular 212

environment (class) could not be subjected to the G test (since this test cannot be calculated 213

Page 21: Uso de classes topográficas para descrever habitat de aves

13

using zeros). However, these cases were included in other analyzis (see next step) to highlight 214

the non-use of a topographic class and therefore the selection of other class species. 215

Then, for each species indicated in the previous step as a species that selects 216

environment, we obtained a selection index for each class, to know which one was selected. 217

The selection index was calculated from the ratio of used topographic class (i. e., the 218

proportion of records or presence for a species found by class) and its availability (i. e., the 219

proportion of a class found among the plots) (more details in Krebs 1999). Species with 220

selection index greater than one indicated preference by the class in question, while indexes 221

equal to or lower than one indicated no preference. 222

In addition, considering a species, when more than one selection index was greater 223

than one among the classes, the difference between them was analyzed by chi-square test. 224

This analysis was performed in pairs of topographic classes (comparison between plateau and 225

bottomland; bottomland and slope, and slope and plateau) in order to evaluate if the species 226

selected only one class (when the chi-square test was significant) or both classes (when the 227

chi-square test was not significant). 228

Finally, those species that showed more than 90% of records in a single class were 229

considered specialists for this class. Kratter (1997) used 95% to consider habitat 230

specialization of birds in Amazon bamboo forests, but we decided for a broader threshold for 231

our first evaluation. On the other hand, species with less than 10% of records in a topographic 232

class were considered as avoiding this class. All data were analyzed using R software version 233

2.13.2 (R Development Core Team 2011). 234

235

236

237

Page 22: Uso de classes topográficas para descrever habitat de aves

14

RESULTS 238

The six forest plots were successfully classified by topography in three categories: 239

bottomland, slope and plateau (Figure 3 and 4). All 216 sampled points were classified to 240

only one of the three classes, regarding its height and percent of slope (Figure 5). Bottomland 241

was represented by 44 points (20%), slope by 102 (47%) and plateau by 70 (33 %). There was 242

an uneven representation of this three classes (χ2 = 18.85, p = 0.004). So, considering all 600 243

ha of forest sampled together, slopes were predominant, followed by plateaus and 244

bottomlands. 245

Covering all sampled points during the five years, 27,066 records of birds were 246

registered. Considering only those within 50 m far from the observer, we found 16,204 247

records that corresponded to 256 species of birds comprising 51 families. Among the 256 248

species, Lipaugus vociferans was the more frequent with 855 records, followed by 249

Herpsilochmus dorsimaculatus (750 records), which was also the species with the highest 250

occurrence in the sample (present in 75% of the points). Ninety six species were recorded in 251

less than four points or less than nine times, and therefore were left out of the analysis (Online 252

Resource 2). 253

Of the total species, 160 were used in analysis. When considering the number of 254

records, 50 (31%) species showed environment selection (G> 5.9915; p <0.05), with 255

preference for one or two topographic classes (Table 2). Bottomland was selected by 17 256

species (14 families), slope by five (3 families) and plateau by 19 (13 families). Eight species 257

selected some combination of two environments, being seven for slope-plateau and one for 258

bottomland-slope. No species was specialist (> 90% of records in only one class), but 16 259

avoided some class (<10% of records for that environment). Three species avoided plateau 260

Page 23: Uso de classes topográficas para descrever habitat de aves

15

and 13 avoided bottomland, while slope was never avoided (Table 2). Nine species were 261

absent in some of these classes (Online Resource 2). 262

Species with fewer records tended to occupy less points than the species most 263

recorded (R2 = 0.87, p <0.01), showing an expected pattern of the data. Also, considering only 264

the presence/absence data (not counting multiple records in the same point and removing their 265

effect in the preference analysis), a total of ten species selected topographic classes (Table 2, 266

species highlighted in bold). Nine of them were also recognized in the previous analysis 267

(number of records) and one species selected two classes only in presence analyses. 268

Considering this particular case, a total of 51 species selected topographic classes. 269

Although the definition of selection involved the use of environments versus its 270

availability, for some species the selected environment (topographic class) was not that in 271

which the species was more recorded (species underlined in Table 2). In all these cases, slope 272

(the more abundant class present in the studied areas) accumulated more records than 273

bottomland and plateau. 274

275

DISCUSSION 276

We investigated the preference and specialization of forest bird species by topographical 277

classes, which cover distinct features of soil and vegetation, and are able to reflect the 278

preference of some species. Even using a widely “specialization” definition (see Methods), no 279

species was specialized to a particular class. This is consistent with the lack of the use of these 280

topographical environments to describe bird’s habitats found in most of the ornithological 281

literature (Hilty and Brown 1986, Stotz et al. 1996, Hilty 2002, Schulenberg et al. 2007). 282

However, about 30% of the species showed some preference, reinforcing the notion that these 283

classes of topography exert some relevance to birds. Slope was never avoided, and in some 284

Page 24: Uso de classes topográficas para descrever habitat de aves

16

cases was used more than any other environment, even when not selected by species. This 285

certainly reflects the prevalence of slopes, as defined herein, in the studied areas, and also 286

indicated that what was classified as part of slopes included used area for many species that 287

actually preferred bottomland or plateau. 288

Considering the lack of clear and technical definition of specialization, the 289

"preference" for topographic classes on species listed in Table 2 should be considered as cases 290

of selection to be further investigated. In each of these cases, described in more details below, 291

some aspects of the natural history of the species described so far reinforce or make consistent 292

this classification. For the other cases, the association appears to be unprecedented and 293

sometimes difficult to explain. As such, we treated these species into groups according to 294

their preference. We interpreted as being “strong cases” those species that showed selection 295

when analyzed their records and when evaluated only their presence (in bold in Table 2), as 296

well as when avoided some environment (with superscript in Table 2). The “weaker cases” 297

were those in which the species were more recorded in slopes than in the "selected" 298

environment (underlined in Table 2). In any group no relationship was observed between 299

species considering the taxonomic family, forest strata used, or sociability (see Cohn-Haft et 300

al. 1997). 301

302

Bottomland species 303

Of the 17 species that selected bottomlands, four are mentioned in the literature as 304

being of wetlands or found near streams within the upland forest. Schistocichla leucostigma is 305

unanimously considered as associated to streams (Hilty and Brown 1986, Cohn-Haft et al. 306

1997, Hilty 2002, Schulenberg et al. 2007, Johnson et al. 2011, Cintra and Naka 2012). 307

Philydor pyrrhodes does not approach the water, getting in subcanopy treetops, but in this 308

Page 25: Uso de classes topográficas para descrever habitat de aves

17

region of the Amazon this species occurs almost exclusively areas with relatively high density 309

of Euterpe spp. and other typical bottomland palms (Hilty and Brown 1986, Cohn-Haft et al. 310

1997, Hilty 2002). Formicarius analis and Lophotriccus vitiosus are also taken as common 311

near streams and wetland regions within the upland forest (Hilty and Brown 1986, Hilty 2002, 312

Schulenberg et al. 2007, Johnson et al. 2011). Thus, our results were consistent with previous 313

knowledge, which, in fact, show that our classification method is reliable. Other species 314

previous found in the studied area (Cohn-Haft et al. 1997) associated to bottomland or 315

streams (e. g. Kingfishers, Myrmeciza atrothorax, Slateria naevia), were rare on terra firme 316

forest and were not registered during our sampling. Phaeothlypis mesoleuca, species with 317

strong association with streams, was registered on the sampling, but did not range minimum 318

number of records within 50 m far from observer, and therefore was not analyzed. 319

The other species we found associated with bottomlands (Table 2) do not appear as 320

such in the literature, and the characterization in this study represents a novel hypothesis of 321

habitat selection. For example, Lophotriccus vitiosus in previous experience was found in 322

forest edge and partially opened canopy (Cohn-Haft 1995, Cohn-Haft et al. 1997), and even 323

being described as occurring next to streams (Johnson et al. 2011), may also occurs regularly 324

in other elevations. 325

Several species such as Ara ararauna, Touit purpuratus, Mionectes macconnelli, 326

Dixiphia pipra, Coereba flaveola, Lanio surinamus and Euphonia cayennensis are 327

predominantly frugivorous. Their preference may be related with a more opening canopy 328

associated with bottomlands and a greater light penetration may favor higher fruit production 329

in the understory. But for the canopy species such as parrots, for example, is difficult to 330

imagine what would be selecting bottomland throughout the year. We suspected that a 331

temporary abundance and seasonal fruit during our sampling (such as “buriti”, Mauritia 332

Page 26: Uso de classes topográficas para descrever habitat de aves

18

flexuosa; “acai”, Euterpe spp.; or “patauá”, Oenocarpus bataua) may have concentrated the 333

use of bottomlands along its availability in the environment, but in other times, other 334

topographic classes are also important. 335

For those species that have never been remarked in the literature as being of 336

bottomland, the most plausible explanation for the preference seems to be observed through 337

some specific important environmental feature in the natural history of the species. Thus, 338

bottomland itself is not the causal factor of presence of the species, but these important 339

features for the species may be indirectly linked to this class. For example, the great cotingid 340

Capuchinbird (Perissocephalus tricolor) form leks and is detected almost exclusively by high 341

nuptial vocalizations produced in those leks. We noticed a trend in the field that leks are 342

located on the top of steep slopes, near plateaus, and we believe that this species may be using 343

bottomlands as "acoustic chambers" to propagate its singing (personal observation). In fact, 344

for P. tricolor, bottomland was not the selected environment for leks according to our 345

presence analysis. Also the relative rare proportion of bottomlands in our study may explain 346

why this species seems to prefer (using more than expected) this topographic class, although 347

its leks are not commonly located in this environment. 348

349

Slope species 350

Slope was the most abundant topographic class in our sampled areas. The five species 351

that preferred this environment had their forage ratio test more conservative, since, for our 352

analysis considering the use of topographic classes versus its availability, the number of 353

species records required in this class needed to be much higher than in other environments. 354

Indeed, none of them had been described as having such preference so far. Like for 355

Page 27: Uso de classes topográficas para descrever habitat de aves

19

bottomland species cases, it seems to be other characteristic, perhaps associated with slopes, 356

which may explain this preference. 357

Cercomacra cinerascens occurs in tangles of vines in the midstory and subcanopy 358

(Hilty 2002) and is notably absent in forests with few vines (personal observation). Since 359

slopes are related with an increase of tree mortality (Toledo et al. 2011, 2012), this may favor 360

the lateral exposure of trees to the sunlight and in turn should encourage the growth of vines 361

in the canopy. Because of this, slopes may offer a more suitable environment for this species. 362

Related to this fact, other species listed (Table 2) – such as parrots and the toucan - nest in 363

hollow trees, whose presence may also be favored by higher rate of tree mortality in slope. 364

However, all this relationships are tenuous and poorly documented, and does not explain why 365

other sampled species that also nest in cavities or hollow logs did not select slope. 366

367

Plateau species 368

Species that selected plateau occupied various forest strata, and included insectivorous 369

and frugivorous. Also they varied from territorial to accompanying mixed or monospecific 370

flocks species. Besides the fact that our results for Hylopezus macularius is in accordance 371

with what was found by Stratford and Stouffer (2013), where this species was only observed 372

in upland forests in a similar forest area, most species that selected plateau are not directly 373

related to this environment in the literature. Nevertheless, these species have in common the 374

fact that all of them could be called as predominant in extensive primary and well preserved 375

forest. This suggests that plateau forest represents the more stable environment of terra firme, 376

whereas the other two topographic classes have features in common with other forest types 377

(such as campinarana and capoeira). Specifically, it reinforces the idea that bottomland and 378

Page 28: Uso de classes topográficas para descrever habitat de aves

20

slope suffer higher mortality and falling trees and thus higher light penetration (Toledo et al. 379

2011, 2012), making plateaus more constant environments compared to them. 380

Few of the plateau species found in our study have known preference or tolerance for 381

natural forest gaps or forest regeneration. For example, Bucco tamatia, Thamnophilus 382

murinus, Pipra erythrocephala tolerate gaps and forest edge (Cohn-Haft et al. 1997), and Ara 383

macao seems to be more common in lowland forest called várzea than in the terra firme 384

(pers. obs.). Other species may occupy forest gaps but probably need a primary forest matrix 385

nearby (Hilty and Brown 1986, Cohn-Haft et al. 1997, Hilty 2002, pers. obs.). 386

387

Species that selected two environments 388

All species, but one (see below) that selected two environments preferred the 389

combination of bottomland and slope or plateau and slope. This result suggests that the 390

classes themselves are not good representatives of specific environment for these species. In 391

fact, the terrain zone that encompasses bottomlands and lower part of slopes has a distinct 392

plant species composition compared to upland zones (Schietti et.al 2013), which may contrast 393

the way species perceive their environment. Thus, for such species, the combination of 394

classes may include common characteristics that make them usable as one unique 395

environment. 396

Curiously, Philydor erythrocercum was the only species to prefer bottomland-plateau 397

combination, considering presences. This species occurs in mixed flocks and this fact may be 398

related to the daily movement between these two environments (K. Mokross, unpublished 399

data.). Although this does not explain why this species did not selected this class combination 400

when considering its records and why other species of mixed flocks did not yield similar 401

result. The difference between these extremes classes (bottomland and plateau) regarding 402

Page 29: Uso de classes topográficas para descrever habitat de aves

21

their height (or other features) may not express a clear limit respected by P. erythrocercum, 403

although this relation is speculative. 404

405

Concluding remarks 406

Although we attempted to explain the results based on observed characteristics of each 407

species, in general, classification of species by topographic classes must be interpreted as a 408

hypothesis to be tested in more detail. The stronger results are that no bird species showed 409

specialization to topographic class. And most cases of selection may be explained as some 410

specific microhabitat preference indirectly associated with topography classes. As 411

demonstrated in Pomara et al. (2012), bird community varies with soil nutrients composition 412

through vegetation structure. Even topographic classes being recognized with different 413

vegetation structure, most birds did not select them as distinct environments. 414

Our topographic classification was based in the topographic classification used by 415

Rennó et al. (2008) and Nobre et al. (2011), which include field validation and the scale used 416

was higher. Our study considered a local scale, where even pixels of 30 x 30 m may have 417

missed terrain features important to birds within the finest plots of 100 ha, as for example a 418

narrow bottomland. Despite this, our classification of pixels was in accordance with the 419

values of height and percent of slope expected for each class (Rennó et al. 2008, Nobre et al. 420

2011). However, using continuous data of height and percent of slope (Figure 3 and 4) such as 421

we did to classified topography was useful to find out some species association with 422

topographic classes. Species associated with wetland, valleys and streams in the literature 423

were in fact identified selecting bottomland using this methodology. 424

Further studies should include attempts to clarify the relationship between topography 425

classes and occupation by birds. Studies of habitat`s use considering the territory of each 426

Page 30: Uso de classes topográficas para descrever habitat de aves

22

species may allow a better understand of which environments are more or less used by 427

species. Another approach could be map the species in topographical relief. This would 428

eliminate the need to congruence of thresholds classes across species, allowing that each 429

species has a topography single use, and may facilitate the identification of other factors 430

relevant for such species. 431

Initially, all birds record position was mapped in landscape taking in account its 432

distance and direction from the observer (raw data). After this, we selected only those birds 433

position that fall within 50 m far from observer. But raw record data can allow us to verify an 434

association more robust between birds and their environment, mainly considering its territory 435

and living area as well. To do it so, we are developing a software that will be able to precisely 436

georreference all the birds record position, allowing us to do a more accurate analysis in other 437

studies. 438

Finally, our work represented an initial attempt to quantify the use of environment 439

versus its availability to find out a more refined and functional habitat classification for birds 440

within the terra firme forest. Thus, we conclude that topographic classes themselves do not 441

represent a subdivision of the forest with strong explanatory power of the local distribution of 442

bird species, and does not represent habitat for Amazonian terra firme forest birds. However, 443

the altitudinal gradient within the forest is associated with suitable characteristics for many 444

species. This knowledge allows to identify birds specific environments associations and to 445

understand how these animals are using upland forests in Amazonia. Our results show that 446

although habitat classification is useful to understand habitat`s use by some bird species, 447

specific environmental components, related or not to topographic classes may be more 448

important. Therefore, monitoring efforts of Amazonian birds should also consider specific 449

Page 31: Uso de classes topográficas para descrever habitat de aves

23

preferences for the recognition of important areas for conservation of these species and not 450

only consider those broad Amazon forest classifications. 451

452

ACKNOWLEDGMENTS 453

We thank National Council for Scientific and Technological Development (CNPq) for MSc 454

scholarship to MRR and Tropical Ecology Assessment & Monitoring Network Project 455

(TEAM) for providing data and financial support. We also thank to Dr. Bruce Nelson for his 456

relevant help in the generation of elevation models of the studied areas, and to Dr. Victor 457

Lemes Landeiro for his contributions in script automation in R software. 458

459

REFERENCES 460

Abraão MB, Nelson BW, Baniwa, JC, Yu DW, Shepard Jr GH (2008) Ethnobotanical ground 461

– truthing: indigenous knowledge, floristic inventories and satellite imagery in the upper Rio 462

Negro, Brazil. Journal of Biogeography, 35:2237-2248 463

464

Bravard S, Righi D (1989) Geochemical differences in an Oxisol-Spodosol Toposequence of 465

Amazônia, Brazil. Geoderma 44(1):29-42 466

467

Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) 468

Introduction to distance sampling: Estimating abundance of biological populations. Oxford 469

University Press, New York, USA. 470

471

Bueno AS (2010) Distribuição de aves de sub-bosque ao longo de gradientes ambientais na 472

Amazônia Central. Master thesis, Department of Ecology, Instituto Nacional de Pesquisas da 473

Amazônia, Manaus, Amazonas, Brazil 474

Page 32: Uso de classes topográficas para descrever habitat de aves

24

475

Carvalho TM (2009) Parâmetros geomorfométricos para descrição do relevo da Reserva de 476

Desenvolvimento Sustentável do Tupé, Manaus, Amazonas. In: Santos-Silva EM, Scudeller 477

VV (eds) Biotupé: Meio Físico, Diversidade Biológica e Sociocultural do Baixo Rio Negro, 478

Amazônia Central. Universidade Estadual do Amazonas, Manaus, pp 3-17 479

480

Castilho CV, Magnusson WE, Araújo RNO, Luizão RC, Luizão FJ, Lima AP, Higuchi N 481

(2006) Variation in aboveground tree live biomass in a central Amazonian forest: effects of 482

soil and topography. Forest Ecology and Management, 234:85-96 483

484

Chauvel A (1982) Os latossolos amarelos, alico, argilosos dentro dos ecossistemas das bacias 485

experimentais do INPA e da região vizinha. Suplement Acta Amazônica, 12(3):47-60 486

487

Chauvel A (1987) On the genesis of the soil mantle of the region of Manaus, Central 488

Amazonia, Brazil. Experientia 43:234-241 489

490

Cintra R, Naka L (2012) Spatial variation in bird community composition in relation to 491

topographic gradient and forest heterogeneity in a Central Amazonian rainforest. International 492

Journal of Ecology doi:10.1155/2012/ 435671 493

494

Cody M (1981) Habitat selection in birds: The roles of vegetation structure, competitors, and 495

productivity. Bioscience 31(2):107-113 496

497

Cody M. L (1985) Habitat selection in birds. Academic Press, New York, NY,USA 498

Page 33: Uso de classes topográficas para descrever habitat de aves

25

499

Cohn-Haft M (1995) Evolution of avian dietary specialization along an environmental gradient: 500

Tropical rainforest interior versus canopy and edge habitats. Master thesis, Department of 501

Ecology, Evolution, and Organismal biology, Tulane University, New Orleans, Los Angeles, 502

USA. 503

504

Cohn-Haft M A, Whittaker A, Stouffer PC (1997) A New Look at the "Species-Poor" 505

Central Amazon: The Avifauna North of Manaus, Brazil. Ornithological 506

Monographs 48: 205-235 507

508

Comitê Brasileiro de Registros Ornitológicos (2011) Listas das aves do Brasil, 10ª Edição. 509

(http://www.cbro.org.br). Access in: 02/03/2012 510

511

Dent D, Young A (1981) Soil survey and land evaluation, George Allen and Unwin (Eds), 512

London, UK 513

514

Guillaumet J, Kahn F (1982) Estrutura e dinamismo da floresta. Acta Amazônica 12: 61-77. 515

516

Hilty SU, Brown WL (1986) A guide to the birds of Colombia. Princeton University Press, 517

Princeton, NJ, USA 518

519

Hilty SU (2002) Birds of Venezuela, 2nd edn. Princeton University Press, Princeton, NJ, USA 520

521

Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose, Costa Rica 522

523

Page 34: Uso de classes topográficas para descrever habitat de aves

26

Holmes RT, Robinson SK (1981) Tree species preferences of foraging insectivorous birds in 524

a Northern Hardwoods Forest. Oecologia 48: 31-35 525

526

Hopkins MJG (2005) Flora da Reserva Ducke, Amazonas, Brazil. Rodriguésia 56 (86):9-25 527

528

Johnson EI, Stouffer PC, Vargas FC (2011) Diversity, biomass, and trophic structure of a 529

central Amazonian rainforest bird community. Revista Brasileira de Ornitologia 19(1):1-16 530

531

Karr JR, Fremark KE (1983) Habitat selection and environmental gradients: Dynamics in the 532

“stable” tropics. Ecology 64(6):1481-1494 533

534

Kirwann G (2012) Cotingas and manakins. Pinceton University Press, Princeton, NJ, USA 535

536

Kratter AW (1997) Bamboo specialization by Amazonian birds. Biotropica 29 (1):100-110 537

538

Krebs CJ (1999) Ecological Methodology, 2nd edn. Addison Wesley Longman, USA 539

540

Laurance WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy TE, Rankin-de Merona 541

JM, Chambers JQ, Gascon C (1999) Relationship between soils and Amazon forest biomass: 542

a landscape-scale study. Forest Ecology and Management 118: 127-138 543

544

Lucas Y, Chauvel A (1992) Soil formation in tropically weathered terrains. In: Butt CRM, 545

Zeegers H (eds) Regolith exploration geochemistry in tropical and subtropical terrains. 546

Elsevier Science Publishers B.V., Amsterdam, Netherlands 547

Page 35: Uso de classes topográficas para descrever habitat de aves

27

548

Luizão F.J, Vasconcelos HL (2002) Floresta Tropical Úmida (Manaus): Site 1. In: Seeliger U, 549

Cordazzo C, Barbosa F (eds) Os sites e o programa brasileiro de pesquisas ecológicas de 550

longa duração. Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil 551

552

MacArthur R, Recher H, Cody M (1966) On the relation between habitat selection and 553

species diversity. The American Naturalist 100: 319-332 554

555

Menger JS (2011) Fatores determinantes da distribuição de aves no interflúvio Purus-556

Madeira. Master thesis, Department of Ecology, Instituto Nacional de Pesquisas da 557

Amazônia, Manaus, Amazonas, Brazil. 558

559

Nobre AD, Cuartas LA, Hodnett M, Rennó CD, Rodrigues G, Silveira A, Waterloo M, 560

Saleska S (2011) Height above the nearest drainage – a hydrologycally relevant new terrain 561

model. Journal of Hydrology 404:13-29 562

563

Oliveira ML, Baccaro FB, Braga-Neto R, Magnusson WE (2008) Reserva Ducke: A 564

biodiversidade amazônica através de uma grade. Áttema Desing Editorial, Manaus, Amazonas, 565

Brazil 566

567

Pic A, Rennó CD, Pinheiro TF, Soares JS (2007) Avaliação da influência da vegetação nos 568

dados SRTM para a região amazônica. Anais XIII Simpósio Brasileiro de Sensoriamento 569

Remoto, Florianópolis, Santa Catarina, Brazil 570

571

Page 36: Uso de classes topográficas para descrever habitat de aves

28

Pomara LY, Ruokolainen K, Tuomisto H, Young KR (2012) Avian composition co-variates 572

with floristic composition and soil nutrient concentration in Amazonian upland forests. 573

Biotropica 0(0): 1-9 doi: 10.1111/j.1744-7429.2011.00851.x 574

575

Prance GT, Rodrigues WA, Silva MF (1976) Inventário florestal de um hectare de mata de 576

terra firme km 30 da Estrada Manaus-Itacoatiara. Acta Amazônica 6(1): 9-35 577

578

R Development Core Team (2011) R: A language and environment for statistical computing. 579

R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL 580

http://www.R-project.org/ 581

582

Rankin-de-Merona JM, Prance GT, Hutchings RW, Silva FM, Rodrigues WA, Uehling ME 583

(1992) Preliminary results of large-scale tree inventory of upland rain forest in the central 584

Amazon. Acta Amazonica 22:493-534 585

586

Ranzani G (1980) Identificação e caracterização de alguns solos da Estação Experimental de 587

Silvicultura Tropical do INPA. Acta Amazônica 10(1):7-41 588

589

Rennó CD, Nobre AD, Cuartas LA, Soares JV, Hodnett MG, Tomasella J, Waterloo M (2008) 590

HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest 591

environments in Amazonia. Remote Sensing of Environment, 112:3469–3481 592

593

Ridgely RS, Tudor G (1994) The birds of South America, vol. I. The Oscine Passerines. 594

University of Texas Press, Austin, Texas, USA 595

Page 37: Uso de classes topográficas para descrever habitat de aves

29

596

Schietti J, Drucker D, Keizer E, Carneiro-Filho A, Magnusson W (2007) Avaliação do uso de 597

dados SRTM para estudos ecológicos na Amazônia central. Anais XIII Simpósio Brasileiro 598

de Sensoriamento Remoto, Florianópolis, Santa Catarina, Brazil 599

600

Schietti J, Emilio T, Rennó CD, Drucker DP, Costa FRC (2013) Vertical distance from 601

drainage drives floristic composition changes in an Amazon rainforest. Plant Ecology and 602

Diversity, doi 10.1080/17550874.2013.783642 603

604

Schulenberg TS, Stotz DF, Lane DF, O’Neill JP, Parker III PT, Egg AB (2007) Birds of Peru. 605

Princeton University Press, Princeton, NJ, USA 606

607

Strattford JA, Stouffer PC (2013) Microhabitat associations of terrestrial insectivorous birds 608

in Amazonian rainforest and second-growth forests. Journal of Field Ornithology, 84(1):1-12 609

610

Stotz D, Fitzpatrick JW, Parker III TA, Moskovits K (1996) Neotropical Birds, Ecology and 611

Conservation. The University of Chicago Press, Chicago, Illinois, USA 612

613

Terborgh J (1985) Habitat selection in Amazonian birds In: Cody M. L (eds) Habitat 614

Selection in Birds. Academic Press, New York, NY, USA 615

616

Terborgh J, Robinson SK, Parker III TA, Munn CA, Pierpont N (1990) Structure and 617

organization of an Amazonian forest bird community. Ecological Monographs 60(2):213-238 618

619

Page 38: Uso de classes topográficas para descrever habitat de aves

30

Toledo JJ, Magnusson WE, Castilho CV, Nascimento HEM (2011) How much variation in 620

three mortality is predicted by soil and topography in Central Amazonia?. Forest Ecology and 621

Management 262:331-338 doi:10.1016/j.foreco.2011.03.039 622

623

Toledo JJ, Magnusson WE, Castilho CV, Nascimento HEM (2012) Tree mode of death in 624

Central Amazonia: Effects of soil and topography on tree mortality associated with storm 625

disturbances. Forest Ecology and Management 263:253-261 doi:10.1016/j.foreco.2011.09.017 626

627

Valeriano MM (2004) Modelo digital de elevação com dados SRTM disponíveis para a 628

América do Sul. Instituto Nacional de Pesquisas Espaciais, São José dos Campos, São Paulo, 629

Brazil 630

631

Veloso HP, Rangel-Filho ALR, Lima JCA (1991) Classificação da Vegetação Brasileira 632

Adaptada a um Sistema Universal. Instituto Brasileiro de Geografia e Estatística, Rio de 633

Janeiro, RJ, Brazil 634

635

Zuquim G, Costa FRC, Prado J, Tuomisto H (2008) Guia de samambaias e licófitas da 636

REBIO Uatumã – Amazônia Central. Áttema, Manaus, Amazonas, Brazil 637

Page 39: Uso de classes topográficas para descrever habitat de aves

31

Table 1. Height and percent of slope thresholds used to classify each

plot studied. Height represents the maximum value in meters used to

defined bottomland. Above this height threshold, using the percent

of slope, slopes and plateaus were, respectively, defined as having

higher and lower values than that showed in the table (see Figure 2).

Plot Name Percent of slope (%) Height (m)

1 Ducke Base 7.66 7.95

2 Ipiranga 7.60 7.91

3 Cabo Frio 7.60 7.69

4 Km 37 7.60 7.69

5 34 LBA 7.64 7.96

6 14 LBA 7.60 7.71

Page 40: Uso de classes topográficas para descrever habitat de aves

32

Table 2. Species that selected topographic classes. Species were grouped according to the

selected environment. Species in bold refer to those also classified considering presences. The

superscript letters indicate those species that avoided environment (less than 10% of records),

where P means plateau and B means bottomland. Underlined species were more recorded in

slope than in the selected class (see the values in Online Resource 2). Species name is in

accordance with Comitê Brasileiro de Registros Ornitológicos (2011).

BOTTOMLAND

Odontophorus gujanensis P Pithys albifrons Lophotriccus vitiosus

Ara ararauna Formicarius analis Myiopagis gaimardii

Touit purpuratus Philydor pyrrhodes

Coereba flaveola

Phaethornis bourcieri Dixiphia pipra Lanio surinamus

Phaethornis superciliosus Perissocephalus tricolor Euphonia cayennensis

Schistocichla leucostigma P Mionectes macconnelli

SLOPE

Amazona farinosa Deroptyus accipitrinus B Pteroglossus viridisB

Amazona autumnalis Cercomacra cinerascens

PLATEAU

Ara macao Hylopezus macularius B Hemitriccus zosterops

Chaetura spinicaudus B Lepidocolaptes albolineatus B Vireolanius leucotis*

Bucco tamatia B Dendrocolaptes certhia B Hylophilus ochraceiceps

Celeus torquatus B Pipra erythrocephala Microbates collaris

Myrmeciza ferruginea Pachyramphus marginatus Lanio fulvus B

Thamnophilus murinus Pachyramphus surinamus B Tangara chilensis B

Frederickena viridis

TWO TOPOGRAPHIC CLASSES

SLOPE-PLATEAU BOTTOMLAND-SLOPE BOTTOMLAND-PLATEAU

Celeus undatus Corythopis torquatus P Philydor erythrocercum**

Galbula dea

Geotrygon montana B

Hylophilus muscicapinus

Ibycter americanus B

Melanerpes cruentatus B Selenidera piperivora B

* Selected slope-plateau when considered presence

** Selected bottomland-plateau only when considered presence

Page 41: Uso de classes topográficas para descrever habitat de aves

33

Figure 1. Localization of the six sampled plots (in white) belonging to the three research areas

of Instituto Nacional de Pesquisas da Amazônia (INPA) (yellow lines), where: a) Reserva

Florestal Adolpho Ducke (a1 - Ducke Base and a2 - Ipiranga), b) ZF 2 (b1 - Km 34 LBA and b2

- Km 14 LBA) and c) ZF 3 (c1 - Cabo Frio and c2 - Km 37.

Page 42: Uso de classes topográficas para descrever habitat de aves

34

Figure 2. Flowchart of steps to obtain the product HAND (Height Above the Nearest

Drainage). The rectangles symbolize images and parallelograms are tools of ArcGIS 9.3

software. The rectangle with curved edges is a vector data, and the arrows are connectors that

represent the processing order of each item to get the image HAND in meters (more details in

Online Resource 2).

Page 43: Uso de classes topográficas para descrever habitat de aves

35

Figure 3. Areas that comprise each sampled plot classified in bottomland, slope and plateau

classes. Note the orientation of each plot, each one composed by 36 sampled points. (Figure

color in the electronic version).

Page 44: Uso de classes topográficas para descrever habitat de aves

36

Figure 4. Thresholds of height and percent of slope of all pixels classified in each area. Each pixel of figure 3

corresponds to a point in the chart area. Bottomlands were defined by height threshold and plateaus and slopes by their

respective percent of slope threshold (Table 1 for more details). Points to the left of the blue line were classified as

bottomland and points above and below the red line were classified as slope and plateau, respectively.

Page 45: Uso de classes topográficas para descrever habitat de aves

37

Figure 5. All 216 sampled points classified according to height and percent of slope

thresholds established for each plot. In blue, points classified as bottomland (b); in

black as slope (v), and in red as plateau (p).

Page 46: Uso de classes topográficas para descrever habitat de aves

38

Electronic Supplementary Matterial

Page 47: Uso de classes topográficas para descrever habitat de aves

39

ESM 1. Tools used in the preparation of height above drainage (HAND) model, based on

processing method developed by Dr. Bruce Nelson (INPA). Settings used are in brackets.

#Definine projection of topodata image

DefineProjection_management

C:\ORIGEM\IMAGEM_TOPODATA.tif (em GCS_WGS84)

#Redefining topodata image projection to UTM (m)projection

Redefinindo a projeção da imagem topodata para UTM em metros

ProjectRaster_management

C:\ORIGEM\IMAGEM_TOPODATA.tif C:\ORIGEM\MDE_UTM_20S.tif

(escolher fuso da imagem topodata)

#Change the data frame projection to UTM (m) projection

#Extract area of interest

ExtractByRectangle_sa

C:\ORIGEM\MDE_UTM_20S.tif C:\ORIGEM\MDE_AREA1.tif (INSIDE)

# In ENVIRONMENTS settings define MDE_AREA.tif as SNAP RASTER

#Fill puddles

Fill_sa

C:\ORIGEM\MDE_AREA1.tif C:\ORIGEM\MDE_AREA1_PREEN.tif

#Calculate flow direction and flow accumulation (of the drainage)

FlowDirection_sa

C:\ORIGEM\MDE_AREA1_PREEN.tif C:\ORIGEM\MDE_AREA1_DIR_ESC.tif

(NORMAL)

FlowAccumulation_sa

C:\ORIGEM\MDE_AREA1_DIR_ESC.tif C:\ORIGEM\MDE_AREA1_ESC_ACUM.tif

(INTEGER)

# Aply expansion contrast min=0 and max=30 to view streams

#Boolean image to identify the streams talvegs

SetNull_sa

C:\ORIGEM\MDE_AREA1_ESC_ACUM.tif C:\ORIGEM\MDE_AREA1_

BOOL_TALVEG.tif (VALUE <270)

#Get the height above the sea level of the talvegs

SingleOutputMapAlgebra_sa

C:\ORIGEM\MDE_AREA1_ BOOL_TALVEG.tif * C:\ORIGEM\MDE_AREA1.tif

C:\ORIGEM\ MDE_AREA1_ALT_TALVEG.tif

#Vector image derived from the height of the talvegs (previous step)

to use to estimating the height of the groundwater

RasterToPoint_conversion

C:\ORIGEM\ MDE_AREA1_ALT_TALVEG.tif C:\ORIGEM\

AREA1_ALT_TALVEG.shp (VALUE)

#Estimate the height of the groundwater by interpolation (adjusting

the pixel size)

Page 48: Uso de classes topográficas para descrever habitat de aves

40

Idw_sa

C:\ORIGEM\ AREA1_ALT_TALVEG.shp (GRID_CODE) C:\ ORIGEM\ AREA1

_ALT_LENCOL.tif (CellSize 30.8741613, 2, VARIABLE 12)

#Subtract the height of the groundwater from the height above the

sea level (product of second step) to obtain the product height

above drainage (HAND)

SingleOutputMapAlgebra_sa

'C:\ORIGEM\MDE_AREA1.tif - C:\ ORIGEM\ AREA1 _ALT_LENCOL.tif

C:\ORIGEM\ AREA1_ASD.tif

Page 49: Uso de classes topográficas para descrever habitat de aves

41

ESM 2. Data from the 160 analyzed species. Species that selected environments are marked in gray. The parameters are: number of total records

(regt); proportion of records in each class (reg); proportion of presences in 216 sampling points (prest); proportion of presences in each

environment (pres), test value G (G> 5.99, p<0.05, df. = 2, indicates that the species selected environment; species marked with the symbol *

selected environment with G> 9.21, p<0.01); selection indexes for each environment (w) and values of the chi-square test between two selection

indices (X2> 3.84, df. = 1 indicates significant difference between the indexes tested), where “b” means bottomland, “v” slope and “p” means

plateau. Species name is in accordance with Comitê Brasileiro de Registros Ornitológicos (2011).

Espécie regt regb (%)

regv (%)

regp (%)

prest (%)

presb (%)

presv (%)

presp (%)

G wb wv wp X2bv X2

bp X2vp

TINAMIDAE

Tinamus major 14 28.6 35.7 35.7 6.0 30.8 38.5 30.8 0.89 1.40 0.76 1.10 1.53 0.32 1.08

Crypturellus variegatus 102 12.7 47.1 40.2 21.8 21.3 36.2 42.6 5.14 0.63 1.00 1.24 5.50 11.28 6.49

CRACIDAE

Penelope marail 17 17.6 41.2 41.2 4.6 20.0 30.0 50.0 0.57 0.87 0.87 1.27 0.00 0.77 2.30

ODONTOPHORIDAE

Odontophorus gujanensis 21 61.9 38.1 0.0 2.8 50.0 50.0 0.0 NA 3.04 0.81 0.00 56.94 34.13 12.92

FALCONIDAE

Ibycter americanus 33 0.0 57.6 42.4 8.8 0.0 57.9 42.1 NA 0.00 1.22 1.31 44.79 24.32 1.16

Micrastur ruficollis 17 5.9 35.3 58.8 5.1 9.1 36.4 54.5 5.95 0.29 0.75 1.82 1.86 15.28 31.40

Micrastur gilvicollis 26 26.9 34.6 38.5 6.0 38.5 38.5 23.1 1.74 1.32 0.73 1.19 2.36 0.12 3.50

PSOPHIDAE

Psophia crepitans 91 16.5 53.8 29.7 9.7 14.3 38.1 47.6 1.75 0.81 1.14 0.92 3.86 0.27 4.53

COLUMBIDAE

Patagioenas plumbea 206 17.0 54.4 28.6 17.6 21.1 52.6 26.3 4.29 0.83 1.15 0.88 8.00 0.13 14.41

Patagioenas subvinacea 27 14.8 51.9 33.3 6.9 20.0 46.7 33.3 0.58 0.73 1.10 1.03 1.45 0.67 0.13

Geotrygon montana 21 0.0 57.1 42.9 5.6 0.0 58.3 41.7 NA 0.00 1.21 1.32 28.00 15.75 1.16

PSITTACIDAE

Ara ararauna * 18 50.0 16.7 33.3 5.1 36.4 18.2 45.5 10.25 2.45 0.35 1.03 16.18 11.84 4.08

Ara macao 19 0.0 42.1 57.9 6.0 0.0 53.8 46.2 NA 0.00 0.89 1.79 13.82 26.13 66.60

Page 50: Uso de classes topográficas para descrever habitat de aves

42

Espécie regt regb (%)

regv (%)

regp (%)

prest (%)

presb (%)

presv (%)

presp (%)

G wb wv wp X2bv X2

bp X2vp

Ara chloropterus 12 8.3 25.0 66.7 4.2 11.1 33.3 55.6 5.94 0.41 0.53 2.06 0.08 14.33 35.97

Brotogeris chrysoptera 224 18.3 53.1 28.6 48.1 22.1 46.2 31.7 3.13 0.90 1.13 0.88 4.26 0.02 12.33

Touit huetii 16 18.8 56.3 25.0 4.6 20.0 50.0 30.0 0.58 0.92 1.19 0.77 0.45 0.09 2.68

Touit purpuratus * 39 43.6 43.6 12.8 12.5 40.7 40.7 18.5 13.87 2.14 0.92 0.40 18.76 22.40 7.55

Pyrilia caica 171 18.7 55.0 26.3 40.3 19.5 51.7 28.7 4.39 0.92 1.16 0.81 3.91 0.48 19.89

Pionus menstruus 237 17.7 52.3 30.0 43.5 18.1 48.9 33.0 2.56 0.87 1.11 0.92 4.96 0.18 7.48

Pionus fuscus 120 24.2 46.7 29.2 31.9 24.6 46.4 29.0 1.21 1.19 0.99 0.90 1.48 2.32 0.72

Amazona farinosa 117 12.0 55.6 32.5 22.2 16.7 56.3 27.1 6.40 0.59 1.18 1.00 17.93 5.84 4.24

Amazona autumnalis * 176 17.6 59.1 23.3 26.9 24.1 48.3 27.6 10.55 0.86 1.25 0.72 10.89 0.95 50.59

Deroptyus accipitrinus * 47 4.3 70.2 25.5 15.7 5.9 67.6 26.5 14.19 0.21 1.49 0.79 59.11 6.40 56.64

CUCULIDAE

Piaya melanogaster 27 14.8 33.3 51.9 10.6 17.4 39.1 43.5 4.34 0.73 0.71 1.60 0.00 6.65 19.36

STRINGIDAE

Glaucidium hardyi 32 18.8 37.5 43.8 9.7 19.0 38.1 42.9 1.88 0.92 0.79 1.35 0.16 1.67 7.91

CAPRIMULGIDAE

Lurocalis semitorquatus 68 14.7 42.6 42.6 11.6 12.0 40.0 48.0 3.50 0.72 0.90 1.32 0.79 6.95 11.05

APODIDAE

Chaetura spinicaudus 12 0.0 41.7 58.3 1.9 0.0 50.0 50.0 NA 0.00 0.88 1.80 8.57 16.80 44.36

TROCHILIDAE

Phaethornis bourcieri 78 33.3 41.0 25.6 29.2 28.6 47.6 23.8 7.24 1.64 0.87 0.79 12.78 12.16 0.31

Phaethornis superciliosus * 185 33.5 45.4 21.1 52.3 24.8 50.4 24.8 21.60 1.65 0.96 0.65 26.07 38.03 12.39

Thalurania furcata 25 36.0 36.0 28.0 10.2 36.4 36.4 27.3 3.32 1.77 0.76 0.86 6.49 4.62 0.16

TROGONIDAE

Trogon melanurus 134 15.7 50.0 34.3 33.3 20.8 43.1 36.1 1.94 0.77 1.06 1.06 4.20 3.04 0.00

Trogon viridis 136 24.3 49.3 26.5 36.6 20.3 53.2 26.6 2.65 1.19 1.04 0.82 0.97 4.40 5.49

Trogon violaceus 84 17.9 51.2 31.0 24.1 19.2 53.8 26.9 0.60 0.88 1.08 0.96 1.31 0.13 1.29

Page 51: Uso de classes topográficas para descrever habitat de aves

43

Espécie regt regb (%)

regv (%)

regp (%)

prest (%)

presb (%)

presv (%)

presp (%)

G wb wv wp X2bv X2

bp X2vp

Trogon rufus 66 15.2 51.5 33.3 20.4 18.2 52.3 29.5 1.24 0.74 1.09 1.03 3.06 1.45 0.26

MOMOTIDAE

Momotus momota 167 24.0 44.9 31.1 31.5 20.6 50.0 29.4 1.27 1.18 0.95 0.96 2.59 1.85 0.01

GALBULIDAE

Galbula albirostris 115 20.0 44.3 35.7 37.0 20.0 41.3 38.8 0.57 0.98 0.94 1.10 0.07 0.41 2.43

Galbula leucogastra 13 38.5 30.8 30.8 4.6 50.0 40.0 10.0 2.51 1.89 0.65 0.95 4.73 2.76 0.66

Galbula dea * 183 10.9 50.8 38.3 45.4 16.3 46.9 36.7 11.96 0.54 1.08 1.18 23.05 22.79 2.39

Jacamerops aureus 21 23.8 42.9 33.3 6.9 26.7 33.3 40.0 0.21 1.17 0.91 1.03 0.43 0.10 0.23

BUCCONIDAE

Notharchus macrorhynchos 19 5.3 52.6 42.1 6.5 7.1 50.0 42.9 3.65 0.26 1.11 1.30 7.99 7.22 1.19

Bucco tamatia * 33 6.1 36.4 57.6 7.4 12.5 37.5 50.0 10.72 0.30 0.77 1.78 3.78 27.34 53.30

Monasa atra 39 30.8 46.2 23.1 11.6 28.0 52.0 20.0 2.96 1.51 0.98 0.71 3.36 5.32 1.94

CAPITONIDAE

Capito niger 52 13.5 51.9 34.6 18.1 12.8 53.8 33.3 1.70 0.66 1.10 1.07 4.05 2.43 0.06

RAMPHASTIDAE

Ramphastos tucanus 187 18.2 50.3 31.6 20.8 13.3 62.2 24.4 0.86 0.89 1.06 0.97 1.97 0.31 1.40

Ramphastos vitellinus 53 15.1 50.9 34.0 12.0 19.2 57.7 23.1 0.99 0.74 1.08 1.05 2.32 1.36 0.05

Selenidera piperivora 89 9.0 55.1 36.0 26.9 13.8 46.6 39.7 8.60 0.44 1.17 1.11 22.77 12.48 0.40

Pteroglossus viridis 12 8.3 16.7 75.0 3.2 14.3 28.6 57.1 9.15 0.41 0.35 2.31 0.02 25.14 59.60

PICIDAE

Melanerpes cruentatus 39 5.1 56.4 38.5 13.0 7.1 53.6 39.3 7.44 0.25 1.19 1.19 20.71 12.06 0.00

Veniliornis cassini 51 9.8 58.8 31.4 19.9 11.6 55.8 32.6 4.83 0.48 1.25 0.97 14.77 3.72 5.43

Piculus flavigula 89 23.6 40.4 36.0 30.6 19.7 40.9 39.4 1.67 1.16 0.86 1.11 2.36 0.05 4.15

Piculus chrysochloros 19 15.8 36.8 47.4 7.9 17.6 35.3 47.1 1.83 0.78 0.78 1.46 0.00 2.70 7.76

Celeus undatus 133 12.0 53.4 34.6 31.5 11.8 58.8 29.4 6.55 0.59 1.13 1.07 16.63 8.77 0.62

Celeus torquatus 28 0.0 42.9 57.1 10.2 0.0 40.9 59.1 NA 0.00 0.91 1.76 21.00 37.33 89.33

Page 52: Uso de classes topográficas para descrever habitat de aves

44

Espécie regt regb (%)

regv (%)

regp (%)

prest (%)

presb (%)

presv (%)

presp (%)

G wb wv wp X2bv X2

bp X2vp

Campephilus rubricollis 62 12.9 50.0 37.1 19.9 16.3 53.5 30.2 2.45 0.63 1.06 1.14 4.51 4.66 0.50

THAMNOPHILIDAE

Terenura spodioptila 62 17.7 38.7 43.5 21.3 19.6 43.5 37.0 3.38 0.87 0.82 1.34 0.05 3.94 14.17

Myrmeciza ferruginea * 140 10.0 47.9 42.1 32.4 12.9 48.6 38.6 12.86 0.49 1.01 1.30 16.67 28.55 14.32

Epinecrophylla gutturalis 28 21.4 32.1 46.4 10.2 22.7 31.8 45.5 3.03 1.05 0.68 1.43 1.07 1.19 11.34

Myrmotherula brachyura 255 23.9 45.5 30.6 45.4 25.5 45.9 28.6 1.92 1.17 0.96 0.94 3.51 3.23 0.07

Myrmotherula guttata 12 8.3 50.0 41.7 5.1 0.0 54.5 45.5 1.41 0.41 1.06 1.29 2.42 2.97 0.87

Myrmotherula axillaris 46 17.4 45.7 37.0 17.1 18.9 43.2 37.8 0.52 0.85 0.97 1.14 0.20 1.01 1.23

Myrmotherula longipennis 95 18.9 46.3 34.7 30.6 21.2 48.5 30.3 0.27 0.93 0.98 1.07 0.08 0.49 0.67

Myrmotherula menetriesii 112 18.8 42.0 39.3 29.6 20.3 46.9 32.8 2.36 0.92 0.89 1.21 0.04 2.57 9.70

Thamnomanes ardesiacus 188 21.8 40.4 37.8 39.8 23.3 46.5 30.2 3.70 1.07 0.86 1.17 2.58 0.44 13.60

Thamnomanes caesius 313 21.1 43.5 35.5 60.2 20.0 49.2 30.8 1.92 1.04 0.92 1.09 1.29 0.28 7.49

Herpsilochmus dorsimaculatus 750 21.1 49.7 29.2 75.5 19.6 50.9 29.4 3.62 1.03 1.05 0.90 0.09 3.23 14.57

Thamnophilus murinus * 369 11.7 49.1 39.3 51.9 15.2 50.0 34.8 21.62 0.57 1.04 1.21 33.30 44.98 12.77

Cymbilaimus lineatus 110 16.4 51.8 31.8 31.5 20.6 45.6 33.8 1.42 0.80 1.10 0.98 3.58 0.93 1.42

Frederickena viridis 23 21.7 21.7 56.5 7.4 25.0 31.3 43.8 7.36 1.07 0.46 1.74 2.18 3.88 25.32

Schistocichla leucostigma 11 54.5 36.4 9.1 4.2 44.4 44.4 11.1 7.19 2.68 0.77 0.28 13.86 12.02 1.89

Percnostola rufifrons 205 19.5 42.0 38.5 35.2 21.1 42.1 36.8 3.57 0.96 0.89 1.19 0.31 2.91 15.02

Cercomacra cinerascens * 291 15.1 55.7 29.2 40.7 15.9 50.0 34.1 9.43 0.74 1.18 0.90 22.65 1.98 23.59

Hypocnemis cantator 234 16.2 50.0 33.8 45.8 19.2 50.5 30.3 2.61 0.80 1.06 1.04 5.91 3.74 0.07

Pithys albifrons 42 38.1 35.7 26.2 16.7 33.3 36.1 30.6 6.97 1.87 0.76 0.81 13.42 10.52 0.07

Willisornis poecilinotus 125 20.0 52.8 27.2 34.3 17.6 44.6 37.8 1.91 0.98 1.12 0.84 0.84 0.62 8.63

Gymnopithys rufigula 68 22.1 54.4 23.5 24.1 21.2 50.0 28.8 2.63 1.08 1.15 0.73 0.12 2.02 10.72

GRALLARIDAE

Grallaria varia 47 25.5 36.2 38.3 8.3 38.9 27.8 33.3 2.37 1.25 0.77 1.18 3.02 0.06 5.51

Hylopezus macularius 13 0.0 23.1 76.9 3.2 0.0 42.9 57.1 NA 0.00 0.49 2.37 3.90 43.33 277.65

Page 53: Uso de classes topográficas para descrever habitat de aves

45

Espécie regt regb (%)

regv (%)

regp (%)

prest (%)

presb (%)

presv (%)

presp (%)

G wb wv wp X2bv X2

bp X2vp

Myrmothera campanisona 23 39.1 43.5 17.4 6.5 35.7 42.9 21.4 5.12 1.92 0.92 0.54 6.96 8.73 2.29

FORMICARIDAE

Formicarius colma 171 17.5 48.0 34.5 42.6 20.7 43.5 35.9 0.95 0.86 1.02 1.06 1.42 1.86 0.37

Formicarius analis * 84 32.1 50.0 17.9 22.2 27.1 43.8 29.2 11.55 1.58 1.06 0.55 7.46 18.03 16.03

SCRERURIDAE

Sclerurus mexicanus 18 16.7 44.4 38.9 6.9 20.0 40.0 40.0 0.38 0.82 0.94 1.20 0.09 0.72 1.09

Sclerurus rufigularis 22 31.8 54.5 13.6 7.9 35.3 47.1 17.6 4.51 1.56 1.16 0.42 1.33 5.69 9.41

DENDROCOLAPTIDAE

Dendrocincla fuliginosa 118 27.1 37.3 35.6 34.7 21.3 42.7 36.0 5.40 1.33 0.79 1.10 9.33 1.59 7.51

Dendrocincla merula 18 44.4 27.8 27.8 6.5 35.7 35.7 28.6 5.63 2.18 0.59 0.86 10.67 7.67 0.72

Deconychura longicauda 50 10.0 54.0 36.0 16.2 11.4 57.1 31.4 3.91 0.49 1.14 1.11 9.86 5.87 0.07

Sittassomus griseicapillus 167 17.4 45.5 37.1 44.4 17.7 50.0 32.3 1.98 0.85 0.96 1.15 0.71 3.85 4.90

Certhiasomus stictolaemus 22 27.3 36.4 36.4 8.3 22.2 38.9 38.9 1.16 1.34 0.77 1.12 1.90 0.26 1.80

Glyphorynchus spirurus 222 24.3 47.7 27.9 56.0 24.8 46.3 28.9 3.06 1.19 1.01 0.86 2.37 5.71 3.83

Xiphorhynchus pardalotus 459 18.1 47.1 34.9 70.8 20.9 46.4 32.7 2.06 0.89 1.00 1.08 1.86 4.24 2.53

Campylorhamphus procurvoides 41 19.5 36.6 43.9 12.5 18.5 40.7 40.7 2.58 0.96 0.77 1.35 0.41 1.83 10.72

Lepidocolaptes albolineatus * 45 6.7 40.0 53.3 16.7 8.3 41.7 50.0 11.24 0.33 0.85 1.65 6.01 28.02 43.62

Dendrexetastes rufigula 21 9.5 42.9 47.6 7.9 11.8 41.2 47.1 2.91 0.47 0.91 1.47 1.75 6.85 8.22

Dendrocolaptes certhia 102 9.8 50.0 40.2 19.4 7.1 54.8 38.1 8.87 0.48 1.06 1.24 15.24 18.22 4.29

Dendrocolaptes picumnus 41 9.8 46.3 43.9 14.8 9.4 46.9 43.8 4.32 0.48 0.98 1.35 4.51 9.92 7.13

Hylexetastes perrotii 54 14.8 51.9 33.3 14.4 12.9 54.8 32.3 1.16 0.73 1.10 1.03 2.90 1.34 0.27

FURNARIIDAE

Xenops minutus 43 11.6 51.2 37.2 15.7 11.8 50.0 38.2 2.34 0.57 1.08 1.15 4.79 4.23 0.21

Automolus infuscatus 53 17.0 56.6 26.4 18.5 17.5 57.5 25.0 1.87 0.83 1.20 0.82 2.82 0.00 7.81

Philydor erythrocercum 20 20.0 25.0 55.0 7.9 23.5 17.6 58.8 5.13 0.98 0.53 1.70 1.12 3.55 19.47

Philydor pyrrhodes * 17 58.8 23.5 17.6 7.4 62.5 18.8 18.8 11.99 2.89 0.50 0.54 25.77 22.90 0.02

Page 54: Uso de classes topográficas para descrever habitat de aves

46

Espécie regt regb (%)

regv (%)

regp (%)

prest (%)

presb (%)

presv (%)

presp (%)

G wb wv wp X2bv X2

bp X2vp

PIPRIDAE

Tyranneutes virescens 222 23.9 44.6 31.5 50.0 23.1 40.7 36.1 1.65 1.17 0.94 0.97 3.51 2.12 0.14

Pipra erythrocephala * 213 19.2 38.5 42.3 37.5 16.0 43.2 40.7 9.61 0.94 0.82 1.30 1.10 7.61 40.38

Lepidothrix serena 78 19.2 46.2 34.6 19.9 20.9 44.2 34.9 0.18 0.94 0.98 1.07 0.03 0.31 0.54

Dixiphia pipra * 56 51.8 32.1 16.1 16.2 40.0 40.0 20.0 27.64 2.54 0.68 0.50 54.91 49.06 1.20

Corapipo gutturalis 108 16.7 49.1 34.3 33.3 19.4 50.0 30.6 0.97 0.82 1.04 1.06 1.91 1.64 0.03

TITYRIDAE

Onychorhynchus coronatus 12 41.7 33.3 25.0 3.7 25.0 37.5 37.5 2.81 2.05 0.71 0.77 5.43 4.34 0.03

Terenotriccus erythrurus 44 18.2 40.9 40.9 17.1 18.9 40.5 40.5 1.40 0.89 0.87 1.26 0.01 1.66 5.76

Schiffornis turdina 83 25.3 44.6 30.1 24.5 22.6 47.2 30.2 1.18 1.24 0.94 0.93 2.22 1.91 0.01

Laniocera hypopyrra 14 28.6 42.9 28.6 5.6 25.0 50.0 25.0 0.53 1.40 0.91 0.88 0.99 0.87 0.01

Tityra cayana 20 10.0 40.0 50.0 8.8 10.5 42.1 47.4 3.17 0.49 0.85 1.54 1.05 7.29 11.49

Pachyramphus marginatus 36 19.4 27.8 52.8 12.0 23.1 38.5 38.5 7.27 0.95 0.59 1.63 1.36 5.38 28.72

Pachyramphus surinamus 35 0.0 31.4 68.6 13.0 0.0 35.7 64.3 NA 0.00 0.67 2.12 16.04 76.36 364.54

COTINGIDAE

Lipaugus vociferans 855 22.7 46.2 31.1 33.8 16.4 54.8 28.8 2.82 1.11 0.98 0.96 4.97 4.90 0.22

Xipholena punicea 77 15.6 49.4 35.1 27.3 16.9 47.5 35.6 1.18 0.77 1.05 1.08 2.24 2.10 0.10

Perissocephalus tricolor * 36 52.8 22.2 25.0 5.6 33.3 50.0 16.7 19.44 2.59 0.47 0.77 37.27 31.41 1.78

Phoenicircus carnifex 115 27.0 48.7 24.3 31.5 25.0 51.5 23.5 4.80 1.32 1.03 0.75 3.13 8.34 6.80

TYRANNOIDEA

Platyrinchus coronatus 38 26.3 42.1 31.6 12.5 25.9 40.7 33.3 0.83 1.29 0.89 0.97 1.76 0.91 0.18

Platyrinchus platyrhynchos 28 17.9 42.9 39.3 11.6 16.0 44.0 40.0 0.59 0.88 0.91 1.21 0.01 0.86 2.22

Piprites chloris 158 13.3 53.2 33.5 38.4 15.7 51.8 32.5 5.63 0.65 1.13 1.04 14.60 6.52 1.43

RHYNCHOCYCLIDAE

Mionectes macconnelli 33 39.4 33.3 27.3 8.8 26.3 47.4 26.3 6.38 1.93 0.71 0.84 12.38 8.97 0.36

Corythopis torquatus * 41 34.1 58.5 7.3 8.8 36.8 52.6 10.5 15.84 1.68 1.24 0.23 3.32 16.25 35.88

Page 55: Uso de classes topográficas para descrever habitat de aves

47

Espécie regt regb (%)

regv (%)

regp (%)

prest (%)

presb (%)

presv (%)

presp (%)

G wb wv wp X2bv X2

bp X2vp

Phylloscartes virescens 42 11.9 38.1 50.0 16.2 14.3 40.0 45.7 5.97 0.58 0.81 1.54 0.79 12.43 23.99

Tolmomyias assimilis 296 18.6 43.6 37.8 55.6 20.8 42.5 36.7 3.89 0.91 0.92 1.17 0.01 5.14 14.93

Tolmomyias poliocephalus 23 8.7 43.5 47.8 10.2 9.1 45.5 45.5 3.50 0.43 0.92 1.48 2.52 8.35 9.32

Todirostrum pictum 21 9.5 57.1 33.3 7.9 5.9 52.9 41.2 1.93 0.47 1.21 1.03 5.67 2.05 0.95

Myiornis ecaudatus 50 12.0 46.0 42.0 17.6 13.2 47.4 39.5 3.33 0.59 0.97 1.30 2.95 7.49 5.70

Hemitriccus zosterops * 389 10.3 44.0 45.8 67.6 15.8 45.9 38.4 43.64 0.50 0.93 1.41 29.57 101.28 107.28

Lophotriccus vitiosus * 192 40.1 40.1 19.8 41.7 27.8 48.9 23.3 41.68 1.97 0.85 0.61 68.32 72.33 7.04

TYRANNIDAE

Zimmerius gracilipes 345 18.0 51.9 30.1 72.2 18.6 49.4 32.1 3.11 0.88 1.10 0.93 5.92 0.20 9.07

Ornithion inerme 25 20.0 56.0 24.0 9.3 20.0 60.0 20.0 0.99 0.98 1.19 0.74 0.40 0.35 4.57

Myiopagis gaimardii 157 28.0 49.0 22.9 44.9 24.7 49.5 25.8 9.00 1.38 1.04 0.71 5.71 15.25 12.90

Myiopagis caniceps 28 28.6 39.3 32.1 9.7 19.0 47.6 33.3 1.22 1.40 0.83 0.99 2.50 1.12 0.48

Tyrannulus elatus 70 20.0 58.6 21.4 17.6 21.1 52.6 26.3 4.74 0.98 1.24 0.66 1.86 1.73 22.34

Attila spadiceus 66 13.6 42.4 43.9 19.0 17.1 39.0 43.9 4.43 0.67 0.90 1.36 1.27 9.23 13.75

Ramphotrigon ruficauda 21 14.3 66.7 19.0 6.5 21.4 57.1 21.4 3.28 0.70 1.41 0.59 5.39 0.08 17.71

Sirystes sibilator 54 11.1 48.1 40.7 20.8 13.3 44.4 42.2 3.81 0.55 1.02 1.26 5.09 8.27 3.56

Rhytipterna simplex 151 14.6 51.7 33.8 40.7 17.0 52.3 30.7 3.47 0.72 1.09 1.04 8.47 4.44 0.42

Conopias parvus 100 14.0 49.0 37.0 24.1 17.3 44.2 38.5 2.93 0.69 1.04 1.14 4.73 5.81 1.12

VIREONIDAE

Cyclarhis gujanensis 32 9.4 46.9 43.8 9.3 10.0 55.0 35.0 3.53 0.46 0.99 1.35 4.03 8.05 5.24

Vireolanius leucotis * 199 10.1 48.2 41.7 40.7 9.1 52.3 38.6 17.72 0.49 1.02 1.29 24.24 38.88 17.41

Hylophilus thoracicus 10 40.0 50.0 10.0 3.7 25.0 62.5 12.5 3.62 1.96 1.06 0.31 2.98 5.05 4.25

Hylophilus muscicapinus 377 15.4 50.1 34.5 62.5 13.3 50.4 36.3 6.18 0.76 1.06 1.06 13.33 9.77 0.00

Hylophilus ochraceiceps * 109 13.8 37.6 48.6 26.4 15.8 40.4 43.9 12.59 0.68 0.80 1.50 0.56 23.09 51.89

TROGLODYTIDAE

Microcerculus bambla 24 12.5 54.2 33.3 10.2 13.6 50.0 36.4 1.09 0.61 1.15 1.03 2.92 1.18 0.39

Page 56: Uso de classes topográficas para descrever habitat de aves

48

Espécie regt regb (%)

regv (%)

regp (%)

prest (%)

presb (%)

presv (%)

presp (%)

G wb wv wp X2bv X2

bp X2vp

Cyphorhinus arada 23 4.3 60.9 34.8 8.3 5.6 55.6 38.9 5.15 0.21 1.29 1.07 17.50 6.29 2.32

POLIOPTILIDAE

Microbates collaris 95 14.7 40.0 45.3 28.7 16.1 41.9 41.9 7.05 0.72 0.85 1.40 0.50 12.79 26.84

Ramphocaenus melanurus 40 27.5 50.0 22.5 14.4 29.0 51.6 19.4 2.32 1.35 1.06 0.69 1.11 3.75 4.05

TURDIDAE

Turdus albicollis 119 16.0 50.4 33.6 30.6 18.2 50.0 31.8 1.53 0.78 1.07 1.04 3.58 2.05 0.11

THRAUPIDAE

Coereba flaveola * 97 57.7 28.9 13.4 28.2 49.2 34.4 16.4 66.15 2.83 0.61 0.41 143.64 122.44 2.49

Saltator grossus 60 21.7 53.3 25.0 16.2 20.0 51.4 28.6 1.61 1.06 1.13 0.77 0.09 1.21 6.63

Lamprospiza melanoleuca 93 29.0 38.7 32.3 22.2 20.8 41.7 37.5 4.54 1.43 0.82 1.00 9.23 4.08 1.90

Lanio fulvus * 80 1.3 41.3 57.5 17.6 2.6 44.7 52.6 38.25 0.06 0.87 1.77 41.32 97.54 206.82

Lanio surinamus * 102 41.2 36.3 22.5 27.3 35.6 39.0 25.4 22.92 2.02 0.77 0.70 42.51 38.24 0.33

Tangara chilensis * 22 9.1 13.6 77.3 5.1 18.2 27.3 54.5 18.86 0.45 0.29 2.38 0.24 53.82 117.37

Tangara varia 39 23.1 43.6 33.3 16.2 22.9 42.9 34.3 0.26 1.13 0.92 1.03 0.52 0.10 0.33

EMBEREZIDAE

Arremon taciturnus 14 35.7 28.6 35.7 6.5 35.7 28.6 35.7 2.57 1.75 0.61 1.10 4.27 1.54 1.96

CARDINALIDAE

Caryothraustes canadensis 165 23.6 45.5 30.9 37.0 21.3 45.0 33.8 1.05 1.16 0.96 0.95 2.00 1.69 0.01

Cyanoloxia cyanoides 9 55.6 33.3 11.1 4.2 55.6 33.3 11.1 5.80 2.73 0.71 0.34 11.88 10.19 0.82

ICTERIDAE

Psarocolius viridis 39 7.7 59.0 33.3 10.2 9.1 63.6 27.3 5.11 0.38 1.25 1.03 15.98 5.42 3.00

Cacicus haemorrhous 47 23.4 51.1 25.5 16.7 16.7 52.8 30.6 1.09 1.15 1.08 0.79 0.07 1.42 3.30

FRINGILIDAE

Euphonia cayennensis * 76 35.5 39.5 25.0 26.9 32.8 41.4 25.9 9.42 1.74 0.84 0.77 17.05 15.58 0.20

Page 57: Uso de classes topográficas para descrever habitat de aves

49

Conclusões

Apesar de nossas tentativas de explicar os resultados de forma post hoc, com base em

características observadas de cada espécie, em geral a classificação das espécies por habitats

topográficos deve ser interpretada como hipótese a ser testada em mais detalhes. Os

resultados mais fortes são que nenhuma espécie de ave mostrou especialização por classe

topográfica e que a maioria dos casos de preferência pode ser explicada como preferência por

algum microhabitat específico, associado indiretamente à topografia. Assim, concluímos que

classes topográficas em si não representam uma subdivisão da floresta com forte poder de

explicação da distribuição local das espécies de aves. No entanto, o gradiente altitudinal

dentro da floresta se associa a características relevantes para muitas espécies.

Page 58: Uso de classes topográficas para descrever habitat de aves

50

Apêndices

Ata da Aula de Qualificação

Page 59: Uso de classes topográficas para descrever habitat de aves

51

Pareceres da banca do trabalho escrito

Page 60: Uso de classes topográficas para descrever habitat de aves

52

Page 61: Uso de classes topográficas para descrever habitat de aves

53

Ata da defesa oral pública