10
Using Partial Probes to Infer Network States Pavan Rangudu , Bijaya Adhikari * , B. Aditya Prakash * , Anil Vullikanti *◦ * Department of Computer Science, Virginia Tech NDSSL, Biocomplexity Institute, Virginia Tech Contact: [email protected]

Using Partial Probes to Infer Network Statespeople.cs.vt.edu › ~bijaya › slides › netinf-MLG2017.pdfUsing Partial Probes to Infer Network States Pavan Rangudu , Bijaya Adhikari,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Using Partial Probes to Infer Network Statespeople.cs.vt.edu › ~bijaya › slides › netinf-MLG2017.pdfUsing Partial Probes to Infer Network States Pavan Rangudu , Bijaya Adhikari,

Using Partial Probes to Infer Network States

Pavan Rangudu◦, Bijaya Adhikari∗, B. Aditya Prakash∗, AnilVullikanti∗ ◦

∗Department of Computer Science, Virginia Tech◦NDSSL, Biocomplexity Institute, Virginia Tech

Contact: [email protected]

Page 2: Using Partial Probes to Infer Network Statespeople.cs.vt.edu › ~bijaya › slides › netinf-MLG2017.pdfUsing Partial Probes to Infer Network States Pavan Rangudu , Bijaya Adhikari,

Motivation

• Network nodes and links fail dynamically

• Networks not known fully because of privacy constraints

• Our focus: if some failed nodes are known, can we infer thestates of the remaining nodes?

Node failures in internetTraffic jam in road network

Prior works fail to the address the problem directly.

Page 3: Using Partial Probes to Infer Network Statespeople.cs.vt.edu › ~bijaya › slides › netinf-MLG2017.pdfUsing Partial Probes to Infer Network States Pavan Rangudu , Bijaya Adhikari,

Our model• Graph G (V ,E ) with set I ⊆ V which have failed• Goegraphically correlated failure model [Agarwal et al., 2013]

• Single seed of the failure, with probability ps(v) of node vbeing the seed

• Correlated failure model: F (u|v) denotes the probability thatnode u fails given that v has failed• Assume independence, i.e., F (u1, u2|v) = F (u1|v) · F (u2|v)

• Motivation: attacks or natural disasters in infrastructurenetworks

• Probes: subset Q ⊆ I of failed nodes is known• Objective: find the set I − Q

Figure: A toy road network with node failures

Page 4: Using Partial Probes to Infer Network Statespeople.cs.vt.edu › ~bijaya › slides › netinf-MLG2017.pdfUsing Partial Probes to Infer Network States Pavan Rangudu , Bijaya Adhikari,

Our approach: Minimum Description Length

• Model cost L(|Q|, |I |, I ) has three components

L(|Q|, |I |, I ) = L(|Q|) + L(|I |

∣∣ |Q|) + L(I∣∣ |Q|, |I |).

• L(|Q|) = − log(Pr(|Q|)

)by using the Shannon-Fano code

• L(|I |

∣∣ |Q|) = − log(

Pr(|Q|

∣∣ |I |)Pr(|I |)Pr(|Q|)

)• L

(I∣∣ |Q|, |I |) = − log

(Pr

(I∣∣ |Q|, |I |)) = − log

(Pr

(I∣∣ |I |))

• Data cost: description of Q+ = I \ Q (assuming noobservation errors)

• L(Q+|I ) = − log(γ|Q|(1− γ)|Q

+|)

=

−|Q| log(γ)− (|I | − |Q|) log(1− γ)

Page 5: Using Partial Probes to Infer Network Statespeople.cs.vt.edu › ~bijaya › slides › netinf-MLG2017.pdfUsing Partial Probes to Infer Network States Pavan Rangudu , Bijaya Adhikari,

Problem Description

Model Cost

L(|Q|, |I |, I ) =L(|Q|) + L(|I |∣∣ |Q|)+ L(I ∣∣ |Q|, |I |)

=− log

(|I ||Q|

)− |Q| log(γ)− (|I | − |Q|) log(1− γ)

− log(∑

s∈V

ps(s)∏v∈I

F (v | s)∏v′ /∈I

(1− F (v ′ | s)

))*after algebra

Problem FormulationGiven G , ps , F (·), Q, find I that minimizes the total MDL cost:

L(|Q|, |I |, I ,Q

)= − log

(|I ||Q|

)− log

(∑s∈V

ps(s)∏v∈I

F (v | s)∏v′ /∈I

(1− F (v ′ | s)

))−2|Q| log(γ)− 2(|I | − |Q|) log(1− γ)

Page 6: Using Partial Probes to Infer Network Statespeople.cs.vt.edu › ~bijaya › slides › netinf-MLG2017.pdfUsing Partial Probes to Infer Network States Pavan Rangudu , Bijaya Adhikari,

Algorithm Greedy

Input: Instance (V ,Q, p,P, γ)Output: Solution I that minimizes L(|Q|, |I |, I ,Q)

1: for each s ∈ V do2: for each k ∈ [|Q|, |V |] do3: Is(k)← Top k − |Q| nodes in V \ Q with highest weight

f (s, v)4: Is(k)← Is(k) ∪Q5: end for6: end for7: S ← {Is(k) : ∀s ∈ V&k ∈ [|Q|, |V |]}8: I ← arg min

I∈SL(|Q|, |I |, I ,Q)

9: Return I

Page 7: Using Partial Probes to Infer Network Statespeople.cs.vt.edu › ~bijaya › slides › netinf-MLG2017.pdfUsing Partial Probes to Infer Network States Pavan Rangudu , Bijaya Adhikari,

Analysis of Greedy

Theorem: (Additive Approximation)

Let I ∗ be the set minimizing the MDL cost, and let I denote thesolution computed by Algorithm Greedy. Then,L(|Q|, |I |, I ,Q) ≤ L(|Q|, |I ∗|, I ∗,Q) + log(n), where n is thenumber of seed nodes.

Running time

Algorithm Greedy runs in O(|V |3) time

Page 8: Using Partial Probes to Infer Network Statespeople.cs.vt.edu › ~bijaya › slides › netinf-MLG2017.pdfUsing Partial Probes to Infer Network States Pavan Rangudu , Bijaya Adhikari,

Experiments

• Baseline: local improvement algorithm LocalSearch

• Datasets• Synthetic grid

• 60× 60 grid• Uniform seed probability ps(·)• Conditional failure probability distribution using model of

[Agarwal et al., 2013]: F (v | s) = 1− d(s, v), where d(·) is(normalized) distance

• Real datasets: Seed and conditional failure probabilitydistributions computed from data• JAM data from WAZE for Boston: road network with 2650

nodes.• WEATHER data from WAZE for Boston: road network with

1520 nodes.• POWER-GRID: network of 24 nodes from Electric disturbance

events

Page 9: Using Partial Probes to Infer Network Statespeople.cs.vt.edu › ~bijaya › slides › netinf-MLG2017.pdfUsing Partial Probes to Infer Network States Pavan Rangudu , Bijaya Adhikari,

WAZE dataset

Visualization of Waze dataset. Partitions in the 119× 78 gridrepresent nodes in our network.

Page 10: Using Partial Probes to Infer Network Statespeople.cs.vt.edu › ~bijaya › slides › netinf-MLG2017.pdfUsing Partial Probes to Infer Network States Pavan Rangudu , Bijaya Adhikari,

Takeaways

Results for JAM dataset

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gamma

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pre

cisi

on/

Reca

ll/ F

1 S

core

/ M

DL

Cost

Rati

o

Precision

Recall

F1 Score

MDL Cost Ratio

Algorithm

LocalSearch

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gamma

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pre

cisi

on/

Reca

ll/ F

1 S

core

/ M

DL

Cost

Rati

o

Precision

Recall

F1 Score

MDL Cost Ratio

Algorithm

Greedy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gamma

0.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.5

MD

L C

ost

Rati

o (

L(I, Q

)/L(

I*, Q

))

Quick Local

Greedy

Comparison

of the MDL costs

• Our MDL based approach helps identify missing failures

• Promising approach for other problems with missinginformation