62
Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts University School of Medicine Director, Clinical Chemistry Baystate Health System Springfield, Massachusetts [email protected]

Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Embed Size (px)

Citation preview

Page 1: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes

James H. Nichols, Ph.D., DABCC, FACBAssociate Professor of Pathology

Tufts University School of Medicine

Director, Clinical Chemistry

Baystate Health System

Springfield, Massachusetts

[email protected]

Page 2: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Baystate Health System

Page 3: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Baystate Health System• Baystate Medical Center - tertiary care572 beds, 3rd largest acute care in NE

• 40,000 discharges/200,000 inpatient days (4.7 mean LOS)

• 600,000 ambulatory visits

• Western Campus of Tufts School of Medicine

• Franklin and Mary Lane Hospitals

• Over 40 Ambulatory Care Practices (1 million visits)

• Home nursing and assisted care (156,000 visits)

• Reference Lab (BRL) - 4 million tests/year

• Clin Chemistry - Core 1 Roche TLA (2500/day)

Page 4: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts
Page 5: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Medical Errors• Institute of Medicine of the National Academies

report 1999

• Medical errors kill 44,000 - 98,000 patients in US hospitals each year.

• “Number one problem facing health care” Lucien Leape, Harvard Professor of Public Health

Page 6: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Medical Errors• 2002 Commonwealth Fund report estimated that 22.8

million people have experienced a medical error, personally or through at least one family member

• Reinforces the 1999 IOM report, “To Err is Human”• Annual costs estimated at $17 – 29 billion• US Agency for Healthcare Research and Quality

(AHRQ) estimate medical errors are the 8th leading cause of death in the US – higher than:• Motor Vehicle Accidents (43,458)• Cancer (42,297)• AIDS (16,516)

Page 7: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Laboratory Errors

• Typically think patient, tube or aliquot mix-up.

• Other, more insidious errors to consider• Overutilization of testing – “fishing”

• Inappropriate use of testing – method selection or test for symptoms, screening vs management

• Misunderstanding – wrong test, assume ‘test is a test’

• Delays – ordering, receipt of result, clinical action

Page 8: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Laboratory Errors

• A minireview of the literature found the majority of errors occur in the pre and post analytical phases.Bonini P, Plebani M, Ceriotti F, Rubboli F. Clin Chem 2002;48:691-698.

• Many mistakes are referred to as lab error, but actually due to poor communication, actions by others involved in the testing process, or poorly designed processes outside the lab’s control.

• Medical errors occur in prevention, diagnosis and drug treatment occur. Among errors in diagnosis; 50% were failure to use indicated tests, 32% were failure to act on results of tests, and 55% involved avoidable delay in diagnosis. Leape LL, Brennan TA, Laird N, et al. N Eng J Med 1991;324:377-84.

Page 9: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Man

A creature made near the end of the week when God was tired.

Mark Twain

Page 10: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Medical Errors

• The Person• Easier to blame a person than an institution for errors.• In aviation, 90% of quality lapses are judged to be blameless.

• The System• Active failures due to personal interaction with system• Latent conditions, weaknesses in system due to design flaws or

heirarchical decisions

• Need to engineer systems that prevent dangerous errors and are able to tolerate errors and contain their effects

Reason J. BMJ 2000;320:768-770.

Page 11: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Automation

• Collects raw data and processes to information (trends)• Reduces practice variability (device prompts)• Consolidates operator interactions (barcoding)• Assists decision-making (internal checks for QC pass,

expiration dates, operator ID)• When linked to information management and data

algorithms can warn of possible errors (delta checks, device flags like inadequate sample, analyzer interferences)

Page 12: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Improvement

Change

Data Inquiry

Page 13: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Hemolysis in the ED• Coagulation specimens must be rejected if hemolyzed

and recollected• Inpatient rates of hemolysis are typically <1%• ED had rates approaching 20% or more• Related to implementation of a flexible catheter and

practice of collecting blood through lines• Manufacturer even distributed a customer warning

against collecting blood through this catheter• Yet, ED unwilling to change practice – customer

satisfaction issue and comfort level of IV lines• Number of redraws and delays of ED patients led to

elimination of practice.

Page 14: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Phlebotomy Hemolysis Rates

0

5

10

15

20

25

11/1

/200

2

1/1/

2003

3/1/

2003

5/1/

2003

7/1/

2003

9/1/

2003P

erce

nt

Hem

oly

zed

Sp

ecim

ens

ED

Inpatient

Outpatient

Implement Practice Change

Page 15: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Middleware

• Data server sits between an analyzer and LIS/HIS

• POCT servers are a form of Middleware

• Allows data processing before sending results LIS, also functions as data repository for report searches

• Common current uses – autoverification, insertion of data flags for H/I/L indices

• More sophisticated functions are limited only by imagination of the lab

Page 16: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Clinical Alarms• Critical pathway ordering practices and variant

ordering practices• Hct level and POCT glucose testing• Medication (propofol) and potential test interference

(i-Stat)• Insulin dose, individual response and prediction of

future dose• Disease/medication (high blood pressure/loop

diuretics) vs predicted lab result (low K) vs questionable lab results (high K)

• Medical devices (flexible catheters) and potential for hemolysis and laboratory interference

Page 17: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

POCT Error Management

• POCT – diagnostic testing conducted close to the site where clinical care is delivered

• POCT error rates are not known in literature• POCT conducted by nursing but managed by lab• Requires considerable interdisciplinary

communication to deliver effectively• POCT QI can be a tool to uncovering ongoing

errors and addressing system weaknesses

Page 18: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Reducing Errors through Automation• Newer POCT devices have data management• Prompts operator to perform testing same way every

time• Lock-outs act as internal “fail-safes” to prevent a

patient result if QC fails, not performed or operator is not certified for testing.

• Feb 2004 CLIAC meeting discussion of possible changes to CLIA waived category suggested that waived tests have • fail-safe or failure alert mechanisms whenever possible • include QC materials with kits• specimens requiring significant manipulation not be waived

Page 19: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Medical Errors

• The Person• Easier to blame a person than an institution for errors.• In aviation, 90% of quality lapses are judged to be blameless.

• The System• Active failures due to personal interaction with system• Latent conditions, weaknesses in system due to design flaws or

heirarchical decisions

• Need to engineer systems that prevent dangerous errors and are able to tolerate errors and contain their effects

Reason J. BMJ 2000;320:768-770.

Page 20: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Patient Identification Errors• POCT results are transmitted to the POCT

manager when devices are downloaded

• The data manager orders and results the test in the LIS

• If the test does not match an active patient account the data manager holds the result for resolution

• Compliance problems as test cannot be billed, and some results transmitted to incorrect patient record and inappropriate medical management

Page 21: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Failure Mode and Error Analysis

• FMEA identifies an error• Outlines possible steps that could lead to the

error.• Identifies the reasoning behind the various

pathways, why they exist and ways that paths can be improved.

• Establishes quantitative monitors and the means of measuring improvement.

• FMEA improves motivation by seeking route causes of errors rather than placing blame.

Page 22: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

ICU FMEA• Incidence of patient ID errors in our ICU led to an

administrative demand for improved compliance or loss of privileges (3 strike rule)

• Conducted FMEA analysis• ID errors due to multiple issues:

• Long number entry (9 digits), transposition of numbers• Some devices can’t accept leading zeros• Patient wristbands are not legible (clin engineering)• Need for patient care, share operator IDs (retraining)

• Barcoding seen as optimum solution

Page 23: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Barcoding• In practice, one of the more challenging projects to

implement in an institution:• Devices only read specific barcode languages• Wristbands vary in durability• Ink isn’t permanent (thermal vs inkjet)• Devices don’t require barcode entry!• Try to engineer around manual entry by adding special

characters or digits to ID• These work-arounds lengthen the barcode and increase read

failure if barcode not flat on wrist.• How to print? Wristbands only or labels that an operator can

stick onto device or paper towel? What about neonates?

Page 24: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Barcoding

• During implementation, operators continued to manually enter patient IDs due to the scanner failing on the 1st attempt

• An investigation was conducted into why scanners fail

• i-Stat scanners failed more frequently than glucose

• Operator interaction with the POCT device was the primary determinant in scanner failure

Page 25: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Scanner Angle

Page 26: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Scanner Distance

Page 27: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Scanner Depth of Field

Page 28: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Scanner Depth of Field

Page 29: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

P=0.014 P=0.0007

Page 30: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

P=0.048P=NS, 0.378

Page 31: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Barcoding• Barcode acceptance and difficulties in implementation

lead to <100% effectiveness:• Manual entry• Barcoding patient with the wrong account or patient ID• Patients with multiple wristbands• Scanning the wrong barcode (lot number instead of patient)

• From the AACC listserv, those successful institutions communicate the value of barcoding and have operators who have acknowledged the advantages and implement strategies to enhance success

Page 32: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts
Page 33: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Communication

• How best to reach clinicians?• Errors are a system weakness and require an

interdisciplinary system fix, one person is not responsible.

• Utilize available resources:• Hospital Quality Improvement Teams• Peer-Reviewed Literature• Practice Guidelines

• Learn to speak ‘clinicalese’ – Use Clinical Protocols

Page 34: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Portland Protocol• Examined glucose levels and surgical complications in

1,585 cardiac surgery patients with diabetes (990 preprotocol and 595 postprotocol)

• Implemented protocol of postoperative intravenous insulin to maintain glucose <200 mg/dL.

• Intensive monitoring and insulin therapy on hospitalized inpatients lowers blood glucose levels in the first 2 postoperative days with concomitant decrease in proportion of patients with deep wound infections (2.4% vs 1.5%, p<0.02)

Zerr KJ et al. Ann Thorac Surg 1997;63:356-61.

Page 35: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Portland Protocol

• ACC/AHA Guidelines for CABG Surgery“Another patient characteristic that has been associated

with postoperative mediastinitis is the presence of diabetes, especially in patients requiring insulin. In addition to the microvascular changes seen in diabetic patients, elevated blood glucose levels may impair wound healing. The use of a strict protocol aimed at maintaining blood glucose levels 200 mg/dL by the continuous, intravenous infusion of insulin has been shown to significantly reduce the incidence of deep sternal wound infection in diabetic patients.”

Eagle KA, Guyton RA. JACC 1999;34:1262-1347.

Page 36: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Portland Protocol

• q1hr until glucose 125-175 with <15 mg/dL change and insulin rate unchanged x4 hrs. Then q2hr.

• Weaning vasopressors (Adrenalin) check q30min until stable

• Stop q2hr testing on POD #3

• Test q2hr during the night on telemetry if glucose <200

Blood Glucose Insulin Unit/hr

<125 0

125-175 1

175-225 2

>225 3

Page 37: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Portland Protocol Operational Issues

• Which method to utilize? [TAT, Accuracy]• Glucose meter – glucose oxidase

• Blood Gas glucose – glucose oxidase

• Core laboratory glucose - hexokinase

• Preferred sample? [Method, Line Contamination]• Whole blood or plasma

• Fingerstick, line draw or venipuncture

Page 38: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Unmodified direct-reading biosensor result”relative molality” of glucose

in plasma or whole blood(not recommended)

Concentration ofglucose in plasma(recommended)

Concentration of glucose in whole blood

(not recommended)

0.94 1.18

1.11

Fig. 1. Conversion factors for different quantities of glucose.

Page 39: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Meter Performance CriteriaADA ‘87 All Levels ± 15%

ADA ‘94 All Levels ± 5%

Agence du Médicament < 100 mg/dL ± 20 mg/dL

(95% of data) 100 mg/dL ± 20% (CV <7.5%)

CSA < 45 mg/dL ± 25% (CV<12.5%)

90 mg/dL ± 15% (CV <7.5%)

FDA < 100 mg/dL ± 20 mg/dL

(95% of data) 100 mg/dL ± 20%

ISO < 100 mg/dL ± 20 mg/dL

(95% of data) 100 mg/dL ± 20%

IMSS < 60 mg/dL ± 25%

60 mg/dL ± 20%

NCCLS (C30A) < 100 mg/dL < 15 mg/dL

100 mg/dL ± 20%

TNO < 117 mg/dL ± 20 mg/dL 117 mg/dL ± 15% mg/dL (CV <10%)

Page 40: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Quality Specification Modeling• Monte Carlo simulation to generate random “true” and “measured”

glucose based on mathematical model of meters having defined imprecision and bias. (N=10,000 - 20,000 pairs)

Analytical error Insulin dose errors

5% 8 - 23%

10% 16 - 45%

• 2x or greater insulin dosage errors >5% of time when analytic error exceeded 10 - 15%

• Total error < 1 - 2 % required to provide intended insulin >95% of time.• Boyd JC. Bruns DE. Quality specifications for glucose meters: Assessment by simulation

modeling of errors in insulin dose. Clin Chem 2001;47:209-214

Page 41: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Portland Protocol

• Glucose meters may or may not be applicable for tight management, as can vary by +/-20% in the 100–200 mg/dL range.

• Blood gas and some analyzers perform better than glucose meters, may be more appropriate in these cases.

• Should be a clinical not a laboratory decision, role of laboratory to inform not dictate method

Page 42: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

I-Stat 1: Cartridge versus PCx Strip Glucose Comparison

Which Glucose is Appropriate for My Patient? (Package Insert Recommendations)

i-Stat Cartridge PCx

Hematocrit ranges 15 – 75% Hct 20 – 70% Hct, falsely increased or decreased values outside Hct range

Sample Type Fresh whole blood or lithium heparin within 30 mins

Fresh capillary preferred or arterial/venous lithium heparin

Collection Considerations Manually heparinized syringes can overfill heparin or syringes not completed filled with blood can result in wrong results due to heparin conc Tubes need to be well mixed IV line collections can contaminate and dilute specimen. Recommend discarding 3 to 6 x length of catheter before collection

Same issues

Reportable Range 20 – 700 mg/dL 20 – 600 mg/dL

Accuracy and Precision More accurate and precise ~3% coefficient of variation (CV) across reportable range, or 55+/-3mg/dL and 215+/-14mg/dL (compare to core lab glucose with 1% CV, or 94+/-2mg/dL and 283+/-4 mg/dL)

Less accurate and precise ~5-19% coefficient of variation, depending on concentration, or 49+/-18 and 283+/-30 mg/dL

Neonates Acceptable within accuracy limits

Caution advised <50 mg/dL

Patient Limitations Glucose Oxidase Method pH variations from 7.4 can alter by 1 mg/dL or more for every 0.1 increment. Low pO2 can decrease results Bromide can decrease results Thyocyanate can decrease results Hydroxyurea can give

Glucose Oxidase Method Dehydrated or severely hypotensive patients in shock, hyperglycemic/hyperosmolar states (with or without ketosis) may give erroneous results

Page 43: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

LABORATORY FACT SHEET I-STAT 1 GLUCOSE TESTING

Summary Point of care testing is a mode of testing in which the analysis is performed at the site where health care is provided. The I-STAT Point-of-Care system is an instrument, designed to offer a rapid broad range of laboratory tests in a variety of panel configurations, which include: glucose, blood gases, potassium, ionized calcium, hematocrit, chloride, pH, sodium, bicarbonate, BUN, etc. and various calculated parameters. The analyzer utilizes single-use multisensor test cartridges and Precision PCx glucose strips. The glucose testing can be performed as a single test, using the PCx glucose test strip or in a panel, using the test cartridge. Quantitative measurement of glucose can be done on venous, capillary, arterial, or neonatal whole blood.

Operational considerations Depending on the patient condition the clinical staff will need to decide on which side of I-STAT 1 to obtain a glucose, the PCx test strip or I-STAT cartridge. The following table and considerations may be helpful.

Which glucose test is right for my patient? PCx test strip I-STAT cartridge 1)Use for routine glucose monitoring and insulin management

1)Use only in following circumstances: a) in combination with blood gases or

electrolytes on same cartridge b) to monitor hypoglycemia where a more

accurate assessment of glucose is required

c) neonates d) in presence of PCx interference

2)Less accurate and precise ~5-19% coefficient of variation, depending on concentration, or 49+/-18 and 283+/-30 mg/dL

2)More accurate and precise ~3% coefficient of variation (CV) across reportable range, or 55+/-3mg/dL and 215+/-14mg/dL (compare to core lab glucose with 1% CV, or 94+/-2mg/dL and 283+/-4 mg/dL)

3)Less expensive $0.75/test

3)More expensive $5.00/test

Representing the next step in the evolution of point-of-care testing, the i-STAT 1 Analyzer uses one platform to perform glucose strip testing along with all i-STAT test cartridges.

Page 44: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Clinical Protocols

• Clinical protocols provide a pathway of care to manage patients with specific disorders in the most effective manner for optimum patient outcome.

• Incorporating laboratory testing into clinical protocols standardizes practice, reduces practice variability, ensures appropriate ordering of tests and can assist the interpretation of test results.

• Clinical protocols are a good means of communicating with clinicians and providing reminders or important components of decision-making

Page 45: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

2004 National Patient Safety Goals - JCAHO

• Improve the accuracy of patient identification• Improve the effectiveness of communication among

caregivers• Improve the safety of using high-alert medications• Eliminate wrong-site, wrong patient, wrong-procedure

surgery• Improve the safety of using infusion pumps.• Improve the effectiveness of clinical alarm systems.• Reduce the risk of healthcare-acquired infections.

Page 46: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts
Page 47: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

NACB Laboratory Medicine Practice Guidelines – Evidence Based

Practice for POCT

• Clinicians, staff and laboratorians need guidance to apply POCT in the most effective manner for patient benefit.

• This guidance should be based on a concurrence of the scientific evidence to date.

• This need for evidence-based practice was the concept behind the NACB Laboratory Medicine Practice Guidelines for POCT

Page 48: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Evidence-Based Practice for POCT• POCT is an increasingly popular means of delivering laboratory testing.

• When used appropriately, POCT can improve patient outcome by providing a faster result and therapeutic intervention.

• However, when over-utilized or incorrectly performed, POCT presents a patient risk and potential for increased cost of healthcare.

• This LMPG will systematically review the existing evidence relating POCT to patient outcome, grade the literature, and make recommendations regarding the optimal utilization of POCT devices in patient care.

• Develop liaisons with appropriate professional, clinical organizations: ACB, ADA, ACOG, CAP, etc.

Page 49: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Evidence-Based Practice for POCTFocus Group Chairs

• Cardiac – Robert H. Christenson, Ph.D.• Diabetes – Christopher Price, Ph.D.• Reproduction – Ann M. Gronowski, Ph.D.• Infectious Disease – Robert Sautter, Ph.D.• Coagulation – Marcia Zucker, Ph.D.• Parathyroid – Lori J. Sokoll, Ph.D.• Drugs – Ian Watson, Ph.D.• Bilirubin Screening – Steven Kazmierczak , Ph.D.• Critical Care – Greg Shipp, Ph.D.• Renal – William A. Clarke, Ph.D.• Occult Blood – Kent Lewandrowski, M.D.• pH – James Nichols, Ph.D.• Introductory Comments – Ellis Jacobs, Ph.D.

Page 50: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Evidence Based Practice for POCTpH Guidelines I

• Does the use of pH paper for assisting the placement of nasogastric tubes, compared to clinical judgment (air, pressure) improve the placement of tubes on inpatient, endoscopy, home care and nursing home patients?

• We recommend the use of pH testing to assist in the placement of nasogastric tubes. The choice of measuring pH with an intragastric electrode or testing tube aspirates with a pH meter or pH paper will depend on consideration of the clinical limitations of each method, and there is conflicting evidence over which method is better. (Class II – prospective comparative trials and expert opinion)

Page 51: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Evidence Based Practice for POCTpH Guidelines I

• Assuring correct NG or NI tube placement:• Measure length of tube• Direct visualization of oropharynx• Auscultation of stomach by air insufflation• Aspiration of gastric contents• Irrigation of tube with 10 to 50 mL water• Direct palpation of tube within stomach during intra-

abdominal procedures

• Gold Standard - Abdominal roentgenogram to confirm position

• pH may be faster, safer and more economical

Page 52: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Evidence Based Practice for POCTpH Guidelines I

• Gastric contents more acidic• Neuman – pH < 4 can reduce need for x-rays (PPV

100%, Sens 100%, Spec 88% for N = 46 patients and 78 placements.) pH>4 not useful – respiratory or duodenal.

• Acid suppressors increase gastric pH and 6.0 may be a better cutoff (81% pH 1 – 4, 88% intestinal >6.0, pulmonary >6.5). Confounds aspirate pH 4 – 6.

• pH of gastric fluid may replace 85-95% of x-ray cases. Significant decrease radiation exposure

Page 53: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Evidence Based Practice for POCTpH Guidelines I

• Method to determine pH controversial• Continuous monitor or pH tipped NG tube preferred for those

patients that are equipped, but expensive.• Question whether pH probes are measuring gastric contents or

cell surface pH

• Aspirate pH may not generate sufficient volume, may differ from intragastric pH, as antacid, drug salts, protein and bile may interfere with some methods.

• pH meter more accurate than pH paper, but paper simpler (0.5 – 1.0 increments), cheaper, easier to use and quality assure, and can be performed bedside.

• X-ray confirmation still the “gold standard” and recommended in indeterminate cases.

Page 54: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Question Five: Can gastroccult testing of gastric fluid from a

nasogastric tube be used to detect gastrointestinal bleeding in high-risk intensive care unit patients receiving antacid prophylaxis?

Page 55: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Recommendation Five:

• We cannot currently recommend for or against the use of gastroccult to detect gastric bleeding in intensive care unit patients receiving antacid prophylaxis.

• Grade of Evidence: III – small study, clinical evidence

Page 56: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Gastroccult Tests

• FOBT should not be used to measure occult blood in gastric fluid because of interferences from low pH, certain medications and metal ions.

• The presence of occult blood in gastric fluid can be useful to detect stress ulcer syndrome, so specific gastroccult tests are utilized.

Page 57: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Bleeding in ICU Patients

• A small study with 41 patients showed that 13/14 patients with positive gastroccult tests had a source of upper GI bleeding as seen by upper endoscopy.

• Study suggest gastroccult testing may aid in detecting occult bleeding in critically ill patients.

• However, patients with negative gastroccult tests did not undergo upper endoscopy which may have documented false negative results.

Page 58: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Baystate Gastroccult Testing

• Discontinued without incident

• Approached Chief of GI and Division of Healthcare Quality with clinical utility.

• Researched literature

• Developed recommendation and justification

• Draft letter to medical staff reviewed by select clinicians

• General announcement and test removal

Page 59: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Gastroccult Discontinuation• No peer-reviewed literature indicating improved outcomes based

on Gastroccult

• Use of test after NG tube placement leads to positive results solely due to trauma of tube insertion

• Overt bleeding is a medical concern and doesn’t require test to detect

• pH is medically useful, pH paper is a better alternative because it’s easier to QC, already available on units and lower cost

• Elimination would reduce hospital burden of training and POCT documentation on nursing staff and reduce risk of developer mixup with hemoccult.

Page 60: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Gastroccult Cost Savings• Reagent: (12,000 tests/year)

• Cards $21,000

• Developer $ 5,000

• Labor

• Nursing (5 min/test, 45K= 125d) $22,000

• Competency (1100 x 15 min) $ 6,000

• Lab oversight (4hr x 8 units x 12 mo) $ 8,500

• Total Annual Savings Estimate $62,500

• Total billed previous year 12

• Cost estimate for pH replacement $ 250

Page 61: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts
Page 62: Using Data to Reduce Error, Standardize Practice and Improve Patient Outcomes James H. Nichols, Ph.D., DABCC, FACB Associate Professor of Pathology Tufts

Summary• Medical errors are a significant problem and the laboratory

should be aware of the many opportunities to reduce errors

• Interdisciplinary teams and positive attitudes are important factors in achieving successful outcomes and changes to practice

• Need to engineer systems (not people) that prevent dangerous errors and are able to tolerate errors and contain their effects

• Automation, information management and communication are effective strategies to reduce errors.

• The next challenge for laboratorians is to better integrate the data we have at hand and condense the literature into standard practice pathways that assist clinicians in appropriate decision-making for optimal patient care