20
MODEGAT 2009-09-14 Chalmers University of Technology Use of Latent Variables in the Parameter Estimation Process Jonas Sjöblom Energy and Environment Chalmers University of Technology

Use of Latent Variables in the Parameter Estimation Process

Embed Size (px)

DESCRIPTION

Use of Latent Variables in the Parameter Estimation Process. Jonas Sjöblom Energy and Environment Chalmers University of Technology. NO X Reduction catalysis. ~mm. ~µm. ~nm. Introduction. Use of Latent Variables (LV). What is LV? How does it work? - PowerPoint PPT Presentation

Citation preview

Page 1: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Use of Latent Variables in the Parameter Estimation Process

Jonas Sjöblom

Energy and Environment

Chalmers University of Technology

Page 2: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

NOX Reduction catalysis

BART

Ea

BA Aekr

Introduction

~mm ~µm ~nm

Page 3: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Use of Latent Variables (LV)

• What is LV? How does it work?

• How can it be applied in the parameter estimation process?– 3 case studies

• Why is it good?

Outline

Page 4: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Latent Variable modelling

• Reduces a data matrix (using projections) to new, few and independent components (Latent Variables).

• Latent Variable (LV) Model: – P: loadings (linear combination of original

variables)– T: scores (projections on the subspace

defined by P)– # components: # linear independent

directions• Different types of Latent Variable (LV)

models:– Principal Components Analysis (PCA)– Partial Least Squares (PLS)

'ˆ TPXX

x1=dY/d1

x2=dY/d2

x3=dY/d3

p1

p2

What is LV modelling?

Page 5: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Parameter Estimation Process

How can LV models be applied?

Define model and model assumptions

Define ”experimental space”

Fit parameters

Satisfactory results?Yes!

Evaluate the Design by LV-model (experimental rank)

No!No!

Evaluate the Design (perform experiments)

Choice of experiments to perform

Use of LV modelsUse of LV models

1.

2.

3.

1&2

Page 6: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Application 1: LV models during the fitting process

• NOX Storage and Reduction (NSR) Mechanism– 62 parameters

• Poor experimental design

• Jacobian f/ used in gradient search– ill-conditioned– Local minima

Objective: to improve parameter fitting by analysing parameter correlations and make parameters more orthogonal

Ref: Sjoblom et al, Comput. Chem. Eng. 31 (2007) 307-317

Page 7: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Parameter assessment

• Jacobian f/– Evaluated for ALL adjustable parameters (not only fitted

ones)• Latent Variable (LV) method:

– Partial Least Squares (PLS) using the Jacobian as "X" and f (Residual: simulated-observed gas phase concentrations) as “Y”

• Outcomes:1. Correlation structure !2. Number of independent directions (# parameters to fit) !3. Which parameters to choose ! (method 1)4. Parameter fit in LV space (method 2)

How can LV models be used? -appl.1

Page 8: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

LV example: "loading" plotXY

k02_

k03_k04_

k05_

k06_

k07_

k08_

k09_

k10_

k11_

k12_

k13_

k14_

k15_k16_

k17_k18_

k19_

k20_

k21_

k22_

k23_

k24_

k25_

k26_k27_

k28_

k29_

k30_

k31_

k32_k33_

k34_

k35_

Ea02

Ea03 Ea04Ea05Ea06

Ea07

Ea09Ea10

Ea11

Ea14Ea15Ea16Ea17Ea18

Ea19Ea20 Ea22

Ea23

Ea24Ea25

Ea26Ea27Ea28

Ea29

Ea30

Ea31

Ea32

Ea33

Ea34

Ea35

Eth0Eth3

s-NO

sNO2

sNOx

sCO2

w*c

[2]

-0,30

-0,20

-0,10

0,00

0,10

0,20

0,30

-0,20 -0,10 0,00 0,10 0,20 0,30

w*c[1]

k01_

How can LV models be used? -appl.1

Page 9: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Results

Fitting results are comparable, but the fitting is more efficient (faster) due to fewer and more independent parameters, adopted for the data set at hand

Method I (9 selected parameters)

Method II(fitting of 9 scores)

Method “brute force”(all 62 parameters)

90 90 500

How can LV models be used? -appl.1

Page 10: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Application 2: Model-based DoE for precise parameter estimation

• "Simple" but realistic system: – NO-oxidation on Pt– Model from Olsson et.al. (1999)– Using simulated data (noise

added) as experiments

• Objective: – How to find the experiments that

enable precise estimation of the kinetic parameters

*

2*2

*

)(2)(2

)(2)()(

)()(2

)()(

7

8

5

6

3

4

1

2

g

r

rads

ads

r

radsg

ads

r

rg

ads

r

rg

NONO

NOONO

OO

NONO

Ref: Sjoblom et al, Comput . Chem. Eng 32 (2008) 3121-3129

Page 11: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Experiment assessment• Jacobian f/

– Evaluated for ALL "possible" experiments (3 iterations)

• Latent Variable (LV) method:– Principal Component Analysis

(PCA) of J (unfolded 3 way matrix)

– D-optimal design to select experiments

• Outcomes:– Correlation structure !– Number of independent

directions (# parameters to fit) !– Which experiments to choose !

How can LV models be applied? -appl.2

Define model and model assumptions

Define experimental space

D-optimalChoice of experiments to performusing X or T from LV-model

fit, analyze

Satisfactory results?Yes!

Evaluate the Design by LV-model (experimental rank)

No!No!

Evaluate the Design by LV- model

Choice of experiments to perform

Page 12: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Results• Overcomes dimensional reduction of the Fischer

information matrix:

by use of PCA (LV model of unfolded 3-way matrix)• Almost perfect fit was obtained but parameter values

were different (J not full rank)• Using X (as is) or an LV approximation of X performs

equally well– but becomes more efficient since it requires less

experiments

• The LV model gives additional information of the dimensionality of selected experiments before they are performed.

sr

m

r

m

srs JJM '

1 1

Define model and model assumptions

Define “experimental space”

D-optimal Choice of experiments to performusing X or T from LV-model

fit, analyze

Satisfactory results?Yes!

Evaluate the Design by LV-model (experimental rank)

"novel" use of LV-models

No!No!

Evaluate the Design by LV-model

Choice of experiments to perform

How can LV models be applied? -appl.2

Page 13: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Application 3: Extended Sensitivity Analysis for targeted Model Improvements

• H2 assisted HC-SCR over Ag-Al2O3

– Detailed model (23 reactions, heat balance)

– Acceptable fit, but still significant Lack-of-Fit

• Objectives:– Verify (falsify) model

assumptions– Get indications on how to

improve model fit

Refs: Creaser et al. Appl.Catal.B 90 (2009) 18-28, Sjöblom PhD Thesis (2009) Chalmers

Thesis available at: http://publications.lib.chalmers.se/records/fulltext/92706.pdf

NO2NO3

CH2

NO2O O

O

C8H18

CO2, H

N2

NO, H2

Page 14: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Experimental• Sensitivity analysis of 62 model parameters (not

only fitted ones, not only kinetic parameters)– 46 kinetic parameters– 10 mass and heat transport parameters– 6 other parameters

• Scaled local sensitivities

– Unfold 3-way matrix to size n x pk, where n=26025 time points, p=62 parameters and k=5 responses

• Univariate analysis as well as LV modelling

How can LV models be applied? -appl.3

),,()(*3

),,( tconf

t locallevellevel

adj βysy

β

β

y

y

ββyS

Page 15: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

LV-model and univariate measures

How can LV models be applied? -appl.3

• PCA model– Scores plot

– Loadings plot

– 25 components

• Univariate table data– Confidence intervals

– Sensitivity average, std, max

– Correlations -0,10

-0,05

-0,00

0,05

0,10

-0,10 -0,08 -0,06 -0,04 -0,02 0,00 0,02 0,04 0,06 0,08 0,10

p[2]

p[1]

GasSensitivity-thesis3.M1 (PCA-X), all paramsp[Comp. 1]/p[Comp. 2]Colored according to Var ID (Primary)

R2X[1] = 0,281539 R2X[2] = 0,209535

CO2CO_NO2NO_T__

SIMCA-P 11.5 - 2009-09-08 09:40:37-0,10

-0,05

-0,00

0,05

0,10

-0,10 -0,08 -0,06 -0,04 -0,02 0,00 0,02 0,04 0,06 0,08 0,10

p[2]

p[1]

GasSensitivity-thesis3.M1 (PCA-X), all paramsp[Comp. 1]/p[Comp. 2]Colored according to Var ID (Primary)

R2X[1] = 0,281539 R2X[2] = 0,209535

CO2CO_NO2NO_T__

SIMCA-P 11.5 - 2009-09-08 09:40:37

-20

-10

0

10

20

-50 -40 -30 -20 -10 0 10 20

t[2]

t[1]

GasSensitivity-thesis3.M1 (PCA-X), all paramst[Comp. 1]/t[Comp. 2]Colored according to Obs ID (Primary)

R2X[1] = 0,281539 R2X[2] = 0,209535 Ellipse: Hotelling T2 (0,95)

exp1exp2exp3exp4exp5

SIMCA-P 11.5 - 2009-09-08 09:53:58-20

-10

0

10

20

-50 -40 -30 -20 -10 0 10 20t[2

]

t[1]

GasSensitivity-thesis3.M1 (PCA-X), all paramst[Comp. 1]/t[Comp. 2]Colored according to Obs ID (Primary)

R2X[1] = 0,281539 R2X[2] = 0,209535 Ellipse: Hotelling T2 (0,95)

exp1exp2exp3exp4exp5

SIMCA-P 11.5 - 2009-09-08 09:53:58

Page 16: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Sensitivity Analysis results (examples)

• Mass transfer model needs attention– Include diffusivities in fitting?– Include internal mass transport?– Targeted transients?

• Heat transfer model needs attention– Improve/extend temperature measurements?– Consider additional sensors (HC, H2)?– Modify heat transfer model?– Targeted experiments?

(For more details, see poster)

How can LV models be applied? -appl.3

Page 17: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

• Ability to master different parts of the process– The model (assumptions)– The available data (experiments)– The parameter values (which to fit)

• Ability to “change focus” in the process as the fit develops

Why are LV models good?

Factors for successful parameter estimation

Model assumptions

”experimental space”

Fit parameters

Happy?Yes!No!No!

Evaluate the Design

Choice of experiments

New PhD project: “Improved methods for parameter estimation”Advertisement out now! Application dead line 20th sept 2009http://www.chalmers.se/chem/EN/news/vacancies/positions/phd-student-position-in8778

Page 18: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

LV Components:Few, New & linearly Independent

• Few: Improved efficiency• Linear: Non-linear systems, LV models provide

more robust linearisations• Independent: Orthogonal sensitivities fulfils

statistical requirements

Why are LV models good?

Page 19: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

Conclusions

• The LV concept is a viable way in the Parameter estimation process

• Widely applicable – during fitting, DoE, evaluation

• Proven more efficient (due to fewer dimensions)– Superior? Yet to be “proven”...

Page 20: Use of Latent Variables in the Parameter Estimation Process

MODEGAT 2009-09-14

Chalmers University of Technology

End

AcknowledgementsThe Swedish Research council for financial

supportThe Competence Centre for Catalysis (KCK)

for good collaborationDerek Creaser & Bengt Andersson for fruitful

supervision

Thank you for your attention!