33
Updates on high-throughput DFPT Guido Petretto , Matteo Giantomassi, Henrique P. C. Miranda, Michiel J. van Setten, David Waroquiers, Shyam Dwaraknath, Donald Winston, Xavier Gonze, Kristin A. Persson, Geoffroy Hautier, Gian-Marco Rignanese MODL, Institute of Condensed Matter and Nanosciences, Universit´ e catholique de Louvain, 1348 Louvain-la-neuve, Belgium 22/05/2019 G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 1

Updates on high-throughput DFPT · LiMgAs P2Ir Si Li3Sb K2O Ga3Os Be3P2 CsAu ZnSe MgO AgCl SiC YWN3 SrO PbF2 RuS2 MgSiP2 SiO2 GaP Be2C SnHgF6 MgMoN2 ZnO VCu3S4 ZrSiO4 Ba(MgP)2 Ba(MgAs)2

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Updates on high-throughput DFPT

    Guido Petretto, Matteo Giantomassi, Henrique P. C. Miranda,Michiel J. van Setten, David Waroquiers, Shyam Dwaraknath,

    Donald Winston, Xavier Gonze, Kristin A. Persson, Geoffroy Hautier,Gian-Marco Rignanese

    MODL, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain,1348 Louvain-la-neuve, Belgium

    22/05/2019

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 1

  • Outline

    1 Introduction

    2 High-throughput DFPT

    3 Phonons database

    4 Abinit for HT

    5 Further developments

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 2

  • Outline

    1 Introduction

    2 High-throughput DFPT

    3 Phonons database

    4 Abinit for HT

    5 Further developments

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 3

  • Aim of the project

    Diffusion of large databases based on DFT calculations

    ⇓High-throughput workflows for Abinit

    ⇓DFPT phonon band structures at Materials Project

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 4

  • Where were we?

    ABIDEV 2017:

    Infrastructure to run high-throughput calculations with Abinit

    dependencies on different python frameworks

    high-throughput framework: Abiflows

    Preliminary results:

    Convergence study

    Workflows at NERSC

    ABIDEV 2019:

    Results

    Materials project

    Problems encountered

    Next steps

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 5

  • Where were we?

    ABIDEV 2017:

    Infrastructure to run high-throughput calculations with Abinit

    dependencies on different python frameworks

    high-throughput framework: Abiflows

    Preliminary results:

    Convergence study

    Workflows at NERSC

    ABIDEV 2019:

    Results

    Materials project

    Problems encountered

    Next steps

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 5

  • Outline

    1 Introduction

    2 High-throughput DFPT

    3 Phonons database

    4 Abinit for HT

    5 Further developments

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 6

  • High-throughput framework

    DFT + DFPT code

    Abinit python analysis framework Workflow manager

    Abinit workflows framework

    Generic material analysis framework

    Available on Github:https://github.com/abinit/abiflows

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 7

  • DFPT workflow

    Extended workflow to cover all possible DFPT calculation available

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 8

  • DFPT workflow

    Extended workflow to cover all possible DFPT calculation available

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 8

  • Convergence study

    Find optimal k-points and q-points sampling for high-throughputPetretto, Gonze, Hautier, Rignanese, Comp. Mat. Sci., 144, 331 (2018)

    Set of 48 semiconductors

    Various sizes, crystal symmetries, gaps

    Several K and Q grids

    Statistic on error with respect to dense grids:

    relative and absolute errormean and maximum error

    NaLi2Sb Ca(CdP)2 CdS SrLiP InS GaN RbYO2 Si4P4RuSiO2 BP AlSb LiZnP MgCO3 ScF3 ZnGeN2 CsBrLiMgAs P2Ir Si Li3Sb K2O Ga3Os Be3P2 CsAuZnSe MgO AgCl SiC YWN3 SrO PbF2 RuS2MgSiP2 SiO2 GaP Be2C SnHgF6 MgMoN2 ZnO VCu3S4ZrSiO4 Ba(MgP)2 Ba(MgAs)2 Ca(MgAs)2 C RbI FeS2 ZnTe

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 9

  • Convergence study: grids density

    absolute and relative errors on ω, Eat, Z∗ and �

    1500 points per reciprocal atom ⇒ Nkpt*Natoms w 1500⇒ All materials converged with 0.5 cm−1 MAE and 0.6% MARE

    Better using a Q-grid commensurable with K-grid

    ⇒ Smoother close to Γ

    UL LK KW WXΓ Γ0

    25

    50

    75

    100

    125

    150

    175

    Fre

    quen

    cy(c

    m−

    1)

    AgCl - qpt 6× 6× 6AgCl - qpt 12× 12× 12

    0.3 0.6 0.9 1.2 1.5

    600800

    100012001400160018002000

    kpra

    ω

    0.3 0.6 0.9 1.2 1.5εMARE (%)

    600800

    100012001400160018002000

    qpra

    ω

    512 1000 1728 2744 4096kpra

    −0.5+0.5

    −0.5+0.5

    −0.5+0.5

    −0.5+0.5

    −0.5+0.5

    −0.5+0.5

    Err

    oron

    ω(%

    )38 cm−1

    46 cm−1

    62 cm−1

    103 cm−1

    147 cm−1

    156 cm−1AgCl - qpt: U

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 10

  • Convergence study: symmetry of the grid

    Convergence rate of phonon frequencies ω for symmetric versusnon-symmetric grids

    500 1000 1500 2000 2500 3000 3500kpra

    10−2

    10−1

    100

    101

    MxA

    RE

    (%)

    Si - brkSi - sym

    BP - brkBP - sym

    ZnO - brkZnO - sym

    ⇓Grids should preserve the symmetries of the system

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 11

  • Results validation

    Validation versus experimental data

    Vibrational entropy at 300K

    0 20 40 60 80 100 120 140

    Sexp (J/(K mol))

    0

    20

    40

    60

    80

    100

    120

    140

    Ssi

    m(J

    /(K

    mol

    ))

    InS

    MgCO3

    SiO2

    K2O

    AlSb

    ZnSe

    ZrSiO4

    BP

    MgOSiO2

    C

    GaN

    CdS

    ScF3

    SrO

    Si

    RbI

    GaP

    PbF2

    SiC

    Be2C

    ZnO

    CsBr

    ZnTe

    RuS2FeS2

    AgCl

    CB

    e 2C

    SiC S

    iB

    PS

    iO2

    MgO

    GaN

    SiO

    2

    Zn

    OG

    aPF

    eS2

    Ru

    S2

    −15−10−5

    05

    101520

    Err

    or(%

    )

    SrO

    Cd

    SA

    lSb

    MgC

    O3

    InS

    Zn

    Se

    Zn

    Te

    ZrS

    iO4

    AgC

    lS

    cF3

    K2O

    CsB

    rP

    bF

    2

    Rb

    I

    −15−10−5

    05

    101520

    Err

    or(%

    )

    Γ phonon frequencies

    0 200 400 600 800 1000 1200

    ω (cm−1)

    −40

    −30

    −20

    −10

    0

    10

    20

    Err

    or(%

    )

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 12

  • Outline

    1 Introduction

    2 High-throughput DFPT

    3 Phonons database

    4 Abinit for HT

    5 Further developments

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 13

  • Materials Project phonons database

    Open access database: 1521 semiconductor materials (and growing. . . )1508 of those materials with less than 13 atomic sites

    ∼ 5M CPU-hours

    Interatomic forceconstants (DDB files)

    Phonon dispersion

    Born effective charges

    Dielectric tensor

    Thermodynamic prop.:

    ∆F , ∆Eph, Cv , S

    Γ X YΣ Γ Z Σ N P Y Z X P0

    500

    1000

    Fre

    quen

    cy(c

    m−

    1) β-cristobalite

    Γ X M Γ Z R A Z X R M A

    stishovite

    Γ M K Γ A L H A L M K H0

    500

    1000

    Fre

    quen

    cy(c

    m−

    1) α-quartz

    Petretto, Dwaraknath, Miranda, Winston, Giantomassi, Van Setten, Gonze, Persson, Hautier, Rignanese, Scientific Data (2018)

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 14

  • Materials Project phonons database

    Open access database: 1521 semiconductor materials (and growing. . . )1508 of those materials with less than 13 atomic sites

    ∼ 5M CPU-hours

    Interatomic forceconstants (DDB files)

    Phonon dispersion

    Born effective charges

    Dielectric tensor

    Thermodynamic prop.:

    ∆F , ∆Eph, Cv , S

    Γ X YΣ Γ Z Σ N P Y Z X P0

    500

    1000

    Fre

    quen

    cy(c

    m−

    1) β-cristobalite

    Γ X M Γ Z R A Z X R M A

    stishovite

    Γ M K Γ A L H A L M K H0

    500

    1000

    Fre

    quen

    cy(c

    m−

    1) α-quartz

    Petretto, Dwaraknath, Miranda, Winston, Giantomassi, Van Setten, Gonze, Persson, Hautier, Rignanese, Scientific Data (2018)

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 14

  • Materials Project phonons database

    All the data available on the websiteand through REST service.

    Interactive visualization of the phonondispersion using the phononwebsite

    http://henriquemiranda.github.io/

    phononwebsite/

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 15

    http://henriquemiranda.github.io/phononwebsite/http://henriquemiranda.github.io/phononwebsite/

  • Outline

    1 Introduction

    2 High-throughput DFPT

    3 Phonons database

    4 Abinit for HT

    5 Further developments

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 16

  • Reliability: workflows

    For the 1521 phonon band structures:

    Relax workflow

    Phonon workflow (+ anaddb)

    Out of all the submitted workflows only ∼ 30 did not completesuccessfully

    Main reasons:

    Too slow relaxation/relaxation did not converge

    Too small gap (switched to metallic)

    Presence of La

    Poor choice of materials

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 17

  • Reliability: workflows

    For the 1521 phonon band structures:

    Relax workflow

    Phonon workflow (+ anaddb)

    Out of all the submitted workflows only ∼ 30 did not completesuccessfully

    Main reasons:

    Too slow relaxation/relaxation did not converge

    Too small gap (switched to metallic)

    Presence of La

    Poor choice of materials

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 17

  • Reliability: results

    Warnings available in the database:

    Negative ω close to Γ: 24 materials

    ASR break >30 cm−1: 72 materials

    CNSR break >0.2e: 92 materials

    Wave Vector

    0

    10

    20

    30

    40

    50

    60

    Freq

    uenc

    y (c

    m1 )

    0 20 40 60 80asr value

    0

    50

    100

    150

    200

    250

    300

    350

    400

    Num

    ber o

    f mat

    eria

    ls

    0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75chneut value

    0

    200

    400

    600

    800

    1000

    Num

    ber o

    f mat

    eria

    ls

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 18

  • Problems encountered

    Current MP cluster: KNL nodes

    not optimizedreserve full noderelatively poor performancesdifficult to fine tune parallelization at high-throughput level

    Relax - ionmov 22: seems faster but may fail at small tolmxf (1e−6)

    ⇒ switch ionmov at python level.Autoparal for DFPT

    always gives the maximum number of preocesses allowedoften parallelizing over just the k-points is advantegeous

    ⇒ could be improved?Memory

    moving to larger materials already caused a few jobs to fail due tomemory issues

    ⇒ might be needed to rely on estimation of total memory

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 19

  • Outline

    1 Introduction

    2 High-throughput DFPT

    3 Phonons database

    4 Abinit for HT

    5 Further developments

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 20

  • More data on the MP database

    Calculations have proceed: almost 500 more materials

    More physical quantities will be extracted from the phonon data:

    Sound velocity as slope of acoustic modes

    Low-frequency dielectric permittivity tensor �αβ(ω)

    Thermal displacement ellipsoids (Debye-Waller)

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35Wave Vector

    0

    20

    40

    60

    80

    100

    120

    140

    160

    Freq

    uenc

    y (c

    m1 )

    0.7071, 0.0000, 0.7071 - X

    0 200 400 600 800 1000Frequency (cm 1)

    20

    0

    20

    40

    60

    ()

    Re{ 00}Re{ 11}Re{ 22}Im{ 00}Im{ 11}Im{ 22}

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 21

  • Phonons for metals

    Extend the calculation to metals as well. Materials project:

    24356 metals8242 with less than 6 atoms

    Potential issues:

    Denser k-point grids

    Q-point grids?

    Smearing

    Kohn anomalies

    Fourier interpolation 0

    20

    40

    60

    80

    100

    Freq

    uenc

    y (c

    m )-1

    Γ X

    Transverse

    Longitudinal

    non-uniform gridspline interpolationuniform grid (20 q-points)uniform grid (25 q-points)

    ε=0.09

    He, Liu, Li, Rignanese, Zhou (2019)

    ⇓New convergence study required

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 22

  • Volume: Grüneisen parameters

    Phonons at different volumes (e.g. ±2%) ⇒ GrüneisenTools already available in Abinit (netcdf) and Abipy

    Preferable to have separate workflows

    g = GrunsNcFile.from_ddb_list(["-2_DDB", "+0_DDB", "+2_DDB"])

    g.plot_phbands_with_gruns(with_doses=None)

    g.plot_gruns_scatter()

    phbst.plot_phbands(units="cm-1")

    M K A L H A L M K HWave Vector

    0

    50

    100

    150

    200

    250

    300

    Freq

    uenc

    y (c

    m1 )

    0 50 100 150 200 250 300Frequency (cm 1)

    4

    2

    0

    2

    4

    Grun

    eise

    n

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 23

  • Volume: Quasi-Harmonic Approximation

    Tools for QHA implemented in Abipy:

    Standard QHA object

    generated from GSR and PHDOS netcdf files

    Fittings

    Thermal expansion coefficient

    Interface to Phonopy for further functionalities

    Cheaper QHA: QHA-3P (Nath et al. arXiv:1807.04669)

    several electronic energies at different V and 3 phonon calculations

    extrapolate phonon contribution at other V

    Satisfactory results

    ⇒ Interesting for high-throughput

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 24

  • Volume: Quasi-Harmonic Approximation

    Example QHA-3P for Si

    qha = QHA.from_files(gsr_paths, dos_paths)

    qha3p = QHA3P.from_files(gsr_paths, gruns_path, ind_doses=[1,2,3])

    fig = qha.plot_thermal_expansion_coeff()

    qha3p.plot_thermal_expansion_coeff(ax=fig.axes[0])

    0 200 400 600 800 1000 1200 1400 1600

    T (K)

    0.0

    0.5

    1.0

    1.5

    α(K−

    1)

    ×10−5

    qha

    qha3p

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 25

  • Thank you for your attention

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 26

  • High-throughput framework

    What do we need for high-throughput with ?

    Python interface to DFT codes

    Inputs

    pseudopotentials and cutoffs

    automatic generation

    Workflow management

    Database interface

    Workflows

    Error handling and data analysis

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 27

  • Materials Project phonons database: rester

    Fetching DDB files from MP and analyze results with Abipy

    ddb = abilab.DdbFile.from_mpid("mp-1265") # MgO

    phbst, phdos = ddb.anaget_phbst_and_phdos_files(ndivsm=20, nqsmall=20,

    lo_to_splitting=True)

    phbst.plot_phbands(units="cm-1")

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 28

  • q-points convergence

    Use subgrids of the q-point grid to check the convergence w.r.t. qpt

    smoothed average

    average for each q density

    smoothed max

    Material dependent

    Suggest good convergence level at 1500 qppa

    reducing by a factor 2 may lead to sizeable errors on average

    G. Petretto (MODL, UCL) High-throughput DFPT 22/05/2019 29

    IntroductionHigh-throughput DFPTPhonons databaseAbinit for HTFurther developments