unsteady shear layer: Topics by Science.govshear+layer.html01-08-2017 · Sample records for unsteady shear layer ... Measurements were obtained by an x-probe in a flat plate,

  • Upload
    ngotram

  • View
    223

  • Download
    1

Embed Size (px)

Citation preview

unsteady shear layer: Topics by Science.gov

Toggle navigation Topics by Science.gov

HomeAboutSTEM OpportunitiesSign In

Sample records for unsteady shear layer

12345

Evolution of the shear layer during unsteady separation over an experimental wind turbine blade

NASA Astrophysics Data System (ADS)

Melius, Matthew; Cal, Raul; Mulleners, Karen

2016-11-01

Unsteady flow separation in rotationally augmented flow fields plays a significant role in the aerodynamic performance of industrial wind turbines. Current computational models underestimate the aerodynamic loads due to the inaccurate prediction of the emergence and severity of unsteady flow separation in the presence of rotational augmentation. Through the use of time-resolved particle image velocimetry (PIV), the unsteady separation over an experimental wind turbine blade is examined. By applying Empirical Mode Decomposition (EMD), perturbation amplitudes and frequencies within the shear-layer are identified. The time dependent EMD results during the dynamic pitching cycle give insight into the spatio-temporal scales that influence the transition from attached to separated flow. The EMD modes are represented as two-dimensional fields and are analyzed together with the spatial distribution of vortices, the location of the separation point, and velocity contours focusing on the role of vortex shedding and shear layer perturbation in unsteady separation and reattachment.

A review of unsteady turbulent boundary-layer experiments

NASA Technical Reports Server (NTRS)

Carr, L. W.

1981-01-01

The essential results of a comprehensive review of existing unsteady turbulent boundary-layer experiments are presented. Different types of unsteady flow facilities are described, and the related unsteady turbulent boundary-layer experiments are cataloged and discussed. The measurements that were obtained in the various experiments are described, and a complete list of experimental results is presented. All the experiments that measured instantaneous values of velocity, turbulence intensity, or turbulent shear stress are identified, and the availability of digital data is indicated. The results of the experiments are analyzed, and several significant trends are identified. An assessment of the available data is presented, delineating gaps in the existing data, and indicating where new or extended information is needed. Guidelines for future experiments are included.

Measurements of Unsteady Turbulent Boundary Layers with Pressure Gradients.

DTIC Science & Technology

1980-08-01

Boundary Layer Separation Pressure Gradients 10,. AMRACT (roillm si reves 1d N nmmmpsm an iseoit by blockma.) -/Although periodic unsteady turbulent...were made at reduced frequencies of 0.55 and 1.0. Well upstream of separation the flow away from the wall behaved in a quasi -steady manner. Near the...weak or that the turbulent perturbations are quasi -Gaussian. He applied this to long-wave perturbations, finding that the perturbation shear stress

Unsteady distributed wall shear stress measurements in fluid flows

NASA Astrophysics Data System (ADS)

Gnanamanickam, Ebenezer P.

Wall-bounded flows are amongst the most common flows encountered in fluid mechanics. Wall shear stress on the walls of these flow fields is an important engineering quantity as it is responsible for skin friction drag, which is a significant portion of the drag on bodies ranging from airplanes to flow in biological systems. Measuring, understanding and eventually controlling the wall shear stress has implicit financial significance. In general there is limited literature reporting unsteady, distributed wall shear stress measurements, especially in air, due to the lack of sensors to carry out such measurements. This work is a small step in the direction of filling this gap in the literature. A wall shear stress sensor, referred to as the micro-pillar wall shear stress sensor is presented from concept to actual measurements in a wall jet flow field. The micro-pillar shear stress sensor is based on the principle that a micro-pillar on the wall of a wall-bounded flow deflects an amount proportional to the drag force experienced by it. This drag force in turn is proportional to the wall shear stress. Hence, tracking the tip deflection of an array of micro-pillars provides a means to measure the unsteady, distributed wall shear stress. The sensor from design to manufacture along with static and dynamic characterization is presented. It's ability to measure unsteady, distributed wall shear stress is studied using demonstrative experiments. Finally, wall shear stress measurements are carried out on the wall of a three-dimensional turbulent wall jet. The wall jet is subsequently excited and the effect of excitation on the wall shear stress in the near jet exit flow field is studied.

Analysis of unsteady compressible viscous layers

NASA Technical Reports Server (NTRS)

Power, G. D.; Verdon, J. M.; Kousen, K. A.

1990-01-01

The development of an analysis to predict the unsteady compressible flows in blade boundary layers and wakes is presented. The equations that govern the flows in these regions are transformed using an unsteady turbulent generalization of the Levy-Lees transformation. The transformed equations are solved using a finite difference technique in which the solution proceeds by marching in time and in the streamwise direction. Both laminar and turbulent flows are studied, the latter using algebraic turbulence and transition models. Laminar solutions for a flat plate are shown to approach classical asymptotic results for both high and low frequency unsteady motions. Turbulent flat-plate results are in qualitative agreement with previous predictions and measurements. Finally, the numerical technique is also applied to the stator and rotor of a low-speed turbine stage to determine unsteady effects on surface heating. The results compare reasonably well with measured heat transfer data and indicate that nonlinear effects have minimal impact on the mean and unsteady components of the flow.

Streamline curvature in supersonic shear layers

NASA Technical Reports Server (NTRS)

Kibens, V.

1992-01-01

Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.

Unsteady Shear Disturbances Within a Two Dimensional Stratified Flow

NASA Technical Reports Server (NTRS)

Yokota, Jeffrey W.

1992-01-01

The origin and evolution of shear disturbances within a stratified, inviscid, incompressible flow are investigated numerically by a Clebsch/Weber decomposition based scheme. In contrast to homogeneous flows, within which vorticity can be redistributed but not generated, the presence of a density stratification can render an otherwise irrotational flow vortical. In this work, a kinematic decomposition of the unsteady Euler equations separates the unsteady velocity field into rotational and irrotational components. The subsequent evolution of these components is used to study the influence various velocity disturbances have on both stratified and homogeneous flows. In particular, the flow within a two-dimensional channel is used to investigate the evolution of rotational disturbances, generated or convected, downstream from an unsteady inflow condition. Contrasting simulations of both stratified and homogeneous flows are used to distinguish between redistributed inflow vorticity and that which is generated by a density stratification.

Excited waves in shear layers

NASA Technical Reports Server (NTRS)

Bechert, D. W.

1982-01-01

The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

Unsteady turbulent boundary layers with flow reversal

NASA Technical Reports Server (NTRS)

Patel, V. C.; Nash, J. F.

1975-01-01

A theoretical study is carried out to search for the appearance of a singularity in a family of time-dependent turbulent boundary layers with embedded reverse-flow regions and determine the conditions necessary for its appearance. Further insight is gained into the development of unsteady turbulent boundary layers. The calculations performed for a family of prescribed external velocity distributions in which the relative importance of the effects of time-dependence, compared to those of spatial diffusion, are controlled by a given parameter. The conditions necessary for the appearance of a singularity appears to involve the existence of an appropriate relationship between the dominant velocities in the reversed-flow region and the rate of forward movement of the flow reversal point. The results support the hypothesis that a singularity will exist in the flow if and only if the typical reversed-flow velocities exceed the rate of penetration of the reversed flow into the oncoming boundary layer.

Shear dynamics of hydration layers

NASA Astrophysics Data System (ADS)

Leng, Yongsheng; Cummings, Peter T.

2006-09-01

Molecular dynamics (MD) simulations have been performed to investigate the shear dynamics of hydration layers of the thickness of D =0.61-2.44nm confined between two mica surfaces. Emphases are placed on the external shear response and internal relaxation properties of aqueous films. For D =0.92-2.44nm liquid phase, the shear responses are fluidic and similar to those observed in surface force balance experiments [U. Raviv and J. Klein, Science 297, 1540 (2002)]. However, for the bilayer ice (D=0.61nm) [Y. S. Leng and P. T. Cummings, J. Chem. Phys. 124, 74711 (2006)] significant shear enhancement and shear thinning over a wide range of shear rates in MD regime are observed. The rotational relaxation time of water molecules in this bilayer ice is found to be as high as 0.017ms (10-5s). Extrapolating the shear rate to the inverse of this longest relaxation time, we obtain a very high shear viscosity for the bilayer ice, which is also observed quite recently for D 0.60.3nm hydration layers [H. Sakuma et al., Phys. Rev. Lett. 96, 46104 (2006)]. We further investigate the boundary slip of water molecules and hydrated K+ ions and concluded that no-slip boundary condition should hold for aqueous salt solution under extreme confinement between hydrophilic mica surfaces, provided that the confined film is of Newtonian fluid.

Control of free shear layers

NASA Technical Reports Server (NTRS)

Liu, J. T. C.; Kaptanoglu, H. T.

1987-01-01

The fundamental aspects of controlled multiple coherent mode presence in turbulent shear flows is first discussed, including the supplementary averaging procedures in addition to the Reynolds average and the nonlinear energy transfer mechanisms coupling the coherent modes, mean flow and fine-grained turbulence. Then the problem of a fundamental mode and its subharmonic in a developing mixing layer, the prototype problem of subharmonic cascade, is examined. An integral method is presented which allows the determination of the coherent wave envelope or amplitude simultaneously with the mean flow growth rate and turbulence energy. This is then generalized to the presence of multiple subharmonics using a binary-frequency interaction argument. Free shear layer control is discussed in terms of initial coherent mode amplitudes, dimensionless initial frequencies, phase angle between the modes and fine-grained turbulence levels, in particular, how these parameters could enhance or suppress the shear layer spreading rate and the levels of fine-grained turbulence.

A Compilation of Unsteady Turbulent Boundary Layer Experimental Data,

DTIC Science & Technology

1981-11-01

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE LATLANTIQUE NORD) AGARDograph No. 265 A COMPILATION OF UNSTEADY...velocity has been measured in many different ways: electrochemically (Mizushina et al., 1973); by use of a micropropeller (Jonnson and Carlsen, 1976...Velocity Oscillations Near the Wall in Unsteady Turbulent Boundary Layers. Binder and Kueny, 1981. Facility: Location: Institute de Mecanique de Grenoble

Experimental measurements of unsteady turbulent boundary layers near separation

NASA Technical Reports Server (NTRS)

Simpson, R. L.

1982-01-01

Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers.

A compilation of unsteady turbulent boundary-layer experimental data

NASA Technical Reports Server (NTRS)

Carr, L. W.

1981-01-01

An extensive literature search was conducted and those experiments related to unsteady boundary layer behavior were cataloged. In addition, an international survey of industrial, university, and governmental research laboratories was made in which new and ongoing experimental programs associated with unsteady turbulent boundary layer research were identified. Pertinent references were reviewed and classified based on the technical emphasis of the various experiments. Experiments that include instantaneous or ensemble averaged profiles of boundary layer variables are stressed. The experimental apparatus and flow conditions are described and summaries of acquired data and significant conclusions are summarized. Measurements obtained from the experiments which exist in digital form were stored on magnetic tape. Instructions are given for accessing these data sets for further analysis.

Steady incompressible variable thickness shear layer aerodynamics

NASA Technical Reports Server (NTRS)

Chi, M. R.

1976-01-01

A shear flow aerodynamic theory for steady incompressible flows is presented for both the lifting and non lifting problems. The slow variation of the boundary layer thickness is considered. The slowly varying behavior is treated by using multitime scales. The analysis begins with the elementary wavy wall problem and, through Fourier superpositions over the wave number space, the shear flow equivalents to the aerodynamic transfer functions of classical potential flow are obtained. The aerodynamic transfer functions provide integral equations which relate the wall pressure and the upwash. Computational results are presented for the pressure distribution, the lift coefficient, and the center of pressure travel along a two dimensional flat plate in a shear flow. The aerodynamic load is decreased by the shear layer, compared to the potential flow. The variable thickness shear layer decreases it less than the uniform thickness shear layer based upon equal maximum shear layer thicknesses.

Shear layer excitation, experiment versus theory

NASA Technical Reports Server (NTRS)

Bechert, D. W.; Stahl, B.

1984-01-01

The acoustical excitation of shear layers is investigated. Acoustical excitation causes the so-called orderly structures in shear layers and jets. Also, the deviations in the spreading rate between different shear layer experiments are due to the same excitation mechanism. Measurements in the linear interaction region close to the edge from which the shear layer is shed are examined. Two sets of experiments (Houston 1981 and Berlin 1983/84) are discussed. The measurements were carried out with shear layers in air using hot wire anemometers and microphones. The agreement between these measurements and the theory is good. Even details of the fluctuating flow field correspond to theoretical predictions, such as the local occurrence of negative phase speeds.

A numerical method for computing unsteady 2-D boundary layer flows

NASA Technical Reports Server (NTRS)

Krainer, Andreas

1988-01-01

A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.

Turbulent shear layers in confining channels

NASA Astrophysics Data System (ADS)

Benham, Graham; Castrejon-Pita, Alfonso; Hewitt, Ian; Please, Colin; Style, Rob; Bird, Paul

2017-11-01

The development of shear layers are ubiquitous in a wide range of situations, from diffusers, nozzles, turbines and ducts to urban air flow and geophysical flows. In this talk we present a simple model for the development of shear layers between flows that mix in confining channels. The model, comprising two plug flow regions separated by a linear shear layer, shows good agreement with both laboratory experiments and computational turbulence modelling (at a fraction of the computation time). Such efficient models, capable of capturing and exhibiting the main characteristics of the turbulent shear layers, are expected to be useful for both modelling and design purposes. We demonstrate the latter by showing how the model can be utilised to optimise pressure recovery in diffusers with non-uniform inflows. EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling, VerdErg Renewable Energy Limited, John Fell Fund (Oxford University Press).

Computation of unsteady turbulent boundary layers with flow reversal and evaluation of two separate turbulence models

NASA Technical Reports Server (NTRS)

Cebeci, T.; Carr, L. W.

1981-01-01

A procedure which solves the governing boundary layer equations within Keller's box method was developed for calculating unsteady laminar flows with flow reversal. This method is extended to turbulent boundary layers with flow reversal. Test cases are used to investigate the proposition that unsteady turbulent boundary layers also remain free of singularities. Turbulent flow calculations are performed. The governing equations for both models are solved. As in laminar flows, the unsteady turbulent boundary layers are free from singularities, but there is a clear indication of rapid thickening of the boundary layer with increasing flow reversal. Predictions of both turbulence models are the same for all practical purposes.

Unsteady turbulent boundary layers in swimming rainbow trout.

PubMed

Yanase, Kazutaka; Saarenrinne, Pentti

2015-05-01

The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.020.09Ls(-1) (means.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 410(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. 2015. Published by The Company of Biologists Ltd.

12345

12345

Linear instability of curved free shear layers

NASA Technical Reports Server (NTRS)

Liou, William W.

1993-01-01

The linear inviscid hydrodynamic stability of slightly curved free mixing layers is studied in this paper. The disturbance equation is solved numerically using a shooting technique. Two mean velocity profiles that represent stably and unstably curved free mixing layers are considered. Results are shown for cases of five curvature Richardson numbers. The stability characteristics of the shear layer are found to vary significantly with the introduction of the curvature effects. The results also indicate that, in a manner similar to the Goertler vortices observed in a boundary layer along a concave wall, instability modes of spatially developing streamwise vortex pairs may appear in centrifugally unstable curved mixing layers.

Identification of separate flow features in the shear layer

NASA Astrophysics Data System (ADS)

Mulleners, Karen; Krishna, Swathi; Green, Melissa

2016-11-01

Analyzing unsteady flow fields primarily involves the identification of dynamically significant regions of vorticity in the flow. Detection of all the flow features is essential for an accurate description of the physics of the flow, which eventually helps in improving flow modeling and predictions. Eulerian criteria such as 2 and 2 successfully identify large scale structures based on local velocity gradients and topology but do not detect the coherent vortices with the concentrated vorticity in a shear layer. The identification of these smaller structures within the shear layer is important when predicting the overall circulatory contribution to the aerodynamic forces produced, in applications such as flapping wing design. In order to detect the smaller flow features along with the prominent large scale vortices, an alternative method of vortex identification is proposed in which the flow structures are detected based on the vorticity contours. This method is applied to numerical and experimental data of a pitching panel to highlight its robustness. In addition, the finite time Lyapunov exponent (FTLE) is calculated to show that the boundaries of the material lines and identified vorticity contours coincide.

Natural instability of free shear layers

NASA Technical Reports Server (NTRS)

Husain, Z. D.; Hussain, A. K. M. F.

1983-01-01

Under controlled small-amplitude excitation, an initially laminar free shear layer experiences maximum growth rate at a Strouhal number St(theta) of 0.017 (consistent with theory) and maximum growth at St(theta) = 0.011, while the natural instability frequency St(theta-n) (of an unexcited shear layer) is found to have an intermediate value. Investigations in both axisymmetric and plane shear layers in a number of independent facilities reveal that the St(theta-n) value falls in the range 0.0125-0.0155, depending on the exit boundary-layer fluctuation level and the spanwise radius of curvature. The St(theta-n) value decreases with increasing jet diameter or exit boundary-layer fluctuation level, but is not a direct function of the exit momentum thickness Reynolds number. For a given facility, the instability details are found to be independent of whether the entrainment at the lip is parallel to the stream or orthogonal (due to the addition of an end plate). The steamwise evolutions of the amplitudes at the fundamental frequency and its harmonics and subharmonics are unique functions of the downstream distance nondimensionalized by the exit momentum thickness, but their details remain functions of the flow geometry (i.e., axisymmetric or plane).

Anisotropic Particle Acceleration in Relativistic Shear Layers

NASA Astrophysics Data System (ADS)

Boettcher, Markus; Liang, Edison P.; Fu, Wen

2017-08-01

We present results of Particle in Cell (PIC) simulations of relativistic shear layers as relevant to the relativistic jets of acive galactic nuclei and gamma-ray bursts. We study the self-generation of electro-magnetic fields and particle acceleration for various different plasma compositions (electron-ion vs. electron-positron pair vs. hybrid). Special emphasis is placed on the angular distribution of accelerated particles. We find that electron-ion shear layers lead to highly anisotropic particle distributions in the frame of the fast-moving inner spine. The beaming pattern of the highest-energy particles is much narrower than the characteristic beaming angle of 1/Gamma resulting from relativistic aberration of a co-moving isotropic distribution. This may pose a possible solution to the Lorentz-Factor crisis in blazars and explain very hard X-ray / soft gamma-ray spectra of some gamma-ray bursts.

Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear Layer

NASA Technical Reports Server (NTRS)

Khorrami, Mehdi R.; Singer, Bart A.; Berkman, Mert E.

2001-01-01

A detailed computational aeroacoustic analysis of a high-lift flow field is performed. Time-accurate Reynolds Averaged Navier-Stokes (RANS) computations simulate the free shear layer that originates from the slat cusp. Both unforced and forced cases are studied. Preliminary results show that the shear layer is a good amplifier of disturbances in the low to mid-frequency range. The Ffowcs-Williams and Hawkings equation is solved to determine the acoustic field using the unsteady flow data from the RANS calculations. The noise radiated from the excited shear layer has a spectral shape qualitatively similar to that obtained from measurements in a corresponding experimental study of the high-lift system.

Understanding Transition to Turbulence in Shear Layers.

DTIC Science & Technology

1983-05-01

state of shear-layer systems by state variables appropriate for phase- space approach. (See Section A.19 for illustration of simple two-dimensional and...three-dimensional phase spaces .) The broad learning process concludes in Chapter 3 with otherwise * inaccessible conceptualization of disturbances in...scales, they represent a plausible model for the occurrence of fine- scale intermittency which led Kolmogoroff to reconsider his universal similarity

Turbulent transport across shear layers in magnetically confined plasmas

SciTech Connect

Nold, B.; Ramisch, M.; Manz, P.; Birkenmeier, G.; Ribeiro, T. T.; Mller, H. W.; Scott, B. D.; Fuchert, G.; Stroth, U.

2014-10-15

Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process.

An experimental investigation of the shear-layer and acoustic sources produced by a leading edge slat

NASA Astrophysics Data System (ADS)

Wilkins, Stephen; Richard, Patrick; Hall, Joseph; Turbulence; Flow Noise Laboratory Team

2013-11-01

Leading edge slats are a common addition to airfoils as part of a high lift configuration employed during take-off and landing; the unsteady flow caused by these slats is a major contributor to the overal airframe noise. As the next generation of aircraft seeks to reduce these noise concerns, a better understanding of the sources of aeroacoustic noise generation is sought. Particle Image Velocimetry (PIV) and simultaneous multipoint measurements of the unsteady surface pressure are used herein to investigate the unsteady flow around a leading edge slat coupled with an airfoil for several different configurations and a range of Reynolds numbers (Re = 156 , 000 to Re = 1 . 2 million based on the wing chord). Shear-layer development off the slat cusp and the related unsteady vortex structures are examined in detail to better establish and understand the mechanisms responsible for the generation of aeroacoustic slat noise. The authors are grateful for the support provided by GARDN.

Door assembly with shear layer control aperture

NASA Technical Reports Server (NTRS)

Kahn, William C. (Inventor); Johnston, John T. (Inventor); Fluegel, Kyle G. (Inventor)

1996-01-01

There is described a vehicle door assembly with shear layer control for controlling the airflow in and around an aperture in the vehicle fuselage. The vehicle door assembly consists of an upper door and a lower door, both slidably mounted to the exterior surface of the vehicle fuselage. In addition, an inner door is slidably mounted beneath the upper door. Beneath the inner door is an aperture assembly having an aperture opening positionable to be substantially flush with the exterior surface of the vehicle fuselage. Also provided are means for positioning the aperture assembly in an upward and downward direction in relation to the vehicle fuselage.

A class of unsteady, three-dimensional flow structures in turbulent boundary layers

NASA Technical Reports Server (NTRS)

Ash, R. L.

1981-01-01

A restricted class of mathematically admissible, unsteady, three dimensional flows was identified which may constitute part of the structure observed in turbulent boundary layers. The development of the model and some general results are discussed. The resulting solution has characteristics which suggest how upwelling low speed flow can trigger a downward jetting of irrotational high speed fluid into the boundary layer.

Control and reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction

NASA Technical Reports Server (NTRS)

Dolling, David S.; Barter, John W.

1995-01-01

The focus was on developing means of controlling and reducing unsteady pressure loads in separated shock wave turbulent boundary layer interactions. Section 1 describes how vortex generators can be used to effectively reduce loads in compression ramp interaction, while Section 2 focuses on the effects of 'boundary-layer separators' on the same interaction.

The free shear layer tone phenomenon and probe interference

NASA Technical Reports Server (NTRS)

Hussain, A. K. M. F.; Zaman, K. B. M. Q.

1978-01-01

The reported investigation shows that the hot-wire probe induces stable upstream oscillations in a free shear layer, similar to the jet edge tone mechanism. This effect can be significant also in measurements involving large-scale organized structure, conditional sampling, space-time correlation, and convection velocity, when a reference or indicator probe may be used near the origin of the free shear layer. It appears that even in a free shear layer without any wedge, an object in the flow sufficiently downstream can also provide feedback to the flow upstream. A description is given of the edge-tone phenomenon which is observed when a thin slit jet impinges on a plane wedge. Attention is given to the free shear layer tone induced by a hot-wire probe, the free shear layer tone phenomenon, and shear layer tone eigenvalues and eigenfunctions.

Low-Reynolds-number k-epsilon model for unsteady turbulent boundary-layer flows

NASA Technical Reports Server (NTRS)

Fan, Sixin; Lakshminarayana, Budugur; Barnett, Mark

1993-01-01

An assessment of the near-wall and low-Reynolds-number functions used in low-Reynolds-number k-epsilon models suggests that they are not suitable for the near-wall region of unsteady turbulent boundary layers, where the flow is characterized by rapid changes in phase. An improved low-Reynolds-number k-epsilon model is developed in this paper. The near-wall and low-Reynolds-number functions in this model are formulated as functions of the local turbulent Reynolds numbers instead of the inner variable y(+). The present model also has the correct asymptotic behavior in the near-wall region. The turbulence model has been incorporated in an unsteady boundary-layer code and validated for unsteady turbulent boundary layers with and without adverse pressure gradients. The predictions agree well with the experimental data and the theoretical analysis. For the cases tested, the present model correctly predicts the unsteady near-wall flow and the unsteady shin friction at various frequencies.

An integral method for unsteady laminar boundary layers. [impulsive start for flow past circular cylinder

NASA Technical Reports Server (NTRS)

Holt, M.; Chan, W.-K.

1975-01-01

The Method of Integral Relations is extended to apply to the calculation of Unsteady Flow in a Laminar Boundary Layer. The effectiveness of the method is demonstrated in an application to uniform flow past a circular cylinder, resulting from an impulsive start. Both first and second approximations are worked out, the latter showing good agreement with results of previous calculations.

Direct numerical simulations of curvature effects on shear layer transition over airfoils

NASA Astrophysics Data System (ADS)

Zhang, Wei; Cheng, Wan; Qamar, Adnan; Gao, Wei; Samtaney, Ravi

2013-11-01

Shear layer transition and subsequent turbulent flow development over the leeward section of airfoils are affected by the surface curvature in terms of its associated effects, such as laminar flow separation, adverse pressure gradient, and the interactions between separated flow and wake vortices, etc. We present direct numerical simulations (DNS) of shear layer transitions over two airfoils, NACA 4412 and NACA 0012-64, at 10 deg. angle of attack, and Rec = 104 based on uniform inflow velocity and chord length. The two airfoils chosen are geometrically almost the same with identical maximum thickness along with chordwise position but different cambers and hence different curvature. The curvature effects on the flow are presented by the unsteady evolution patterns of laminar flow separation; shear layer detachment, breakdown to turbulence, turbulent boundary layer reattachment and vortex shedding, and quantitative results on the development of turbulent boundary layer are emphasized. This DNS database is generated with an energy conservative fourth-order incompressible Navier-Stokes code with O(109) mesh points. Supported by a KAUST funded project on large eddy simulation of turbulent flows. The IBM Blue Gene P Shaheen at KAUST was utilized for the simulations.

A new mixing length model for supersonic shear layers

NASA Technical Reports Server (NTRS)

Kim, S. C.

1990-01-01

A new mixing length model is presented for supersonic shear flows. In this model, the characteristic scale of the mixing region is not constant across the shear layer at each axial position but is determined locally by the lateral distance between the two points where flow moves sonic relative to the local point. Supersonic free shear layers at various Mach numbers were calculated by solving the compressible boundary layer equations with the new model. The results demonstrate the decrease of spreading rate with increasing Mach number and agree well with experimental data.

On the Lagrangian description of unsteady boundary layer separation. Part 1: General theory

NASA Technical Reports Server (NTRS)

Vandommelen, Leon L.; Cowley, Stephen J.

1989-01-01

Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

On the Lagrangian description of unsteady boundary-layer separation. I - General theory

NASA Technical Reports Server (NTRS)

Van Dommelen, Leon L.; Cowley, Stephen J.

1990-01-01

Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

Nonlinear growth of unsteady streaks caused by free-stream vorticity in a compressible boundary layer

NASA Astrophysics Data System (ADS)

Ricco, Pierre; Marensi, Elena; Wu, Xuesong

2017-11-01

The nonlinear response of a compressible boundary layer to unsteady free-stream vortical fluctuations is investigated theoretically and numerically. We focus on low-frequency streamwise-elongated perturbations, known as streaks or Klebanoff modes. The nonlinear streak evolution is described through the nonlinear unsteady compressible boundary-region equations. The free-stream flow is studied by including the boundary-layer displacement effect and is matched asymptotically with the boundary-layer flow. The nonlinear interactions inside the boundary layer drive an unsteady two-dimensional flow of acoustic nature in the outer region through the displacement effect. A close analogy with the flow over a thin oscillating airfoil is exploited to find analytical solutions. In the subsonic regime the disturbances propagate in all directions, while at supersonic speeds the fluid ahead of the body is undisturbed and the perturbations are confined within the Mach dihedron. Nonlinearity stabilizes the velocity and temperature streaks. Increasing the Mach number inhibits the kinematic fluctuations but enhances the thermal streaks. An abrupt deviation of the nonlinear solution from the linear one is observed in the case pertaining to a supersonic wind tunnel.

Closed-Loop Control of Unsteady Transient Growth Disturbances in a Blasius Boundary Layer using DBD Plasma Actuators

NASA Astrophysics Data System (ADS)

Lavoie, Philippe; Hanson, Ronald; Bade, Kyle; Naguib, Ahmed; Belson, Brandt; Rowley, Clarence

2012-11-01

Plasma actuators have recently been shown to negate the effect of the transient growth instability occurring in a Blasius boundary layer for the purpose of delaying bypass transition. Specifically, during steady operation, the energy of a disturbance introduced via an array of static cylindrical roughness elements was reduced by up to 68%, as shown by Hanson et al. (Exp. Fluids, 2010). In the present work, the actuators used in the aforementioned study were integrated into a complete closed-loop control system capable of negating unsteady transient growth disturbances induced in a Blasius boundary layer established in a wind tunnel. Shear stress measurements from an array of hot-wires mounted just above the surface of the boundary-layer plate downstream of the actuators are used to provide feedback information about the state of the boundary layer. The effectiveness and robustness of the closed-loop controller are rigorously established based on both control-model simulations and experiments. NSERC and NSF grant number: CMMI 0932546.

12345

12345

Attenuation in a shock tube due to unsteady-boundary-layer action

NASA Technical Reports Server (NTRS)

Mirels, Harold

1957-01-01

A method is presented for obtaining the attenuation of a shock wave in a shock tube due to the unsteady boundary layer along the shock-tube walls. It is assumed that the boundary layer is thin relative to the tube diameter and induces one-dimensional longitudinal pressure waves whose strength is proportional to the vertical velocity at the edge of the boundary layer. The contributions of the various regions in a shock tube to shock attenuation are indicated. The method is shown to be in reasonably good agreement with existing experimental data.

An Experimental Study of the Effect of Streamwise Vortices on Unsteady Turbulent Boundary-Layer Separation

DTIC Science & Technology

1988-12-09

then reason. Leonardo da Vinci I I t I! II I U 8. Results II: Analysis and DiscussionU 3 Chapter 7 fulfilled one program objective, which was to document...2b. DECLASSIFICATION /DOWNGRADING SCHEDULE srbto sulmtd 4- PERFORMING ORGANIZATION REPORT NUMBER( S ) S . MONITORING ORGANIZATION REPORT NUMeER( S ) TF-42...Streamwise Vortices on Unsteady Turbulent Boundary-Layer Separation 12. PERSONAL AUTHOR( S ) W. W. Humphreys and W. C. keynolds 13a. TYPE OF REPORT~ehia 13b

Unsteady boundary layer nanofluid flow and heat transfer along a porous stretching surface with magnetic field

NASA Astrophysics Data System (ADS)

Alam, M. S.; Ali, M.; Alim, M. A.; Munshi, M. J. Haque

2017-06-01

The present study is performed to find the similarity solution like Blasius solution and also analyzed the effect of various dimensionless parameters on the momentum, thermal and nanoparticle concentration. In this respect we have considered the magnetohydrodynamic (MHD) unsteady boundary layer nanofluid flow and heat - mass transfer along a porous stretching surface. So the governing partial differential equations are transformed to ordinary differential equations by using similarity transformations. The numerical solution is taken by applying the Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme. The effects of various dimensionless parameters on velocity, temperature and nanoparticle concentration are discussed numerically and shown graphically. Therefore, from the figures it is observed that the results of velocity profile increases for increasing values of unsteadiness parameter, permeability parameter and stretching ratio parameter but there is no effect for magnetic parameter, the temperature profile decreases for increasing values of Brownian motion, unsteadiness, thermophoresis and stretching ratio but increases for magnetic parameter, the nanoparticle concentration decreases for increasing values of unsteadiness parameter, thermophoresis parameter, suction parameter, stretching ratio parameter and Lewis number but increases for magnetic parameter and Brownian motion parameter. For validity and accuracy the present results are compared with previously published work and found to in good agreement.

Minnowbrook III: 2000 Workshop on Boundary Layer Transition and Unsteady Aspects of Turbomachinery Flows

NASA Technical Reports Server (NTRS)

LaGraff, John E. (Editor); Ashpis, David E. (Editor)

2002-01-01

This volume and its accompanying CD-ROM contain materials presented at the Minnowbrook III-2000 Workshop on Boundary Layer Transition and Unsteady Aspects of Turbomachinery Flows held at the Syracuse University Minnowbrook Conference Center, Blue Mountain Lake, New York, August 20-23, 2000. Workshop organizers were John E. LaGraff (Syracuse University), Terry V Jones (Oxford University), and J. Paul Gostelow (University of Leicester). The workshop followed the theme, venue, and informal format of two earlier workshops: Minnowbrook I (1993) and Minnowbrook II (1997). The workshop was focused on physical understanding the late stage (final breakdown) boundary layer transition, separation, and effects of unsteady wakes with the specific goal of contributing to engineering application of improving design codes for turbomachinery. The workshop participants included academic researchers from the USA and abroad, and representatives from the gas-turbine industry and government laboratories. The physical mechanisms discussed included turbulence disturbance environment in turbomachinery, flow instabilities, bypass and natural transition, turbulent spots and calmed regions, wake interactions with attached and separated boundary layers, turbulence and transition modeling and CFD, and DNS. This volume contains abstracts and copies of the viewgraphs presented, organized according to the workshop sessions. The viewgraphs are included on the CD-ROM only. The workshop summary and the plenary-discussion transcripts clearly highlight the need for continued vigorous research in the technologically important area of transition, separated and unsteady flows in turbomachines.

Experimental Study of Unsteady Separation in a Laminar Boundary Layer

NASA Astrophysics Data System (ADS)

Bonacci, Andrew; Lang, Amy; Wahidi, Redha; Santos, Leo

2016-11-01

Separation, caused by an adverse pressure gradient, can be a major problem to aircraft. Reversing flow occurs in separated regions and an investigation of how this backflow forms is of interest due to the fact that this could be used as a means of initiating flow control. Specifically, backflow can bristle shark scales which may be linked to a passive, flow actuated separation control mechanism. An experiment was conducted in a water tunnel to replicate separation, with a focus on the reversing flow development near the wall within a laminar boundary layer. Using a rotating cylinder, an adverse pressure gradient was induced creating a separated region over a flat plate. In this experiment the boundary layer grows to sizes great enough that the scale of the flow is increased, making it more measurable to DPIV. In the future, this research can be utilized to better understand flow control mechanisms such as those enabled by shark skin. Funding from Army Research Office and NSF REU site Grant EEC 1358991 is greatly appreciated.

Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear-Layer. Part 2

NASA Technical Reports Server (NTRS)

Khorrami, Mehdi R.; Singer, Bart A.; Lockard, David P.

2002-01-01

Unsteady computational simulations of a multi-element, high-lift configuration are performed. Emphasis is placed on accurate spatiotemporal resolution of the free shear layer in the slat-cove region. The excessive dissipative effects of the turbulence model, so prevalent in previous simulations, are circumvented by switching off the turbulence-production term in the slat cove region. The justifications and physical arguments for taking such a step are explained in detail. The removal of this excess damping allows the shear layer to amplify large-scale structures, to achieve a proper non-linear saturation state, and to permit vortex merging. The large-scale disturbances are self-excited, and unlike our prior fully turbulent simulations, no external forcing of the shear layer is required. To obtain the farfield acoustics, the Ffowcs Williams and Hawkings equation is evaluated numerically using the simulated time-accurate flow data. The present comparison between the computed and measured farfield acoustic spectra shows much better agreement for the amplitude and frequency content than past calculations. The effect of the angle-of-attack on the slat's flow features radiated acoustic field are also simulated presented.

Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers

NASA Technical Reports Server (NTRS)

Ahn, B-K.; Graham, W. R.; Rizzi, S. A.

2004-01-01

As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.

Interfacial shear rheology of protein-surfactant layers.

PubMed

Krgel, J; Derkatch, S R; Miller, R

2008-12-02

The shear rheology of adsorbed or spread layers at air/liquid and liquid/liquid phase boundaries is relevant in a wide range of technical applications such as mass transfer, monolayers, foaming, emulsification, oil recovery, or high speed coating. Interfacial shear rheological properties can provide important information about interactions and molecular structure in the interfacial layer. A variety of measuring techniques have been proposed in the literature to measure interfacial shear rheological properties and have been applied to pure protein or mixed protein adsorption layers at air/water or oil/water interfaces. Such systems play for example an important role as stabilizers in foams and emulsions. The aim of this contribution is to give a literature overview of interfacial shear rheological studies of pure protein and protein/surfactant mixtures at liquid interfaces measured with different techniques. Techniques which utilize the damping of waves, spectroscopic or AFM techniques and all micro-rheological techniques will not discuss here.

Experimental Study of Unsteady Flow Separation in a Laminar Boundary Layer

NASA Astrophysics Data System (ADS)

Bonacci, Andrew; Lang, Amy; Wahidi, Redha; Santos, Leonardo

2017-11-01

Flow separation, caused by an adverse pressure gradient, is a major problem in many applications. Reversing flow near the wall is the first sign of incipient separation and can bristle shark scales which may be linked to a passive, flow actuated separation control mechanism. An investigation of how this backflow forms and how it interacts with shark skin is of interest due to the fact that this could be used as a bioinspired means of initiating flow control. A water tunnel experiment aims to study unsteady separation with a focus on the reversing flow development near the wall within a flat plate laminar boundary layer (Re on order of 105) as an increasing adverse pressure gradient is induced by a rotating cylinder. Unsteady reversing flow development is documented using DPIV. Funding was provided by the National Science Foundation under the Research Experience for Undergraduates (REU) program (EEC 1659710) and the Army Research Office.

In-flight investigations of the unsteady behaviour of the boundary layer with infrared thermography

NASA Astrophysics Data System (ADS)

Szewczyk, Mariusz; Smusz, Robert; de Groot, Klaus; Meyer, Joerg; Kucaba-Pietal, Anna; Rzucidlo, Pawel

2017-04-01

Infrared thermography (IRT) has been well established in wind tunnel and flight tests for the last decade. Former applications of IRT were focused, in nearly all cases, on steady measurements. In the last years, requirements of unsteady IRT measurements (up to 10 Hz) have been formulated, but the problem of a very slow thermal response of common materials of wind tunnel models or airplane components has to be overcome by finding a surface modification with a fast thermal response (low heat capacity, low thermal conductivity and high thermal diffusivity). Therefore, lab investigations of potential material combinations and flight tests with a low cost aircraft, i.e. a glider with a modified wing surface, were conducted. In order to induce unsteady conditions (rapid change of laminar-turbulent boundary layer transition), special maneuvers of a glider during IRT measurements were performed.

Compressibility effects in the shear layer over a rectangular cavity

SciTech Connect

Beresh, Steven J.; Wagner, Justin L.; Casper, Katya M.

2016-10-26

we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.62.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.

Coherent structures in compressible free-shear-layer flows

SciTech Connect

Aeschliman, D.P.; Baty, R.S.; Kennedy, C.A.; Chen, J.H.

1997-08-01

Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.

Speed and Direction Shear in the Stable Nocturnal Boundary Layer

SciTech Connect

Walter, K.; Weiss, C. C.; Swift, A. H. P.; Chapman, J.; Kelley, N. D.

2009-02-01

Numerous previous works have shown that vertical shear in wind speed and wind direction exist in the atmospheric boundary layer. In this work, meteorological forcing mechanisms, such as the Ekman spiral, thermal wind, and inertial oscillation, are discussed as likely drivers of such shears in the statically stable environment. Since the inertial oscillation, the Ekman spiral, and statically stable conditions are independent of geography, potentially significant magnitudes of speed and direction shear are hypothesized to occur to some extent at any inland site in the world. The frequency of occurrence of non-trivial magnitudes of speed and direction shear are analyzed from observation platforms in Lubbock, Texas and Goodland, Indiana. On average, the correlation between speed and direction shear magnitudes and static atmospheric stability are found to be very high. Moreover, large magnitude speed and direction shears are observed in conditions with relatively high hub-height wind speeds. The effects of speed and direction shear on wind turbine power performance are tested by incorporating a simple steady direction shear profile into the fatigue analysis structures and turbulence simulation code from the National Renewable Energy Laboratory. In general, the effect on turbine power production varies with the magnitude of speed and direction shear across the turbine rotor, with the majority of simulated conditions exhibiting power loss relative to a zero shear baseline. When coupled with observational data, the observed power gain is calculated to be as great as 0.5% and depletion as great as 3% relative to a no shear baseline. The average annual power change at Lubbock is estimated to be -0.5%

Effects of wall shear stress on unsteady MHD conjugate flow in a porous medium with ramped wall temperature.

PubMed

Khan, Arshad; Khan, Ilyas; Ali, Farhad; Ulhaq, Sami; Shafie, Sharidan

2014-01-01

This study investigates the effects of an arbitrary wall shear stress on unsteady magnetohydrodynamic (MHD) flow of a Newtonian fluid with conjugate effects of heat and mass transfer. The fluid is considered in a porous medium over a vertical plate with ramped temperature. The influence of thermal radiation in the energy equations is also considered. The coupled partial differential equations governing the flow are solved by using the Laplace transform technique. Exact solutions for velocity and temperature in case of both ramped and constant wall temperature as well as for concentration are obtained. It is found that velocity solutions are more general and can produce a huge number of exact solutions correlative to various fluid motions. Graphical results are provided for various embedded flow parameters and discussed in details.

Effects of Wall Shear Stress on Unsteady MHD Conjugate Flow in a Porous Medium with Ramped Wall Temperature

PubMed Central

Khan, Arshad; Khan, Ilyas; Ali, Farhad; ulhaq, Sami; Shafie, Sharidan

2014-01-01

This study investigates the effects of an arbitrary wall shear stress on unsteady magnetohydrodynamic (MHD) flow of a Newtonian fluid with conjugate effects of heat and mass transfer. The fluid is considered in a porous medium over a vertical plate with ramped temperature. The influence of thermal radiation in the energy equations is also considered. The coupled partial differential equations governing the flow are solved by using the Laplace transform technique. Exact solutions for velocity and temperature in case of both ramped and constant wall temperature as well as for concentration are obtained. It is found that velocity solutions are more general and can produce a huge number of exact solutions correlative to various fluid motions. Graphical results are provided for various embedded flow parameters and discussed in details. PMID:24621775

Acoustic excitation: A promising new means of controlling shear layers

NASA Technical Reports Server (NTRS)

Stone, J. R.; Mckinzie, D. J., Jr.

1984-01-01

Techniques have long been sought for the controlled modification of turbulent shear layers, such as in jets, wakes, boundary layers, and separated flows. Relatively recently published results of laboratory experiments have established that coherent structures exist within turbulent flows. These results indicate that even apparently chaotic flow fields can contain deterministic, nonrandom elements. Even more recently published results show that deliberate acoustic excitation of these coherent structures has a significant effect on the mixing characteristics of shear layers. Therefore, we have initiated a research effort to develop both an understanding of the interaction mechanisms and the ability to use it to favorably modify various shear layers. Acoustic excitation circumvents the need for pumping significant flow rates, as required by suction or blowing. Control of flows by intentional excitation of natural flow instabilities involves new and largely unexplored phenomena and offers considerable potential for improving component performance. Nonintrusive techniques for flow field control may permit much more efficient, flexible propulsion systems and aircraft designs, including means of stall avoidance and recovery. The techniques developed may also find application in many other areas where mixing is important, such as reactors, continuous lasers, rocket engines, and fluidic devices. It is the objective of this paper to examine some potential applications of the acoustic excitation technique to various shear layer flows of practical aerospace systems.

Influence of Freestream and Forced Disturbances on the Shear Layers of a Square Prism

NASA Astrophysics Data System (ADS)

Lander, Daniel Chapman

Flow around the square prism, an archetypal bluff body, has applications in all areas of fluid mechanics: vibration, mixing, combustion and noise production to name a few. It also has distinct importance to wind loading on architectural and industrial structures such as tall buildings, bridges, and towers. The von-Karman (VK) vortex street is a major reason for its significance: a flow phenomenon which has received intense scrutiny from scientific and engineering communities for more than 100 years! However, the characteristics of the shear layers separating from the sharp edges, essential to the vortex shedding, have received comparatively little attention. This is surprising considering the Kelvin-Helmholtz (KH) instability of shear layers produce the first signatures of turbulence in the wake. Furthermore, the shear layers are conduits for the passage of vorticity between the boundary layer and the turbulent wake. Many details of their structure and role in the shedding process remain unexplored. This dissertation aims to address this deficiency. Specifically, this project considered the influence of three variables on the characteristics of the transition-to-turbulence in the square prism shear layers. These are: (1) Reynolds number; (2) freestream disturbances and (3) forced disturbances. In each case, the dynamics of the shear layer-wake interaction were considered. Particle image velocimetry and constant temperature anemometry measurements were used to document the shear layer during inception and evolution as it passes into the wake. With increasing Reynolds number, ReD = UinfinityD/nu, in the range 16,700-148,000, the transition-to-turbulence in the initially laminar shear layer moves toward separation. A coordinate system local to the time-averaged shear layer axis was used such that the tangent and normal velocities, turbulent stresses and gradient quantities could be obtained for the curved shear layer. Characteristic frequencies, lengths and transition

Physics of unsteady cylinder-induced transitional shock wave boundary layer interactions

NASA Astrophysics Data System (ADS)

Murphree, Zachary Ryan

The mean flowfield and time-dependent characteristics of a Mach 5 cylinder-induced transitional shock-wave/boundary-layer interaction have been studied experimentally. The interactions were generated with a right circular cylinder mounted on a flat plate. The Reynolds number based on distance from the leading edge of the plate to the cylinder leading edge ranged from 4.5 x 106 to 6.1 x 106, and the incoming boundary-layer was transitional. The objectives of the study were to: (i) provide a detailed description of the mean flow structure of the interaction, and (ii) characterize the unsteadiness of the interaction based on fluctuating pressure measurements. Mean wall-pressure measurements coupled with planar laser scattering and surface visualization showed that the transitional interaction exhibits characteristics that are essentially a "composite" of an upstream laminar interaction and a downstream turbulent interaction. In the upstream region there is a laminar separation bubble that is characterized by a weak separation shock, a pressure plateau, and low relative mass/heat flux. The separated boundary-layer reattaches downstream of this bubble, about 4 diameters upstream of the cylinder. This reattached flow is characterized by high relative mass/heat flux, an increase in pressure and a rapidly thickening boundary-layer. The flow then separates again in a manner very similar to a low Reynolds number turbulent interaction. Statistical analysis of the pressure histories suggest that the entire interaction stretches and contracts in concert. Power spectral densities of the pressure fluctuations showed unsteadiness throughout the interaction with energy content in one of two frequency bands: one with a sharp peak from 1-2 kHz and the other with a broader peak at 7-10 kHz. The lower frequency is attributed to the interaction motion, whereas the higher frequency is found underneath the reattached boundary-layer. Cross-correlations and coherence functions in the

Refraction and scattering of sound by a shear layer

NASA Technical Reports Server (NTRS)

Schlinker, R. H.; Amiet, R. K.

1980-01-01

The angle and amplitude changes for acoustic waves refracted by a circular open jet shear layer were determined. The generalized refraction theory was assessed experimentally for on axis and off axis acoustic source locations as source frequency varied from 1 kHz to 10 kHz and free stream Mach number varied from 0.1 to 0.4. Angle and amplitude changes across the shear layer show good agreement with theory. Experiments confirm that the refraction theory is independent of shear layer thickness, acoustic source frequency, and source type. A generalized theory is, thus, available for correcting far field noise data acquired in open jet test facilities. The effect of discrete tone scattering by the open jet turbulent shear layer was also studied. Scattering effects were investigated over the same Mach number range as frequency varied from 5 kHz to 15 kHz. Attenuation of discrete tone amplitude and tone broadening were measured as a function of acoustic source position and radiation angle. Scattering was found to be stronger at angles close to the open jet axis than at 90 deg, and becomes stronger as the acoustic source position shifts downstream. A scattering analysis provided an estimate of the onset of discrete tone scattering.

Vortex-induced disturbance field in a compressible shear layer

NASA Technical Reports Server (NTRS)

Papamoschou, D.; Lele, S. K.

1992-01-01

The disturbance field induced by a small isolated vortex in a compressible shear layer is studied using direct simulation in a convected frame. The convective Mach number, M(sub c), is varied from 0.1 to 1.25. The vorticity perturbation is rapidly sheared by the mean velocity gradient. The resulting disturbance pressure field is observed to decrease both in magnitude and extent with increasing M(sub c), becoming a narrow transverse zone for M(sub c) greater than 0.8. A similar trend is seen for the perturbation velocity magnitude and for the Reynolds shear stress. By varying the vortex size, we verified that the decrease in perturbation levels is due to the mean-flow Mach number and not the Mach number across the vortex. At high M(sub c), the vortex still communicates with the edges of the shear layer, although communication in the mean-flow direction is strongly inhibited. The growth rate of perturbation kinetic energy declines with M(sub c) primarily due to the reduction in shear stress. For M(sub c) greater than or equal to 0.6, the pressure dilatation also contributes to the decrease of growth rates. Calculation of the perturbation field induced by a vortex doublet revealed the same trends as in the single-vortex case, illustrating the insensitivity of the Mach-number effect to the specific form of initial conditions.

12345

23456

Velocity shear layers in solar winds affect Earth's magnetosphere

NASA Astrophysics Data System (ADS)

Bhattacharya, Atreyee

2012-09-01

Human society is increasingly reliant on technology that can be disrupted by space weather. For instance, geomagnetic storms can cause high-latitude air fights to be rerouted, costing as much as $100,000 per fight; induce errors of up to 46 meters in GPS systems; and affect satellites and the International Space Station. Space weather is determined by how the solar wind, a stream of hot plasma from the Sun, interacts with Earth's magnetic field. In studying space weather, scientists have largely neglected the fact that the solar wind contains layers of very strong velocity shear. Scientists understand very little about how these wind shears affect space weather.

LIF measurements of scalar mixing in turbulent shear layers

NASA Technical Reports Server (NTRS)

Karasso, Paris S.; Mungal, M. G.

1993-01-01

The structure of shear layer flows at high Reynolds numbers remains a very interesting problem. Straight mixing layers have been studied and yielded information on the probability density function (pdf) of a passive scalar across the layer. Konrad and Koochesfahani & Dimotakis measured the pdf of the mixture fraction for mixing layers of moderate Reynolds numbers, each about 25,000 (Re based on velocity difference and visual thickness). Their measurements showed a 'non-marching' pdf (central hump which is invariant from edge to edge across the layer), a result which is linked to the visualizations of the spanwise Kelvin-Helmholtz (K-H) instability mode, which is the primary instability for plane shear layer flows. A secondary instability mode, the Taylor-Gortler (T-G) instability, which is associated with streamwise vortical structures, has also been observed in shear layers. Image reconstruction by Jimenez et al. and volume renderings by Karasso & Mungal at low Re numbers have demonstrated that the K-H and the T-G instability modes occur simultaneously in a non-mutually destructive way, evidence that supports the quasi two-dimensional aspect of these flows and the non-marching character of the pdf at low Reynolds numbers. At higher Re numbers though, the interaction of these two instability modes is still unclear and may affect the mixing process. In this study, we perform measurements of the concentration pdf of plane mixing layers for different operating conditions. At a speed ratio of r = U(sub 1)/U(sub 2) = 4:1, we examine three Reynolds number cases: Re = 14,000, Re = 31,000, and Re = 62,000. Some other Re number cases' results, not presented in detail, are invoked to explain the behavior of the pdf of the concentration field. A case of r = 2.6:1 at Re = 20,000 is also considered. The planar laser-induced fluorescence technique is used to yield quantitative measurements. The different Re are obtained by changing the velocity magnitudes of the two streams. The

Patterning of a cohesionless granular layer under pure shear

NASA Astrophysics Data System (ADS)

Alarcn, Hctor; Gminard, Jean-Christophe; Melo, Francisco

2018-01-01

The response of a thin layer of granular material to an external pure shear imposed at its base is investigated. The experiments show that, even for noncohesive materials, the resulting deformation of the material is inhomogeneous. Indeed, a novel smooth pattern, consisting of a periodic modulation of the shear deformation of the free surface, is revealed by an image-correlation technique. These observations are in contrast with the previous observation of the fracture pattern in cohesive granular materials subjected to stretching. For cohesive materials, the instability is due to the weakening of the material which results from the rupture of capillary bridges that bond the grains to one another. For noncohesive materials, the rupture of the capillary bridges cannot be invoked anymore. We show that the instability results from the decrease of friction on shearing. PACS: 89.75.Kd: Pattern formation in complex systems; 83.60.Uv: Rheology: fracture; 45.70.Qj: Pattern formation in granular matter

Sub-optimal control of unsteady boundary layer separation and optimal control of Saltzman-Lorenz model

NASA Astrophysics Data System (ADS)

Sardesai, Chetan R.

The primary objective of this research is to explore the application of optimal control theory in nonlinear, unsteady, fluid dynamical settings. Two problems are considered: (1) control of unsteady boundary-layer separation, and (2) control of the Saltzman-Lorenz model. The unsteady boundary-layer equations are nonlinear partial differential equations that govern the eruptive events that arise when an adverse pressure gradient acts on a boundary layer at high Reynolds numbers. The Saltzman-Lorenz model consists of a coupled set of three nonlinear ordinary differential equations that govern the time-dependent coefficients in truncated Fourier expansions of Rayleigh-Renard convection and exhibit deterministic chaos. Variational methods are used to derive the nonlinear optimal control formulations based on cost functionals that define the control objective through a performance measure and a penalty function that penalizes the cost of control. The resulting formulation consists of the nonlinear state equations, which must be integrated forward in time, and the nonlinear control (adjoint) equations, which are integrated backward in time. Such coupled forward-backward time integrations are computationally demanding; therefore, the full optimal control problem for the Saltzman-Lorenz model is carried out, while the more complex unsteady boundary-layer case is solved using a sub-optimal approach. The latter is a quasi-steady technique in which the unsteady boundary-layer equations are integrated forward in time, and the steady control equation is solved at each time step. Both sub-optimal control of the unsteady boundary-layer equations and optimal control of the Saltzman-Lorenz model are found to be successful in meeting the control objectives for each problem. In the case of boundary-layer separation, the control results indicate that it is necessary to eliminate the recirculation region that is a precursor to the unsteady boundary-layer eruptions. In the case of the

The effects of forcing on a single stream shear layer and its parent boundary layer

NASA Technical Reports Server (NTRS)

Haw, Richard C.; Foss, John F.

1990-01-01

Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.

Transverse jet shear layer instabilities and their control

NASA Astrophysics Data System (ADS)

Karagozian, Ann

2013-11-01

The jet in crossflow, or transverse jet, is a canonical flowfield that has relevance to engineering systems ranging from dilution jets and film cooling for gas turbine engines to thrust vector control and fuel injection in high speed aerospace vehicles to environmental control of effluent from chimney and smokestack plumes. Over the years, our UCLA Energy and Propulsion Research Lab's studies on this flowfield have focused on the dynamics of the vorticity associated with equidensity and variable density jets in crossflow, including the stability characteristics of the jet's upstream shear layer. A range of different experimental diagnostics have been used to study the jet's upstream shear layer, whereby a transition from convectively unstable behavior at high jet-to-crossflow momentum flux ratios to absolutely unstable flow at low momentum flux and/or density ratios is identified. These differences in shear layer stability characteristics have a profound effect on how one employs external excitation to control jet penetration, spread, and mixing, depending on the flow regime and specific engineering application. These control strategies, and challenges for future research directions, will be identified in this presentation.

Shear deformation plate continua of large double layered space structures

NASA Technical Reports Server (NTRS)

Hefzy, Mohamed Samir; Nayfeh, Adnan H.

1986-01-01

A simple method is presented to model large rigid-jointed lattice structures as continuous elastic media with couple stresses using energy equivalence. In the analysis, the transition from the discrete system to the continuous media is achieved by expanding the displacements and the rotations of the nodal points in a Taylor series about a suitable chosen origin. The strain energy of the continuous media with couple stresses is then specialized to obtain shear deformation plate continua. Equivalent continua for single layered grids, double layered grids, and three-dimensional lattices are then obtained.

Instability associated baroclinic critical layers in rotating stratified shear flow

NASA Astrophysics Data System (ADS)

Wang, Chen; Balmforth, Neil

2017-11-01

When a vertically stratified fluid is subject to horizontal shear, a baroclinic critical layer of internal gravity waves can appear. It is where the wave's intrinsic frequency matches the fluid's buoyancy frequency and the baroclinicity becomes singular. The present research studies baroclinic critical layers associated with normal mode instability. The baroclinic critical layer makes localized large wave amplitude and abrupt phase change, as well as strong wave-mean interaction and specially, it can make the flow unstable. In strong-stratification flows, the baroclinic critical layer connects an incident inertial-gravity travelling wave to an exponentially decaying amplitude, and in weak-stratification flows, it connects a Kelvin wave to a standing inertial-gravity wave. Moving the baroclinic critical layer into the domain will either make the originally neutral mode unstable or destroy that mode. We have specified the conditions of these two situations according to the conservation of pseudomomentum. The instability induced by baroclinic critical layer is very different from the previous known strato-rotational instability (SRI): it is unstable for a continuous band of wavenumbers since resonance condition is not required.

Refraction of sound by a shear layer - Experimental assessment

NASA Technical Reports Server (NTRS)

Schlinker, R. H.; Amiet, R. K.

1979-01-01

An experimental study was conducted to determine the refraction angle and amplitude changes associated with sound transmission through a circular, open jet shear layer. Both on-axis and off-axis acoustic source locations were used. Source frequency varied from 1 kHz to 10 kHz while freestream Mach number varied from 0.1 to 0.4. The experimental results were compared with an existing refraction theory which was extended to account for off-axis source positions. A simple experiment was also conducted to assess the importance of turbulence scattering between 1 kHz and 25 kHz.

Unsteady magnetohydrodynamics micropolar fluid in boundary layer flow past a sphere influenced by magnetic fluid

NASA Astrophysics Data System (ADS)

Pratomo, Rizky Verdyanto; Widodo, Basuki; Adzkiya, Dieky

2017-12-01

Research about fluid flow was very interesting because have a lot of advantages and it can be applied in many aspects of life. The study on fluid flow which is now widely studied is on magnetohydrodynamic (MHD). Magnetohydrodynamic is a conductive and electrical in a magnetic field. This paper considers the effect of unsteady magnetic fields on the flow of magneto-hydrodynamic fluid on the boundary layer that flows past a sphere in micropolar fluid influenced by magnetic field. Our approach is as follows. First, we construct a mathematical model and then the system of equations obtained will be solved numerically using the Keller-Box scheme. Then the system is simulated to assess its effect on the fluid flow velocity profile and the profile of microrotation particles. The result of this research indicates, that when the magnetic parameters increase, then velocity profile increases. If material parameters increase, then velocity profile decreases and magnetic parameters increase for n = 0. For n = 0.5, if magnetic parameters increase, then microrotation profile decreases.

Magnetohydrodynamics of unsteady viscous fluid on boundary layer past a sliced sphere

NASA Astrophysics Data System (ADS)

Nursalim, Rahmat; Widodo, Basuki; Imron, Chairul

2017-10-01

Magnetohydrodynamics (MHD) is important study in engineering and industrial fields. By study on MHD, we can reach the fluid flow characteristics that can be used to minimize its negative effect to an object. In decades, MHD has been widely studied in various geometry forms and fluid types. The sliced sphere is a geometry form that has not been investigated. In this paper we study magnetohydrodynamics of unsteady viscous fluid on boundary layer past a sliced sphere. Assumed that the fluid is incompressible, there is no magnetic field, there i