61
S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR Unsteady Phenome na in Centrifugal compress ors-Impeller and Diffuser Interaction 21 July, 2012 Unsteady Phenomena in Centrifugal Compressor Impeller and Diffuser Interaction By S . Ramamurthy

Unsteady flow in centrifugal compressor stage

Embed Size (px)

Citation preview

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 1/61

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

Unsteady Phenomena in Centrifugal Compressor

Impeller and Diffuser InteractionBy

S . Ramamurthy

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 2/61

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

BASIC CONCEPTS

FLOW, SIGNALS, AVERAGING, SIGNAL-NOISE, CORRELATIONS

COMPRESSOR EVALUATION

TIME AVAERAGE MEASUREMENTS

UNSTADY VELOCITY & PRESSURE MEASUREMENTS

CHARACTERIZATION OF COMPRESSOR EXIT FLOW

JET-WAKE

SLIP FACTORS

EFFICIENCY

SUPERSONIC COMPRESSOR-DIFFUSER 

FLOW BEHAVIOUR 

FLOW VIDEO

CHARACTERIZATION OF ROTATING STALL & SURGE

STALL FREQUENCY AND STALL CELLS

CHARACTERIZATION OF ROTATING STALL INCEPTION

EARLY WARNING

FLOW VIDEO

CHARCATERIZATION OF SPECTRAL FLCTUATIONS IN CFC

FLOW UNSTAEDYNESS AT IMPELLER EXIT

FREQUENCY OF SPETRAL FLUCTUATIONS

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 3/61

CLASSIF ICATION OF FLOW 

Uniform flow 

I f the flow velocity is the same magni tude and direction at every poin t in the fl uid i t is said to be

uniform.

Non-uniform flow 

I f at a given instant, the velocity is not the same at every point the flow is non-un iform.

Steady fl ow 

A steady flow is one in which the conditions (veloci ty, pressur e and cross-section) may dif fer from

point to point but DO NOT change with time.

Unsteady flow I f at any point in the fluid, the conditi ons change with time, the flow is descri bed as unsteady.

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 4/61

Combining the above we can classify any flow in to one of four type:

1. Steady uniform flow 

Conditions do not change with position in the stream or with time. Example-flow of water in a pipe of constant diameter at constant velocity

2. Steady non-uniform flow 

Conditions change from point to point in the stream but do not change withtime.

Example-flow in a tapering pipe with constant velocity at the inlet - velocity will change

as you move along the length of the pipe toward the exit.

3. Unsteady uniform flow.

 At a given instant in time the conditions at every point are the same, but will change with time .

Example-Pipe of constant diameter connected to a pump pumping at a constant rate

which is then switched off.

4. Unsteady non-uniform flow  Every condition of the flow may change from point to point and with time at every point.

Example-waves in a channel.

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 5/61

Ensemble Average 

In ensemble average successive sets of data are collected and summed point by point.

A prerequisite for the application of this method is the ability to reproduce the signal asmany times as possible starting always from the same data point.

Repetitive additions of noisy signals tend to emphasize their systematic characteristics and to

cancel out any zero-mean random noise.

If (SNR)o

is the original signal-to-noise ratio of the signal, the final (SNR)f 

after N

repetitions (scans) is given by the following equation:

Therefore, by averaging 100 (or 1000) data sets a 10-fold (or a 100-fold) reduction of noiselevel is achieved.

 N SNRSNR o  f   )()(

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 6/61

 x M 

 s M 

 z 

 s z 

avg i

i

 M 

i

i

 M 

avg avg  

1 1

1 1

 

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 7/61

The signal to noise ratio: (S/N)

Every measurement is made up of two components.

One component, the signal, carries information about the fluid that is of interest to us.

The second, called noise, is made up of extraneous information that is unwanted because it degrades the

accuracy and precision of an analysis.

Noise free data can never be realized in the laboratory because some types of noise arise from

thermodynamic, quantum and electric effects that are impossible to avoid in measurement.

The signal to noise ratio is a representative marker-is used in describing the quality of an analytical method or 

the performance of an instrument.

For a signal, S/N = mean / standard deviation

The average strength of the noise, N, is constant and independent of the magnitude of the signal, S.

The effect of noise on the relative error of a measurement becomes greater and greater as the quantity being

measured decreases in magnitude.

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 8/61

 

SOURCES OF NOISE Thermal Noise: Noise that originates from the thermally induced motions in charge carriers is known as

thermal noise.

Chemical : This noise arises from uncontrollable variables in the chemistry of the system such as variationin temperature, pressure, humidity, light and chemical fumes present in the room.

Instrumental : Noise that arises due to the instrumentation itself. It could come from any of the following

components- source, input transducer all signal processing elements, and the output transducer.

This noise has many types and can arise from several sources. There are four main categories of 

instrumental noise: Thermal , Shot, Fl icker and Environment al .

Electromagnetic radiation in the environment including ac power lines, radio and TV stations, gasoline

engine ignition systems, arcing switches, brushes in electrical motors, lightening, and ionospheric

disturbances.

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 9/61

FOURIER TRANSFORMATION

The transformation from the time domain to the

frequency domain is based on forward Fouri er 

Transform 

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 10/61

Correlation addresses the question: “to what degree is signal A similar to signal B.” 

0 5 10 15 20 250

0.5

1

1.5

Signal A

0 5 10 15 20 25

-2

0

2

Signal B1

0 5 10 15 20 250

0.5

1

1.5Signal B2

Sample

By inspection, A is “correlated” with B2, but B1 is “uncorrelated” with both A and

B2. This is an intuitive and visual definition of “correlation.” 

CORRELATION

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 11/61

0 5 10 15 20 250

0.5

1Original Signal A

0 5 10 15 20 250

0.5

1Sample-Shifted Signal In this case, the simple cross-correlation

would be zero despite the fact the two

signals are obviously “correlated.” 

1

12 1 2

0

1( ) [ ] [ ]

 N 

n

r k x n x n k   N 

The cross-correlation of a signal with itself is called the auto-correlation

1

0

1111 ][][1

)( N 

n

k n xn x

 N 

k r 

The “zero-lag” auto-correlation is the same as the mean-square signal 

 power  1 1

2

11 1 1

0 0

1 1(0) [ ] [ ] [ ]

 N N 

n n

r x n x n x n N N 

CROSS CORRELATION:

AUTO CORRELATION:

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 12/61

EXPERIMENTAL EVALUATION OF CF COMPRESSOR 

(PERFORMANCE)

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 13/61

Moderate tip speed

High head back to back 

High tip speed

High flow, double flow

Compressor classification

Vane diffuser and volute

Hub wall

shroud wall

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 14/61

c R

dn

dW  2 + Forward Blade

-Backward Blade

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 15/61

 

CLOSED CIRCUIT CENTRIFUGAL COMPRESSOR TEST FACILITY INSTRUMENTATION PC based data acquisition system, Electronic torque meter, Hot wire anemometer / FFT analyzer

Accelerometers, Pressure transducers/Thermocouples, Sonic analyzer

Conventional pressure and temperature probes for time averaged measurements- Steady

High response probes for pressure and velocity measurement s- Unsteady

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 16/61

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

3-HOLE YAW PROBE

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 17/61

 P 

T m

10132501 P 

 P 

15.28801T 

 P 

T m

 

  

 

1

1

01

02

1

01

02

 P 

 P 

i

 

 

 

df  b

 swer measuredPo

 P 

 P 

   

 

 

 

  

 

1

1

01

05

65.0)1000/( N b  

2.0

2

2

3

20201356.0

en

df   R

 DU    

 

Line of Zero Incidence

(kg/s) (kg/s)

Line of Zero Incidence

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 18/61

HEAD-FLOW CHARACTERISTICS

2

2

201

4

U  D

m

   

 

2

1

2

2

1

01

201

 P 

 P T C 

 P 

ts

 

  

 

 

 

 

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

POINTS A,B,C ARE CONSIDERED

FOR FURTHER DETAILED

STUDY

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 19/61

Axial Width (b/b2) Axial Width (b/b2)

   R  a   d   i  a   l   V  e   l  o  c

   i   t  y   (  m   /  s   )

   T  a  n  g  e  n   t   i  a   l   V

  e   l  o  c   i   t  y   (  m   /  s   )

HUB HUB SHROUDSHROUD

Time averaged radial velocity

distribution at impeller outlet

Time averaged tangential velocity

distribution at impeller outlet

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

b2b

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 20/61

Axial Width (b/b2) Axial Width (b/b2)

   A   b  s  o   l  u   t  e   f   l  o  w

  a  n  g   l  e   (   d  e  g .   )

   R  e   l  a   t   i  v  e   f   l  o  w  a  n  g   l  e   (   d  e  g .   )

HUB HUBSHROUD SHROUD

Time averaged absolute flow angle

distribution at impeller outlet

Time averaged relative flow angle

distribution at impeller outlet

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 21/61

OBSERVATIONS ON PERFORMANCE CHARACTERISTICS

Maximum impeller efficiency 90% - Positive incidenceMaximum stage efficiency 75% - Negative incidence

Optimum incidence to impeller may not be the optimum to diffuser 

Matching of Impeller with diffuser important

Head flow Characteristics  – No Hystericis

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 22/61

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

KULITE PRESSURE SENSOR MOUNTING

Total pressure Static Pressure

KULITE PRESSURE SENSOR 

HOT-WIRE SENSOR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 23/61

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 24/61

Location of pressure and suction surface trailing edges

q’ 

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

1. HW senses the absolute flow at 8mm away

from impeller outlet

2. There exists a time diff for the flow to reachthe HW and be sensed, from the point where

it leaves the impeller 

3. The time lag is function of location of HW,

magnitude & direction of velocity vector 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 25/61

HUB MID SHROUD HUB MID SHROUD

128.0d  

094.0d  

078.0d  

Blade wake

Space averaged(Hot-Wire)

Yaw probe

hubshroud

mid

U2 

U2 

U2 

wake

FlowCoeff.

Near Hub Wall Mid Channel Near Shroud Wall

Yaw

Probe

Hot-

wire

Yaw

Probe

Hot-

wire

Yaw

Probe

Hot-

Wire

0.128 63 65 56 60 49 50

0.094 38 40 36 37 40 50

0.078 29 30 32 33 39 50

FlowCoeff.

Near Hub Wall Mid Channel Near Shroud Wall

Yaw

Probe

Hot-

wire

Yaw

Probe

Hot-

wire

Yaw

Probe

Hot-

wire

0.128 62 60 77 63 77 90

0.094 77 130 83 105 81 110

0.078 67 130 86 113 86 120

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

Absolute Vel

Relative Vel

Blade Speed

Radial Vel

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 26/61

Jet flow behaves like potential flow

Relative flow angle don't fit conventional jet-wake model nor 1-D slip theory

Jet-Wake parameters depends on flow coeff 

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 27/61

Blade Wake

Constant

Pressure is higher at SS

Due to higher tangential vel

Pressure not effected by

end wall BL

Higher Energy transfer in wake

Tot. Pr. in jet is constant

Tot. Pr. in wake varies linearlyfrom high vale to low value from

SS

Unstaedy flowLarge variation in angle

Rel. Total Pr. Low

Section F P02

(Kulite)

P02

(Yaw Probe)

% Diff 

Hub 0.128

0.094

0.078

1.0558

1.1034

1.1177

1.0726

1.1118

1.1257

1.60

0.80

0.70

Mean 0.128

0.094

0.078

1.0529

1.1119

1.1299

1.0692

1.1117

1.1303

1.50

0.02

0.04

Shroud 0.128

0.094

0.078

1.0619

1.1169

1.1319

1.0757

1.1176

1.1308

1.30

0.70

0.10

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 28/61

C2

P02 

C2

P02 

A

B

Static pressure at end walls affected by BL

Shroud side more than hub side

At low flow coeff. Static pr distortion

adjacent to SS

In model Ps decrease from PS to SS

Av. Ps in jet – Isentropic

Present- Ps constant in jet

Cannot be assessed in wake

Approx. increase linearly from SS to

Jet Ps

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 29/61

SECTION FLOW

COEFF

STATIC

PR.(CAL)

STATIC

PR.

(KULITE)

STATIC

PR.(WALL)

%

DIFF

HUB 0.128

0.078

1.0352

1.0432

1.0674

1.0855

1.0627

1.0895

3.0

3.8

MEAN 0.128

0.078

1.0559

1.0622

1.0704

1.0669

1.3

0.4

SHROUD 0.128

0.078

1.0399

1.0485

1.0725

1.0789

3.0

2.8

NORMALIZED STATIC PRESSURE VALUE

AT IMPELLER OUTLET

Total and static pressure in the jet remains constant

Whereas in the wake they vary

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 30/61

c2ww2j W2w

U2

U2

c2j

0.85 0.89 0.96 Mass averaged Slip Factor 

0.91 1.16 1.18 Wake Slip Factor (Hot wire) 

0.88 0.9 0.92 Overall Slip factor (Wislineous) 

0.91 0.91 0.91 Slip factor overall (Wisner) 

0.92 0.93 0.95 Jet Slip factor (Stanitz) 

0.83 0.84 0.86 Jet slip factor (hot wire) 

0.8 0.82 0.88 From yaw probe 

0.128 0.094 0.078 Flow coefficient 

  jw      )1(0

)1(8

1

22

0 j  

   

  

 

7.0

2 )cos(1

b

b

 N 

  

2/63.01   jq 

q

 b 

cr2 

U2 

cq2 

c2 w2  2b 

cs 

Cs=Slip Velocity

)tan( 2

2

2

2

2b

U C 

U C      q  Slip Factor (1 -

CS 

U2 

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S R h NCAD N i l A L b i B l 560 017 CSIR

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 31/61

)1(cos

17.0

2

 j

b

b

 j N 

q   

  )1(26.11 3

80

2

 j j  q    

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S R th NCAD N ti l A L b t i B l 560 017 CSIR

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 32/61

Slip Factor depends on flow coefficient

Slip factor increases with decrease in flow coefficient

Jet slip factor is always < 1

Wake slip factor depends on wake width

For large wake width wake slip factor>1 indicating flow angle is less than the blade angle and

specific work is less than Euler work Yaw probe cannot respond to high frequency unsteady flows can measure only average

velocity of jet flow

Variation of slip factor in tangential direction

 New correlations – Evaluate wake and jet flow angles

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S R th NCAD N ti l A L b t i B l 560 017 CSIR

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 33/61

FLOW COEFF.= 0.128

FLOW COEFF.= 0.094

FLOW COEFF.= 0.078

Full Line – From hot-wire anemometry measurements

Chain Line- From conceptual jet-wake model

RELATIVE VELOCITY

AT IMPELLER EXIT

 jetwake

2b 

JET-WAKE MODEL COMPARISION

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S R th NCAD N ti l A L b t i B l 560 017 CSIR

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 34/61

ds

dW 

 RW 

dS 

WdW  R C 

i

/2

Stability of rotating

shear layer 

Stability of shear 

Layer past curvedwall

S  R

W  R

Richardson Number 

Rossby Number 

Pressure gradient

Positive away from the surface (SS or 

Convex wall) Turbulence intensity

stabilized, Turbulence shear stress

Decreases-BL less resistance to

separation

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S Ramamurthy NCAD National Aerospace Laboratories Bangalore 560 017 CSIR

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 35/61

m

mw 

 j

w

W W 

2

2

2

q   w

Wake mass flow rate

Total mass flow rate

 Relative velocity of the wake flow

 Relative velocity of the jet flow

Circumferential space occupied by wake

 Blade to blade spacing 

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S Ramamurthy NCAD National Aerospace Laboratories Bangalore 560 017 CSIR

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 36/61

----- Present model----- Conceptual model

Relative

velocity

Relative

flow

angle

Static

pressure

Total

pressure

Jet-Wake Parameters

   94.686.0 m

mw

   q q 

13.913.1 w j

 j

   84.44.02

2  j

w

w

w

Conceptual Model Slip

  j  j q   2

63.0

10.1w 

Present model

)1(cos

1 7.0

2

 j

b

b

 j N  q 

   

 

     j

w

)1(0

Where )1(26.11 3

80

2

 j j  q     Relative flow angle in wake

m jw bb 222 3)31(       for  3/1b

2/)13()1(3 222 jmw bb       for  3/1b

Where32

2 969623131936       m

 

Jet wake

interfaceJetWake

ε 

/3

2m 

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S Ramamurthy NCAD National Aerospace Laboratories Bangalore 560 017 CSIR

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 37/61

Flow coefficient 0.128 0.094 0.07

8

Three hole yawprobe

4.50 3.26 2.78

Hot-wire

anemometer

4.51 3.35 2.86

Calibrated wall

static pressure

4.60 3.27 2.83

2

0

222 .2

b

r S  dbC r m   

 

q   

2

0 022

2b

r S  dbd C m

ESTIMATED MASS FLOW RATE ESTIMATED POWER (KW)

Flow

Coefficient

0.128 0..094 0.078

Ideal Power 53.1 45.5 41.3

Measured

Power

39.0 37.0 33.0

Estimated from

yaw probe

measurements

36.2 34.7 32.3

Estimated from

hot-wire

measurements

38.0 42.3 40.3

Jet flow power 35.1 33.1 26.7

Wake flow

power

2.9 9.2 13.6

2

0

222222

b

r S  dbC C U r  P  q      

q  q   2

0 0

2222

2

.. d dbC C U  P 

b

r S 

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S Ramamurthy NCAD National Aerospace Laboratories Bangalore-560 017 CSIR

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 38/61

 

 

q   

q    

 2

0

2

0

2

0

2

0

))((

))((

b

b

r h

h

dbd C 

dbd C 

22

1

01

02 1

 

 

 C U 

 P 

 P C  p

h

 

  

 

and Velocity form hot-wire

Wake flow efficiency is high. At the interface between

Jet – wake the efficiency is low due to large shear

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S Ramamurthy NCAD National Aerospace Laboratories Bangalore-560 017 CSIR

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 39/61

Wake mass flow and wake width depends on flow coefficient

Increases with increase in flow coefficient

Considerable amount of wake mass flow and wake width exists and cannot be

neglected in the off design performance prediction

Wake flow absorbs part of the power from shaft input power and part from jet

power which has undergone slip

Excess power available in the wake is considered as apparent power 

Power input within the channel is non-uniform

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 40/61

Kulite Transducer Terminal

Box 1

Terminal

Box 2

16 Channel

Programmable Gain

Amplifier card

Data Acquisition

Processor Card

Plotter 

Differential signal

Differential signal Amplified Single endedsignal

Eddy Current ProbeDriver 

Analog to TTL

( transistor transistor logic)

Converter 

(-15V to – 10V) (0 to 5V TTL Pulse)

Pentium

Layout of high speed data acquisition processor system.

KULITE PRESSURE TRANSDUCER 

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore 560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

Supersonic Centrifugal Compressor Stage

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 41/61

DIFFUSER  – INSTRUMENTED BLADE

Channel static pressure Static Pressure Close to Diffuser

Suction Surface Pressure taps

Pressure Surface Pressure taps

KULITE LOCATIONS

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore 560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

5 /7S.Ramamurthy, NCAD, National Aer

ospace Laboratories, Bangalore-560 017, CSIR

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 42/61

  ms

 0.0 2.5 5.0 7.5 10.0 12.5 15.

 5rc/a7

 150

 100

 50

 150

 100

 50

 150

 100

 50

 150

 100

 50

 150

 100

 50

 150

 100

 50

  ms

 0.0 2.5 5.0 7.5 10.0 12.5 15.

 150

 100

 50

 150

 100

 50

 150

 100

 50

 150

 100

 50

 150

 100

 50

 150

 100

 50

  ms

 0.0 2.5 5.0 7.5 10.0 12.5 15.

 150

 100

  50

 150

 100

  50

 150

 100

  50

 150

 100

  50

 150

 100

  50

 150

 100

  50

Impeller outlet

Diffuser leading edge

Diffuser throat

Diffuser channel

Diffuser channel

Diffuser outlet

F.C = 0.038

F.C = 0.031 F.C = 0.023

Circumferential variation of static pressure at different locations along vane diffuser

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore 560 017, CSIR 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 43/61

  ms

 0.0 2.5 5.0 7.5 10.0 12.5 15.

  ms

 0.0 2.5 5.0 7.5 10.0 12.5 15.0

F.C = 0.027

F.C = 0.021

F.C = 0.022

F.C = 0.023

F.C = 0.024

F.C = 0.020

F.C = 0.029

F.C = 0.030

F.C =0.031

F.C = 0.032

F.C = 0.033

F.C = 0.034

F.C = 0.035

F.C = 0.038

F.C = 0.053

Pressure surface Center Suction surface

50

150

  ms

  0.0 2.5 5.0 7.5 10.0 12.5 15.0

50

150

500

-500

-1000

1000

-7000

7000

1000

-1000

1000

-10003000

-3000

Diffuser throat static pressure variation at different flow coefficients

y, , p , g ,

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 44/61

    ms

   0 5 10 15 20 25 30 35 40 45 50 55 60 65

   200

   150

   100

   50

   0

   200

   150

   100

   50

   0

   200

   150

   100

   50

   0

   200

   150

   100

   50

   0

 

Circumfrential variation of static pressure at impeller outlet - stalled condition

(Flow coefficient = 0.02)

K1

K2

K3

K4

y, , p , g ,

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 45/61

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 46/61

SOME OBSERVATIONS

* Diffuser plays an important role in the stage performance

* Optimum stage performance is achieved close to the stall

* The flow from leading edge to throat of the diffuser depends

on the incidence

* The channel from throat to diffuser exit provides good

guidance to the flow

* Good correlation exists between the newly evolved stabilityparameter and flow coefficient

* This parameter is able to demarcate the stable, un-stable and

the stall regions

* The demarcation of stability is through static pressure variation

within the blade channel which are not in repetitive coherence

with impeller rotation.

* Since this phenomenon occurs well ahead of stalling of the

impeller flow, detection of this through the stability parameter is

advantageous.

y p g

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 47/61

STALL AND SURGE

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 48/61

Stall- Flow Separation due to high incidence with reduction CL

Rotating Stall: Non-axisymmetric flow with circumferentially non-uniform pattern rotating around

the annulus

D pD p

m. m m

D p

.

Rotating

stall

Average mass

flow rate

Notaxisymetric

Not axisymetric

Progressiv

Stall

Abrupt

Stall

Surge

Flow

Through flow

Velocity(axial)

Circumferential

velocity

Cell rotation

Instability of Axi-symetric

Very small Very small

Very large Very large

50% 20-40%

Conserved Conserved Varies with time

Effect of stall/surge: Vibrational excitation resulting in Mechanical failure.

Characterization: Stall propagating speed/No. of cells

Detect: Change in noise/high frequency instrumentation.

Time scale: Stall Surge

50-100Hz 3-10Hz

.A

B`

C

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 49/61

Instantaneous hot-wire signals taken at impeller outlet

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

This if for 90 deg.- angular displacement of two sensors 90 Deg.

Time for One revolution of impeller =12 msTo travel 90 deg , stall cell takes DT=20*12/57 =4.21ms

To travel 360 deg. (1 revolution) , stall cell takes=4*4.21 =16.84ms

Hence absolute speed of stall cell Us=1000/16.84 =60 c/s

Rotor speed = 1000/12=83 c/s

Relative speed of stall cell =60-83= -23 c/s

Ratio of stall speed to impeller speed=23/83=1/4 (approx.)

Frequency of stall cell Fs =Ns*Us

At flow coeff=0.057 , Fs=60 c/s, hence Ns=1

At Flow Coeff==0.034, Fs=120 c/s, Hence Ns=2

60Hz

120 Hz

FFT of hot wire signals

57

20

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 50/61

SOME OBSERVATIONS

Flow coefficient 0.057

Rotating Stall initiation  – Single rotating stall cell covering 7 blade passages rotating at

¼ Impeller speed

Flow Coefficient 0.034

Well inside stall region- two rotating stall cells covering three blade passages located

opposite to each other and Rotating at ¼ impeller speed

At both flow coeff. the disturbances propagates upstream of the impeller 

Further reduction in Flow Coeff. Lead to Surge – Unstable behavior 

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 51/61

STALL INCEPTION

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 52/61

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 53/61

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 54/61

ensembleavr 

ensemblet 

rawavr 

rawt 

C  IP  )(

)(

)(

)(

,,

D

D

min,max, t t t  C C C  D

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 55/61

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 56/61

OBSERVATIONS ON STALL INCEPTION

1.The characteristics clearly demarcates regions of stable operation,

instability and rotating stall

2. Instability is identified through bursts of velocity differentials within blade

channel which are not coherence with impeller rotation.

3. Corrective action can be implemented ahead of the stall

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 57/61

SPECTRAL FLUCTUATIONS

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 58/61

ENSEMBLE AVERAGED RADIAL AND WHIRL VELOCITY AT IMPELLER OUTLET

TWO CHANNEL VELOCITIES

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

Tangential component

(Whirl component)

Radial component

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 59/61

Temporal Variation Spatial Variation

Characteristics of absolute velocity

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 60/61

Fourier Transformation-Absolute velocity

Unsteady Phenomena in Centrifugal compressors-Impeller and Diffuser Interaction 21 July, 2012

S.Ramamurthy, NCAD, National Aerospace Laboratories, Bangalore-560 017, CSIR 

7/27/2019 Unsteady flow in centrifugal compressor stage

http://slidepdf.com/reader/full/unsteady-flow-in-centrifugal-compressor-stage 61/61

1. The disturbing vortices in the flow had their origin near the suction surface of the

 blades well inside the channel and they are found to have travelled half the blade

channel across the flow before exiting and coming out of the impeller.

2. Characterization of vortex shedding is similar to Strouhal Number. Strouhal number for this

 particular case works out to be 0.25, which compares well with the universal value of 0.2

3. Unsteady flow observed at impeller outlet is characterized as coherent structure

due to periodic formation of vortex type of disturbances near the blade suction

surfaces and travelling out of the blade passage.4. This vortex formation has not lead to a total separation of flow on the blade suction surface

unlike the consequence of the boundary layer growth.

5. This phenomenon is responsible for the reduced relative velocity as well as

angle and increased work on the flow in the suction side half of the passage

and also for the increasing relative velocity and angle of the flow near the

 pressure side, leading to what is known as slip.

6. The periodic formation and cross channel movement of such vertices could

also be the cause of initiation of rotating Stall in impellers.

OBSERVATIONS