60
Unsaturated hydrocarbons Chapter 13

Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Embed Size (px)

Citation preview

Page 1: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Unsaturated hydrocarbons

Chapter 13

Page 2: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Unsaturated hydrocarbons

• Hydrocarbons which contain at least one C-C multiple (double or triple) bond.

• The multiple bond is a site for chemical reactions in these molecules. Parts of molecules where reactions can occur are called functional groups.

C H 2 C H 3CCC H 3 C

C H 3

C H 2

C H 3

Multiple bondsare examples offunctional groups

Page 3: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Alkenes and cycloalkenes

• Alkenes are unsaturated, acyclic hydrocarbons that possess at least one C-C double bond.

• The generic formula for an alkene is CnH2n (note: same as for a cycloalkane).

EtheneNon IUPAC: "ethylene"

PropeneNon-IUPAC: "propylene"

C H C H 3C H 2C H 2 C H 2

Page 4: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Alkenes and cycloalkenes

• Cycloalkenes are cyclic hydrocarbons that possess at least one C-C double bond.

Cycloalkenes have a general formula of CnH2n-2

Cyclopentene

Page 5: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Alkenes and cycloalkenes

• The geometry around the carbon atoms of the multiple bond is different than the tetrahedral geometry that is always found in carbon atoms of an alkane.

• There is a trigonal planar arrangement of atoms surrounding the C-atoms of the double bond.

Alkenes with two double bonds (dienes), three double bonds (trienes) are not uncommon.Cyclic alkenes usually do not involve more than one C-C double bond.

see: VSEPR theory, Ch-5

sp2-hybridizedcarbon

sp3-hybridizedcarbon

120o 109.5o

Propene

H

H H H

H

C

H

C

CC H 3C HC H 2

Page 6: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

IUPAC nomenclature for alkenes and cycloalkenes

• The rules for assigning an IUPAC name for alkenes are not that different from those for alkanes (substituent rules, chain numbering pretty much the same)

• The difference here is that the longest continuous chain that has the double bond is the parent chain.

correct parent chain not correctCH 2

CH 3

C CH 2 CH 3CH 2CH 2C

CH 3

CH 2 CH 3CH 2CH 2

Page 7: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

IUPAC nomenclature for alkenes and cycloalkenes

• The parent chain is numbered to reflect the position of the double bond (the lower number of the two carbons in the bond).

1-Butene 2-Butene

CH CH3CHCH3CH2 CH3CHCH2

Page 8: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

IUPAC nomenclature for alkenes and cycloalkenes

• For substituted alkenes, the number of the substituent is indicated as before, at the beginning of the name.

2-Methyl-2-butene 3-Methyl-1-butene

CH

CH 3

CH 3CHCH 2C

CH 3

CH CH 3CH 3

For numbering, the parent chain is numbered in a way that gives the lowest numbering tothe multiple bond(s). Substituent numbers are then assigned.

Page 9: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

IUPAC nomenclature for alkenes and cycloalkenes

• For dienes, the parent chain that involves both double bonds is numbered to show the first carbon in each double bond.

1,4-Hexadiene

3,5-Dimethyl-1,3-hexadiene

C H

C H 3

C H 3

C

C H 3

C H C H 2C HC H C H 3C HC H 2C HC H 2

Page 10: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

IUPAC nomenclature for alkenes and cycloalkenes

• For cycloalkenes, the double bond in the ring is numbered only if more than one double bond exists (it is understood the C-1 is the first carbon of a double bond in a ring)

3-Ethylcyclohexene 1,3-cyclohexadiene 5-Ethyl-1,3-cyclohexadiene

C H

C H

C H 2

C H 2

C H

C H

C H 2

C H 3

C HC H

C H

C H

C H 2

C HC H 2

C H 3

C HC H

C H 2

C H 2

C H 2

C H

Page 11: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

IUPAC nomenclature for alkenes and cycloalkenes

• In certain cases, numbering is redundant (and not shown).

Ethene PropeneMethylpropene

C

C H 3

C H 3C H 2C H 2 C H 2 C H C H 3C H 2

Page 12: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

IUPAC nomenclature for alkenes and cycloalkenes

• Later, in larger molecules that possess other groups of atoms (e.g. aromatics), alkene substituents may be present. The types we may encounter are named as follows:

methylidene groupNon-IUPAC: methylene

ethenyl groupNon-IUPAC: vinyl group

2-propenyl groupNon-IUPAC: allyl group

C H 2C HC H 2C HC H 2C H 2

Page 13: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Line-angle structural formulas for alkenes

• Line-angle formulas for alkenes indicate double bonds with two lines. As before, each carbon must possess four bonds, so the number of H-atoms on each position will be able to be found by difference.

1-Butene Propene 2-Methyl-2-pentene

2-Methyl-1,3-butadieneNon-IUPAC: isoprene 3,4-Dimethylcyclopentene

Page 14: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Constitutional isomerism in alkenes

• For a given number of carbon atoms in a chain (> 4 C-atoms), there are more constitutional isomers for alkenes than for alkanes (because of the variability of the C-C double bond position)

Rem: constitutional isomers differ in their atom-to-atom connectivity.

Page 15: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Constitutional isomerism in alkenes

• Two types of constitutional isomers encountered are skeletal isomers and positional isomers.– Positional isomers are constitutional isomers that differ in the position

of the multiple bond (or, in general, the functional group)– Skeletal isomers are constitutional isomers that differ in their C-chain

(and thus H-atom) arrangements.

positional isomers

skeletal isomers skeletal isomers

C5H101-Pentene 2-Pentene

2-Methyl-2-butene

Page 16: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Cis-trans isomerism in alkenes• We’ve already looked at cycloalkanes and cis-, trans- isomers. In alkenes,

this type of stereoisomerism is possible because a C-C double bond cannot rotate (like the C-C bonds in a cycloalkane ring).

• For certain alkenes (which possess one H-atom on each carbon of the C-C double bond) there are two stereoisomers: cis- and trans-

H-atoms on same sideof C-C double bond

H-atoms on oppositesides of C-C double bond

C

CH 3

H

C

C H 3

H

C

CH 3

H

C

H

C H 3

For cis-/trans- isomerism,there must be a H-atom

and another groupattached to each C-atom

of the double bond

cis: H-atoms on same side of C-C double bondtrans: H-atoms on opposite sides of C-C double bond

Page 17: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Cis-trans isomerism in alkenes

• For cis-, trans- isomerism, the alkene double bond cannot be located at the end of a carbon chain:

C

H

H CH 2

CH 3

CH 2

C

H

Page 18: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Cis-trans isomerism in alkenes

• You can differentiate cis-/trans- isomers in line-angle structures:

=

trans-2-Pentene

=

= =

cis-2-Pentene

CH2CH3

CH2CH3

HH

CH 3

H

H

H

CH 3 H

H

H

Page 19: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Cis-trans isomerism in alkenes

• For dienes, each bond is labeled as cis- or trans-, as required:

trans-trans-2,4-Heptadienecis-trans-2,4-Heptadiene

trans-cis-2,4-Heptadiene cis-cis-2,4-Heptadiene

Page 20: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Cis-trans isomerism in alkenes

• In some cases, you’ll encounter alkenes that have only one or no H-atoms bound to the C-atoms of the double bond.

• For these cases, instead of cis- and trans- labels, (Z)- and (E)- labels (respectively) are used.

(E)-3-Methyl-3-hexene(text calls this

trans-3-Methyl-3-hexene)(Z)-3-Methyl-3-hexene

C H 2

C H 3

C H 2

C H 3

C

C HC H 3

C H 2

C H 3 C H 2

C H 3C H

C

C H 3

(E similar to trans- and Z similar to cis-) CH3-CH2- substituenthigher priority thanCH3- substitutent

For both higher priority substituents on same side of double bond, (Z)-For higher priority substituents on opposite sides of double bond: (E)-

This system worksfor more than just alkyl substituents,but we will stick tothese cases for now.

Page 21: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Physical properties of alkenes and cycloalkenes

• Alkenes and cycloalkenes have solubilities similar to what was discussed for alkanes and cycloalkanes

• Generally, alkenes have melting points that are lower than for corresponding alkanes

Page 22: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Chemical properties of alkenes and cycloalkenes

• Like alkanes, combustion reactions can occur, producing H2O and CO2

• Other reactions of alkenes tend to involve the C-C double bond. These are addition-type reactions

A-B “adds across” the C-C double bond. The double bond becomes transformed to a C-C singlebond in the process

alkanealkene

Page 23: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Chemical reactions of alkenes and cycloalkenes

• Addition reactions can be symmetrical or unsymmetrical, depending on what is being added to the double bond.

• In a symmetrical addition, the atoms (or groups) added to each carbon of the double bond are identical.

Cl2

trans-2-Pentene

2,3-Dichloropentane

ClCl

C H 3C HC HC H 2C H 3

C H 3 C H 2

H C H 3

H

CC +

H2

Ni or Pt

150oC12-15 atmpressure

Propene Propane

H H

C H 3C HC H 3

C H

C H 2 CH2+

Halogenation of an alkene

Hydrogenation of an alkene

Page 24: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Chemical reactions of alkenes and cycloalkenes

• Unsymmetrical addition reactions occur when different atoms (or groups) are added across a double bond.

• Several examples of unsymmetrical addition reactions follow:– Hydrohalogenation of a double bond– Hydration of a double bond

Page 25: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Chemical reactions of alkenes and cycloalkenes

• Hydrohalogenation: a hydrogen halide is added to a double bond; one C-atom becomes bound to the halogen and the other C-atom to a hydrogen:

HBr

HX

H X

CCCC

Br

CH3

H

CH3CHCCH3

CH3

CH3CHCCH3 +

+In general:

Page 26: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Chemical reactions of alkenes and cycloalkenes

• Hydration reactions add a molecule of water to a double bond. The water molecule adds as HO-H:

HO-H

O H

C H 3

H

C H 3C HCC H 3

CH 3

CH 3CHCCH 3 +

An alcohol (R-OH)

Page 27: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Chemical reactions of alkenes and cycloalkenes

• In unsymmetrical addition reactions, if the alkene itself is not symmetrical, there will be more than one possible product. An unsymmetrical alkene is one for which the two C-atoms of the double bond are not equivalent.

H-OH

H

C H 3

O H

C H 3C HCC H 3

O H

C H 3

H

C H 3C HCC H 3

C H 3

C H 3C HCC H 3 + +

Page 28: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Chemical reactions of alkenes and cycloalkenes

• There will typically be one product in these cases that is favored (produced in greater yield). Markovnikov’s Rule states that when an unsymmetrical addition involves an unsymmetrical alkene, the H-atom of HX adds to the carbon of the double bond that has the most hydrogens.

H-OH

H

C H 3

O H

C H 3C HCC H 3

O H

C H 3

H

C H 3C HCC H 3

C H 3

C H 3C HCC H 3 + +

Major product

Minor product

Page 29: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Chemical reactions of alkenes and cycloalkenes

• For dienes and trienes, addition reactions (e.g. hydrogenation) will involve more than one of the double bonds, provided enough of the reactant (e.g. H2) is added:

H2

1-Heptene

1,3-Heptadiene

1,3,5-Heptatriene

Heptane

2H2

3H2 C H 3 C H 3C H 2C H 2C H 2C H 2C H 2

C H 3 C H 3C H 2C H 2C H 2C H 2C H 2

C H 3C HC HC HC HC HC H 2

C H 3C H 2C H 2C HC HC HC H 2

C H 3 C H 3C H 2C H 2C H 2C H 2C H 2C H 3C H 2C H 2C H 2C H 2C HC H 2 +

+

+

Page 30: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Polymerization of alkenes• Alkenes (and alkynes) are able to undergo reactions that create long

chains of atoms called polymers. In general, these reactions are called polymerization reactions.

• Polymers are large molecules that are made up of repeated sequences of smaller units. The small molecules used to make the polymer are called monomers.

• One of the bonds in the double bond is used to add the monomer structures into a growing polymer chain. The reaction is called addition polymerization.

EthylenePolyethylene

C H 2C H 2

H

H

H

H

H

H

H

H

H

H

H

H

CCCCCCC H 2C H 2C H 2C H 2 ++

n

CC

H

H

H

H

Polyethylene

“n” expresses theaverage chain length

Page 31: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Polymerization of alkenes• Substituted alkenes can also undergo this type of reaction, yielding

polymer chains that possess branches (substituents)

• For dienes, polymerization yields polymers that contain double bonds:

• In cases where two different monomers are involved, copolymer (containing both monomer units) are obtained.

polymerization

substitutedethylene

substituted polyethylene

nH

X

C

H

H

C

X

C HC H 2

polymerization

1,3-Butadiene Polybutadienen

C H 2C HC HC H 2 C H 2C HC HC H 2

n

Vinylchloride

1,1-Dichloroethene Saran Wrap

polymerization

monomer 1 monomer 2

Cl

Cl

H

H

CC

Cl

H

H

H

CC

H

H

C

Cl

Cl

Cl

H

C

H

H

CC+

Page 32: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Polymerization of alkenes

• Polymers find many uses (plastics are polymers).• However, because they consist of alkane-type carbon

chains, they are also unreactive. This means they don’t decompose readily in a landfill site.

C H 2 C H 2

C H

Cl

C H 2

C H

C H 3

C H 2

Monomer

Page 33: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Alkynes

• Saturated hydrocarbons that possess at least one C-C triple bond are called alkynes.

• For naming, the rules that were followed for alkenes are used, except that the name of the parent chain now ends in “yne”.

Ethyne(Acetylene)

Propyne(Methylacetylene) 6,6-Dimethyl-3-heptyne

C

C H 3

C H 3

C H 3C H 2CCC H 2C H 3C H C H C C H 3C H

General formula for alkyne: CnH2n-2

Page 34: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Alkynes

• Because C-atoms only possess four covalent bonds, the C-atoms involved in the C-C triple bonds of alkynes possess local, linear molecular geometries.

• This means that cis-, trans- isomers are not possible for alkynes (at the C-C triple bond).

sp-hybridized carbons

Page 35: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Alkynes

• However, constitutional isomers exist.

2-Butyne 1-Butyne

1-Pentyne 3-Methyl-1-butyne

CC H C H

C H 3

C H 3C H 2 C H 3

C H 2CC H

C H 2

C H 3

CC HC C H 3CC H 3Positional isomers

Skeletal isomers

C4H6

C5H8

Page 36: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Alkynes

• The triple bond in an alkyne can undergo addition reactions similar to the double bond of an alkene:

Ni (catalyst)

H2

Ni (catalyst)

H2

C H 3CC H C H 3C H 2C H 3C H 3C HC H 2+ +

alkyne alkene alkane

Two equivalent amounts of hydrogen added to an alkyne will make an alkane

Page 37: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Aromatic hydrocarbons

• Aromatic hydrocarbons: a special class of cyclic, unsaturated hydrocarbons which do not readily undergo addition reactions.

Benzene (C6H6) is an example of an aromatic hydrocarbon

Page 38: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Aromatic hydrocarbons

• Benzene is a cyclic triene which possesses alternating C-C double and single bonds.

• Because there are two ways the structure could be drawn, benzene is often represented with a circle-in-a-hexagon formula, showing the delocalization of the bonds.

H

H

H

H

H

H

=

C6H6 = set of threedelocalized bonds

Page 39: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Names for aromatic hydrocarbons

• Benzene derivatives with one substituent

• Certain cases have specific namesChlorobenzene tert-Butylbenzene Isopropylbenzene

CH C H 3CH 3

C

C H 3

C H 3 C H 3Cl

Toluene (notMethylbenzene)

Styrene (notVinylbenzene)

C HC H 2

C H 3

Page 40: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Names for aromatic hydrocarbons

• In cases where a substituent name is not easily obtained, the benzene is called a “phenyl” substituent and the name is assigned using the alkane/alkene as the parent:

2-Phenyl-2-butene 3-Phenylhexane

C HC H 3 C C H 3

Page 41: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Names for aromatic hydrocarbons

• Benzene derivatives with two substituents will have a bonding pattern that will fit one of the following schemes:

1,2-dibsubstituted 1,3-dibsubstituted

1,4-dibsubstituted“ortho” “meta”

“para”

Page 42: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Names for aromatic hydrocarbons

• This enables one of two possible naming schemes:

1,2-Dichlorobenzene(ortho-Dichlorobenzene)

1,4-Dichlorobenzene(para-Dichlorobenzene)

1,3-Dichlorobenzene(meta-Dichlorobenzene)

Cl

Cl

Cl

Cl

Cl

Cl

meta-Bromopropylbenzeneortho-Bromoiodobenzene

Br

I

BrCH2CH2CH3

Page 43: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Names for aromatic hydrocarbons

• When one of the special case compounds (e.g. toluene) is involved, the compound is named as a derivative of the special compound.

2-Chlorostyrene2-Ethyltoluene3-Bromotoluene

C H 2

C H 3 Cl

C H 3

Br

CH2CH3 CH

Page 44: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Names for aromatic hydrocarbons

• In cases where disubstituted benzenes occur where substituents are not the same and where no special cases are involved, the substituent that has alphabetic priority also gets numbered on C-1.

1-Bromo-3-ethylbenzene 1-Bromo-2-chlorobenzene

Br

Cl

Br

CH2CH3

Page 45: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Names for aromatic hydrocarbons

• Disubstituted benzenes possessing two methyl substituents are a special case themselves. They are not called dimethyl benzenes or methyl toluenes, but instead are called xylenes:

ortho-Xylene meta-Xylenepara-Xylene

C H 3

C H 3

C H 3

C H 3

C H 3

C H 3

Fun fact! Three methyl groups on a benzene ring: named as a trimethylbenzene, not a methyl xylene.

Page 46: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Names for aromatic hydrocarbons

• Three substituents: numbered to give the lowest possible numbering. Given a choice, alphabetic priority would dictate which substituent is on C-1.

1,2,4-Tribromobenzene 1-Bromo-3,5-dichlorobenzene

Cl Br

Cl

Br

Br

Br

Page 47: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Physical properties and sources of aromatic hydrocarbons

• Similar to what we’ve seen for other hydrocarbons, aromatics are generally water-insoluble and have densities less than that of water.

• Benzene is pretty good at dissolving other organic molecules (can serve as solvents for chemical reactions).

• Industrially, aromatics are produced from saturated hydrocarbons:

4H2

catalyst

high-temperatures

C H 3

C H 3C H 2C H 2C H 2C H 2C H 2C H 3 +

Page 48: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Chemical reactions of aromatics• The double bonds of aromatic hydrocarbons are resistant to

addition-type reactions. Instead, with the aid of catalysts, they can undergo substitution reactions:

• Alkylation of benzene:

AlCl3HCl

C H 3

C H 2

ClC H 2C H 3+ +

in general:

Benzene + Chloroethane Ethylbenzene

AlCl3HCl

Benzene alkyl halidesubstitutedbenzene

HCl

H

H

H

H

H

R

H

H

H

H

H

H

ClR+ +

+ +

Page 49: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Chemical reactions of aromatics

• Halogenation of benzene:

Br2FeBr3 HBr

Benzene bromine Bromobenzene HBr

Br

++

+ +

X2

FeBr3

Benzene

HX

halogen halogenatedbenzene

HBr

H

H

H

H

H

H

H

H

X

H

H

H

+

+

+

+

in general:

Page 50: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Fused-ring aromatics

• There are common cases of aromatic structures involving fused benzene rings:

Napthalene AnthracenePhenanthrene

Page 51: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Hybrid orbitals and bonding in organic compounds

• We have seen that carbon adopts several bonding formats:

• Carbon’s electron configuration is 1s22s22p2. Its valence orbitals are the 2s and 2p orbitals.

tetrahedral trigonal planar linear

C C HC H 3C C H 3

C H 2

C H 3C

C H 3

C H 3

C H 3

C H 3

Page 52: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Hybrid orbitals and bonding in organic compounds

• Bonds are created between atoms when electrons are shared. In order for electron-sharing to occur, the orbitals containing these electrons (on each atom) must overlap.

• This model can’t explain the observed bond angles in molecules like the ones shown below (shapes and orientations of the valence orbitals are incorrect):

109.5o120o 180o

HCCCH 3H

O

C

HH

HH

H

C

Page 53: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Hybrid orbitals and bonding in organic compounds

• To explain bonding in these cases, a new model is used (called “Valence Bond Theory”) in which atomic orbitals (2s, 2p, etc.) are mixed to produce hybrid orbitals, which have directions that depend on the number of atomic orbitals mixed.

109.5o120o 180o

HCCCH 3H

O

C

HH

HH

H

C

sp3-hybrid orbitalssp2-hybrid orbitals

sp-hybrid orbitals

Page 54: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Hybrid orbitals and bonding in aromatic compounds

• For a tetrahedral carbon (e.g. an alkane carbon), there are four other atoms bound to the C-atom. The molecular geometry around carbon is tetrahedral.

• A sp3-hybrid orbital set is used for explaining the tetrahedral arrangement. Hybrid orbitals point in the

same directions as electrongroups in VSEPR theory

Page 55: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Hybrid orbitals and bonding in aromatic compounds

• For a trigonal planar carbon, three atomic orbitals are combined to make three, sp2-hybrid orbitals.

120o

C

H

O

H

C C H 3

C H 2

C H 3

Page 56: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Hybrid orbitals and bonding in organic compounds

• Linear carbons: involved in a triple bonds. Two atomic orbitals are combined to make a new hybrid orbital set (two sp-hybrid orbitals)

180o

C HCCH 3

Page 57: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Hybrid orbitals and bonding in organic compounds

• In C-C single bonds, the bond is created by the overlap of orbitals in a head-on fashion. The situation is similar to what occurs when two H-atoms bond (or H and Cl-atoms):

• This is called a sigma bond (-bond) (strong)• What about multiple bonds? How do they form?

Page 58: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Hybrid orbitals and bonding in organic compounds

• Multiple bonds involve one -bond, plus at least one pi-bond (-bond) (one -bond in a double bond or two -bonds in a triple bond)

-bonds are created by the sidewaysoverlap of parallel, atomic p-orbitals

Page 59: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Hybrid orbitals and bonding in organic compounds

• In a molecule that contains a double bond, like H2CO:

sp2-hybrid orbitals are used to create the trigonalplanar molecular geometry and the unused p-orbitalis used to make the -bond

double bond = -bond + -bond

-bond

-bonds

Page 60: Unsaturated hydrocarbons Chapter 13. Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple

Hybrid orbitals and bonding in organic compounds

• For a molecule with a triple bond, there are two, unused p-orbitals that can be used to make -bonds:

sp-hybrid orbitals create the linear molecular geometry around the C-atoms and two,unused p-orbitals on each C-atom can be used to make two -bonds with the second carbon

triple bond = -bond + two -bonds

-bond

-bond