19
University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Aravind Sundararajan 1 Aravind Sundararajan, Graduate Student & Brian G. Thomas, Wilkins Professor Department of Mechanical & Industrial Engineering University of Illinois at Urbana-Champaign Modeling heat transfer & depression formation in Al- strip casting CCC Annual Report UIUC, June 12, 2007 University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Aravind Sundararajan 2 Planar Flow Melt-Spinning (PFMS) Process Metal Entry Crucible Nozzle Contact zone Strip Copper-Beryllium Wheel φ φ φ φ 24" Zone III (Θ 3 ) Zone I (Θ 1 ) Zone II ( Θ 2 ) Nozzle Shell Upstream Meniscus Downstream Meniscus G L T V c Contact zone (close-up view) T s P B D z y r 50mm 304 mm 12.7mm Plate Zone II Zone I

University of Illinois at Urbana-Champaign CCC Annual Reportccc.illinois.edu/s/2007_Presentations/17_SUNDARARAJAN... · Metals Processing Simulation Lab • ... Modeling heat transfer

Embed Size (px)

Citation preview

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

1

Aravind S

undararajan, Graduate S

tudent&

Brian G

. Thom

as, Wilkins P

rofessor

Dep

artmen

t of M

echan

ical & In

du

strial En

gin

eering

Un

iversity of Illin

ois at U

rban

a-Ch

amp

aign

Mo

delin

g h

eat transfer &

dep

ression

form

ation

in A

l-strip

casting

CC

C A

nn

ual R

epo

rtU

IUC

, June 12, 2007

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

2

Plan

ar Flo

w M

elt-Sp

inn

ing

(PF

MS

) Pro

cess

Metal E

ntry

Crucible

Nozzle

Contact zone

Strip

Copper-B

eryllium

Wheel

φ φ φ φ 24"

Zo

ne III

( Θ3 )

Zo

ne I (Θ

1 )

Zo

ne II (

Θ2 )

Nozzle

Shell

Upstream

Meniscus

Dow

nstreamM

eniscus

G

L

TVc

Contact zone (close-up view

)

∆∆∆ ∆T

s ∆∆∆ ∆P

BD

z yr

50mm

304 mm12.7mm

Plate

Zone II

Zone I

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

3

Qu

ality Issue: S

trip su

rface defect

Liquid side

5 mm

Wheel side

BA

AB

Liq

uid

side (L

S)

Wh

eel side (W

S)

53 mm

λλλ λ= ~ 5 m

m

•Sa

mp

le N

o.: E

TF

a01

-04

(Al –

7%

Si a

lloy)

•Perio

dic w

avy surface d

epressio

ns o

bserved

on

bo

th

sides o

f the strip

•D

eepe

r dep

ression

on

liqu

id sid

e (visual in

spe

ction

)•

Dep

ression

s sepa

rated b

y a p

itch (

λ)=

~ 5

mm

Casting

direction

Wavy tran

sverse su

rface dep

ressions

z yr

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

4

Math

ematical M

od

el Descrip

tion

z yr

GA

P/ W

heel-strip interface (h

gap )

Liquid stripSolid strip

Wheel hot outer

face

Wheel cold inner

face

∆z

∆rs

Tliq +

delta

Tam

b

qsup

1nn1

qs

qw

qam

b

Aluminum stripCu-Be wheel

Strip cold face

Strip hot face

∆rw

Go

vernin

g E

qu

ation

Qr T

t k

r T

r k

r Tk

t Tc

p+

∂ ∂∂ ∂

+∂ ∂

+∂ ∂

=∂ ∂

2

2

2

ρ

Mo

del A

ssum

ptio

ns

•N

egligible heat loss along strip width.

•N

o slipping between strip &

wheel

•S

trip thickness doesn’t change after exiting Zone I

•Large P

enum

ber obtained for wheel &

strip for length scale of 0.2 m

m .

•T

hus circumferential conduction in the w

heel and conduction in strip along casting direction neglected.

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

5

Pro

cess Co

nd

ition

s (# OD

SU

06_43, cycle nu

mb

er3)

Al-7

% S

iA

lum

inu

m G

rade

Cu

-Be

Wh

eel G

rade

52

mm

Strip

wid

th (W

)

31

.7 oC

Tinitial (w

heel)

31

.7 oCT

(am

bien

t)

(3.1

3,1

5, 3

43

.87

)A

ng

les (θ1 , θ

2 , θ3 ) in

deg

0.8

G =

do

ma

in h

eig

ht: (m

m)

16

.6L =

Pu

dd

le leng

th (m

m)

1.5

D =

No

zzle op

enin

g w

idth

(mm

)

16

B =

No

zzle Brea

dth

:

7.0

2V

c = W

hee

l spe

ed (lin

ear) (m

/s):

10

0∆

Ts =

Su

pe

rhea

t: (K)

2.4

t = co

ntact tim

e (m

s):

0.2

15

T =

Strip

thickn

ess (mm

)

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

6

Pro

cess Param

eters & M

aterial Pro

perties

25

.0H

.T co

efficient (w

heel-a

mb

ient) W

/ m 2K (w

hee

l sides)

0.3

3m

0.0

00

1 sec

to

F(tca

st ) 22

5 G

H.T

coefficien

t (wh

eel-strip) W

/m 2K p

ud

dle reg

ion

ho

25

.0H

.T co

efficient (w

heel-a

mb

ient) W

/ m 2K (in

side &

ou

tside)

0.2

91

Wh

eel In

ne

r radiu

s (m)

0.3

04

Wh

eel O

uter rad

ius (m

)

614

Liquid

us ( oC

)

555

Solidu

s ( oC)

417

Latent Heat o

f Fu

sion (K

J/ Kg

)

2400

8900

Den

sity (kg/m3)

1190

418

Sp

ecific Heat (J/kg

K)

Co

nductivity (W

/m K

)

Therm

o-physical Properties

135

260

StripW

heel

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

7

Sim

ulatio

n C

on

ditio

ns

Variation of conditions throughout the cast

0.272

11

910.00

360

25

.00.2721

0.258

41

813.82

341

.872

3

hg

ap =

f(ttcast )0.0137

0.011

37

9.58

15

2

hg

ap =

f(ttcast )0.0024

0.002

41

6.60

3.128

1

h (W/m

2K)

Cum

ulative time (sec)

Tim

e (sec)D

istance (mm

(deg)Z

ones

0.2

5D

om

ain

heig

ht (G

) in m

m

25

0

25

0

10

-9 -----

0.0

01

ST

RIP

1D

(with

sup

erhea

t flux)

Para

me

ters

Mesh

size (dz) in

mm

No

of n

od

es in strip

No

of n

od

es in w

heel

Tim

e in

crem

en

t (dt) in

sec

Mesh

size (dr) in

mm

•Tem

perature criterion for determining S

hell Thickness: 614 oC

(0% solid)

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

8

Test problem

with:

�constant properties

�no w

heel

�S

imple conduction through liquid m

oving with strip

Mo

del D

evelop

men

t

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

9

Eu

lerian F

luid

-Flo

w m

od

el (FL

UE

NT

)

•T

he m

od

el dom

ain co

mp

rises of liqu

id reg

ion (T

>

614

oC)

•T

he fluid

mo

ving

with

the strip

along z direction

at a

speed

of 7

.02 m

/s is equivalent to

the tran

sient A

BA

QU

S

and

ST

RIP

1D

mo

dels form

ulated

in a Lagrang

ian F

rame

w

ith sim

ple co

nductio

n th

rough

the sup

erheated liquid

.

•Using

fixed tem

p lo

wer B

C, o

utputs the h

eat flux (sup

er h

eat) at the solidification

front which

enters th

e solid

strip

.

•T

his h

eat flux is input as a “su

perh

eat flux”cu

rve in

to

the S

TR

IP1

D M

odel

G

L

T714oC

614oC

7.02 m/s

Fluid in m

otion

Stationary strip

z yr

q = 0D

om

ain an

d B

Cs

•A

rea und

er the g

raph g

ives the total S

up

erheat flux of

1.072

MW

/m en

tering th

e dom

ain.

Heat flux V

s. distance

0 50

100

150

200

250

300

350

400

450

00.005

0.010.015

0.020.025

dista

nce

(mm

)

heat lfux (W/m2)

Superheat flux from

Fluent

Superheat flux to S

trip 1DS

TR

IP1D

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

10

Strip

1D V

S. A

baq

us 2D

Mo

del, delta=

3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

00.001

0.0020.003

0.0040.005

Tim

e (se

c)

Strip Thickness (mm)

STR

IP1D

AB

AQ

US const props

STR

IP1D

using superheat flux from F

LU

EN

T, dom

ain =1.5mm

STR

IP1D

using superheat flux method, D

omain=0.25m

m

Co

mp

arison

of sh

ell gro

wth

Vs. tim

e betw

een A

BA

QU

S

and

Strip

1D (2 versio

ns)

•S

TR

IP1D

run with sim

ple conduction in liquid (constant K=

135 W/m

K and c

p = 1190 J/K

g K)

•A

BA

QU

S run w

ith constant properties

•S

TR

IP1D

run with superheat flux input from

Fluent

Solidus

Liquidus

All 3 m

ethods match!

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

11

Tem

peratu

re alo

ng d

omain

400

450

500

550

600

650

700

750

00.2

0.40.6

0.81

1.21.4

1.6D

istance

(y) alon

g the

do

main

(mm

)

Temperature ( oC)

STR

IP1D

without superheat flux input

STR

IP1D

with superheat flux input

AB

AQ

US 2D

Model

Tem

peratu

re alon

g th

e do

main

heig

ht at vario

us tim

e in

tervals for A

BA

QU

S vs. S

TR

IP1D

t = 0 s

t = 0.0014 s

t = 0.0037s

t = 0 s

•S

TR

IP1

D ru

n w

ith K

=1

35

W/m

K an

d cp = 1

19

0 J/K

g K

for L=

23

.3 m

m

•A

BA

QU

S ru

n w

ith co

nstan

t pro

pe

rties

•S

TR

IP1

D ru

n w

ith su

perh

eat flux in

pu

t from

Flu

ent

Solidus

Liquidus +

delta

Pour tem

perature

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

12

Salient Features of the M

odel

Mode

ling Interface

/gap hea

t transfe

r coefficie

nt as

a function individua

l cycle tim

e

of cast, i.e. hgap

= f (tcast )

Supe

rhea

t Flux de

livery into the

pool take

n into account from

sepa

rate 2D

Eule

rian m

odel of fluid flow

/ heat tra

nsfer in liquid pool

Ga

p effect on hea

t transfe

r coefficie

nt

Mode

ling of therm

ocouple e

ffect in w

heel

Mo

del A

pp

lication

to a realistic case I

ST

RIP

1D m

odel of transient heat conduction in wheel, gap, and

strip for series of cycles for sample # O

DS

U06_43

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

13

Velo

city & tem

peratu

re in th

e liqu

id p

oo

l and

S

up

erheat flu

x pro

file from

Flu

id-flo

w M

od

el

Superheat H

eat Flux Profile

0 10 20 30 40 50 60 70 80

00.002

0.0040.006

0.0080.01

0.0120.014

0.0160.018

distance (mm

)

Heat flux (MW/m2)

t=0.215m

m - F

LUE

NT

t=0.168m

m - F

LUE

NT

t=0.168m

m using superheat ratio m

ethod

Courtesy: R

ajneesh Chaudhary

Area under the curve: (T

otal superheat flux into the dom

ain)

•0.215m

m strip : 427 kW

/ m (100 K

superheat)

•0.168 m

m strip : 353 kW

/ m ( 78.3K

superheat)

•S

trip thickness observed to decrease with

domain height (G

)

•heat flux (t=0.168m

m) =

heat flux (t=0.215m

m

)*superheat ( t=

0.168mm

)/superheat(t=0.215m

m)

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

14

Heat B

alance (p

ud

dle exit)

100

75

Sup

erheat tem

peratu

re ( ∆

T) d

eg

0.215

0.168

(0.2

37 **)

Strip

Th

ickness

(mm

)

427

407

421

0.80

353

323

328

0.61

Total h

eat -F

luent

(const tem

p) (kW

/m)

To

tal Heat –F

luen

t,(in

sulated) (kW

/m)

Sup

erheat

(kW/m

)G

ap(m

m)

o

p p

*

**

t*

q

t*

T*

qT

m kW

/

353

of

fluxa

for

etem

peratur

Superheat

etem

peratur

superheatof

effect

equivalent

an

to

STR

IP1D

),(from

thickness

shellof

effect

the

Converting

m/kW

*.

*.

Tc

mq

sm/

kg.

.*

.*

tm

mm

.t

m/kW

*.

*.

Tc

mq

sm/

kg.

.*

.*

tm

mm

.t

75237

427

215100

353

421100

31161

623

623

027

0002150

2400

2150

329100

31161

832

832

027

0001680

2400

1680

21

11

22

2 1

==

∆=

==

∆=

==

= =

==

∆=

==

= =

νρ

νρ

•S

uperheat should match total heat com

puted by Fluent (insulated). It com

es close (within

3.5% error)

•** thickness value obtained from

ST

RIP

1D for a superheat flux of 353 kW

/m

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

15

Gap

heig

ht V

s. time : E

xperim

ental d

ata for sam

ple

OD

SU

06_43

Gap

Vs T

ime

y = -0.0833x + 0.7843

y = -0.0879x + 0.8707

0

0.2

0.4

0.6

0.8 1

00.5

11.5

22.5

3

Tim

e, t (se

c)

Gap, G (mm)

Highs

Lows

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

16

Effect o

f Gap

(mm

) on

h0 (kW

/ m2

)

•E

mpirical relation betw

een h0 and G

ap (G) : h

0= 225 G

h0 vs. G

, gap

100

120

140

160

180

200

220

0.50.55

0.60.65

0.70.75

0.80.85

0.9

G, gap (m

m)

h0 (kW/ m2 K)

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

17

Heat tran

sfer coefficien

t Vs. tim

e

0 20 40 60 80

100

120

140

160

180

00.003

0.0060.009

0.0120.015

0.018

time

(sec)

Heat transfer coefficient hgap (KW/m2K)kW/ m2 K G

ap H

eat transfer co

efficient (h

gap ) as a

fun

ction

of tim

e

00

00

0

,0

,m

ga

p

I

ht

t

ht

ht

tt

t

<<

=

≤<

m =

0.33, to = 0.0001 sec

h0 =

170 kW/ m

2K

(=225 G),

tI =cycle tim

e

Zone I

Zone II

Loss of C

ontact betw

een strip & w

heel

Zone III

( ham

b = 25 W

/m2K

)

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

18

Heat Flux into the w

heel Vs. tim

e

1 10

100

10000.0001

0.001

0.010.1

110

100T

ime

(sec)

Outer Heat Flux (MW/m2)

STR

IP1D

prediction

Measurem

ents by Birat et al.

Measurem

ents by Blejde and M

ahapatra at Castrip L

LC

Texture A

Texture B

Zo

ne I

Zo

ne II

Heat F

lux in

gap

as com

pared

to E

xperim

ental

measu

remen

ts for 100K

sup

erheat

•Strip

1D

heat flu

x in Z

on

es I & II th

e g

ap m

atches

the e

xtrapo

lated va

lue o

f the lin

e of b

est fit to

Bira

t et al (2). data

. •R

eference : (1

) Guo

wei Li an

d B

.G.T

hom

as :

Transient Therm

al Model of the C

ontinuous Single-Wheel Thin-

Strip Casting P

rocess, Metall. T

rans. B, 199

6, vol. 27

B, pp

. 509-52

5

•Referen

ce: (2) J.B

irat, M.Larrecq

, J.Laman

t, and J

.Petegn

ief: Mold O

peration for Quality and P

roductivity, ISS, W

arrend

ale, PA

, 1988

, pp. 3

-14

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

19

Acco

un

ting

for co

nvective h

eat transfer

from

the w

heel sid

es

3

3

32

2

2

32

2

22

2

89

55

80

95

5

29

13

04

50

30

44

29

13

04

50

20

43

04

4

mm

/W

)T

T(h

.Q

mm

/W

Th

.)

Q(source

Heat

.e.i

mm

/W

T)

Π(

(h

V

ThA

sides

wheel

from

ovedvolum

e)rem

unit(per

H

eat

WT

hA sides

from

out

taken

heat

Total

mm

( w

heel(V)

of

Volum

e

mm

( sides(A

) w

heelon

Area

sides w

heelthe

on

surfaces

4 account

into

T

aking

airi

sides

sides

−=

∆=

∆−

=∆

=

∆= −

=

−=

304 mm

50mm

12.7mm

Wheel

Plate

•2

plates o

ne o

n e

ach

side o

f the w

he

el with

2 su

rface

s each co

ntrib

ute to

a tota

l of 4

surfa

ces

Tre

ating the

Conve

ctive he

at tra

nsfer on w

heel side

s as a hea

t source

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

20

Shell Grow

th Profile

0

0.05

0.1

0.15

0.2

0.25

0.30.00000.0030

0.00600.0090

0.01200.0150

Tim

e (se

c )

Shell Thickness (mm)

•S

olid

she

ll (T=

55

5 oC

) occu

rs at Z

on

e 2.

•Co

olin

g rate=

(Tliq -Tsol )/tsol , w

here

tsol –so

lidifica

tion

time

•Co

olin

g rates C

old

face : 58

00

K/sec;

Ho

t face

: 60

00

K/sec

Sh

ell Gro

wth

as a fun

ction

of tim

e

Zone I

Zone II

f :Solid fraction

f :0.3f :0.5

f :0.8

Liquidus

Solidus

Cold F

ace

Hot F

ace

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

21

Metallo

grap

hy &

SD

AS

(m

easured

by C

orm

ac Byrn

e et.al)

SD

AS

Vs. S

olid

ification

time

0 1 2 3 40.00250.003

0.00350.004

0.0045

So

lidifica

tion

time

(sec)

SDAS (micrometers)

Experim

ental measurem

ents

STR

IP1D

predicted SD

AS

•F

ree side of the strip exposed to atmosphere

•S

TR

IP1D

model used to obtain solidification tim

e (tsol )

•U

sed Spinelli et.al m

odel to predict the SD

AS

of the strip accordingly

33

30

79

45

.sol )

t.

(=

λ

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

22

Shell Grow

th Profile

0

0.05

0.1

0.15

0.2

0.250.00000.0004

0.00080.0012

0.00160.0020

0.00240.0028

Tim

e (se

c )

Shell Thickness (mm)

•Solidifica

tion rate =

0.082 m/s

(Within ra

nge of 0.05m

/s and 0.1 m

/s as re

ported by B

yrne e

t al., 2005)

Sh

ell Gro

wth

as a fun

ction

of tim

e

Zone I

Zone II

Liquidus

0.082m/s

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

23

Acco

un

ting

for h

eat loss d

ue to

the

therm

oco

up

le (TC

) emb

edd

ed in

the w

heel

•The

TC

em

bedde

d 2mm

below

the substra

te surfa

ce

•Not in pe

rfect conta

ct with the substra

te there

by ca

using an a

irga

p

•This re

sists the hea

t flow to the

therm

ocouple the

reby low

ering the va

lue of the a

ctual

substrate

tem

pera

ture.

•Thus T

C ha

s been treate

d as a

set of re

sistors and

a rela

tion betwee

n the m

ea

sured a

nd pre

dicted te

mpe

rature ha

s been obta

ined.

Fast-response K

-type MedT

hermterm

ocouplex

y

z

Sensor

Screw

threads1.3 cm

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

24

2.34E+03

R06 (K

/W)

(total resistan

ce)

5.87E+02

(R56 )

3.45E+02

(R45 )

2.90E+01

(R34 )

3.76E+02

(R23 )

4.10E+02

(R12 )

5.97E+02

(R01 )

l/kA (K

/W)

2.07E-06

3.14E-06

4.07E-05

3.14E-06

5.03E-07

5.03E-07

A(m

2)

1.10E+01

1.10E+01

1.10E+01

1.10E+01

1.10E+01

1.00E-02

k(W/m

K)

1.63E-03

2.00E-03

7.20E-03

2.00E-03

8.00E-04

8.00E-04

d(m

)

Infinitely longL

56

1.19E-02

L45

1.30E-02

L34

1.30E-02

L23

2.27E-03

L12

3.00E-06

Lair

L(m

)

wire-am

b(5)

part 4

part 3

part 2

part 1

Airg

ap(0)

Param

eters

12

.7 m

m

12

4W

ire (5)

Air g

apT

0

Tam

b

T1

Cu

-Wh

eel

2 m

m th

ick

36

(amb

)

Sch

ematic o

f TC

emb

edd

ed in

the w

heel

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

25

Wh

eel temp

erature (2m

m d

eep) V

s. time b

etween

S

TR

IP1D

and

Exp

erimen

tal data (100 K

sup

erheat)

•S

TR

IP1D

run wheel tem

perature values match the trend suggested by the

experimental runs

•Faster cooling observed in real, ow

ing to the behavior of the wheel as a

lumped system

during ambient cooling.

Wheel tem

p Vs. tim

e

0 20 40 60 80

100

120

01

23

45

67

89

10

Time

(sec)

Wheel temp ( oC)

Exp

erimen

tal measu

remen

t 2mm

belo

w w

heel su

rface

adju

sted acco

rdin

g to

resistance m

etho

d

2 mm

belo

w su

rface

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

26

Wh

eel temp

erature (2m

m d

eep) V

s. time b

etween

S

TR

IP1D

and

Exp

erimen

tal data (100 K

sup

erheat)

•Z

OO

M IN

for Cycle no: 5

Wheel tem

p Vs. tim

e

0 20 40 60 80

100

120

11.1

1.21.3

1.4

Time

(sec)

Wheel temp ( oC)

Exp

erimen

tal measu

remen

t 2mm

belo

w w

heel su

rface

adju

sted acco

rdin

g to

resistance m

etho

d

2 mm

belo

w su

rface

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

27

Strip

thickn

ess Vs. tim

e

0

0.05

0.1

0.15

0.2

0.25

0.3

00.5

11.5

22.5

3

time

(sec)

Strip thickness (mm)

Experim

ental Data

Lows - S

TR

IP1D

Highs - S

TR

IP1D

Sh

ell thickn

ess Vs. tim

e betw

een S

TR

IP1D

and

E

xperim

ental resu

lts for (100 K

sup

erheat)

start and end points are red

•D

ecreasing gap during cast considerably alters the heat transfer coefficient w

hich results in reduced strip thickness as observed.

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

28

Mo

del A

pp

lication

to realistic case II (O

DS

U06_42)

Temperature vs. tim

e

0 20 40 60 80

100

0.01.0

2.03.0

4.05.0

6.07.0

8.09.0

10.0

Tim

e (s)

Temp. (o C)

Experiem

ental data : TC tem

perature

STR

IP1D

predictionTC tem

perature

Strip thickness Vs. time

0

0.05

0.1

0.15

0.2

0.25

0.3

00.5

11.5

22.5

time (sec)

Strip th ickness (mm)

Experim

ental Data

Lows

Highs

•Good agreem

ent observed between m

odel predictions and experimental

observations

11

.671

1.3

Tim

e in Z

one II (m

s)

0.225

0.215

Sh

ell Thickn

ess (mm

)

5800

6000

Co

oling rate ( o /sec)

2.51

2.36

Tim

e in Z

one I (m

s)

16

16

.6P

uddle length

(mm

)

14

.01

5.0

An

gle in zon

e II ( o)

399

.25

427

.44

Sup

erheat (kW

/m)

6.36

OD

SU

06

_42

(II)

Velo

city (m/s)

Param

eter

7.02

OD

SU

06

_43

(I)

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

29

Shell Grow

th Profile

0

0.05

0.1

0.15

0.2

0.25

0.30.00000.0030

0.00600.0090

0.01200.0150

Tim

e (se

c )

Shell Thickness (mm)

Sh

ell Gro

wth

as a fun

ction

of tim

e for C

ase II

Zone I

Zone II

f :Solid fraction

f :0.3f :0.5

f :0.8Liquidus

Solidus

Cold F

ace

Hot F

ace

•S

olid

she

ll (T=

55

5 oC

) occu

rs at Z

on

e 2.

•Co

olin

g rates C

old

face : 56

00

K/sec;

Ho

t face

: 58

00

K/sec

•Criterio

n fo

r Zo

ne

II exit is wh

en sh

ell is co

mp

lete

ly form

ed.

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

30

Co

mp

utatio

nal D

om

ain &

2D F

E M

esh #

ET

FA

01-101

l= 2.5 mm

t= 0 s

tc = L

/Vc

= 0.003605 s

Vc = 6.23 m

/s

WH

EE

L

Dom

ain

(lx

w)

G= 0.7874 m

m

Liquid

puddlew

= 0.2 mm

L= 22.45 m

m

Crucible

Crucible

•D

om

ain

size: 0

.2 (th

ickness)

x2

.5 (le

ng

th) m

m

•W

S d

epressio

n m

od

eled as a cylin

drica

l trench

run

nin

g thro

ug

h strip

wid

th (B)

•N

ote: w

= 0

.2 m

m >

T=

0.1

72

mm

: ~1

4%

liqu

id in

side

do

ma

in afte

r end

of a

nalysis (t=

tc )

T

B

λλλ λ= 5 m

mr= 0.03 m

mw

xl

Liq

uid

side

Wh

eel side

xy

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

31

2D F

E M

esh &

Th

ermal B

ou

nd

ary con

ditio

n

hw

heel

l= 2.5 mm

0.2 mm

Air

Alu

min

um

•4

nod

ed lin

ear q

uad

s (DC

2D

4 in

AB

AQ

US

)•

Mesh

size: ~

4.7

5 x4

.75

micro

ns n

ear W

S d

epressio

n•

Wh

eel no

t inclu

de

d in

the

rma

l analysis

•C

auch

y-type B

C a

pp

lied o

n su

rface, S1

r = 30 µ µ µ µ m

S1

r= 0.03 m

m

Liq

uid

side

Wh

eel side

xyU

niversity of Illinois at U

rbana-C

ham

paign

•M

etals Processing S

imulation Lab

•A

ravind

Su

nd

ararajan

32

Develo

pm

ent o

f a 3D an

alysis

T

B

R0.03 m

mw

= 0.2 mm

l = 2.5 mm

λλλ λ= 5 m

m

0.12 mm

λλλ λ= 5 m

m

w = 0.2 m

ml = 2.5 m

mb

= 0.06 mm

r= 0.03 m

m

•2D

analysis:W

S d

epressio

n is a cylin

drica

l trench

•3D

analysis:W

S d

epressio

n co

mp

rises of ro

ws o

f equ

ally spa

ced

( λ

= 1

20

µm

) he

misp

herica

l craters (r

= 3

0 µ

m)

Liq

uid

side

Wh

eel side

x yz

x

y

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

33

3D F

E M

esh &

Th

ermal b

ou

nd

ary co

nd

ition

s

Crater w

ith r

= 3

0 µ

m(W

S d

epressio

n)

Crater cavity

filled w

ith air

r = 0.03 mm

O(0,0,0)

2.5 mm

0.06 mm0.2 mm

O(0,0,0)

0.03 mm

•S

tructu

red m

esh

with

8 n

od

ed lin

ea

r bricks (D

C3

D8

in

AB

AQ

US

)•

Me

sh size: ~

3.7

5 x3

.75

x 3.7

5m

icron

s near W

S d

epre

ssion

•C

auch

y-type B

C a

pp

lied o

n su

rface, S1 : h

wheel =

1.7

x1

05

W/m

2K

•S

imu

latio

n co

nd

ition

s iden

tical to

2D

analysis

hw

heel

S1

xy zU

niversity of Illinois at U

rbana-C

ham

paign

•M

etals Processing S

imulation Lab

•A

ravind

Su

nd

ararajan

34

Tem

peratu

re con

tou

r &

LS

dep

ression

caused

by a sin

gle crater

0.172 mm

Far-field shell edge

SH

ELL

WS

crate

r r= 30 µ

m

LS

depre

ssiond =

31.24 µm

Liquid side

shell profile along y-dire

ction T

emperature ( oC

)

xy

z

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

35

Co

mp

arison

betw

een m

easured

&

pred

icted L

S d

epressio

n sh

apes

SH

ELL

172 µµµµm

Wh

eel sid

e crater

Liqu

id sid

e d

epressio

nP

redictedM

easured

56 µµµ µm

16 µµµ µmP

redicted

pro

file

•G

oo

d m

atch

con

firms th

e valid

ity of m

od

eling

me

tho

dolo

gy

•F

orm

atio

n o

f LS d

epressio

n is a

hea

t transfe

r-driv

en p

hen

om

ena in

the

presen

ce of a ro

w o

fcra

ters o

n th

e o

pp

osite (w

hee

l) side o

f the strip

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

36

Co

nclu

sion

s

•T

he su

perh

eat flu

x mo

de

l used

is a re

alistic treat

men

t of th

e effect of th

e 2-D

fluid

flow

o

n h

eat transfer in

the liq

uid

and

associa

ted effe

ct o

n th

e strip

solid

ificatio

n an

d co

olin

g•

ST

RIP

1D

pred

iction

s ma

tches sim

ultan

eou

sly with

tim

e-dependentexp

erimen

tal

me

asure

men

ts of

wheel tem

peraturean

d strip thickness

(given

me

asure

d

puddle length

, gap

thickn

ess, strip sp

eed

, and

oth

er casting

con

ditio

ns).

•T

he p

articula

r cho

ice of co

nstan

t therm

o-p

hysical

pro

pe

rties used

in S

TR

IP1

D reaso

nab

ly m

atch

bo

th re

alistic tem

pe

rature

-dep

end

ent p

rop

erti

es an

d co

nstan

t in an

AB

AQ

US

sim

ula

tion

.•

Gap

variation

s seem

to d

ecrease h

eat tran

sfer co

efficien

t in th

eco

ntact reg

ion

wh

ich

explain

s the va

riation

in sh

ell thickn

ess.•

Heat tran

sfer n

ear T

C is affe

cted b

y heat lo

ss thr

ou

gh

sides an

d&

TC

wire, w

hich

ha

s b

een taken

into

acco

un

t.•

Th

e shell g

row

th p

rofile a

lso sh

ow

s that th

e strip is m

ush

y evenafte

r it enters Z

on

e II and

sh

ell rapid

ly form

s on

ly at the en

d o

f Zo

ne II.

•Z

on

e II end

s wh

en th

e she

ll solid

ifies com

ple

tely an

d is stro

ng

eno

ug

h to

shrin

k and

leave th

e wh

eel.

•C

om

pu

tation

al mo

dels h

ave be

en d

evelop

ed to

simu

late

fun

da

men

talp

hen

om

ena

du

ring

in

itial so

lidificatio

n.

•M

od

els can a

lso in

clud

e effect o

f surface ten

sion

, stra

in-ra

te, and

ph

ase-d

ep

end

ent

me

chan

ical beh

avior, stress, an

d sh

rinkag

e•

Practica

l insig

hts can

been

gain

ed in

to S

teel S

trip

casting

University of Illinois a

t Urban

a-Ch

ampa

ign •

Metals P

rocessing Sim

ulation Lab•

Aravin

d S

un

dararajan

37

Ackn

ow

ledg

emen

ts

•C

ontinuous Casting C

onsortium M

embers

(Nucor, P

ostech, LWB

Refractories, A

lgoma, C

orus, Labein, Mittal

Riverdale, B

aosteel, Steel D

ynamics)

•N

ational Science F

oundation–

DM

I 04-04-23794 (Strip)

•P

rofessor Paul H

. Steen and other graduate students from

C

ornell University for experim

ental data•

National C

enter for Supercom

puting Applications (N

CS

A)

at UIU

C•

AB

AQ

US

TM

, Fluent, Inc., C

FX

, UIF

LOW

(P. V

anka)

•O

ther Graduate students

, especially J. Sengupta