30
Visiting research graduate traineeship program for Polish masters students in the biological sciences University of Chicago

University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Visiting research graduate traineeship program for Polish masters students in the biological sciences

University of Chicago

Page 2: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

The University of Chicago

Polish  Crew  2008/2009

Page 3: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides
Page 4: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides
Page 5: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

The Graduate Traineeship Program for Polish Masters Students was

established at the 

University of Chicago in 2006. This is a joint program with the University of Virginia. The 

Chicago program provides for 6‐8 Polish students to do their MSc

degree under the 

mentorship of a faculty member in the Division of Biological Sciences. The selection of 

mentors is done based on mutual student and mentor interests and

available funding. 

Specific projects are generally selected based on discussions between mentors and 

students after lab assignments have been determined.

The process is as follows:

Early March‐

Interviews 

Lab selection process‐

Generally completed over the following 2‐3 week period

Arrival start date‐

Students arrive in early July

Early June

(following year)‐

Students present their research work in a symposium. 

Late June‐

Students return home to defend their thesis at home their institution.

An Introduction to the program

Page 6: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Examples of Projects

Page 7: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Tail-anchored membrane protein targeting to the ER by TRC40

Malgorzata DoboszKeenan Lab

Tail-anchored (TA) proteins constitute a large class of integral membrane proteins found in eukaryotic cells. They are involved in various cellular processes including regulation of apoptosis (e.g. Bcl-2 protein family) and vesicular trafficking (e.g. synaptobrevins). TA proteins contain a functional N-terminal domain facing the cytosol and a single transmembrane domain (TMD) localized at the extreme C- terminus.

TA proteins are targeted to the ER in post-translational way because they are released from ribosome before the TMD emerges from the ribosomal tunnel. That pathway is still poorly understood. The model of TA proteins insertion involves three steps:

1) recognition of the TMD by TRC40, which is 40kDa subunit of the transmembrane domain recognition complex (TRC) and which acts as an ATPase

2) selective targeting to the ER membrane via interaction with TRC receptor

3) TMD insertion into ER membrane Figure 1. Model for post-translational targeting and insertion of TA membrane proteins by TRC.

Techniques• Molecular cloning• Recombinant protein expression (E.coli expression system)• Protein purification (affinity chromatography, size-exclusion

chromatography)• Protein crystallization and crystallography• MALDI-TOF• Fluorescence and absorbance measurements

We developed series of structural and biochemical experiments to determine molecular basis of post-translational TA membarne proteins targeting by TRC.

TRC40 has ATPase activity. ATP hydrolysis is thought to be required to dissociation of TRC40 from ER membrane and for efficient insertion of TA protein into ER

Page 8: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

sAb

phage library

light chain

heavy

chain

selection

bind

ingto 

target protein

further 

analysis

target protein

•ELISA affinity

analysis•sequencing

and reformatting•purification

of sAb•surface plasmon

resonance•crystallization of target 

protein

Antibody phage display as a novel approach for characterization of protein 

complexes

and isoforms

Paweł

Dominik, Kossiakoff LabAntibody 

phage 

display 

is 

novel 

approach 

that 

can 

be 

used 

to 

obtain 

synthetic 

antibody 

fragments 

(sAb) 

to 

protein 

targets 

that 

perform 

desired 

function.

We 

seek to use sAbs

to capture

various

proteins

and their

complexes 

to 

facilitate 

crystallization, 

to 

detect

different

protein 

isoforms 

and 

to 

characterize

protein‐protein interactions. 

Techniques :•phage display, genetic engineering, mutagenesis•expression and protein purification (FPLC, gel filtration, 

affinity chromatography)•surface plasmon

resonance, fluorescence assays•cell culture experiments•crystallization

trials

solving the 

structure

3D structure

Page 9: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides
Page 10: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides
Page 11: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides
Page 12: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

ActinN‐half

C‐half +N‐half

inhibition

C‐halfFH1FH2

200

400

600

800

1000

0 50 100 150 200 250 300 350

Act

in a

ssem

bly

rate

, pyr

ene

fl., a

.u.

Time, s

FH1FH2  + N‐half no inhibition

Techniques used in the lab:•

Protein engineering, bacterial expression and purification ( 

FPLC: ion‐exchange chromatography, gel filtration )• Real time pyrene‐actin

assembly assays• Fluorescence microscopy: live cells, actin

filaments•

Total internal reflection fluorescence microscopy (TIRF)    TIRF 

allows visualization of filaments elongating in real time.  • Fission yeast genetics• Actin

sedimentation assaysFor more information about the lab profile visit our website :)

http://kovarlab.bsd.uchicago.edu/

Salt+ formin

10% pyrenelabeled

actin

monomers

Less fluorescence

More fluorescence

1. Pyrene‐actinassembly assay. 

N CpDID pDAD

N‐half C‐half

FH1FH2

Autoinhibitory

regulation of the C.elegans

cytokinesis

formin

CYK‐1 actin

assembly properties

Agnieszka

Pawlik, Kovar Lab

InroductionFormin

proteins drive actin

filament assembly

for diverse cellular 

processes including motility, establishing polarity and cytokinesis. 

Most eukaryotes posses multiple formin

isoforms

tailored to 

assemble filaments at the right time and place. Therefore formin

proteins must be precisely regulated. Formins

contain formin

homology 1 and 2 (FH1FH2) domains, which are important for 

actin

assembly and are flanked on either side by regulatory 

domains. Many formins

are regulated by auto‐inhibition through 

association of their N‐terminal (DID) and C‐terminal (DAD) regions 

(Fig. 2).

My project has utilized assays such as ‘bulk’

spontaneous 

actin

assembly assays (Fig. 1) to test whether a similar mechanism 

regulates CYK‐1, the C.elegans

cytokinesis

formin. I found that CYK‐

1 is auto‐inhibited and that region

responsible for auto‐inhibition is 

C‐terminal to FH2. We are now exploring the mechanism of auto‐

inhibition, including which residues/ domains are required for 

auto‐inhibition and whether auto‐inhibition is relieved by RhoA, 

the C.elegans

cytokinesis

GTPase.

3. Fluorescence microscopyLength of actin

filaments can 

show how different proteins 

affect actin

assembly. Assembled 

filaments can be stained with 

rhodamine‐phalloidin, observed 

under microscope and measured.Actin

only Actin

+ CYK‐1.

2. CYK‐1 is autoinhibited.

Page 13: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Using Phage Display to Generate Synthetic Antibodies

to Human SH2 Domains

Arkadiusz Wyrzucki, Koide Lab

The Goal of my project is to:

1) generate high affinity and high specificity synthetic antibody binders to SH2 targets as tools to study SH2-

containing proteins, 2) solve crystal structures of complexes of SH2 domains and their synthetic antibody binder, 3) internalize binders into mammalian cells through receptor-mediated delivery to study their effects in vivo.

SH2 Domains are found in 110 human proteins with various functions mainly involving regulation of signaling pathways. These proteins include most of the kinases

(Lck, Lyn, JAK2), phosphatases

(Ship, PtpN11) and a number of critical adaptor proteins. (Grap2, Grb2 among several). Understanding the structure/function details of how SH2 domains regulate signaling pathways is a major interest in the cell signaling field. Synthetic antibodies generated by phage display are much more powerful than traditional monoclonal antibodies. They can target a specific region of a SH2 domain’s surface, they can trap a conformational state and they can recognize the ligand

bound and unbound form of the domain.

The techniques I use in lab are:

Phage display mutagenesisProtein engineeringSurface plasmon

resonanceCloning and bacterial expression Protein purification Protein Chip analysisCompetitive phage ELISA

Page 14: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Faculty of the Biological Sciences  Division

Page 15: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Research Summary / Selected Publications(i) One of our research interests centers around studying at atomic resolution the structural and functional properties that define molecular 

recognition systems that activate and regulate biological properties. In particular, we study the energetics

of hormone‐induced receptor 

activation and regulation of growth hormone and its receptor using X‐ray crystallography, site‐directed mutagenesis, phage display 

mutagenesis and biophysical analysis. (ii) Synthetic Antibodies‐

We use novel phage display libraries and screening procedures to produce a new class of synthetic affinity binders 

(sABs) based on Fab

antibody scaffolds. These synthetic antibodies are much more versatile than traditional monoclonal antibodies and can 

be tuned to bind to multi‐protein complexes and specific conformational states of their protein targets. These attributes make them the 

reagents of choice to study complex processes like cell signaling and cytokinesis. (iii) Drug delivery‐

We have developed a unique drug delivery method that utilizes ligand‐induced receptor‐mediated endocytosis

pathways. We 

call this method Receptor‐Mediated Delivery (RMD) and have shown that we can deliver functionally active proteins and RNA/DNA cargoes 

into live cells for functional and imaging experiments. 4) Synthetic biology‐

We use a combination of peptide synthesis and phage display 

(biosynthetic phage display) to produce proteins with novel properties.

Tony Kossiakoff

Chair & Ortho S.A. Sprague Professor, Department of 

Biochemistry & Molecular Biology

B.S. (Chemistry and Mathematics) 1968, Davis and Elkins CollegePh.D. (Physical Chemistry) 1972,University of Delaware, Newark

Horn, J.R., Sosnick, T.R., Kossiakoff, A. A. (2009) " Principal determinants leading to transition state formation of a protein‐protein 

complex, orientation trumps side chain interactions" Proc. Natl.

Aca. Sci. (USA) Epub

Feb 3.

Ye, J.D., Tereshko, V., Frederiksen, J.K., Koide, A., Fellouse, F.A., Sidhu, S.S., Koide, S., Kossiakoff, A.A., Piccirilli, J.A. (2008) "Synthetic 

antibodies for specific recognition and crystallization of structured RNA" Proc. Natl. Acad. Sci. U.S.A 105(1): 82‐7.

Tereshko, V., Uysal, S., Koide, A., Margalef, K., Koide, S., Kossiakoff, A. A. (2008) "Toward chaperone‐assisted crystallography: protein 

engineering enhancement of crystal packing and X‐ray phasing capabilities of a camelid

single‐domain antibody (VHH) scaffold" Protein 

Sci

17(7): 1175‐87.

Page 16: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Research Summary / Selected Publications(i) An important property of living organisms is their ability to move when needed. All such directed movements, including intracellular 

trafficking, cell division, and muscle contraction, are driven by a set of molecular machines that are only a few nanometers in diameter. We 

would like to understand how one of these motors, myosin, couples ATP hydrolysis into motility along actin

filaments, and how it has been 

tuned for a wide variety of tasks in the cell. (ii) While stepping, myosin travels through a specific sequence of tightly coupled biochemical and mechanical states. Without such coordination, 

structural transitions would occur at improper times and the motor would not function. Our challenge is to unravel the coordination 

mechanisms in these motors. We focus on the unconventional myosins, including myosin V, VI, and X. These motors drive several forms of 

cargo transport and play key roles in the organization of actin‐based structures. Unlike myosin II, which operates in large ensembles to 

drive high‐speed motility in muscle, these unconventional myosins

operate in smaller numbers and thus have different mechanical and 

kinetic properties.(iii) We primarily use single‐molecule techniques to study motility, including optical tweezers to measure forces and single fluorophore

imaging to 

follow biochemical events. These methods allow us to probe the protein motions in a manner that is unobscured

by other motor 

molecules, which may or may not be acting in concert.

Ronald S. Rock

Assistant Professor, Department of Biochemistry & Molecular 

Biology

B.S., Chemistry, University of Chicago, 1992Ph.D., Chemistry, California Institute of Technology, 1999

Nagy, S., Ricca, B.L., Norstrom, M., Courson, D.S., Brawley, C.M., Smithback, P., Rock, R.S. (2008) "A myosin motor that selects

bundled 

actin

for motility." Proc. Natl. Acad. Sci. USA

105: 9616‐20.

PubMed

Rizvi, S.A.; Courson, D.S.; Keller, V.A.; Rock, R.S.; Kozmin, S.A. (2008) The dual mode of action of bistramide

A entails severing of 

filamentous actin

and covalent protein modification. Proc. Natl. Acad. Sci. USA

105: 4088‐92.

PubMed

Rock, R. S., Ramamurthy, B., Dunn, A. R., Beccafico, S., Rami, B. R., Morris, C., Spink, B. J., Franzini‐Armstrong, C., Spudich, J. A. and 

Sweeney, H. L. (2005). "A Flexible Domain Is Essential for the Large Step Size and Processivity

of Myosin VI." Mol Cell

17: 603‐

9. 

PubMed

Page 17: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Prof. Tobin R. Sosnick Dept. of Biochemistry and Molecular BiologyDirector, Institute for Biophysical DynamicsChair, Graduate Program in Biophysical SciencesSenior Fellow Computation Institute.http://sosnick.uchicago.edu/

My research program involves synergistic studies of protein and RNA folding, function and design, with both experimental 

and computational components. The research is based on the premise that rigorous and innovative studies of basic 

processes have broad implications in many areas of biological research. 

These areas include delineating protein and RNA folding pathways

and denatured states,

de novo structure prediction, 

design of light‐triggered allosteric

proteins, and RNA folding during transcription. I am known for having developed ‐

analysis, a method for delineating folding pathways using engineered bi‐histidine

metal ion binding sites. 

My lab employs a range of experimental and computational methods

including NMR, small‐angle X‐ray scattering, rapid 

mixing methods, Langevin

dynamics and coarse‐grain folding simulations.

Research Interests

How proteins fold. We proposed the “70% rule”

as a general property of the transition state ensemble (TSE) for proteins that obey 

the well‐known lnkf

‐Reduced Contact Order correlation. Importantly, our Rule extends

beyond the qualitative view that the TS adopts 

a native‐like topology by providing a general, quantitative and predictive framework for describing the rate‐limiting step in protein 

folding.  We are applying and testing this generality of this rule. See Quantifying the Structural Requirements of the Folding Transition 

State of Protein A and Other Systems.

Baxa, M. C. , Freed, K. F. and Sosnick, T. R. (2008), J. Mol. Biol. 381, 1362. And Kinetic barriers and the role of topology in Protein and RNA folding. (2008) Sosnick, T.R. Prot. Sci.

17, 1308‐1381. 

The Protein Folding Challenge: Predicting Structure from Sequence. Our goal is to distill the challenge down to the basic principles, 

code them into a computer algorithm, predict folding pathways and as an outcome, the native structure (without using without using 

homology, fragments, knowledge of native state, etc.) See Mimicking the folding pathway to improve homology‐free protein structure 

prediction. (2009) DeBartolo, J., Colubri, A. Jha, A., Fitzgerald, J.E., Freed, K.F. & Sosnick, T.R. Proc. Natl. Acad. Sci. U S A. 106, 3734‐9.

Photoswitchable proteins for controlling biological function. Photoswitchable

proteins offer a unique ability to conduct perturbation 

experiments with high spatial and temporal precision in living cells, tissues, and intact organisms.

We are designing flexible, 

genetically encoded system that uses light to control biological

function in a variety of contexts. See Light‐activated DNA binding in a 

designed allosteric

protein. (2008) Strickland, D., Moffat, K., Sosnick, T.R. (2008) Proc. Natl. Acad. Sci. U S A

105, 10709‐10714. 

B.S. Univ. of Calif, San Diego, 1983Ph.D. Harvard University, 1989Post‐doctoral, Los Alamos Nat. LabPost‐doctoral, Univ. of Pennsylvania

Page 18: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Research Summary / Selected Publications(i

)

The major goals of our research are to understand the relationship between sequence, structure and function in biological systems, and 

also to leverage this knowledge to generate proteins with new or

optimized function. We use two fundamental and complementary 

approaches: 1) directed evolution and 2) structural analysis.(ii

)

The success of directed evolution depends critically on library quality and the ability to rapidly and effectively interrogate libraries using an 

appropriate assay. Thus, we combine structure‐

and homology‐based mutagenesis strategies to generate functionally rich libraries that 

allow us to efficiently access sequence space. Similarly, we develop high‐

(low information content) and low‐throughput (high information 

content) screening strategies to facilitate the identification of proteins with desirable properties. (iii

)

We use these tools in a variety of ways. Current projects in the

lab include: 1) optimization of fluorescent reporters for biological imaging; 

2) detailed analysis of sequence‐structure‐function relationships in systematically varied populations of enzymes; 3) generation of novel 

biosensors and 4) application of directed evolution to overcome limiting factors in macromolecular crystallography. 

Robert J Keenan

Assistant Professor, Department of Biochemistry & Molecular 

Biology

B.S., Biology & Chemistry, Bates College, 1990 Ph.D., Biochemistry & Biophysics, UCSF, 1998

Mateja, A., Szlachcic, A., Downing, M.E., Dobosz, M., Mariappan, M., Hegde, R.S. and Keenan, R.J. (2009) The structural basis of tail‐

anchored membrane protein recognition by Get3. Nature, 461:361‐366; advance online publication, (doi:10.1038/nature08319). 

Strack, R.L., Strongin, D.E., Bhattacharyya, D., Tao, W., Berman, A., Broxmeyer, H.E., Keenan, R.J. and Glick, B.S. (2008) A noncytotoxic

DsRed

variant for whole‐cell labeling. Nature Methods, 5:955‐957.

Siehl, D.L., Castle, L.A., Gorton, R. and Keenan, R.J. (2007). The molecular basis of glyphosate

resistance by an optimized microbial 

acetyltransferase. J. Biol. Chem., 282:11446‐11455.

Keenan, R.J., Siehl, D.L., Gorton, R. and Castle, L.A. (2005). DNA shuffling as a tool for protein crystallization. Proc Natl

Acad

Sci

USA, 

102:8887‐8892.

Page 19: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Research Summary / Selected Publications1. Our research aims to understand the molecular mechanisms underlying the transduction of different forms of energy into protein 

motion; in particular the different molecular mechanisms of ion channel gating. 2.We are equally interested in protein structure as in protein dynamics, for it is the dynamic behavior of a molecule what links

structure to 

function. 3. We rely on spectroscopic methods, and in particular reporter group techniques (EPR, Fluorescence), to study channels and other 

membrane proteins embedded in a fluid lipid bilayer. Static structural analyses are pursued by X‐ray crystallography. These structural 

techniques are all interpreted in the context of high‐resolution functional methods (single channel, macroscopic and gating current electro‐

physiological measurements).

Eduardo Perozo

Professor, Biochemistry & Molecular Biophysics, IBD

Licenciado, Biology, Universidad Central de Venezuela, 1985 Ph.D., Physiology, UCLA, 1990

Uysal, S., Vásquez, V., Terechko, V., Esaki, K., Koide, S., Fellouse, FA, Sidhu, SS, Perozo, E. and Kossiakoff, A. (2009) The Crystal 

Structure of Full‐Length KcsA

in its Closed Conformation. PNAS 106:6644‐9

Vásquez, V., Sotomayor, M., Cordero‐Morales, J., Schulten, K., and Perozo E. (2008) A Structural Mechanism for MscS

Gating in 

Lipid Bilayers. Science, 321:1210‐4.

Chakrapani, S., Cuello, LG., Perozo, E. (2008) Structural Dynamics of the Isolated‐Voltage Sensor Domain of KvAP

in Lipid Bilayer. 

Structure 16(3):398‐409

Chakrapani, S., Cordero‐Morales, JF., Perozo, E. (2007) A Quantitative description of KcsA

gating II: Single Channel Currents. 

Journal of General Physiology 130: 479‐496.

Chakrapani, S., Cordero‐Morales, JF., Perozo, E. (2007) A Quantitative description of KcsA

gating I: Macroscopic Currents. 

Journal of General Physiology 130: 465‐478.

Page 20: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Research Summary / Selected PublicationsCells have the extraordinary ability to rapidly modulate their physiology in response to changes in their environment. This plasticity is 

particularly evident in microbial species, many of which adapt to grow across an extremely diverse range of conditions. Our interests center 

on how chemical and physical signals are received, processed, and integrated by a bacterial cell to generate an adaptive response. To 

address these questions, we are using an interdisciplinary set of tools including NMR and crystallography to explore the structural basis of 

signal detection and transduction by sensor histidine

kinases, genetics and array‐based transcriptional profiling to decipher the function 

and topology of microbial signaling networks, and mathematical modeling to test our experimentally‐derived network topologies. 

Sean Crosson

Assistant Professor, Biochemistry & Molecular Biophysics, 

Committee on Microbiology

B.A, Biology, Earlham College, 1996 Ph.D., Biochemistry, University of Chicago, 2002NIH Postdoctoral Fellow, Stanford University School of Medicine

Idnurm, A. and Crosson, S. (2009). The Photobiology of Microbial Pathogenesis. PLoS

Pathogens

5: e1000470. 

doi:10.1371/journal.ppat.1000470.

Siegal‐Gaskins, D., Ash, J., and Crosson, S. (2009). Model‐based Deconvolution

of Cell Cycle Time‐Series Data Reveals Gene 

Expression Details at High Resolution. PLoS

Comput. Biol.

5: e1000460; doi:10.1371/journal.pcbi.1000460.

Boutte, C.C, Srinivasan, B.S., Flannick, J.A., Novak, A.F., Martens, A.T., Batzoglou, S., Viollier, P.H., and Crosson, S. (2008). Genetic 

and Computational Identification of a Conserved Bacterial Metabolic Module. PLoS

Genetics

4: e1000310; 

doi:10.1371/journal.pgen.1000310.

Siegal‐Gaskins, D. and Crosson, S. (2008). Tightly‐Regulated and Heritable Division Control in Single Bacterial Cells. Biophys. J.

95:2063‐2072.

Purcell, E.B. and Crosson, S. (2008). Photoregulation

in Prokaryotes. Curr. Opin. Microbiol. 11:168‐178.

Page 21: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Research Summary / Selected PublicationsOur group is broadly interested in the chemistry and biochemistry of nucleic acids with particular emphasis on RNA and RNA catalysis. 

1. The laboratory integrates areas of organic chemistry, physical chemistry, enzymology

and molecular biology to gain a fundamental 

understanding of nucleic acid structure and mechanisms of RNA catalysis. 

2. Using the principles and techniques of organic chemistry and molecular biology, we manipulate the structure of RNA molecules at 

precise locations in ways that are designed to answer very specific questions about biological function. We employ these approaches 

toward gaining a fundamental understanding of the role that divalent metal ions play in phosphoryl

transfer reactions that occur during 

RNA splicing, a fundamental step in genetic expression.

Joseph A. Piccirilli

Associate Professor, Biochemistry & Molecular Biophysics, 

Chemistry

B.A., Chemistry, University of Scranton, 1982 Ph.D., Chemistry, Harvard University, 1989

Ye, J. D., Tereshko, V., Frederiksen, J., Koide, A., Fellouse, F., Sidhu, S., Koide, S., Kossiakoff, T., and Piccirilli Joseph, A. (2008) 

Synthetic antibodies for specific recognition and crystallization of structured RNA. Proc Natl

Acad

Sci

U S A 105, 82‐87.

Korennykh, A. V., Plantinga, M. J., Correll, C. C., and Piccirilli, J. A. (2007) Linkage between Substrate Recognition and Catalysis 

during Cleavage of Sarcin/Ricin

Loop RNA by Restrictocin. Biochemistry 46, 12744‐12756

Dai, Q., Fong, R., Saikia, M., Stephenson, D., Yu, Y. T., Pan, T., and Piccirilli, J. A. (2007) Identification of recognition residues for 

ligation‐based detection and quantitation

of pseudouridine

and N6‐methyladenosine. Nucleic Acids Res 35, 6322‐6329

Ye, J. D., Li, N. S., Dai, Q., and Piccirilli, J. A. (2007) The mechanism of RNA strand scission: an experimental measure of the

Bronsted

coefficient, beta nuc. Angew

Chem

Int

Ed Engl

46, 3714‐7.

Page 22: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Research Summary / Selected PublicationsWe study mechanisms of DNA recombination and protein‐DNA recognition, combining the tools of biochemistry, x‐ray 

crystallography and protein engineering. Project areas under study include: 

Rad51

and its prokaryotic counterpart RecA

are central players in repairing dsDNA

breaks and rescuing stalled replication forks. They 

bind a single strand of DNA, then play molecular matchmaker to align it with a homologous sequence in duplex DNA. 

Flp

is a tyrosine‐based site‐specific DNA recombinase. Such enzymes catalyze DNA inversions, deletions, and insertions, and are useful 

in genetic engineering. We determined the structure of a Flp

tetramer bound to a DNA Holliday junction, and are now exploiting the 

trans assembly of Flp's

active site to investigate its catalytic mechanism using synthetic tyrosine analogs. 

Sin

is another site‐specific recombinase, unrelated to Flp, that comes from Staph. Aureus

and helps stably maintain resistance 

plasmids. Sin has a remarkable sense of direction: it recombines

two sites only if they lie on the same plasmid, and only if they are 

properly oriented. 

Phoebe Rice

Associate Professor, Biochemistry & Molecular Biophysics

B.A., Biochemistry, Brandeis University, 1986Ph.D., Molecular Biophysics and Biochemistry, Yale University, 1992Post-doctoral fellow at LMB/NIDDK/NIH 1993-1997

Kent W. Mouw, Sally J Rowland, Mark M. Gajjar, Martin R Boocock, Marshall Stark and Phoebe A. Rice. Architecture of a serine 

recombinase

DNA regulatory complex. Molecular Cell,

Apr 25;30(2):145‐55.(2008).

Yang CG, Yi C, Duguid

EM, Sullivan CT, Jian

X, Rice PA, He C. Crystal structures of DNA/RNA repair enzymes AlkB

and ABH2 bound 

to dsDNA. Nature.

Apr 24;452(7190):961‐5. (2008) 

Protein‐Nucleic Aicd

Interactions: Structural Biology. P.A. Rice and Carl C. Correll, editors. RSC Publishing, 2008 

http://www.rsc.org/shop/books/2008/9780854042722.asp 

Whiteson, KL and Rice, PA. Binding and Catalytic Contributions to Site Recognition by Flp

Recombinase. JBC,

Apr 

25;283(17):11414‐23, 2008. 

Page 23: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides
Page 24: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Research Summary / Selected PublicationsThe goals of our research are to elucidate factors governing molecular recognition events underlying protein function and to produce novel 

function by exploiting such knowledge. Current research topics include: (i) Minimalist interaction interfaces. Protein‐protein interactions are central to biological regulation. Natural protein interaction interfaces are 

large and complex. We aim to define the "minimalist" requirements for tight and specific interfaces (e.g. how large does an interface needs 

to be?; how much chemical and structural diversity is required for affinity and specificity?). Our research focuses on interactions mediated 

by surface loops, ubiquitously seen in antibodies and cytokine receptors. We employ iterative processes of engineering synthetic

binding 

proteins by altering loops of a small protein and analyzing the structure and function of binding proteins. Our research has helped establish 

the concept of "molecular scaffolds" and the field of "antibody mimics." (ii) Peptide self‐assembly. Self‐assembly of peptides into water‐insoluble, beta‐sheet‐rich fibrils is implicated in protein misfolding

diseases (e.g. 

Alzheimer's) and it is also a process leading to novel nanomaterials. We aim to understand contributions of various factors governing 

peptide self‐assembly and design novel nanostructures. We have developed a unique model system called "peptide self‐assembly mimic", 

which captures the essence of peptide self‐assembly within a water‐soluble protein and enables us to investigate atomic structures and 

energetics

of otherwise recalcitrant materials. (iii) Structural biology. We use solution NMR spectroscopy, x‐ray crystallography and the antibody mimic technology to characterize the atomic 

structure and dynamics of proteins involved in signal transduction. As a member of the Structural Genomics Initiative, we are developing 

powerful technologies to facilitate protein structure determination. 

Shohei Koide

Associate Professor, Biochemistry & Molecular Biology

B.Sc. University of Tokyo, 1986;Ph.D. University of Tokyo, 1991;Postdoctoral, The Scripps Research Institute

Gilbreth RN, Esaki K, Koide A, Sidhu SS & Koide S. (2008). A dominant conformational role for amino acid diversity in minimalist

protein‐

protein interfaces. J Mol Biol, 381, 407‐418.

Link

Huang J, Koide A, Makabe

K & Koide S (2008) Design of protein function leaps by directed

domain interface evolution. Proc Natl

Acad

Sci

U S A, 105, 6578‐6583.

Link

Biancalana M, Makabe

K, Koide A & Koide S. (2008) Aromatic cross‐strand ladders control the structure and stability of β‐rich peptide 

self‐assembly mimics. J Mol Biol, 383, 205‐213. 

Link

Page 25: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Research Summary / Selected PublicationsCells regulate actin

filament assembly to drive a wide range of fundamental cellular

processes such as division and motility. The 

focus of our research group is to determine the biochemical mechanisms that govern how fission yeast and the nematode 

worm coordinate actin

assembly. We utilize interdisciplinary approaches in and out of

live cells including genetics, fluorescence 

microscopy, biochemistry, biophysics and innovative single actin

filament imaging assays. 

David Kovar

Assistant Professor, Molecular Genetics & Cell Biology, 

Biochemistry & Molecular Biology, Committee on 

Developmental Biology, Committee on Genetics

B.A.-Ohio Wesleyan University 1995; Ph.D.-Purdue University 2001; Postdoctoral fellow-Yale University 2001-2005

Neidt, E.M., Scott, B.J. and D.R. Kovar. 2009. Formin

differentially utilizes profilin

isoforms

to rapidly assemble actin

filaments. J. Biol. 

Chem. 284, 673‐84.

Neidt, E.M., Skau, C.T. and D.R. Kovar. 2008. The cytokinesis

formins

from the nematode worm and fission yeast differentially mediated 

actin

filament assembly. J. Biol. Chem. 283, 23872‐83.

Kovar, D.R., Harris, E.S., Mahaffy, R., Higgs, H.N. and T.D. Pollard. 2006. Control of the assembly of ATP‐

and ADP‐actin

by formins

and 

profilin. Cell. 124, 423‐435.

Kovar, D.R. Molecular details of formin‐mediated actin

assembly. 2006. Curr. Opin. Cell Biol. 18, 11‐17.

Kovar, D.R., Wu, J.‐Q., and T.D. Pollard. 2005. Profilin‐mediated competition between capping protein and formin

Cdc12p during 

cytokinesis

in fission yeast. Mol. Biol. Cell. 16, 2313‐2324.

Kovar, D.R. and T.D. Pollard. Insertional

assembly of actin

in association with formins

produces piconewton

forces. 2004. Proc. Natl. 

Acad. Sci. USA. 41, 14725‐14730.

Kovar, D.R., Kuhn, J.R., Tichy, A.L., and T.D. Pollard. 2003. The fission yeast cytokinesis

formin

Cdc12p is a barbed end actin

filament 

capping protein gated by profilin. J. Cell Biol. 161, 875‐887.

Page 26: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

Research Summary / Selected Publications(i) Interaction between microtubules and target sites (e.g. kinetochores) is critical for cellular processes such as mitosis, development, and stem 

cell maintenance. To function in these diverse roles, the dynamic behavior of microtubules must be properly regulated. For example, 

disruption of microtubule function/organization has been linked to neurodegenerative disease. Alternately, inhibiting microtubule 

dynamics is among the most effective strategies for cancer therapeutics. Thus, understanding these processes represents a major challenge 

for cell biology with potential to have significant impact on issues of human health.

(ii) Microtubules are regulated by a large and diverse group of proteins. However, due to the transient and dynamic nature of the interactions, 

the mechanisms involved have been elusive. My lab uses the model

organism S. cerevisiae

to address fundamental questions about the 

mechanisms that regulate microtubule function and microtubule interactions within the cell. We utilize various approaches; high‐resolution 

and quantitative microscopy, cell biological approaches in living cells, molecular biology, protein biochemistry, and in‐vitro

reconstitution 

assays.(iii) Kinesin

motor proteins generally power movement along microtubules. We recently discovered that the important, but poorly understood 

Kinesin‐8 family represents a ‘hybrid’

motor that combines walking and depolymerase

activity in the same molecule. Furthermore, we 

demonstrated that Kinesin‐8 operates at the interface between dynamic microtubules and their interaction sites.(iv) Currently, we are working to elucidate the molecular mechanisms and regulation of Kinesin‐8 in the context of microtubule interactions. 

Kinesin‐8s are highly conserved and function in critical processes such as spindle positioning, chromosome segregation, and spindle 

morphogenesis. Thus, Kinesin‐8 is an ideal ‘molecular handle’

to leverage against understanding the mechanisms that govern dynamic 

microtubule interactions.

Mohan Gupta

Assistant Professor, Molecular Genetics & Cell Biology, 

B.S., Biochemistry, University of Kansas, 1992

Ph.D., Biochemistry (Honors), University of Kansas, 2001

Austin, K. M., Gupta, M. L., Jr., Coats, S., Tulpule, A., Mostoslavsky, G., Balazs, A. B., Mulligan, R. C., Daley, G., Pellman, D., and 

Shimamura, A. (2008). Mitotic spindle destabilization and genomic instability in Shwachman‐Diamond syndrome. J Clin

Invest., 

118:1511‐8.

(PubMed)

Gupta, M. L., Jr., Carvalho, P., Roof. D. M., and Pellman, D. (2006). Plus end‐specific depolymerase

activity of Kip3, a kinesin‐8 protein, 

explains its role in positioning the yeast mitotic spindle. Nat Cell Biol. 8:913‐23.

(PubMed)

Carvalho, P., Gupta, M. L., Jr., Hoyt, M. A., and Pellman, D. (2004). Cell cycle control of kinesin‐mediated transport of Bik1 (CLIP‐170) 

regulates microtubule stability and dynein

activation. Dev Cell, 6:815‐29.

(PubMed)

Page 27: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

TechniquesDrosophila genetics

molecular cloning

antibody staining

confocal microscopy

live-cell imaging

in situ hybridization

Sally Horne-BadovinacAssistant Professor, Molecular Genetics and Cell BiologyCommittee on Developmental BiologyCommittee on Genetics, Genomics and Systems Biology

http://www.shblab.org

Research SummaryThe proper function of organs like the heart, kidneys, liver or lungs depends on these organs acquiring their unique shapes during embryonic development. If the dynamic tissue movements that create these complex three dimensional structures go awry, birth defects and metabolic diseases result. My lab is using the superb genetic and cell biological tools of the fruit fly, Drosophila melanogaster, to elucidate the molecular and cellular mechanisms that determine the shape of a simple fly organ known as an egg chamber. Fruit flies provide tremendous experimental advantages for studying organ morphogenesis, because they allow us to quickly identify the underlying genetic networks and then test our hypotheses about gene function in an animal where we have an unrivaled ability to temporally and spatially manipulate gene expression. Given the high degree of conservation in developmental signaling mechanisms throughout evolution, the discoveries we make in flies are likely to be directly relevant to human organ formation, as well as to the abnormalities and/or diseases that occur when these developmental processes are perturbed.

The specific question my lab is addressing is, how does the initially spherical egg chamber take on an elliptical shape as it grows? Each egg chamber consists of an internal germ cell cluster, surrounded by a somatic epithelium. The cellular processes that

drive egg chamber elongation are poorly understood, but we know that a precise planar arrangement of actin filaments and ECM fibrils in and around the epithelium is required. Planar polarity is a mechanism used many times during development to effect changes in tissue shape. Interestingly, the egg chamber uses a different molecular framework to establish this type of polarity than the classic planar polarity systems. We expect, therefore, that the study of egg chamber elongation will reveal novel molecular and cellular mechanisms controlling planar morphogenesis and organ shape. Through a genetic screen, we have identified a large collection of mutations that disrupt egg chamber elongation, which now provide an unprecedented opportunity to gain molecular insight into this fascinating morphogenetic event.

The prospective master’s student will employ a variety of techniques to phenotypically

characterize one of the mutants and determine the disrupted protein’s normal function in egg chamber elongation.

Page 28: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides
Page 29: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides
Page 30: University of Chicago - Uniwersytet Warszawski · 2018-04-15 · University of Chicago in 2006. This is a joint program with the University of Virginia. The Chicago program provides

C h i c a g oA d v e n t u r e s

D O W N

T O W N

W I N T E R T I M E

PIZZA PARTY

F U N T I M E

L ABWORK

CHICAGOFIELD MUSEUM

H A L L O W E E N

GALENA

BMB

RETREAT