17
UNIVERSITI PUTRA MALAYSIA CATUR SETYAWAN KUSUMOHADI FK 2011 148 LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF WAU BULAN WING-TAIL CONFIGURATION WITH SELECTED AIRFOIL PROFILE

UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

Embed Size (px)

Citation preview

Page 1: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

UNIVERSITI PUTRA MALAYSIA

CATUR SETYAWAN KUSUMOHADI

FK 2011 148

LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF WAU BULAN WING-TAIL CONFIGURATION WITH

SELECTED AIRFOIL PROFILE

Page 2: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF WAU BULAN

WING-TAIL CONFIGURATION WITH SELECTED AIRFOIL PROFILE

By

CATUR SETYAWAN KUSUMOHADI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Partial Fulfilment of the Requirement for the Degree of Doctor of Philosophy

September 2011

© COPYRIG

HT UPM

Page 3: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

ii

DEDICATION

This Thesis is Dedicated to my:

My Parents

Bapak & Ibu Soekemi

Ibu Wasithoh Bahran

My wife

Siti Zakiyah

My child

Ibnu Afif Kusumahadi

© COPYRIG

HT UPM

Page 4: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

iii

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment

of the requirement for the degree of Doctor of Philosophy

LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF WAU BULAN

WING-TAIL CONFIGURATION WITH SELECTED AIRFOIL PROFILE

by

CATUR SETYAWAN KUSUMOHADI

September 2011

Chairman : Prof. Ir. Shah Nor Basri, PhD

Faculty : Faculty of Engineering

Wau bulan is one of the traditional Malaysia kites. Wau bulan consists of two parts

which are wing and tail. Its configuration shows possible application as baseline

planform of an aircraft. Wau bulan wing tail configuration is indicated as

controllable and could meet the stability requirements. It is implied that wau bulan

can be used as “Sensorcraft UAV configuration” that can meet the requirement of

360o unobstructed radar vision area. In this research, this wau bulan planform will be

used as baseline of mini UAV configuration.

Wau bulan wing planform shape that is close to elliptical shape, theoretically will

have high efficiency factor. However, wau bulan has a low aspect ratio wing that

causes high induced drag and will generate a low lift over drag ratio. Furthermore,

wau bulan large tail area and short tail boom can also create significant trim drag.

The focus of the research is to investigate the longitudinal aerodynamic

© COPYRIG

HT UPM

Page 5: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

iv

characteristics of wau bulan wing tail configuration. It aims to verify that the wau

bulan can fulfill the requirements of surveillance mini UAV.

The research consists of baseline geometry definition, computational analysis and

wind tunnel testing of isolated wau bulan wing and wing-tail configuration. Results

of analysis would be compared with the assumed ones from initial sizing process.

The baseline geometry was determined based on the initial sizing results, whereby

initial sizing is the standard procedure of UAV initial calculation to predict the

weight, power loading and wing loading based on surveillance mini UAV

performance criteria. Airfoil was applied to create thickness of baseline geometry

planform, where Kennedy Marsden Mod airfoil was chosen. It is a thick airfoil and

was designed for low Reynolds number flow.

FLUENT software was used as a tool for computational analysis, since it can

accommodate 2D and 3D models. The results show the correlation of longitudinal

aerodynamic characteristics between 2D airfoil with and without boundary layer

mesh, isolated wing and wing tail configuration. The gaps between calculation

results were justified by using the validation process. The boundary layer mesh

shows significant effect toward aerodynamics calculation.

Wind tunnel testing was conducted at UPM low speed open wind tunnel. This

suction type wind tunnel is equipped with external balance to measure the

aerodynamic forces and moments. Wind tunnel results show similar value of

aerodynamics coefficient especially lift coefficient, between isolated wing and wing

© COPYRIG

HT UPM

Page 6: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

v

tail configuration. The effect of symmetrical tail cross section was observed at high

angle of attack when the tail produces lift.

Despite gaps between the experimental and computational results, the values still can

be used to predict longitudinal aerodynamic characteristics of wau bulan wing tail

configuration through validation process. The results show that the maximum lift

coefficient of wing-tail configuration is close to the 2D airfoil one. Based on this

condition, the improvement of wau bulan UAV can be predicted by using the 2D

airfoil data.

The analysis results prove that the longitudinal aerodynamic parameters of wau bulan

UAV can be achieved. The maximum lift coefficient and lift over drag ratio values

from computational and wind tunnel test are higher than the assumed ones during

performance sizing. These results give opportunities to improve wau bulan UAV

performance because the excess value could compensate additional weight or fuel.

© COPYRIG

HT UPM

Page 7: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

vi

Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

CIRI-CIRI AERODINAMIK PADA ARAH LONGITUDINAL UNTUK

TATARAJAH SAYAP-EKOR DARI PADA WAU BULAN UAV DENGAN

MENGGUNAKAN PROFAIL AIRFOIL YANG TERPILIH

oleh

CATUR SETYAWAN KUSUMOHADI

September 2011

Pengerusi : Prof. Ir. Shah Nor Basri, PhD

Faculti : Fakulti Kejuruteraan

Wau bulan ialah salah satu layang-layang tradisional Malaysia. Layang-layang Wau

bulan terdiri daripada dua bahagian ianya bahagian sayap dan ekor. Konfigurasi ini

juga menunjukkan kemungkinan untuk diguna pakai sebagai planform asas pesawat.

Konfigurasi ekor sayap mengesahkan bahawa konfigurasi ini boleh dikawal dan

dapat memenuhi keperluan kestabilan. Konfigurasi ini juga membuktikan bahawa

wau bulan boleh digunakan sebagai konfigurasi daripada “Sensorcraft UAV " yang

boleh memenuhi penglihatan radar pada kawasan 360o yang tanpa halangan. Dalam

kajian ini, planform wau bulan akan digunakan sebagai asas konfigurasi UAV mini.

Secara teorinya, bentuk planform daripada sayap wau bulan adalah berhampiran

dengan bentuk elips yang mempunyai satu faktor efisiensi yang cukup tinggi. Walau

bagaimanapun, wau bulan mempunyai aspek rasio sayap yang rendah ianya akan

menyebabkan daya heret tinggi dan akan mengkurangkan nilai nisbah daya angkat

terhadap daya heret. Tambahan pula, ekor wau bulan yang besar dan paip sambungan

ekor yang pendek juga boleh mewujudkan tambahan daya heret trim yang ketara.

© COPYRIG

HT UPM

Page 8: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

vii

Tumpuan penyelidikan ialah untuk menyiasat ciri-ciri aerodinamik ekor konfigurasi

sayap wau bulan pada arah longitudinal. Matlamat ini dinyatakan untuk dapat

mengesahkan bahawa wau bulan dapat memenuhi persyaratan sebagai mini UAV

untuk pengawasan.

Penyelidikan mengandungi takrif geometri asas, analisis komputasi dan ujian

terowong angin daripada sayap dan konfigurasi sayap-ekor wau bulan. Kumpulan

daripada keputusan analisis akan dibandingkan nilai yang dianggarkan pad proses

penentuan saiz awal.

Geometri garis asas dasar tersebut ditentukan berasaskan kepada hasil proses

penentuan saiz awal. Penentuan saiz awal ialah prosedur standard daripada pengiraan

awal untuk suatu UAV ianya meramalkan berat, loading kuasa dan bebanan sayap

yang berdasarkan kepada kriteria prestasi daripada surveillance mini UAV. Aerofoil

untuk sayap dipilih semasa takrif geometri asas dilakukan. Airfoil Kennedy Marsden

Mod telah dipilih. Ia adalah airfoil yang tebal dan direka bentuk untuk aliran dengan

nombor Reynolds yang rendah.

Perisian FLUENT telah diguna sebagai alat bagi analisis komputasi. Perisian ini

boleh diguna untuk pengiraan model 2D dan 3D. Keputusan analisis komputasi

menunjukkan hubung kait daripada ciri-ciri aerodinamik pada arah longitudinal

aerofoil 2D dengan dan tanpa grid boundary layer, sayap dan konfigurasi ekor sayap.

Boundary layer mempunyai kesan yang besar ke atas pengiraan aerodinamik.

© COPYRIG

HT UPM

Page 9: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

viii

Ujian terowong angin telah dijalankan di terowong angin terbuka berkelajuan rendah

yang berada dekat UPM. Terowong angin jenis sedutan ini dilengkapi dengan

external balance untuk mengukur daya dan momen aerodinamik. Keputusan

terowong angin menunjukkan bahawa sayap dan konfigurasi ekor sayap mempunyai

nilai aerodinamik yang sama terutamanya nilai daya angkat maksima. Kesan

daripada ekor simetri ditunjukkan pada sudut serang yang tinggi apabila ekor

menghasilkan daya angkat.

Walaupun terdapat perbezaan antara keputusan uji kaji dan komputasi, tetapi dengan

menggunakan proses pengesahan, nilai-nilai yang sedia ada boleh diguna untuk

meramal ciri-ciri aerodinamik konfigurasi sayap-ekor wau bulan pada arah

longitudinal. Keputusan yand diperolehi menunjukkan bahawa daya angkat

maksimum konfigurasi sayap-ekor berhampiran dengan daya angkat maksima

daripada airfoil 2D. Berdasarkan kenyataan ini, peningkatan prestasi daripada wau

bulan UAV boleh diramalkan dengan menggunakan data airfoil 2D.

Keputusan analisis membuktikan bahawa parameter aerodinamik daripada wau bulan

UAV pada arah longitudinal boleh dicapai. daya angkat maksimum dan nisbah daya

angkat ke atas daya heret daripada proses analisis ialah lebih tinggi daripada yang

dianggarkansemasa penentuan saiz awal. Keputusan ini memberikan peluang-

peluang untuk peningkatan wau bulan UAV kerana ini nilai yang berlebih ini boleh

diguna untuk memberikan tambahan berat atau minyak.

© COPYRIG

HT UPM

Page 10: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

ix

ACKNOWLEDGEMENTS

I would like to express my sincere most appreciation and deepest gratitude to

Professor Ir. Dr. Shah Nor Basri who has been my chairman of supervisory

committee. Since then, he has given me his wise counsel, guidance and valuable help

whenever I needed. I am ever grateful to his unflagging guidance, support and

encouragement.

I would also like to thank Dr. Ir. Prasetyo Edi who was my first chairman of

supervisory committee. He was who initially invited me to take the PhD program in

the Department of Aerospace, UPM.

I would like to thank my supervisory committee members, Associate Professor

Mohd. Ramly Ajir and Dr. Abdul Aziz Jaafar for their valuable guidance, comments

and suggestions, which were very helpful throughout my research work.

I also want to express my grateful to Dr-Ing. Surjatin Wiriadidjaja who gave me his

wise counsel, guidance and encouragement.

I am particularly grateful to my friend Dr. Azmin Shakrine for his active help and

encouragement during this study. I want to thank Mr. Ropie Mat for his assistance,

encourage and accompany during hard time in this study.

I like to thank my examination committee, Assoc. Prof. Dr. Renuganth A/L

Varatharajoo, Prof. Dr. Harijono Djojodihardjo, Assoc. Prof. Dr-Ing. Surjatin

Wiriadidjaja, and Prof Fei-Bin Hsiao for their corrections and recommendation of the

thesis.

I would like to thank all of the staff members in the Department of Aerospace

Engineering, UPM for their direct and indirect help and co-operation throughout the

period of my study.

Finally, I like to thank all of my friends in the Indonesia Students Association (PPI)

in UPM for their support and assistance during my stay in Malaysia.

© COPYRIG

HT UPM

Page 11: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

x

I certify that a Thesis Examination Committee has met on 22 September 2011 to

conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

“Longitudinal Aerodynamic Characteristics of Wau Bulan Wing-Tail Configuration

with Selected Airfoil Profile” in accordance with the Universities and University

Collegeg Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A)

106] 15 March 1998. The Committee recommends that the student be awarded the

Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Renuganth A/LVaratharajoo, PhD

Associate Professor

Faculty of Engineering

University Putra Malaysia

(Chairman)

Harijono Djojodihardjo, PhD

Professor

Faculty of Engineering

University Putra Malaysia

(Internal Examiner)

Surjatin Wiriadidjaja, PhD

Associate Professor

Faculty of Engineering

University Putra Malaysia

(Internal Examiner)

Fei-Bin Hsiao, PhD

Professor

National Cheng Kung University

Taiwan

(External Examiner)

SEOW HENG FONG, PhD

Professor and Deputy Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 22 September 2011

© C

OPYRIGHT U

PM

Page 12: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

xi

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfillment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee were as follows:

Shah Nor Basri, PhD

Professor

Faculty of Engineering

University Putra Malaysia

(Chairman)

Mohd Ramly Ajir

Associate Professor

Faculty of Engineering

University Putra Malaysia

(Member)

Abdul Aziz Jaafar, PhD

Senior Lecturer

Faculty of Engineering

University Putra Malaysia

(Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

© COPYRIG

HT UPM

Page 13: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

xii

DECLARATION

I declare that the thesis is my original work except for quotations and citations,

which have been duly acknowledged. I also declare that it has not been previously,

and is not concurrently, submitted for any other degree at Universiti Putra Malaysia

or at any other institution.

CATUR SETYAWAN KUSUMOHADI

Date: 22 September 2011

© COPYRIG

HT UPM

Page 14: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

xiii

TABLE OF CONTENTS

Page

DEDICATION ii

ABSTRACT iii

ABSTRAK vi

ACKNOWLEDGEMENTS ix

APPROVAL x

DECLARATION xii

TABLE OF CONTENTS xiii

LIST OF TABLES xvii

LIST OF FIGURES xix

LIST OF ABBREVIATIONS xxxii

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 2

1.3 Research Aim and Objectives 4

1.4 Scope of the Thesis 4

1.5 Significance of the Thesis 5

1.6 Outline of the Thesis 6

2 LITERATURE REVIEW 8

2.1 “Wau” - Malaysia’s Kites 8

2.2 Wau bulan Planform 9

2.2.1 Aerodynamic Characteristics 10

2.2.2 Structure 12

2.2.3 Stability and Control 13

2.2.4 Sensor placement 13

2.3 Wing Configurations 13

2.3.1 Wing Planform 15

2.3.2 Wing Vertical Location 17

2.4 Researches on Wing Configuration Concepts 18

2.4.1 Low Aspect Ratio Wing 18

2.4.2 Non Planar Wing 19

2.4.3 Crescent Shaped Wing 19

2.4.4 Blended Wing-Body 20

2.5 Empennage/Tail configurations 21

2.6 Previous Research on Wing-Tail Configuration Concepts 22

2.6.1 Joined/Box wing 22

2.6.2 Ring/Circular wing 23

2.7 Closure 24

3 METHODOLOGY 26

3.1 Baseline Geometry Definition 26

© COPYRIG

HT UPM

Page 15: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

xiv

3.2 Computational Aerodynamics Analysis 27

3.2.1 Flow condition for CFD Analysis 29

3.2.2 2D Airfoil Analysis Plan 29

3.2.3 3D Wau bulan Wing Analysis Plan 30

3.2.4 Wing-Tail Configuration Analysis Plan 32

3.3 Wind Tunnel Testing 32

3.3.1 Wind Tunnel Flow Quality 34

3.3.2 Model Preparation and Installation 35

3.3.3 Models Testing Process 35

4 BASELINE GEOMETRY DEFINITION 41

4.1 Flow condition 41

4.2 Baseline Wing Airfoil 43

4.2.1 Low Reynolds Number Airfoil 43

4.2.2 Thick airfoil 43

4.2.3 High CL/CD 44

4.3 Chosen Airfoil Aerodynamic Characteristics 44

4.4 Baseline Planform 45

5 RESULTS AND DISCUSSION OF COMPUTATIONAL ANALYSIS 48

5.1 Model Geometry and Meshing 48

5.1.1 Boundary and Mesh Optimization 48

5.1.2 2D Airfoil 48

5.1.3 3D Isolated Wau bulan Wing 52

5.1.4 Wing-Tail Configuration 55

5.1.5 Mesh Size Determination 56

5.2 Validation of FLUENT Software 57

5.2.1 2D Airfoil Model Validation 58

5.2.2 3D Model Validation 61

5.2.3 Comparison between 2D Model and 3D Model 64

5.3 Results 65

5.3.1 2D Airfoil 65

5.3.1.1 Contour Plot 65

5.3.1.2 Aerodynamics Coefficients 68

5.3.1.3 Boundary Layer Mesh Effects 71

5.3.1.4 Turbulence Models Effects 72

5.3.1.5 Airfoil Types Effect 73

5.3.2 Wing Configuration 76

5.3.2.1 Aerodynamics Coefficients 76

5.3.2.2 Wing Models Comparison 79

5.3.3 Wing-Tail Configuration 82

6 MODEL PREPARATION AND WIND TUNNEL TESTS RESULTS AND

DISSCUSSION 86

6.1 Wind Tunnel’s Airflow Conditions 86

6.1.1 Airflow Reynolds Number during Testing 87

6.1.2 Airflow Velocity Correction 88

6.2 Model Preparation 89

6.2.1 Model Geometry 89

6.2.2 Wind Tunnel Model Production 89

© COPYRIG

HT UPM

Page 16: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

xv

6.2.3 Correction Factor due to the Model Defects 91

6.3 Model Installation 92

6.3.1 Isolated Wing Model 92

6.3.2 Wing Tail Configuration Model 94

6.3.3 Installation Correction Factors 94

6.4 Wind Tunnel Test Results and Discussion 96

6.4.1 Isolated Wing 96

6.4.2 Wing-Tail Configuration 100

6.4.3 Comparison between Isolated Wing and Wing-Tail Configuration 103

7 RESULTS Comparison 106

7.1 Comparison of Computational and Experimental Results 106

7.2 Comparison of Aerodynamics Analysis Results and Assumed Aerodynamic

Characteristics of Designed Wau Bulan UAV 110

8 CONCLUSION AND RECOMMENDATIONS 112

8.1 Summary 112

8.2 Conclusion 113

8.3 Recommendation for future work 114

REFERENCES 115

Appendix A: UAV Initial Sizing 123

A.1 UAV Conceptual Design Method 123

A.2 Design Concepts 125

A.3 Mission Requirements 125

A.4 Performance Requirements 126

A.4.1 Cruise 126

A.4.2 Loiter 127

A.4.3 Mission Profile 127

A.5 Competitors Data Analysis 127

A.6 Initial weight sizing 129

A.6.1 Input Parameter 130

A.6.2 Aerodynamic Coefficients Assumptions 130

A.6.3 Propulsion Data Assumptions 130

A.6.4 Results 130

A.7 Performance Sizing 131

A.7.1 Stall Speed 131

A.7.2 Take Off 131

A.7.3 Landing 131

A.7.4 Cruise 132

A.7.5 Climb 132

A.7.6 Results 132

Appendix B: Airfoil Selection 134

B.1 Low Speed Airfoil Properties 134

B.2 Chosen Airfoil Specification 136

B.2.1 Eppler E397 (human powered aircraft airfoil) 136

B.2.2 NLF 1015 (natural laminar flow airfoil) 136

B.2.3 Wortmann FX 63-137 (human power aircraft airfoil) 137

B.2.4 KM Mod (high lift airfoil modified from Kennedy Marsden

Airfoil) 138

© COPYRIG

HT UPM

Page 17: UNIVERSITI PUTRA MALAYSIA LONGITUDINAL …psasir.upm.edu.my/id/eprint/41808/1/FK 2011 148R.pdf · conduct the final examination of Catur Setyawan Kusumohadi on his thesis entitled

xvi

Appendix C: FLUENT Parameters 140

C.1 Pressure Far-Field Boundary Type 140

C.2 Flow Modeling in FLUENT 141

C.2.1 Laminar Modeling 141

C.2.2 Laminar-Turbulence Transition 142

C.2.3 Turbulence Modeling 143

Appendix D: Airfoil Model Computational Results 147

D.1 Mesh Effect on Eppler E397 Airfoil 147

D.2 Effect of viscous modeling E397 airfoil 151

D.3 Mesh Effect on Wortmann FX 63-137 airfoil 155

D.4 Mesh Effect on KM Mod airfoil 165

D.5 Effect of viscous modeling KM Mod airfoil 171

D.6 Mesh Effect on NLF 1015 airfoil 175

D.7 Effect of viscous modeling NLF 1015 airfoil 179

Appendix E: Isolated Wing Computational Results 183

E.1 Effects of Mesh Size 183

E.2 Effects of Viscous Modeling 192

BIODATA OF STUDENT 203

© COPYRIG

HT UPM