84
Unique Factorization of Symmetric functions R. Venkatesh TIFR 30 June, 2014 R. Venkatesh Unique Factorization of Symmetric functions

Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Unique Factorization of Symmetricfunctions

R. Venkatesh

TIFR

30 June, 2014

R. Venkatesh Unique Factorization of Symmetric functions

Page 2: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

In this talk

Realization of symmetric groups as reflection groups

Some examples of symmetric functions

Relations between symmetric functions

Unique factorization of Schur functions

Applications to representation theory (if time permits)

R. Venkatesh Unique Factorization of Symmetric functions

Page 3: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

In this talk

Realization of symmetric groups as reflection groups

Some examples of symmetric functions

Relations between symmetric functions

Unique factorization of Schur functions

Applications to representation theory (if time permits)

R. Venkatesh Unique Factorization of Symmetric functions

Page 4: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

In this talk

Realization of symmetric groups as reflection groups

Some examples of symmetric functions

Relations between symmetric functions

Unique factorization of Schur functions

Applications to representation theory (if time permits)

R. Venkatesh Unique Factorization of Symmetric functions

Page 5: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

In this talk

Realization of symmetric groups as reflection groups

Some examples of symmetric functions

Relations between symmetric functions

Unique factorization of Schur functions

Applications to representation theory (if time permits)

R. Venkatesh Unique Factorization of Symmetric functions

Page 6: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

In this talk

Realization of symmetric groups as reflection groups

Some examples of symmetric functions

Relations between symmetric functions

Unique factorization of Schur functions

Applications to representation theory (if time permits)

R. Venkatesh Unique Factorization of Symmetric functions

Page 7: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

A few facts from Linear algebra

V – a finite dimensional vector space

B – a basis of V

T : V → V be an endomorphism of V

The action of T is completely determined by its action on B

T (B) is a basis of V if and only if T – is invertible

R. Venkatesh Unique Factorization of Symmetric functions

Page 8: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

A few facts from Linear algebra

V – a finite dimensional vector space

B – a basis of V

T : V → V be an endomorphism of V

The action of T is completely determined by its action on B

T (B) is a basis of V if and only if T – is invertible

R. Venkatesh Unique Factorization of Symmetric functions

Page 9: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

A few facts from Linear algebra

V – a finite dimensional vector space

B – a basis of V

T : V → V be an endomorphism of V

The action of T is completely determined by its action on B

T (B) is a basis of V if and only if T – is invertible

R. Venkatesh Unique Factorization of Symmetric functions

Page 10: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

A few facts from Linear algebra

V – a finite dimensional vector space

B – a basis of V

T : V → V be an endomorphism of V

The action of T is completely determined by its action on B

T (B) is a basis of V if and only if T – is invertible

R. Venkatesh Unique Factorization of Symmetric functions

Page 11: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

A few facts from Linear algebra

V – a finite dimensional vector space

B – a basis of V

T : V → V be an endomorphism of V

The action of T is completely determined by its action on B

T (B) is a basis of V if and only if T – is invertible

R. Venkatesh Unique Factorization of Symmetric functions

Page 12: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Reflection groups

Fix n ∈ N throughout

Denote ( , ) by the standard inner product on Rn

En = (Rn, ( , )) Euclidean space

Given 0 6= α ∈ V , α⊥ = Hα := {β ∈ En|(β, α) = 0}

Define sα : En → En by

sα(β) = β − 2(β, α)

(α, α)α

sα is the reflection with respect to α

R. Venkatesh Unique Factorization of Symmetric functions

Page 13: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Reflection groups

Fix n ∈ N throughout

Denote ( , ) by the standard inner product on Rn

En = (Rn, ( , )) Euclidean space

Given 0 6= α ∈ V , α⊥ = Hα := {β ∈ En|(β, α) = 0}

Define sα : En → En by

sα(β) = β − 2(β, α)

(α, α)α

sα is the reflection with respect to α

R. Venkatesh Unique Factorization of Symmetric functions

Page 14: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Reflection groups

Fix n ∈ N throughout

Denote ( , ) by the standard inner product on Rn

En = (Rn, ( , )) Euclidean space

Given 0 6= α ∈ V , α⊥ = Hα := {β ∈ En|(β, α) = 0}

Define sα : En → En by

sα(β) = β − 2(β, α)

(α, α)α

sα is the reflection with respect to α

R. Venkatesh Unique Factorization of Symmetric functions

Page 15: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Reflection groups

Fix n ∈ N throughout

Denote ( , ) by the standard inner product on Rn

En = (Rn, ( , )) Euclidean space

Given 0 6= α ∈ V , α⊥ = Hα := {β ∈ En|(β, α) = 0}

Define sα : En → En by

sα(β) = β − 2(β, α)

(α, α)α

sα is the reflection with respect to α

R. Venkatesh Unique Factorization of Symmetric functions

Page 16: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Reflection groups

Fix n ∈ N throughout

Denote ( , ) by the standard inner product on Rn

En = (Rn, ( , )) Euclidean space

Given 0 6= α ∈ V , α⊥ = Hα := {β ∈ En|(β, α) = 0}

Define sα : En → En by

sα(β) = β − 2(β, α)

(α, α)α

sα is the reflection with respect to α

R. Venkatesh Unique Factorization of Symmetric functions

Page 17: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Reflection groups

Fix n ∈ N throughout

Denote ( , ) by the standard inner product on Rn

En = (Rn, ( , )) Euclidean space

Given 0 6= α ∈ V , α⊥ = Hα := {β ∈ En|(β, α) = 0}

Define sα : En → En by

sα(β) = β − 2(β, α)

(α, α)α

sα is the reflection with respect to α

R. Venkatesh Unique Factorization of Symmetric functions

Page 18: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

sα(α) = −α

sα(β) = β for β ∈ Hα

[sα] =

1 0 · · · 0 00 1 · · · 0 0...

.... . .

......

0 0 · · · 1 00 0 · · · 0 −1

with respect to B(Hα) ∪ {α}

A subgroup of GL(En) generated by finitely manyreflections is called reflection group.

R. Venkatesh Unique Factorization of Symmetric functions

Page 19: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

sα(α) = −α

sα(β) = β for β ∈ Hα

[sα] =

1 0 · · · 0 00 1 · · · 0 0...

.... . .

......

0 0 · · · 1 00 0 · · · 0 −1

with respect to B(Hα) ∪ {α}

A subgroup of GL(En) generated by finitely manyreflections is called reflection group.

R. Venkatesh Unique Factorization of Symmetric functions

Page 20: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

sα(α) = −α

sα(β) = β for β ∈ Hα

[sα] =

1 0 · · · 0 00 1 · · · 0 0...

.... . .

......

0 0 · · · 1 00 0 · · · 0 −1

with respect to B(Hα) ∪ {α}

A subgroup of GL(En) generated by finitely manyreflections is called reflection group.

R. Venkatesh Unique Factorization of Symmetric functions

Page 21: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

sα(α) = −α

sα(β) = β for β ∈ Hα

[sα] =

1 0 · · · 0 00 1 · · · 0 0...

.... . .

......

0 0 · · · 1 00 0 · · · 0 −1

with respect to B(Hα) ∪ {α}

A subgroup of GL(En) generated by finitely manyreflections is called reflection group.

R. Venkatesh Unique Factorization of Symmetric functions

Page 22: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Symmetric group

B = {ε1, · · · , εn} – the standard basis of En

Given σ ∈ Sn, define σ : B → B by σ(εi) = εσ(i)

Extend σ linearly to En, explicitly

σ

(n∑

i=1

λiεi

)=

n∑i=1

λiεσ(i)

This gives an action of Sn on En:

ρ : Sn → GL(En)

ρ is faithful ( one to one map)

R. Venkatesh Unique Factorization of Symmetric functions

Page 23: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Symmetric group

B = {ε1, · · · , εn} – the standard basis of En

Given σ ∈ Sn, define σ : B → B by σ(εi) = εσ(i)

Extend σ linearly to En, explicitly

σ

(n∑

i=1

λiεi

)=

n∑i=1

λiεσ(i)

This gives an action of Sn on En:

ρ : Sn → GL(En)

ρ is faithful ( one to one map)

R. Venkatesh Unique Factorization of Symmetric functions

Page 24: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Symmetric group

B = {ε1, · · · , εn} – the standard basis of En

Given σ ∈ Sn, define σ : B → B by σ(εi) = εσ(i)

Extend σ linearly to En, explicitly

σ

(n∑

i=1

λiεi

)=

n∑i=1

λiεσ(i)

This gives an action of Sn on En:

ρ : Sn → GL(En)

ρ is faithful ( one to one map)

R. Venkatesh Unique Factorization of Symmetric functions

Page 25: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Symmetric group

B = {ε1, · · · , εn} – the standard basis of En

Given σ ∈ Sn, define σ : B → B by σ(εi) = εσ(i)

Extend σ linearly to En, explicitly

σ

(n∑

i=1

λiεi

)=

n∑i=1

λiεσ(i)

This gives an action of Sn on En:

ρ : Sn → GL(En)

ρ is faithful ( one to one map)

R. Venkatesh Unique Factorization of Symmetric functions

Page 26: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Symmetric group

B = {ε1, · · · , εn} – the standard basis of En

Given σ ∈ Sn, define σ : B → B by σ(εi) = εσ(i)

Extend σ linearly to En, explicitly

σ

(n∑

i=1

λiεi

)=

n∑i=1

λiεσ(i)

This gives an action of Sn on En:

ρ : Sn → GL(En)

ρ is faithful ( one to one map)

R. Venkatesh Unique Factorization of Symmetric functions

Page 27: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Sn as a reflection group

Let λ = λ1ε1 + · · ·+ λnεn ∈ Rn

Since (εi − εj , λ) = λi − λj , we haveHεi−εj =

{(λ1, · · · , λn) ∈ Rn : λi = λj

}Denote sij by the reflection with respect to εi − εj

sij(λ) = λ− (λi − λj)(εi − εj)

= λ1ε1 + · · ·+ λjεi + · · ·+ λiεj + · · ·+ λnεn

= ρ(i,j)(λ)

thus sij = ρ(i,j) and we know that Sn is generated by (i , j)

R. Venkatesh Unique Factorization of Symmetric functions

Page 28: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Sn as a reflection group

Let λ = λ1ε1 + · · ·+ λnεn ∈ Rn

Since (εi − εj , λ) = λi − λj , we haveHεi−εj =

{(λ1, · · · , λn) ∈ Rn : λi = λj

}Denote sij by the reflection with respect to εi − εj

sij(λ) = λ− (λi − λj)(εi − εj)

= λ1ε1 + · · ·+ λjεi + · · ·+ λiεj + · · ·+ λnεn

= ρ(i,j)(λ)

thus sij = ρ(i,j) and we know that Sn is generated by (i , j)

R. Venkatesh Unique Factorization of Symmetric functions

Page 29: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Sn as a reflection group

Let λ = λ1ε1 + · · ·+ λnεn ∈ Rn

Since (εi − εj , λ) = λi − λj , we haveHεi−εj =

{(λ1, · · · , λn) ∈ Rn : λi = λj

}Denote sij by the reflection with respect to εi − εj

sij(λ) = λ− (λi − λj)(εi − εj)

= λ1ε1 + · · ·+ λjεi + · · ·+ λiεj + · · ·+ λnεn

= ρ(i,j)(λ)

thus sij = ρ(i,j) and we know that Sn is generated by (i , j)

R. Venkatesh Unique Factorization of Symmetric functions

Page 30: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Sn as a reflection group

Let λ = λ1ε1 + · · ·+ λnεn ∈ Rn

Since (εi − εj , λ) = λi − λj , we haveHεi−εj =

{(λ1, · · · , λn) ∈ Rn : λi = λj

}Denote sij by the reflection with respect to εi − εj

sij(λ) = λ− (λi − λj)(εi − εj)

= λ1ε1 + · · ·+ λjεi + · · ·+ λiεj + · · ·+ λnεn

= ρ(i,j)(λ)

thus sij = ρ(i,j) and we know that Sn is generated by (i , j)

R. Venkatesh Unique Factorization of Symmetric functions

Page 31: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Vieta’s Formulas

X n + a1X n−1 + · · ·+ an−1X + an =n∏

i=1(X − xi)

n∏i=1

(X − xi) = X n −(

n∑i=1

xi

)X n−1 + · · ·+ (−1)nx1 · · · xn

am = (−1)m ∑1≤i1<···<im≤n

xi1 · · · xim

Elementary Symmetric Polynomials:em(x1, · · · , xn) =

∑1≤i1<···<im≤n

xi1 · · · xim

e0 = 1, e2(x1, x2, x3) = x1x2 + x2x3 + x1x3

R. Venkatesh Unique Factorization of Symmetric functions

Page 32: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Vieta’s Formulas

X n + a1X n−1 + · · ·+ an−1X + an =n∏

i=1(X − xi)

n∏i=1

(X − xi) = X n −(

n∑i=1

xi

)X n−1 + · · ·+ (−1)nx1 · · · xn

am = (−1)m ∑1≤i1<···<im≤n

xi1 · · · xim

Elementary Symmetric Polynomials:em(x1, · · · , xn) =

∑1≤i1<···<im≤n

xi1 · · · xim

e0 = 1, e2(x1, x2, x3) = x1x2 + x2x3 + x1x3

R. Venkatesh Unique Factorization of Symmetric functions

Page 33: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Vieta’s Formulas

X n + a1X n−1 + · · ·+ an−1X + an =n∏

i=1(X − xi)

n∏i=1

(X − xi) = X n −(

n∑i=1

xi

)X n−1 + · · ·+ (−1)nx1 · · · xn

am = (−1)m ∑1≤i1<···<im≤n

xi1 · · · xim

Elementary Symmetric Polynomials:em(x1, · · · , xn) =

∑1≤i1<···<im≤n

xi1 · · · xim

e0 = 1, e2(x1, x2, x3) = x1x2 + x2x3 + x1x3

R. Venkatesh Unique Factorization of Symmetric functions

Page 34: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Vieta’s Formulas

X n + a1X n−1 + · · ·+ an−1X + an =n∏

i=1(X − xi)

n∏i=1

(X − xi) = X n −(

n∑i=1

xi

)X n−1 + · · ·+ (−1)nx1 · · · xn

am = (−1)m ∑1≤i1<···<im≤n

xi1 · · · xim

Elementary Symmetric Polynomials:em(x1, · · · , xn) =

∑1≤i1<···<im≤n

xi1 · · · xim

e0 = 1, e2(x1, x2, x3) = x1x2 + x2x3 + x1x3

R. Venkatesh Unique Factorization of Symmetric functions

Page 35: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Vieta’s Formulas

X n + a1X n−1 + · · ·+ an−1X + an =n∏

i=1(X − xi)

n∏i=1

(X − xi) = X n −(

n∑i=1

xi

)X n−1 + · · ·+ (−1)nx1 · · · xn

am = (−1)m ∑1≤i1<···<im≤n

xi1 · · · xim

Elementary Symmetric Polynomials:em(x1, · · · , xn) =

∑1≤i1<···<im≤n

xi1 · · · xim

e0 = 1, e2(x1, x2, x3) = x1x2 + x2x3 + x1x3

R. Venkatesh Unique Factorization of Symmetric functions

Page 36: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

More Examples

Powe sums: pm(x1, · · · , xn) = xm1 + · · ·+ xm

n , m ∈ Z+

Complete homogeneous symmetric polynomial of degreek in n variables is the sum of all monomials of total degreek in those n variables

hk (x1, · · · , xn) =∑

1≤i1≤···≤ik≤nxi1 · · · xik

h2(x1, x2, x3) = x21 + x2

2 + x23 + x1x2 + x2x3 + x1x3

R. Venkatesh Unique Factorization of Symmetric functions

Page 37: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

More Examples

Powe sums: pm(x1, · · · , xn) = xm1 + · · ·+ xm

n , m ∈ Z+

Complete homogeneous symmetric polynomial of degreek in n variables is the sum of all monomials of total degreek in those n variables

hk (x1, · · · , xn) =∑

1≤i1≤···≤ik≤nxi1 · · · xik

h2(x1, x2, x3) = x21 + x2

2 + x23 + x1x2 + x2x3 + x1x3

R. Venkatesh Unique Factorization of Symmetric functions

Page 38: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

More Examples

Powe sums: pm(x1, · · · , xn) = xm1 + · · ·+ xm

n , m ∈ Z+

Complete homogeneous symmetric polynomial of degreek in n variables is the sum of all monomials of total degreek in those n variables

hk (x1, · · · , xn) =∑

1≤i1≤···≤ik≤nxi1 · · · xik

h2(x1, x2, x3) = x21 + x2

2 + x23 + x1x2 + x2x3 + x1x3

R. Venkatesh Unique Factorization of Symmetric functions

Page 39: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

More Examples

Powe sums: pm(x1, · · · , xn) = xm1 + · · ·+ xm

n , m ∈ Z+

Complete homogeneous symmetric polynomial of degreek in n variables is the sum of all monomials of total degreek in those n variables

hk (x1, · · · , xn) =∑

1≤i1≤···≤ik≤nxi1 · · · xik

h2(x1, x2, x3) = x21 + x2

2 + x23 + x1x2 + x2x3 + x1x3

R. Venkatesh Unique Factorization of Symmetric functions

Page 40: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Relations between symmetric functions

m∑r=0

(−1)r er hm−r = 0

hk = det(e1−i+j)1≤i,j≤k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · ek−1 ek

1 e1 · · · ek−2 ek−1

0 1 · · · ek−3 ek−2...

.... . .

......

0 0 · · · e1 e2

0 0 · · · 1 e1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Here we have used the convention that ei(x1, · · · , xn) = 0 ifi < 0 or i > n

R. Venkatesh Unique Factorization of Symmetric functions

Page 41: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Relations between symmetric functions

m∑r=0

(−1)r er hm−r = 0

hk = det(e1−i+j)1≤i,j≤k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · ek−1 ek

1 e1 · · · ek−2 ek−1

0 1 · · · ek−3 ek−2...

.... . .

......

0 0 · · · e1 e2

0 0 · · · 1 e1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Here we have used the convention that ei(x1, · · · , xn) = 0 ifi < 0 or i > n

R. Venkatesh Unique Factorization of Symmetric functions

Page 42: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Relations between symmetric functions

m∑r=0

(−1)r er hm−r = 0

hk = det(e1−i+j)1≤i,j≤k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · ek−1 ek

1 e1 · · · ek−2 ek−1

0 1 · · · ek−3 ek−2...

.... . .

......

0 0 · · · e1 e2

0 0 · · · 1 e1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Here we have used the convention that ei(x1, · · · , xn) = 0 ifi < 0 or i > n

R. Venkatesh Unique Factorization of Symmetric functions

Page 43: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Relations between symmetric functions

By symmetry between e and h, we get

ek = det(h1−i+j)1≤i,j≤k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 h2 · · · hk−1 hk

1 h1 · · · hk−2 hk−1

0 1 · · · hk−3 hk−2...

.... . .

......

0 0 · · · h1 h2

0 0 · · · 1 h1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R. Venkatesh Unique Factorization of Symmetric functions

Page 44: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Relations between symmetric functions

(k !)ek =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 p2 · · · pk−1 pk

k − 1 p1 · · · pk−2 pk−1

0 k − 2 · · · pk−3 pk−2...

.... . .

......

0 0 · · · p1 p2

0 0 · · · 1 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(k !)hk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 p2 · · · pk−1 pk

−(k − 1) p1 · · · pk−2 pk−1

0 −(k − 2) · · · pk−3 pk−2...

.... . .

......

0 0 · · · p1 p2

0 0 · · · −1 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣R. Venkatesh Unique Factorization of Symmetric functions

Page 45: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Relations between symmetric functions

(k !)ek =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 p2 · · · pk−1 pk

k − 1 p1 · · · pk−2 pk−1

0 k − 2 · · · pk−3 pk−2...

.... . .

......

0 0 · · · p1 p2

0 0 · · · 1 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(k !)hk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 p2 · · · pk−1 pk

−(k − 1) p1 · · · pk−2 pk−1

0 −(k − 2) · · · pk−3 pk−2...

.... . .

......

0 0 · · · p1 p2

0 0 · · · −1 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣R. Venkatesh Unique Factorization of Symmetric functions

Page 46: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Relations between symmetric functions

pk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · ek−1 ek

1 e1 · · · ek−2 (k − 1)ek−1

0 1 · · · ek−3 (k − 2)ek−2...

.... . .

......

0 0 · · · e1 2e2

0 0 · · · 1 e1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−1)k−1pk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 h2 · · · hk−1 hk

1 h1 · · · hk−2 (k − 1)hk−1

0 1 · · · hk−3 (k − 2)hk−2...

.... . .

......

0 0 · · · h1 2h2

0 0 · · · 1 h1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣R. Venkatesh Unique Factorization of Symmetric functions

Page 47: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Relations between symmetric functions

pk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · ek−1 ek

1 e1 · · · ek−2 (k − 1)ek−1

0 1 · · · ek−3 (k − 2)ek−2...

.... . .

......

0 0 · · · e1 2e2

0 0 · · · 1 e1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−1)k−1pk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 h2 · · · hk−1 hk

1 h1 · · · hk−2 (k − 1)hk−1

0 1 · · · hk−3 (k − 2)hk−2...

.... . .

......

0 0 · · · h1 2h2

0 0 · · · 1 h1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣R. Venkatesh Unique Factorization of Symmetric functions

Page 48: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

More Examples

Set P+ =n∑

i=1Z+εi .

Given α = m1ε1 + · · ·+ mnεn ∈ P+, set xα = xm11 · · · x

mnn

Given α ∈ P+, define e(α) =∑σ∈Sn

xσα

e(1,0, · · · ,0) = (n − 1)!n∑

i=1xi

e(1, · · · ,1) = (n!)x1 · · · xn

Write explicitly e(1,1,0, · · · ,0) and e(1,1,1,0, · · · ,0), etc

R. Venkatesh Unique Factorization of Symmetric functions

Page 49: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

More Examples

Set P+ =n∑

i=1Z+εi .

Given α = m1ε1 + · · ·+ mnεn ∈ P+, set xα = xm11 · · · x

mnn

Given α ∈ P+, define e(α) =∑σ∈Sn

xσα

e(1,0, · · · ,0) = (n − 1)!n∑

i=1xi

e(1, · · · ,1) = (n!)x1 · · · xn

Write explicitly e(1,1,0, · · · ,0) and e(1,1,1,0, · · · ,0), etc

R. Venkatesh Unique Factorization of Symmetric functions

Page 50: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

More Examples

Set P+ =n∑

i=1Z+εi .

Given α = m1ε1 + · · ·+ mnεn ∈ P+, set xα = xm11 · · · x

mnn

Given α ∈ P+, define e(α) =∑σ∈Sn

xσα

e(1,0, · · · ,0) = (n − 1)!n∑

i=1xi

e(1, · · · ,1) = (n!)x1 · · · xn

Write explicitly e(1,1,0, · · · ,0) and e(1,1,1,0, · · · ,0), etc

R. Venkatesh Unique Factorization of Symmetric functions

Page 51: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

More Examples

Set P+ =n∑

i=1Z+εi .

Given α = m1ε1 + · · ·+ mnεn ∈ P+, set xα = xm11 · · · x

mnn

Given α ∈ P+, define e(α) =∑σ∈Sn

xσα

e(1,0, · · · ,0) = (n − 1)!n∑

i=1xi

e(1, · · · ,1) = (n!)x1 · · · xn

Write explicitly e(1,1,0, · · · ,0) and e(1,1,1,0, · · · ,0), etc

R. Venkatesh Unique Factorization of Symmetric functions

Page 52: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

More Examples

Set P+ =n∑

i=1Z+εi .

Given α = m1ε1 + · · ·+ mnεn ∈ P+, set xα = xm11 · · · x

mnn

Given α ∈ P+, define e(α) =∑σ∈Sn

xσα

e(1,0, · · · ,0) = (n − 1)!n∑

i=1xi

e(1, · · · ,1) = (n!)x1 · · · xn

Write explicitly e(1,1,0, · · · ,0) and e(1,1,1,0, · · · ,0), etc

R. Venkatesh Unique Factorization of Symmetric functions

Page 53: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

More Examples

Set P+ =n∑

i=1Z+εi .

Given α = m1ε1 + · · ·+ mnεn ∈ P+, set xα = xm11 · · · x

mnn

Given α ∈ P+, define e(α) =∑σ∈Sn

xσα

e(1,0, · · · ,0) = (n − 1)!n∑

i=1xi

e(1, · · · ,1) = (n!)x1 · · · xn

Write explicitly e(1,1,0, · · · ,0) and e(1,1,1,0, · · · ,0), etc

R. Venkatesh Unique Factorization of Symmetric functions

Page 54: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Algebra of Symmetric functions in n–variables

C[P+] =

{ ∑α∈P+

aαxα : |supp{aα}| <∞

}∑α∈P+

aαxα +∑α∈P+

bαxα =∑α∈P+

(aα + bα)xα

xαxβ = xα+β, α, β ∈ P+

Note that C[P+] ∼= C[x1, · · · , xn]

Given σ ∈ Sn, define σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

The algebra of symmetric functions in n–variables:

C[P+]Sn =

{∑α∈P+

aαxα : σ

(∑α∈P+

aαxα)

=∑α∈P+

aαxα, σ ∈ Sn

}

R. Venkatesh Unique Factorization of Symmetric functions

Page 55: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Algebra of Symmetric functions in n–variables

C[P+] =

{ ∑α∈P+

aαxα : |supp{aα}| <∞

}∑α∈P+

aαxα +∑α∈P+

bαxα =∑α∈P+

(aα + bα)xα

xαxβ = xα+β, α, β ∈ P+

Note that C[P+] ∼= C[x1, · · · , xn]

Given σ ∈ Sn, define σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

The algebra of symmetric functions in n–variables:

C[P+]Sn =

{∑α∈P+

aαxα : σ

(∑α∈P+

aαxα)

=∑α∈P+

aαxα, σ ∈ Sn

}

R. Venkatesh Unique Factorization of Symmetric functions

Page 56: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Algebra of Symmetric functions in n–variables

C[P+] =

{ ∑α∈P+

aαxα : |supp{aα}| <∞

}∑α∈P+

aαxα +∑α∈P+

bαxα =∑α∈P+

(aα + bα)xα

xαxβ = xα+β, α, β ∈ P+

Note that C[P+] ∼= C[x1, · · · , xn]

Given σ ∈ Sn, define σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

The algebra of symmetric functions in n–variables:

C[P+]Sn =

{∑α∈P+

aαxα : σ

(∑α∈P+

aαxα)

=∑α∈P+

aαxα, σ ∈ Sn

}

R. Venkatesh Unique Factorization of Symmetric functions

Page 57: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Algebra of Symmetric functions in n–variables

C[P+] =

{ ∑α∈P+

aαxα : |supp{aα}| <∞

}∑α∈P+

aαxα +∑α∈P+

bαxα =∑α∈P+

(aα + bα)xα

xαxβ = xα+β, α, β ∈ P+

Note that C[P+] ∼= C[x1, · · · , xn]

Given σ ∈ Sn, define σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

The algebra of symmetric functions in n–variables:

C[P+]Sn =

{∑α∈P+

aαxα : σ

(∑α∈P+

aαxα)

=∑α∈P+

aαxα, σ ∈ Sn

}

R. Venkatesh Unique Factorization of Symmetric functions

Page 58: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Algebra of Symmetric functions in n–variables

C[P+] =

{ ∑α∈P+

aαxα : |supp{aα}| <∞

}∑α∈P+

aαxα +∑α∈P+

bαxα =∑α∈P+

(aα + bα)xα

xαxβ = xα+β, α, β ∈ P+

Note that C[P+] ∼= C[x1, · · · , xn]

Given σ ∈ Sn, define σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

The algebra of symmetric functions in n–variables:

C[P+]Sn =

{∑α∈P+

aαxα : σ

(∑α∈P+

aαxα)

=∑α∈P+

aαxα, σ ∈ Sn

}

R. Venkatesh Unique Factorization of Symmetric functions

Page 59: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Algebra of Symmetric functions in n–variables

C[P+] =

{ ∑α∈P+

aαxα : |supp{aα}| <∞

}∑α∈P+

aαxα +∑α∈P+

bαxα =∑α∈P+

(aα + bα)xα

xαxβ = xα+β, α, β ∈ P+

Note that C[P+] ∼= C[x1, · · · , xn]

Given σ ∈ Sn, define σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

The algebra of symmetric functions in n–variables:

C[P+]Sn =

{∑α∈P+

aαxα : σ

(∑α∈P+

aαxα)

=∑α∈P+

aαxα, σ ∈ Sn

}

R. Venkatesh Unique Factorization of Symmetric functions

Page 60: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

{e(α) : α ∈ P+/Sn} form a basis for C[P+]Sn

Let∑α∈P+

aαxα ∈ C[P+]Sn .

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxα

we get aα = aσα for all α ∈ P+ and σ ∈ Sn

by grouping the corresponding terms, we get∑α∈P+

aαxα =∑

α∈P+/Sn

( ∑σ∈Sn

xσα)

=∑

α∈P+/Sn

aαe(α)

{e(α) : α ∈ P+/Sn} is linearly independent

R. Venkatesh Unique Factorization of Symmetric functions

Page 61: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

{e(α) : α ∈ P+/Sn} form a basis for C[P+]Sn

Let∑α∈P+

aαxα ∈ C[P+]Sn .

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxα

we get aα = aσα for all α ∈ P+ and σ ∈ Sn

by grouping the corresponding terms, we get∑α∈P+

aαxα =∑

α∈P+/Sn

( ∑σ∈Sn

xσα)

=∑

α∈P+/Sn

aαe(α)

{e(α) : α ∈ P+/Sn} is linearly independent

R. Venkatesh Unique Factorization of Symmetric functions

Page 62: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

{e(α) : α ∈ P+/Sn} form a basis for C[P+]Sn

Let∑α∈P+

aαxα ∈ C[P+]Sn .

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxα

we get aα = aσα for all α ∈ P+ and σ ∈ Sn

by grouping the corresponding terms, we get∑α∈P+

aαxα =∑

α∈P+/Sn

( ∑σ∈Sn

xσα)

=∑

α∈P+/Sn

aαe(α)

{e(α) : α ∈ P+/Sn} is linearly independent

R. Venkatesh Unique Factorization of Symmetric functions

Page 63: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

{e(α) : α ∈ P+/Sn} form a basis for C[P+]Sn

Let∑α∈P+

aαxα ∈ C[P+]Sn .

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxα

we get aα = aσα for all α ∈ P+ and σ ∈ Sn

by grouping the corresponding terms, we get∑α∈P+

aαxα =∑

α∈P+/Sn

( ∑σ∈Sn

xσα)

=∑

α∈P+/Sn

aαe(α)

{e(α) : α ∈ P+/Sn} is linearly independent

R. Venkatesh Unique Factorization of Symmetric functions

Page 64: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

{e(α) : α ∈ P+/Sn} form a basis for C[P+]Sn

Let∑α∈P+

aαxα ∈ C[P+]Sn .

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxα

we get aα = aσα for all α ∈ P+ and σ ∈ Sn

by grouping the corresponding terms, we get∑α∈P+

aαxα =∑

α∈P+/Sn

( ∑σ∈Sn

xσα)

=∑

α∈P+/Sn

aαe(α)

{e(α) : α ∈ P+/Sn} is linearly independent

R. Venkatesh Unique Factorization of Symmetric functions

Page 65: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

{e(α) : α ∈ P+/Sn} form a basis for C[P+]Sn

Let∑α∈P+

aαxα ∈ C[P+]Sn .

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxα

we get aα = aσα for all α ∈ P+ and σ ∈ Sn

by grouping the corresponding terms, we get∑α∈P+

aαxα =∑

α∈P+/Sn

( ∑σ∈Sn

xσα)

=∑

α∈P+/Sn

aαe(α)

{e(α) : α ∈ P+/Sn} is linearly independent

R. Venkatesh Unique Factorization of Symmetric functions

Page 66: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

{e(α) : α ∈ P+/Sn} form a basis for C[P+]Sn

Let∑α∈P+

aαxα ∈ C[P+]Sn .

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxσ(α)

σ

( ∑α∈P+

aαxα)

=∑α∈P+

aαxα

we get aα = aσα for all α ∈ P+ and σ ∈ Sn

by grouping the corresponding terms, we get∑α∈P+

aαxα =∑

α∈P+/Sn

( ∑σ∈Sn

xσα)

=∑

α∈P+/Sn

aαe(α)

{e(α) : α ∈ P+/Sn} is linearly independent

R. Venkatesh Unique Factorization of Symmetric functions

Page 67: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Discriminant interms of coefficients

Fundamental theorem of symmetric functions: Anysymmetric polynomial can be expressed as a polynomial inthe elementary symmetric polynomials on those variables.

Recall X n + a1X n−1 + · · ·+ an−1X + an =n∏

i=1(X − xi)

C[P+]Sn = C[e1, · · · ,en] where ei = ei(x1, · · · , xn)

Discriminant ∆ = (−1)n(n−1)/2 ∏i 6=j

(xi − xj)

If n = 2, we have

∆ = (x1 − x2)2 = (x21 + x2

2 − 2x1x2)

= (x1 + x2)2 − 4x1x2 = a21 − 4a2

R. Venkatesh Unique Factorization of Symmetric functions

Page 68: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Discriminant interms of coefficients

Fundamental theorem of symmetric functions: Anysymmetric polynomial can be expressed as a polynomial inthe elementary symmetric polynomials on those variables.

Recall X n + a1X n−1 + · · ·+ an−1X + an =n∏

i=1(X − xi)

C[P+]Sn = C[e1, · · · ,en] where ei = ei(x1, · · · , xn)

Discriminant ∆ = (−1)n(n−1)/2 ∏i 6=j

(xi − xj)

If n = 2, we have

∆ = (x1 − x2)2 = (x21 + x2

2 − 2x1x2)

= (x1 + x2)2 − 4x1x2 = a21 − 4a2

R. Venkatesh Unique Factorization of Symmetric functions

Page 69: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Discriminant interms of coefficients

Fundamental theorem of symmetric functions: Anysymmetric polynomial can be expressed as a polynomial inthe elementary symmetric polynomials on those variables.

Recall X n + a1X n−1 + · · ·+ an−1X + an =n∏

i=1(X − xi)

C[P+]Sn = C[e1, · · · ,en] where ei = ei(x1, · · · , xn)

Discriminant ∆ = (−1)n(n−1)/2 ∏i 6=j

(xi − xj)

If n = 2, we have

∆ = (x1 − x2)2 = (x21 + x2

2 − 2x1x2)

= (x1 + x2)2 − 4x1x2 = a21 − 4a2

R. Venkatesh Unique Factorization of Symmetric functions

Page 70: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Discriminant interms of coefficients

Fundamental theorem of symmetric functions: Anysymmetric polynomial can be expressed as a polynomial inthe elementary symmetric polynomials on those variables.

Recall X n + a1X n−1 + · · ·+ an−1X + an =n∏

i=1(X − xi)

C[P+]Sn = C[e1, · · · ,en] where ei = ei(x1, · · · , xn)

Discriminant ∆ = (−1)n(n−1)/2 ∏i 6=j

(xi − xj)

If n = 2, we have

∆ = (x1 − x2)2 = (x21 + x2

2 − 2x1x2)

= (x1 + x2)2 − 4x1x2 = a21 − 4a2

R. Venkatesh Unique Factorization of Symmetric functions

Page 71: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Discriminant interms of coefficients

Fundamental theorem of symmetric functions: Anysymmetric polynomial can be expressed as a polynomial inthe elementary symmetric polynomials on those variables.

Recall X n + a1X n−1 + · · ·+ an−1X + an =n∏

i=1(X − xi)

C[P+]Sn = C[e1, · · · ,en] where ei = ei(x1, · · · , xn)

Discriminant ∆ = (−1)n(n−1)/2 ∏i 6=j

(xi − xj)

If n = 2, we have

∆ = (x1 − x2)2 = (x21 + x2

2 − 2x1x2)

= (x1 + x2)2 − 4x1x2 = a21 − 4a2

R. Venkatesh Unique Factorization of Symmetric functions

Page 72: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

if n = 3, we have∆ = a2

1a22 − 4a3

2 − 4a31a3 − 27a2

3 + 18a1a2a3

The discriminant of a general quartic has 16 terms, that ofa quintic has 59 terms, that of a 6th degree polynomial has246

the number of terms in ∆ increases exponentially withrespect to the degree

there exist a polynomial in n–variables such that∆ = p(a1,a2, · · · ,an)

R. Venkatesh Unique Factorization of Symmetric functions

Page 73: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

if n = 3, we have∆ = a2

1a22 − 4a3

2 − 4a31a3 − 27a2

3 + 18a1a2a3

The discriminant of a general quartic has 16 terms, that ofa quintic has 59 terms, that of a 6th degree polynomial has246

the number of terms in ∆ increases exponentially withrespect to the degree

there exist a polynomial in n–variables such that∆ = p(a1,a2, · · · ,an)

R. Venkatesh Unique Factorization of Symmetric functions

Page 74: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

if n = 3, we have∆ = a2

1a22 − 4a3

2 − 4a31a3 − 27a2

3 + 18a1a2a3

The discriminant of a general quartic has 16 terms, that ofa quintic has 59 terms, that of a 6th degree polynomial has246

the number of terms in ∆ increases exponentially withrespect to the degree

there exist a polynomial in n–variables such that∆ = p(a1,a2, · · · ,an)

R. Venkatesh Unique Factorization of Symmetric functions

Page 75: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

if n = 3, we have∆ = a2

1a22 − 4a3

2 − 4a31a3 − 27a2

3 + 18a1a2a3

The discriminant of a general quartic has 16 terms, that ofa quintic has 59 terms, that of a 6th degree polynomial has246

the number of terms in ∆ increases exponentially withrespect to the degree

there exist a polynomial in n–variables such that∆ = p(a1,a2, · · · ,an)

R. Venkatesh Unique Factorization of Symmetric functions

Page 76: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Schur Functions

λ = λ1ε1 + · · ·+ λnεn ∈ P+ is called partition ifλ1 ≥ · · · ≥ λn

Gien a partition λ, define a(λ) =∑σ∈Sn

(detσ) xσλ

δ = (n−1)ε1 +(n−2)ε2 + · · ·+εn−1 = (n−1,n−2, · · · ,1,0)

Vandermonde determinant:∣∣∣∣∣∣∣∣∣∣xn−1

1 xn−21 · · · x1 1

xn−12 xn−2

2 · · · x2 1...

.... . .

......

xn−1n xn−2

n · · · xn 1

∣∣∣∣∣∣∣∣∣∣=∏i<j

(xi − xj)

R. Venkatesh Unique Factorization of Symmetric functions

Page 77: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Schur Functions

λ = λ1ε1 + · · ·+ λnεn ∈ P+ is called partition ifλ1 ≥ · · · ≥ λn

Gien a partition λ, define a(λ) =∑σ∈Sn

(detσ) xσλ

δ = (n−1)ε1 +(n−2)ε2 + · · ·+εn−1 = (n−1,n−2, · · · ,1,0)

Vandermonde determinant:∣∣∣∣∣∣∣∣∣∣xn−1

1 xn−21 · · · x1 1

xn−12 xn−2

2 · · · x2 1...

.... . .

......

xn−1n xn−2

n · · · xn 1

∣∣∣∣∣∣∣∣∣∣=∏i<j

(xi − xj)

R. Venkatesh Unique Factorization of Symmetric functions

Page 78: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Schur Functions

λ = λ1ε1 + · · ·+ λnεn ∈ P+ is called partition ifλ1 ≥ · · · ≥ λn

Gien a partition λ, define a(λ) =∑σ∈Sn

(detσ) xσλ

δ = (n−1)ε1 +(n−2)ε2 + · · ·+εn−1 = (n−1,n−2, · · · ,1,0)

Vandermonde determinant:∣∣∣∣∣∣∣∣∣∣xn−1

1 xn−21 · · · x1 1

xn−12 xn−2

2 · · · x2 1...

.... . .

......

xn−1n xn−2

n · · · xn 1

∣∣∣∣∣∣∣∣∣∣=∏i<j

(xi − xj)

R. Venkatesh Unique Factorization of Symmetric functions

Page 79: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Schur Functions

λ = λ1ε1 + · · ·+ λnεn ∈ P+ is called partition ifλ1 ≥ · · · ≥ λn

Gien a partition λ, define a(λ) =∑σ∈Sn

(detσ) xσλ

δ = (n−1)ε1 +(n−2)ε2 + · · ·+εn−1 = (n−1,n−2, · · · ,1,0)

Vandermonde determinant:∣∣∣∣∣∣∣∣∣∣xn−1

1 xn−21 · · · x1 1

xn−12 xn−2

2 · · · x2 1...

.... . .

......

xn−1n xn−2

n · · · xn 1

∣∣∣∣∣∣∣∣∣∣=∏i<j

(xi − xj)

R. Venkatesh Unique Factorization of Symmetric functions

Page 80: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Schur Functions

Leibniz formula:∣∣∣∣∣∣∣∣∣∣a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n...

.... . .

...am,1 am,2 · · · am,n

∣∣∣∣∣∣∣∣∣∣=∑σ∈Sn

sgn(σ)n∏

i=1ai,σi

using Leibniz formula, we get

a(λ+ δ) =

∣∣∣∣∣∣∣∣∣∣xλ1+n−1

1 xλ2+n−21 · · · xλn−1+1

1 xλn1

xλ1+n−12 xλ2+n−2

2 · · · xλn−1+12 xλn

2...

.... . .

......

xλ1+n−1n xλ2+n−2

n · · · xλn−1+1n xλn

n

∣∣∣∣∣∣∣∣∣∣

R. Venkatesh Unique Factorization of Symmetric functions

Page 81: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Schur Functions

Leibniz formula:∣∣∣∣∣∣∣∣∣∣a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n...

.... . .

...am,1 am,2 · · · am,n

∣∣∣∣∣∣∣∣∣∣=∑σ∈Sn

sgn(σ)n∏

i=1ai,σi

using Leibniz formula, we get

a(λ+ δ) =

∣∣∣∣∣∣∣∣∣∣xλ1+n−1

1 xλ2+n−21 · · · xλn−1+1

1 xλn1

xλ1+n−12 xλ2+n−2

2 · · · xλn−1+12 xλn

2...

.... . .

......

xλ1+n−1n xλ2+n−2

n · · · xλn−1+1n xλn

n

∣∣∣∣∣∣∣∣∣∣

R. Venkatesh Unique Factorization of Symmetric functions

Page 82: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Schur Functions

Given a partition λ, the Schur Function defined to be

sλ(x1, · · · , xn) = a(λ+ δ)/a(δ)

Theorem (C.S. Rajan, S. Viswanath, –)Suppose sλ1 · · · sλp = sµ1 · · · sµq , then p = q and the multi set{λ1, · · · , λp} is equal to {µ1, · · · , µq}. In particular, there existsa permutation σ ∈ Sp such that sλi = sµσi .

R. Venkatesh Unique Factorization of Symmetric functions

Page 83: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Schur Functions

Given a partition λ, the Schur Function defined to be

sλ(x1, · · · , xn) = a(λ+ δ)/a(δ)

Theorem (C.S. Rajan, S. Viswanath, –)Suppose sλ1 · · · sλp = sµ1 · · · sµq , then p = q and the multi set{λ1, · · · , λp} is equal to {µ1, · · · , µq}. In particular, there existsa permutation σ ∈ Sp such that sλi = sµσi .

R. Venkatesh Unique Factorization of Symmetric functions

Page 84: Unique Factorization of Symmetric functionsknr/mathasp14/rv_slides.pdfR. Venkatesh Unique Factorization of Symmetric functions A few facts from Linear algebra V – a finite dimensional

Thank you

R. Venkatesh Unique Factorization of Symmetric functions