184
Understanding the QR algorithm, Part X David S. Watkins [email protected] Department of Mathematics Washington State University Glasgow 2009 – p.

Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Understanding the QR algorithm,Part X

David S. [email protected]

Department of Mathematics

Washington State University

Glasgow 2009 – p. 1

Page 2: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

1. Understanding the QR algorithm, SIAM Rev., 1982

Glasgow 2009 – p. 2

Page 3: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

1. Understanding the QR algorithm, SIAM Rev., 1982

2. Fundamentals of Matrix Computations, Wiley, 1991

Glasgow 2009 – p. 2

Page 4: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

1. Understanding the QR algorithm, SIAM Rev., 1982

2. Fundamentals of Matrix Computations, Wiley, 1991

3. Some perspectives on the eigenvalue problem, 1993

Glasgow 2009 – p. 2

Page 5: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

1. Understanding the QR algorithm, SIAM Rev., 1982

2. Fundamentals of Matrix Computations, Wiley, 1991

3. Some perspectives on the eigenvalue problem, 1993

4. QR-like algorithms—an overview of convergencetheory and practice, AMS proceedings, 1996

Glasgow 2009 – p. 2

Page 6: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

1. Understanding the QR algorithm, SIAM Rev., 1982

2. Fundamentals of Matrix Computations, Wiley, 1991

3. Some perspectives on the eigenvalue problem, 1993

4. QR-like algorithms—an overview of convergencetheory and practice, AMS proceedings, 1996

5. QR-like algorithms for eigenvalue problems, JCAM,2000

Glasgow 2009 – p. 2

Page 7: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

1. Understanding the QR algorithm, SIAM Rev., 1982

2. Fundamentals of Matrix Computations, Wiley, 1991

3. Some perspectives on the eigenvalue problem, 1993

4. QR-like algorithms—an overview of convergencetheory and practice, AMS proceedings, 1996

5. QR-like algorithms for eigenvalue problems, JCAM,2000

6. Fundamentals of Matrix Computations, Wiley, 2002

Glasgow 2009 – p. 2

Page 8: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

1. Understanding the QR algorithm, SIAM Rev., 1982

2. Fundamentals of Matrix Computations, Wiley, 1991

3. Some perspectives on the eigenvalue problem, 1993

4. QR-like algorithms—an overview of convergencetheory and practice, AMS proceedings, 1996

5. QR-like algorithms for eigenvalue problems, JCAM,2000

6. Fundamentals of Matrix Computations, Wiley, 2002

7. The Matrix Eigenvalue Problem: GR and KrylovSubspace Methods, SIAM, 2007.

Glasgow 2009 – p. 2

Page 9: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

1. Understanding the QR algorithm, SIAM Rev., 1982

2. Fundamentals of Matrix Computations, Wiley, 1991

3. Some perspectives on the eigenvalue problem, 1993

4. QR-like algorithms—an overview of convergencetheory and practice, AMS proceedings, 1996

5. QR-like algorithms for eigenvalue problems, JCAM,2000

6. Fundamentals of Matrix Computations, Wiley, 2002

7. The Matrix Eigenvalue Problem: GR and KrylovSubspace Methods, SIAM, 2007.

8. The QR algorithm revisited, SIAM Rev., 2008.

Glasgow 2009 – p. 2

Page 10: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Some names associated withthe QR algorithm

Glasgow 2009 – p. 3

Page 11: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Some names associated withthe QR algorithm (short list)

Glasgow 2009 – p. 3

Page 12: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Some names associated withthe QR algorithm (short list)

Rutishauser

Glasgow 2009 – p. 3

Page 13: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Some names associated withthe QR algorithm (short list)

Rutishauser

Kublanovskaya

Glasgow 2009 – p. 3

Page 14: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Some names associated withthe QR algorithm (short list)

Rutishauser

Kublanovskaya

Francis

Glasgow 2009 – p. 3

Page 15: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Some names associated withthe QR algorithm (short list)

Rutishauser

Kublanovskaya

Francis

Implicitly Shifted QR algorithm

Glasgow 2009 – p. 3

Page 16: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Some names associated withthe QR algorithm (short list)

Rutishauser

Kublanovskaya

Francis

Implicitly Shifted QR algorithmHow should we understand it?

Glasgow 2009 – p. 3

Page 17: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Some names associated withthe QR algorithm (short list)

Rutishauser

Kublanovskaya

Francis

Implicitly Shifted QR algorithmHow should we understand it? . . . view it?

Glasgow 2009 – p. 3

Page 18: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Some names associated withthe QR algorithm (short list)

Rutishauser

Kublanovskaya

Francis

Implicitly Shifted QR algorithmHow should we understand it? . . . view it?. . . teach it to our students?

Glasgow 2009 – p. 3

Page 19: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Standard Approach . . .

Glasgow 2009 – p. 4

Page 20: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Standard Approach . . .. . . dating from the work of Francis

Glasgow 2009 – p. 4

Page 21: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Standard Approach . . .. . . dating from the work of Francis

Start with the basic algorithm . . .

Glasgow 2009 – p. 4

Page 22: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Standard Approach . . .. . . dating from the work of Francis

Start with the basic algorithm . . .

A = QR

Glasgow 2009 – p. 4

Page 23: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Standard Approach . . .. . . dating from the work of Francis

Start with the basic algorithm . . .

A = QR RQ = A

Glasgow 2009 – p. 4

Page 24: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Standard Approach . . .. . . dating from the work of Francis

Start with the basic algorithm . . .

A = QR RQ = A repeat!

Glasgow 2009 – p. 4

Page 25: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Standard Approach . . .. . . dating from the work of Francis

Start with the basic algorithm . . .

A = QR RQ = A repeat!

This is simple,

Glasgow 2009 – p. 4

Page 26: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Standard Approach . . .. . . dating from the work of Francis

Start with the basic algorithm . . .

A = QR RQ = A repeat!

This is simple, appealing,

Glasgow 2009 – p. 4

Page 27: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Standard Approach . . .. . . dating from the work of Francis

Start with the basic algorithm . . .

A = QR RQ = A repeat!

This is simple, appealing, does not require muchpreparation,

Glasgow 2009 – p. 4

Page 28: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Standard Approach . . .. . . dating from the work of Francis

Start with the basic algorithm . . .

A = QR RQ = A repeat!

This is simple, appealing, does not require muchpreparation, but . . .

Glasgow 2009 – p. 4

Page 29: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Standard Approach . . .. . . dating from the work of Francis

Start with the basic algorithm . . .

A = QR RQ = A repeat!

This is simple, appealing, does not require muchpreparation, but . . .

. . . it is far removed from versions of theQRalgorithm that are actually used.

Glasgow 2009 – p. 4

Page 30: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Refinements

Glasgow 2009 – p. 5

Page 31: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Refinementsshifts of origin

Glasgow 2009 – p. 5

Page 32: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Refinementsshifts of origin

reduction to Hessenberg form

Glasgow 2009 – p. 5

Page 33: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Refinementsshifts of origin

reduction to Hessenberg form

implicit shift technique (Francis)

Glasgow 2009 – p. 5

Page 34: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Refinementsshifts of origin

reduction to Hessenberg form

implicit shift technique (Francis)

double shiftQR

Glasgow 2009 – p. 5

Page 35: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Refinementsshifts of origin

reduction to Hessenberg form

implicit shift technique (Francis)

double shiftQR

multiple shiftQR

Glasgow 2009 – p. 5

Page 36: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Refinementsshifts of origin

reduction to Hessenberg form

implicit shift technique (Francis)

double shiftQR

multiple shiftQR

implicit-Q theorem

Glasgow 2009 – p. 5

Page 37: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Refinementsshifts of origin

reduction to Hessenberg form

implicit shift technique (Francis)

double shiftQR

multiple shiftQR

implicit-Q theoremvs.Krylov subspaces

Glasgow 2009 – p. 5

Page 38: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Refinementsshifts of origin

reduction to Hessenberg form

implicit shift technique (Francis)

double shiftQR

multiple shiftQR

implicit-Q theoremvs.Krylov subspaces

Introducing Krylov subspaces improvesunderstanding,

Glasgow 2009 – p. 5

Page 39: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Refinementsshifts of origin

reduction to Hessenberg form

implicit shift technique (Francis)

double shiftQR

multiple shiftQR

implicit-Q theoremvs.Krylov subspaces

Introducing Krylov subspaces improvesunderstanding, allows more general results,

Glasgow 2009 – p. 5

Page 40: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Refinementsshifts of origin

reduction to Hessenberg form

implicit shift technique (Francis)

double shiftQR

multiple shiftQR

implicit-Q theoremvs.Krylov subspaces

Introducing Krylov subspaces improvesunderstanding, allows more general results, andprepares students for Krylov subspace methods.

Glasgow 2009 – p. 5

Page 41: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Implicitly Shifted QR Iteration

Glasgow 2009 – p. 6

Page 42: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Implicitly Shifted QR Iterationmatrix is in upper Hessenberg form

Glasgow 2009 – p. 6

Page 43: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Implicitly Shifted QR Iterationmatrix is in upper Hessenberg form

pick some shiftsρ1, . . . ,ρm

Glasgow 2009 – p. 6

Page 44: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Implicitly Shifted QR Iterationmatrix is in upper Hessenberg form

pick some shiftsρ1, . . . ,ρm (m = 1, 2, 4, 6)

Glasgow 2009 – p. 6

Page 45: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Implicitly Shifted QR Iterationmatrix is in upper Hessenberg form

pick some shiftsρ1, . . . ,ρm (m = 1, 2, 4, 6)

p(A) = (A − ρ1I) · · · (A − ρmI)

Glasgow 2009 – p. 6

Page 46: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Implicitly Shifted QR Iterationmatrix is in upper Hessenberg form

pick some shiftsρ1, . . . ,ρm (m = 1, 2, 4, 6)

p(A) = (A − ρ1I) · · · (A − ρmI) expensive!

Glasgow 2009 – p. 6

Page 47: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Implicitly Shifted QR Iterationmatrix is in upper Hessenberg form

pick some shiftsρ1, . . . ,ρm (m = 1, 2, 4, 6)

p(A) = (A − ρ1I) · · · (A − ρmI) expensive!

computep(A)e1

Glasgow 2009 – p. 6

Page 48: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Implicitly Shifted QR Iterationmatrix is in upper Hessenberg form

pick some shiftsρ1, . . . ,ρm (m = 1, 2, 4, 6)

p(A) = (A − ρ1I) · · · (A − ρmI) expensive!

computep(A)e1 cheap!

Glasgow 2009 – p. 6

Page 49: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Implicitly Shifted QR Iterationmatrix is in upper Hessenberg form

pick some shiftsρ1, . . . ,ρm (m = 1, 2, 4, 6)

p(A) = (A − ρ1I) · · · (A − ρmI) expensive!

computep(A)e1 cheap!

Build unitaryQ0 with q1 = αp(A)e1.

Glasgow 2009 – p. 6

Page 50: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Implicitly Shifted QR Iterationmatrix is in upper Hessenberg form

pick some shiftsρ1, . . . ,ρm (m = 1, 2, 4, 6)

p(A) = (A − ρ1I) · · · (A − ρmI) expensive!

computep(A)e1 cheap!

Build unitaryQ0 with q1 = αp(A)e1.

Perform similarity transformA → Q∗0AQ0.

Glasgow 2009 – p. 6

Page 51: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

The Implicitly Shifted QR Iterationmatrix is in upper Hessenberg form

pick some shiftsρ1, . . . ,ρm (m = 1, 2, 4, 6)

p(A) = (A − ρ1I) · · · (A − ρmI) expensive!

computep(A)e1 cheap!

Build unitaryQ0 with q1 = αp(A)e1.

Perform similarity transformA → Q∗0AQ0.

Hessenberg form is disturbed.

Glasgow 2009 – p. 6

Page 52: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

An Upper Hessenberg Matrix@

@@

@@

@@

@@

@@

@@

Glasgow 2009 – p. 7

Page 53: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

After the Transformation ( Q∗0AQ0)

@@

@@

@@

@@

@@

Glasgow 2009 – p. 8

Page 54: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

After the Transformation ( Q∗0AQ0)

@@

@@

@@

@@

@@

Now return the matrix to Hessenberg form.

Glasgow 2009 – p. 8

Page 55: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Chasing the Bulge@

@@@

@@

@@

@@@

Glasgow 2009 – p. 9

Page 56: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Chasing the Bulge@

@@

@@

@@

@@

@

Glasgow 2009 – p. 10

Page 57: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Done@

@@

@@

@@

@@

@@

@@

Glasgow 2009 – p. 11

Page 58: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Done@

@@

@@

@@

@@

@@

@@

The implicitQR step is complete!

Glasgow 2009 – p. 11

Page 59: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Summary of Implicit QR Iteration

Glasgow 2009 – p. 12

Page 60: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Summary of Implicit QR IterationPick some shifts.

Glasgow 2009 – p. 12

Page 61: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Summary of Implicit QR IterationPick some shifts.

Computep(A)e1. (p determined by shifts)

Glasgow 2009 – p. 12

Page 62: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Summary of Implicit QR IterationPick some shifts.

Computep(A)e1. (p determined by shifts)

Build Q0 with first columnq1 = αp(A)e1.

Glasgow 2009 – p. 12

Page 63: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Summary of Implicit QR IterationPick some shifts.

Computep(A)e1. (p determined by shifts)

Build Q0 with first columnq1 = αp(A)e1.

Make a bulge. (A → Q∗0AQ0)

Glasgow 2009 – p. 12

Page 64: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Summary of Implicit QR IterationPick some shifts.

Computep(A)e1. (p determined by shifts)

Build Q0 with first columnq1 = αp(A)e1.

Make a bulge. (A → Q∗0AQ0)

Chase the bulge. (return to Hessenberg form)

Glasgow 2009 – p. 12

Page 65: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Summary of Implicit QR IterationPick some shifts.

Computep(A)e1. (p determined by shifts)

Build Q0 with first columnq1 = αp(A)e1.

Make a bulge. (A → Q∗0AQ0)

Chase the bulge. (return to Hessenberg form)

A = Q∗AQ

Glasgow 2009 – p. 12

Page 66: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Question

Glasgow 2009 – p. 13

Page 67: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

QuestionThis differs a lot from the basicQR step.

Glasgow 2009 – p. 13

Page 68: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

QuestionThis differs a lot from the basicQR step.

A = QR RQ = A

Glasgow 2009 – p. 13

Page 69: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

QuestionThis differs a lot from the basicQR step.

A = QR RQ = A

Can we carve a reasonable pedagogical path thatleads directly to the implicitly-shiftedQR algorithm,

Glasgow 2009 – p. 13

Page 70: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

QuestionThis differs a lot from the basicQR step.

A = QR RQ = A

Can we carve a reasonable pedagogical path thatleads directly to the implicitly-shiftedQR algorithm,bypassing the basicQR algorithm entirely?

Glasgow 2009 – p. 13

Page 71: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

QuestionThis differs a lot from the basicQR step.

A = QR RQ = A

Can we carve a reasonable pedagogical path thatleads directly to the implicitly-shiftedQR algorithm,bypassing the basicQR algorithm entirely?

That’s what we are going to do today.

Glasgow 2009 – p. 13

Page 72: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Ingredients

Glasgow 2009 – p. 14

Page 73: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Ingredientssubspace iteration (power method)

Glasgow 2009 – p. 14

Page 74: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Ingredientssubspace iteration (power method)

Krylov subspaces

Glasgow 2009 – p. 14

Page 75: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Ingredientssubspace iteration (power method)

Krylov subspaces and subspace iteration

Glasgow 2009 – p. 14

Page 76: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Ingredientssubspace iteration (power method)

Krylov subspaces and subspace iteration

(unitary) similarity transformation(change of coordinate system)

Glasgow 2009 – p. 14

Page 77: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Ingredientssubspace iteration (power method)

Krylov subspaces and subspace iteration

(unitary) similarity transformation(change of coordinate system)

reduction to Hessenberg form

Glasgow 2009 – p. 14

Page 78: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Ingredientssubspace iteration (power method)

Krylov subspaces and subspace iteration

(unitary) similarity transformation(change of coordinate system)

reduction to Hessenberg form

Hessenberg form and Krylov subspaces(instead of implicit-Q theorem)

Glasgow 2009 – p. 14

Page 79: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Ingredientssubspace iteration (power method)

Krylov subspaces and subspace iteration

(unitary) similarity transformation(change of coordinate system)

reduction to Hessenberg form

Hessenberg form and Krylov subspaces(instead of implicit-Q theorem)

No Magic Shortcut!

Glasgow 2009 – p. 14

Page 80: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Power Method, Subspace Iteration

Glasgow 2009 – p. 15

Page 81: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Power Method, Subspace Iterationv, Av, A2v, A3v, . . .

Glasgow 2009 – p. 15

Page 82: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Power Method, Subspace Iterationv, Av, A2v, A3v, . . .

convergence rate|λ2/λ1 |

Glasgow 2009 – p. 15

Page 83: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Power Method, Subspace Iterationv, Av, A2v, A3v, . . .

convergence rate|λ2/λ1 |

S, AS, A2S, A3S, . . .

Glasgow 2009 – p. 15

Page 84: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Power Method, Subspace Iterationv, Av, A2v, A3v, . . .

convergence rate|λ2/λ1 |

S, AS, A2S, A3S, . . .

subspaces of dimensionj

Glasgow 2009 – p. 15

Page 85: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Power Method, Subspace Iterationv, Av, A2v, A3v, . . .

convergence rate|λ2/λ1 |

S, AS, A2S, A3S, . . .

subspaces of dimensionj (|λj+1/λj |)

Glasgow 2009 – p. 15

Page 86: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Power Method, Subspace Iterationv, Av, A2v, A3v, . . .

convergence rate|λ2/λ1 |

S, AS, A2S, A3S, . . .

subspaces of dimensionj (|λj+1/λj |)

Substitutep(A) for A

Glasgow 2009 – p. 15

Page 87: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Power Method, Subspace Iterationv, Av, A2v, A3v, . . .

convergence rate|λ2/λ1 |

S, AS, A2S, A3S, . . .

subspaces of dimensionj (|λj+1/λj |)

Substitutep(A) for A (shifts, multiple steps)

Glasgow 2009 – p. 15

Page 88: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Power Method, Subspace Iterationv, Av, A2v, A3v, . . .

convergence rate|λ2/λ1 |

S, AS, A2S, A3S, . . .

subspaces of dimensionj (|λj+1/λj |)

Substitutep(A) for A (shifts, multiple steps)

S, p(A)S, p(A)2S, p(A)3S, . . .

Glasgow 2009 – p. 15

Page 89: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Power Method, Subspace Iterationv, Av, A2v, A3v, . . .

convergence rate|λ2/λ1 |

S, AS, A2S, A3S, . . .

subspaces of dimensionj (|λj+1/λj |)

Substitutep(A) for A (shifts, multiple steps)

S, p(A)S, p(A)2S, p(A)3S, . . .

convergence rate|p(λj+1)/p(λj) |

Glasgow 2009 – p. 15

Page 90: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .

Glasgow 2009 – p. 16

Page 91: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .. . . and Subspace Iteration

Glasgow 2009 – p. 16

Page 92: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .. . . and Subspace IterationDef: Kj(A, q) = span

{

q, Aq,A2q, . . . , Aj−1q}

Glasgow 2009 – p. 16

Page 93: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .. . . and Subspace IterationDef: Kj(A, q) = span

{

q, Aq,A2q, . . . , Aj−1q}

j = 1, 2, 3, . . . (nested subspaces)

Glasgow 2009 – p. 16

Page 94: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .. . . and Subspace IterationDef: Kj(A, q) = span

{

q, Aq,A2q, . . . , Aj−1q}

j = 1, 2, 3, . . . (nested subspaces)

Kj(A, q) are “determined byq”.

Glasgow 2009 – p. 16

Page 95: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .. . . and Subspace IterationDef: Kj(A, q) = span

{

q, Aq,A2q, . . . , Aj−1q}

j = 1, 2, 3, . . . (nested subspaces)

Kj(A, q) are “determined byq”.

p(A)Kj(A, q) = Kj(A, p(A)q)

Glasgow 2009 – p. 16

Page 96: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .. . . and Subspace IterationDef: Kj(A, q) = span

{

q, Aq,A2q, . . . , Aj−1q}

j = 1, 2, 3, . . . (nested subspaces)

Kj(A, q) are “determined byq”.

p(A)Kj(A, q) = Kj(A, p(A)q)

. . . becausep(A)A = Ap(A)

Glasgow 2009 – p. 16

Page 97: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .. . . and Subspace IterationDef: Kj(A, q) = span

{

q, Aq,A2q, . . . , Aj−1q}

j = 1, 2, 3, . . . (nested subspaces)

Kj(A, q) are “determined byq”.

p(A)Kj(A, q) = Kj(A, p(A)q)

. . . becausep(A)A = Ap(A)

Conclusion: Power method induces nested subspaceiterations on Krylov subspaces.

Glasgow 2009 – p. 16

Page 98: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

power method: p(A)kq

Glasgow 2009 – p. 17

Page 99: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

power method: p(A)kq

nested subspace iterations:

p(A)kKj(A, q) = Kj(A, p(A)kq) j = 1, 2, 3, . . .

Glasgow 2009 – p. 17

Page 100: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

power method: p(A)kq

nested subspace iterations:

p(A)kKj(A, q) = Kj(A, p(A)kq) j = 1, 2, 3, . . .

convergence rates:

|p(λj+1)/p(λj) |, j = 1, 2, 3, . . .

Glasgow 2009 – p. 17

Page 101: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

(Unitary) Similarity Transforms

Glasgow 2009 – p. 18

Page 102: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

(Unitary) Similarity TransformsA → Q∗AQ preserves eigenvalues

Glasgow 2009 – p. 18

Page 103: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

(Unitary) Similarity TransformsA → Q∗AQ preserves eigenvalues

transforms eigenvectors in a simple way(w → Q∗w)

Glasgow 2009 – p. 18

Page 104: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

(Unitary) Similarity TransformsA → Q∗AQ preserves eigenvalues

transforms eigenvectors in a simple way(w → Q∗w)

is a change of coordinate system (v → Q∗v)

Glasgow 2009 – p. 18

Page 105: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

(Unitary) Similarity TransformsA → Q∗AQ preserves eigenvalues

transforms eigenvectors in a simple way(w → Q∗w)

is a change of coordinate system (v → Q∗v)

triangular form (eigenvalues)

Glasgow 2009 – p. 18

Page 106: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

(Unitary) Similarity TransformsA → Q∗AQ preserves eigenvalues

transforms eigenvectors in a simple way(w → Q∗w)

is a change of coordinate system (v → Q∗v)

triangular form (eigenvalues)

relationship of invariant subspaces to triangular form

Glasgow 2009 – p. 18

Page 107: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Subspace Iterationwith change of coordinate system

Glasgow 2009 – p. 19

Page 108: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Subspace Iterationwith change of coordinate system

takeS = span{e1, . . . , ej}

Glasgow 2009 – p. 19

Page 109: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Subspace Iterationwith change of coordinate system

takeS = span{e1, . . . , ej}

p(A)S = span{p(A)e1, . . . , p(A)ej}

= span{q1, . . . , qj} (orthonormal)

Glasgow 2009 – p. 19

Page 110: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Subspace Iterationwith change of coordinate system

takeS = span{e1, . . . , ej}

p(A)S = span{p(A)e1, . . . , p(A)ej}

= span{q1, . . . , qj} (orthonormal)

build unitaryQ = [q1 · · · qj · · ·]

Glasgow 2009 – p. 19

Page 111: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Subspace Iterationwith change of coordinate system

takeS = span{e1, . . . , ej}

p(A)S = span{p(A)e1, . . . , p(A)ej}

= span{q1, . . . , qj} (orthonormal)

build unitaryQ = [q1 · · · qj · · ·]

change coordinate system:A = Q∗AQ

Glasgow 2009 – p. 19

Page 112: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Subspace Iterationwith change of coordinate system

takeS = span{e1, . . . , ej}

p(A)S = span{p(A)e1, . . . , p(A)ej}

= span{q1, . . . , qj} (orthonormal)

build unitaryQ = [q1 · · · qj · · ·]

change coordinate system:A = Q∗AQ

qk → Q∗qk = ek

Glasgow 2009 – p. 19

Page 113: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Subspace Iterationwith change of coordinate system

takeS = span{e1, . . . , ej}

p(A)S = span{p(A)e1, . . . , p(A)ej}

= span{q1, . . . , qj} (orthonormal)

build unitaryQ = [q1 · · · qj · · ·]

change coordinate system:A = Q∗AQ

qk → Q∗qk = ek

span{q1, . . . , qj} → span{e1, . . . , ej}

Glasgow 2009 – p. 19

Page 114: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Subspace Iterationwith change of coordinate system

takeS = span{e1, . . . , ej}

p(A)S = span{p(A)e1, . . . , p(A)ej}

= span{q1, . . . , qj} (orthonormal)

build unitaryQ = [q1 · · · qj · · ·]

change coordinate system:A = Q∗AQ

qk → Q∗qk = ek

span{q1, . . . , qj} → span{e1, . . . , ej}

ready for next iterationGlasgow 2009 – p. 19

Page 115: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

This version of subspace iteration . . .

Glasgow 2009 – p. 20

Page 116: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

This version of subspace iteration . . .

. . . holds the subspace fixed

Glasgow 2009 – p. 20

Page 117: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

This version of subspace iteration . . .

. . . holds the subspace fixed

while the matrix changes.

Glasgow 2009 – p. 20

Page 118: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

This version of subspace iteration . . .

. . . holds the subspace fixed

while the matrix changes.

. . . moving toward a matrix under which

span{e1, . . . , ej}

is invariant.

Glasgow 2009 – p. 20

Page 119: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

This version of subspace iteration . . .

. . . holds the subspace fixed

while the matrix changes.

. . . moving toward a matrix under which

span{e1, . . . , ej}

is invariant.

A →

[

A11 A12

0 A22

]

(A11 is j × j.)

Glasgow 2009 – p. 20

Page 120: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Reduction to Hessenberg form

Glasgow 2009 – p. 21

Page 121: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Reduction to Hessenberg formQ → Q∗AQ = H (a similarity transformation)

Glasgow 2009 – p. 21

Page 122: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Reduction to Hessenberg formQ → Q∗AQ = H (a similarity transformation)

can always be done (direct method,O(n3) flops)

Glasgow 2009 – p. 21

Page 123: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Reduction to Hessenberg formQ → Q∗AQ = H (a similarity transformation)

can always be done (direct method,O(n3) flops)

brings us closer to triangular form

Glasgow 2009 – p. 21

Page 124: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Reduction to Hessenberg formQ → Q∗AQ = H (a similarity transformation)

can always be done (direct method,O(n3) flops)

brings us closer to triangular form

makes computations cheaper

Glasgow 2009 – p. 21

Page 125: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Reduction to Hessenberg formQ → Q∗AQ = H (a similarity transformation)

can always be done (direct method,O(n3) flops)

brings us closer to triangular form

makes computations cheaper

First columnq1 can be chosen “arbitrarily”.

Glasgow 2009 – p. 21

Page 126: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Reduction to Hessenberg formQ → Q∗AQ = H (a similarity transformation)

can always be done (direct method,O(n3) flops)

brings us closer to triangular form

makes computations cheaper

First columnq1 can be chosen “arbitrarily”.

Example: q1 = αp(A)e1

Glasgow 2009 – p. 21

Page 127: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .

Glasgow 2009 – p. 22

Page 128: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .. . . and Hessenberg matrices . . .

Glasgow 2009 – p. 22

Page 129: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .. . . and Hessenberg matrices . . .

. . . go hand in hand.

Glasgow 2009 – p. 22

Page 130: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .. . . and Hessenberg matrices . . .

. . . go hand in hand.

A properly upper Hessenberg=⇒

Kj(A, e1) = span{e1, . . . , ej}.

Glasgow 2009 – p. 22

Page 131: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov Subspaces . . .. . . and Hessenberg matrices . . .

. . . go hand in hand.

A properly upper Hessenberg=⇒

Kj(A, e1) = span{e1, . . . , ej}.

More generally . . .

Glasgow 2009 – p. 22

Page 132: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov-Hessenberg Relationship

Glasgow 2009 – p. 23

Page 133: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov-Hessenberg RelationshipIf H = Q∗AQ, andH is properly upper Hessenberg,then forj = 1, 2, 3, . . . ,

span{q1, . . . , qj} = Kj(A, q1).

Glasgow 2009 – p. 23

Page 134: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov-Hessenberg RelationshipIf H = Q∗AQ, andH is properly upper Hessenberg,then forj = 1, 2, 3, . . . ,

span{q1, . . . , qj} = Kj(A, q1).

Proof (sketch):

Glasgow 2009 – p. 23

Page 135: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov-Hessenberg RelationshipIf H = Q∗AQ, andH is properly upper Hessenberg,then forj = 1, 2, 3, . . . ,

span{q1, . . . , qj} = Kj(A, q1).

Proof (sketch): Induction onj.

Glasgow 2009 – p. 23

Page 136: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov-Hessenberg RelationshipIf H = Q∗AQ, andH is properly upper Hessenberg,then forj = 1, 2, 3, . . . ,

span{q1, . . . , qj} = Kj(A, q1).

Proof (sketch): Induction onj. AQ = QH

Glasgow 2009 – p. 23

Page 137: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Krylov-Hessenberg RelationshipIf H = Q∗AQ, andH is properly upper Hessenberg,then forj = 1, 2, 3, . . . ,

span{q1, . . . , qj} = Kj(A, q1).

Proof (sketch): Induction onj. AQ = QH

Aqj =n

i=1

qihij =

j∑

i=1

qihij + qj+1hj+1,j

Glasgow 2009 – p. 23

Page 138: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Aqj =

j∑

i=1

qihij + qj+1hj+1,j

Glasgow 2009 – p. 24

Page 139: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Aqj =

j∑

i=1

qihij + qj+1hj+1,j

qj+1hj+1,j = Aqj −

j∑

i=1

qihij

Glasgow 2009 – p. 24

Page 140: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Aqj =

j∑

i=1

qihij + qj+1hj+1,j

qj+1hj+1,j = Aqj −

j∑

i=1

qihij

Proof by induction follows immediately.

Glasgow 2009 – p. 24

Page 141: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Aqj =

j∑

i=1

qihij + qj+1hj+1,j

qj+1hj+1,j = Aqj −

j∑

i=1

qihij

Proof by induction follows immediately.

This also gives the student a preview of the Arnoldiprocess,

Glasgow 2009 – p. 24

Page 142: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Aqj =

j∑

i=1

qihij + qj+1hj+1,j

qj+1hj+1,j = Aqj −

j∑

i=1

qihij

Proof by induction follows immediately.

This also gives the student a preview of the Arnoldiprocess,the most important Krylov subspacemethod.

Glasgow 2009 – p. 24

Page 143: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

and now,

Glasgow 2009 – p. 25

Page 144: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

and now, the Implicit QR Iteration

Glasgow 2009 – p. 25

Page 145: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

and now, the Implicit QR IterationWork with Hessenberg form to get . . .

Glasgow 2009 – p. 25

Page 146: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

and now, the Implicit QR IterationWork with Hessenberg form to get . . .

. . . efficiency.

Glasgow 2009 – p. 25

Page 147: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

and now, the Implicit QR IterationWork with Hessenberg form to get . . .

. . . efficiency.

. . . automatic nested subspace iterations.

Glasgow 2009 – p. 25

Page 148: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

and now, the Implicit QR IterationWork with Hessenberg form to get . . .

. . . efficiency.

. . . automatic nested subspace iterations.

Get some shiftsρ1, . . . ,ρm to definep.

Glasgow 2009 – p. 25

Page 149: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

and now, the Implicit QR IterationWork with Hessenberg form to get . . .

. . . efficiency.

. . . automatic nested subspace iterations.

Get some shiftsρ1, . . . ,ρm to definep.

Computep(A)e1. (power method)

Glasgow 2009 – p. 25

Page 150: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

and now, the Implicit QR IterationWork with Hessenberg form to get . . .

. . . efficiency.

. . . automatic nested subspace iterations.

Get some shiftsρ1, . . . ,ρm to definep.

Computep(A)e1. (power method)

TransformA to upper Hessenberg form:

A = Q∗AQ

by a matrixQ that hasq1 = αp(A)e1.

Glasgow 2009 – p. 25

Page 151: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

A = Q∗AQ where q1 = αp(A)e1.

Glasgow 2009 – p. 26

Page 152: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

A = Q∗AQ where q1 = αp(A)e1.

q1 → Q∗q1 = e1

Glasgow 2009 – p. 26

Page 153: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

A = Q∗AQ where q1 = αp(A)e1.

q1 → Q∗q1 = e1

power method with a change of coordinate system.Moreover . . .

Glasgow 2009 – p. 26

Page 154: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

A = Q∗AQ where q1 = αp(A)e1.

q1 → Q∗q1 = e1

power method with a change of coordinate system.Moreover . . .

p(A)Kj(A, e1) = Kj(A, p(A)e1)

Glasgow 2009 – p. 26

Page 155: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

A = Q∗AQ where q1 = αp(A)e1.

q1 → Q∗q1 = e1

power method with a change of coordinate system.Moreover . . .

p(A)Kj(A, e1) = Kj(A, p(A)e1)

i.e.p(A)span{e1, . . . , ej} = span{q1, . . . , qj}

Glasgow 2009 – p. 26

Page 156: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

A = Q∗AQ where q1 = αp(A)e1.

q1 → Q∗q1 = e1

power method with a change of coordinate system.Moreover . . .

p(A)Kj(A, e1) = Kj(A, p(A)e1)

i.e.p(A)span{e1, . . . , ej} = span{q1, . . . , qj}

subspace iteration with a change of coordinatesystem

Glasgow 2009 – p. 26

Page 157: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

A = Q∗AQ where q1 = αp(A)e1.

q1 → Q∗q1 = e1

power method with a change of coordinate system.Moreover . . .

p(A)Kj(A, e1) = Kj(A, p(A)e1)

i.e.p(A)span{e1, . . . , ej} = span{q1, . . . , qj}

subspace iteration with a change of coordinatesystem

j = 1, 2, 3, . . . ,n − 1

Glasgow 2009 – p. 26

Page 158: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

A = Q∗AQ where q1 = αp(A)e1.

q1 → Q∗q1 = e1

power method with a change of coordinate system.Moreover . . .

p(A)Kj(A, e1) = Kj(A, p(A)e1)

i.e.p(A)span{e1, . . . , ej} = span{q1, . . . , qj}

subspace iteration with a change of coordinatesystem

j = 1, 2, 3, . . . ,n − 1

|p(λj+1)/p(λj) | j = 1, 2, 3, . . . ,n − 1

Glasgow 2009 – p. 26

Page 159: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Details

Glasgow 2009 – p. 27

Page 160: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Detailschoice of shifts

Glasgow 2009 – p. 27

Page 161: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Detailschoice of shifts

We change the shifts at each step.

Glasgow 2009 – p. 27

Page 162: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Detailschoice of shifts

We change the shifts at each step.

⇒ quadratic or cubic convergence

Glasgow 2009 – p. 27

Page 163: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Detailschoice of shifts

We change the shifts at each step.

⇒ quadratic or cubic convergence

Other Questions

Glasgow 2009 – p. 27

Page 164: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

Detailschoice of shifts

We change the shifts at each step.

⇒ quadratic or cubic convergence

Other Questions. . . how to get BLAS 3 speed?

. . . how to parallelize?

Glasgow 2009 – p. 27

Page 165: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

In Conclusion

Glasgow 2009 – p. 28

Page 166: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

In ConclusionA careful study of

Glasgow 2009 – p. 28

Page 167: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

In ConclusionA careful study of the power method and its extensions,

Glasgow 2009 – p. 28

Page 168: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

In ConclusionA careful study of the power method and its extensions,similarity transformations,

Glasgow 2009 – p. 28

Page 169: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

In ConclusionA careful study of the power method and its extensions,similarity transformations,Hessenberg form,

Glasgow 2009 – p. 28

Page 170: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

In ConclusionA careful study of the power method and its extensions,similarity transformations,Hessenberg form,andKrylov subspaces

Glasgow 2009 – p. 28

Page 171: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

In ConclusionA careful study of the power method and its extensions,similarity transformations,Hessenberg form,andKrylov subspacesleads directly to the implicitly shiftedQR algorithm.

Glasgow 2009 – p. 28

Page 172: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

In ConclusionA careful study of the power method and its extensions,similarity transformations,Hessenberg form,andKrylov subspacesleads directly to the implicitly shiftedQR algorithm.

The basic, explicitQR algorithm is skipped.

Glasgow 2009 – p. 28

Page 173: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

In ConclusionA careful study of the power method and its extensions,similarity transformations,Hessenberg form,andKrylov subspacesleads directly to the implicitly shiftedQR algorithm.

The basic, explicitQR algorithm is skipped.

The implicit-Q theorem is avoided.

Glasgow 2009 – p. 28

Page 174: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

In ConclusionA careful study of the power method and its extensions,similarity transformations,Hessenberg form,andKrylov subspacesleads directly to the implicitly shiftedQR algorithm.

The basic, explicitQR algorithm is skipped.

The implicit-Q theorem is avoided.

Krylov subspaces are emphasized.

Glasgow 2009 – p. 28

Page 175: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

In ConclusionA careful study of the power method and its extensions,similarity transformations,Hessenberg form,andKrylov subspacesleads directly to the implicitly shiftedQR algorithm.

The basic, explicitQR algorithm is skipped.

The implicit-Q theorem is avoided.

Krylov subspaces are emphasized.

Krylov subspace methods are foreshadowed.

Glasgow 2009 – p. 28

Page 176: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

One Last Question

Glasgow 2009 – p. 29

Page 177: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

One Last QuestionIn the implicitly shiftedQR algorithm

Glasgow 2009 – p. 29

Page 178: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

One Last QuestionIn the implicitly shiftedQR algorithmtheQR decomposition is nowhere to be seen.

Glasgow 2009 – p. 29

Page 179: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

One Last QuestionIn the implicitly shiftedQR algorithmtheQR decomposition is nowhere to be seen.

Should the implicitly-shiftedQR algorithm be givena different name?

Glasgow 2009 – p. 29

Page 180: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

One Last QuestionIn the implicitly shiftedQR algorithmtheQR decomposition is nowhere to be seen.

Should the implicitly-shiftedQR algorithm be givena different name? Some possibilities: . . .

Glasgow 2009 – p. 29

Page 181: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

One Last QuestionIn the implicitly shiftedQR algorithmtheQR decomposition is nowhere to be seen.

Should the implicitly-shiftedQR algorithm be givena different name? Some possibilities: . . .

. . . unitary bulge-chasing algorithm

Glasgow 2009 – p. 29

Page 182: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

One Last QuestionIn the implicitly shiftedQR algorithmtheQR decomposition is nowhere to be seen.

Should the implicitly-shiftedQR algorithm be givena different name? Some possibilities: . . .

. . . unitary bulge-chasing algorithm

. . . Hessenberg-Krylov nonstationary progressivenested subspace iteration

Glasgow 2009 – p. 29

Page 183: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

One Last QuestionIn the implicitly shiftedQR algorithmtheQR decomposition is nowhere to be seen.

Should the implicitly-shiftedQR algorithm be givena different name? Some possibilities: . . .

. . . unitary bulge-chasing algorithm

. . . Hessenberg-Krylov nonstationary progressivenested subspace iteration

. . . Francis’s algorithm

Glasgow 2009 – p. 29

Page 184: Understanding the QR algorithm, Part X · 2. Fundamentals of Matrix Computations, Wiley, 1991 3. Some perspectives on the eigenvalue problem, 1993 4. QR-like algorithms—an overview

One Last QuestionIn the implicitly shiftedQR algorithmtheQR decomposition is nowhere to be seen.

Should the implicitly-shiftedQR algorithm be givena different name? Some possibilities: . . .

. . . unitary bulge-chasing algorithm

. . . Hessenberg-Krylov nonstationary progressivenested subspace iteration

. . . Francis’s algorithm

Thank you for your attention.

Glasgow 2009 – p. 29