92
Predicting Protein Structures and Structural Features on a Genomic Scale Pierre Baldi School of Information and Computer Sciences Institute for Genomics and Bioinformatics University of California, Irvine

UNDERSTANDING INTELLIGENCE

  • Upload
    elam

  • View
    30

  • Download
    0

Embed Size (px)

DESCRIPTION

Predicting Protein Structures and Structural Features on a Genomic Scale Pierre Baldi School of Information and Computer Sciences Institute for Genomics and Bioinformatics University of California, Irvine. UNDERSTANDING INTELLIGENCE. Human intelligence (inverse problem) AI (direct problem) - PowerPoint PPT Presentation

Citation preview

Page 1: UNDERSTANDING INTELLIGENCE

Predicting Protein Structures and Structural Features on a Genomic

Scale

Pierre BaldiSchool of Information and Computer Sciences

Institute for Genomics and BioinformaticsUniversity of California, Irvine

Page 2: UNDERSTANDING INTELLIGENCE

UNDERSTANDING INTELLIGENCE

• Human intelligence (inverse problem)• AI (direct problem)• Choice of specific problems is key• Protein structure prediction is a good

problem

Page 3: UNDERSTANDING INTELLIGENCE

PROTEINS

R1 R3

| |

Cα N Cβ Cα

/ \ / \ / \ / \N Cβ Cα N Cβ

| R2

Page 4: UNDERSTANDING INTELLIGENCE
Page 5: UNDERSTANDING INTELLIGENCE

Utility of Structural

Information

(Baker and Sali, 2001)

Page 6: UNDERSTANDING INTELLIGENCE

CAVEAT

A L L -A L P H A A L L -B E TA

M E M B R A N E (2 5 % ) G L O B U L A R (7 5 % )

P R O TE IN S

Page 7: UNDERSTANDING INTELLIGENCE

REMARKS• Structure/Folding• Backbone/Full Atom• Homology Modeling• Fold Recognition (Threading) • Ab Initio (Physical Potentials/Molecular

Dynamics, Statistical Mechanics/Lattice Models)

• Statistical/Machine Learning (Training Sets, SS prediction)

• Mixtures: ab-initio with statistical potentials, machine learning with profiles, etc.

Page 8: UNDERSTANDING INTELLIGENCE

PROTEIN STRUCTURE PREDICTION (ab initio)

DECOMPOSITION INTO 3 PROBLEMS

1. FROM PRIMARY SEQUENCE TO SECONDARY

STRUCTURE AND OTHER STRUCTURAL FEATURES 2. FROM PRIMARY SEQUENCE AND STRUCTURAL

FEATURES TO TOPOLOGICAL REPRESENTATION 3. FROM TOPOLOGICAL REPRESENTATION TO 3D

COORDINATES

Page 9: UNDERSTANDING INTELLIGENCE
Page 10: UNDERSTANDING INTELLIGENCE

Helices

1GRJ (Grea Transcript Cleavage Factor From Escherichia Coli)

Page 11: UNDERSTANDING INTELLIGENCE

Antiparallel β-sheets

1MSC (Bacteriophage Ms2 Unassembled Coat Protein Dimer)

Page 12: UNDERSTANDING INTELLIGENCE

Parallel β-sheets

1FUE (Flavodoxin)

Page 13: UNDERSTANDING INTELLIGENCE

Contact map

Page 14: UNDERSTANDING INTELLIGENCE

Secondary structure prediction

Page 15: UNDERSTANDING INTELLIGENCE

GRAPHICAL MODELS: BAYESIAN NETWORKS

• X1, … ,Xn random variables associated with the vertices of a DAG = Directed Acyclic Graph

• The local conditional distributions P(Xi|Xj: j parent of i) are the parameters of the model. They can be represented by look-up tables (costly) or other more compact parameterizations (Sigmoidal Belief Networks, XOR, etc).

• The global distribution is the product of the local characteristics:

P(X1,…,Xn) = Πi P(Xi|Xj : j parent of i)

Page 16: UNDERSTANDING INTELLIGENCE
Page 17: UNDERSTANDING INTELLIGENCE
Page 18: UNDERSTANDING INTELLIGENCE
Page 19: UNDERSTANDING INTELLIGENCE
Page 20: UNDERSTANDING INTELLIGENCE
Page 21: UNDERSTANDING INTELLIGENCE

DATA PREPARATION

 Starting point: PDB data base.       Remove sequences not determined by X ray diffraction.       Remove sequences where DSSP crashes.       Remove proteins with physical chain breaks (neighboring AA

having distances exceeding 4 Angstroms)       Remove sequences with resolution worst than 2.5 Angstroms.       Remove chains with less than 30 AA.       Remove redundancy (Hobohm’s algorithm, Smith-Waterman,

PAM 120, etc.) Build multiple alignments (BLAST, PSI-BLAST, etc.)

Page 22: UNDERSTANDING INTELLIGENCE

SECONDARY STRUCTURE PROGRAMS

DSSP (Kabsch and Sander, 1983): works by assigning potential backbone hydrogen bonds (based on the 3D coordinates of the backbone atoms) and subsequently by identifying repetitive bonding patterns.

  STRIDE (Frishman and Argos, 1995): in addition to hydrogen bonds, it uses also dihedral angles.

  DEFINE (Richards and Kundrot, 1988): uses difference distance matrices for evaluating the match of interatomic distances in the protein to those from idealized SS.

Page 23: UNDERSTANDING INTELLIGENCE

SECONDARY STRUCTURE ASSIGNMENTS

DSSP classes: • H = alpha helix• E = sheet• G = 3-10 helix• S = kind of turn• T = beta turn• B = beta bridge• I = pi-helix (very rare)• C = the restCASP (harder) assignment: • α = H and G• β = E and B• γ = the restAlternative assignment: • α = H• β = B• γ = the rest

Page 24: UNDERSTANDING INTELLIGENCE

ENSEMBLES

Profiles n s f o W Q3 residue

No 7 2 8 11 1611 68.7% No 9 2 8 11 1899 68.8% No 7 3 8 11 1919 68.6% No 8 3 9 11 2181 68.8% No 20 0 17 11 2821 67.7% Output 9 2 8 11 1899 72.6% Output 8 3 9 11 2181 72.7% Input 9 2 8 11 1899 73.37% Input 8 3 9 11 73.4% Input 12 3 9 10 2757 73.6% Input 7 3 8 11 1919 73.4% Input 8 3 9 10 2045 73.4% Input 12 3 9 11 2949 73.2%

Page 25: UNDERSTANDING INTELLIGENCE

SSpro 1.0 and SSpro 2.0 on the 3 test sets, Q3

SSpro 1.0 SSpro 2.0R126 H 0.8079 0.8238

E 0.6323 0.6619C 0.8056 0.8126

Q3 0.7662 0.7813EVA H 0.8076 0.8248

E 0.625 0.6556C 0.7805 0.7903

Q3 0.76 0.7767CASP4 H 0.8386 0.8608

E 0.6187 0.6851C 0.8099 0.822

Q3 0.778 0.8065

Page 26: UNDERSTANDING INTELLIGENCE
Page 27: UNDERSTANDING INTELLIGENCE
Page 28: UNDERSTANDING INTELLIGENCE

FUNDAMENTAL LIMITATIONS

100% CORRECT RECOGNITION IS PROBABLY IMPOSSIBLE FOR SEVERAL REASONS

• SOME PROTEINS DO NOT FOLD SPONTANEOUSLY OR MAY NEED CHAPERONES

• QUATERNARY STRUCTURE [BETA-STRAND PARTNERS MAY BE ON A DIFFERENT CHAIN]

• STRUCTURE MAY DEPEND ON OTHER VARIABLES [ENVIRONMENT, PH]

• DYNAMICAL ASPECTS • FUZZINESS OF DEFINITIONS AND ERRORS IN

DATABASES

Page 29: UNDERSTANDING INTELLIGENCE
Page 30: UNDERSTANDING INTELLIGENCE
Page 31: UNDERSTANDING INTELLIGENCE

BB-RNNs

Page 32: UNDERSTANDING INTELLIGENCE

2D RNNs

Page 33: UNDERSTANDING INTELLIGENCE

2D INPUTS

• AA at positions i and j• Profiles at positions i and j• Correlated profiles at positions i and j• + Secondary Structure, Accessibility, etc.

Page 34: UNDERSTANDING INTELLIGENCE
Page 35: UNDERSTANDING INTELLIGENCE

PERFORMANCE (%)

6Å 8Å 10Å 12Å

non-contacts

99.9 99.8 99.2 98.9

contacts 71.2 65.3 52.2 46.6

all 98.5 97.1 93.2 88.5

Page 36: UNDERSTANDING INTELLIGENCE

Protein ReconstructionUsing predicted secondary structure and predicted contact map

PDB ID : 1HCR, chain ASequence: GRPRAINKHEQEQISRLLEKGHPRQQLAIIFGIGVSTLYRYFPASSIKKRMNTrue SS : CCCCCCCCHHHHHHHHHHHCCCCHHHHHHHCECCHHHHHHHCCCCCCCCCCCPred SS : CCCCCCCHHHHHHHHHHHHCCCCHHHHEEHECHHHHHHHHCCCHHHHHHHCC

PDB ID: 1HCR

Chain A (52 residues)

Model # 147

RMSD 3.47Å

Page 37: UNDERSTANDING INTELLIGENCE

Protein ReconstructionUsing predicted secondary structure and predicted contact map

PDB ID : 1BC8, chain CSequence: MDSAITLWQFLLQLLQKPQNKHMICWTSNDGQFKLLQAEEVARLWGIRKNKPNMNYDKLSRALRYYYVKNIIKKVNGQKFVYKFVSYPEILNMTrue SS : CCCCCCHHHHHHHHCCCHHHCCCCEECCCCCEEECCCHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHHCCEEECCCCCCEEEECCCCHHHCCPred SS : CCCHHHHHHHHHHHHHCCCCCCEEEEECCCEEEEECCHHHHHHHHHHHCCCCCCCHHHHHHHHHHHHHCCCEEECCCCEEEEEEECCHHHHCC

PDB ID: 1BC8

Chain C (93 residues)

Model # 1714

RMSD 4.21Å

Page 38: UNDERSTANDING INTELLIGENCE

CASP6 Self AssessmentEvaluation based on GDT_TS of first submitted model

GDT_TS: Global Distance Test Total Score

GDT_TS = (GDT_P1 + GDT_P2 + GDT_P4 + GDT_P8 ) / 4

Pn : percentage of residues under distance cutoff n

Page 39: UNDERSTANDING INTELLIGENCE

Hard Target Summary

N: number of targets predictedAv.R.: average ranksumZ: sum of Z scores on all targets in setsumZpos: sum of Z scores for predictions with positive Z score

group N Av.R. sumZ sumZposBAKER-ROBETTA 25 9.12 27.81 27.94baldi-group-server 24 10.04 20.47 22.33Rokky 25 11.60 17.56 18.46Pmodeller5 20 12.55 14.35 16.11ZHOUSPARKS2 25 15.00 12.67 15.91ACE 25 13.08 11.63 14.89Pcomb2 24 16.04 10.82 13.58RAPTOR 24 16.33 9.81 13.21zhousp3 25 15.72 9.30 12.90PROTINFO-AB 19 16.74 8.62 12.59

•Top 10 groups displayed, of 65 registered servers

•Assessment on 25 new fold and fold recognition analogous target domains

Page 40: UNDERSTANDING INTELLIGENCE

Hard Target Summary•Top 10 groups displayed, of 65 registered servers

•Assessment on 19 new fold and fold recognition analogous target domains less than 120 residues

N: number of targets predictedAv.R.: average ranksumZ: sum of Z scores on all targets in setsumZpos: sum of Z scores for predictions with positive Z score

group N Av.R. sumZ sumZposbaldi-group-server 19 6.74 20.61 20.61BAKER-ROBETTA 19 9.11 20.44 20.57Rokky 19 12.11 12.30 13.20PROTINFO-AB 16 12.63 11.53 12.59ZHOUSPARKS2 19 15.32 8.91 11.87Pcomb2 18 15.39 9.54 11.48Pmodeller5 15 14.47 9.25 11.00PROTINFO 18 16.22 8.66 10.56ACE 19 14.21 6.98 10.24RAPTOR 18 17.00 7.22 9.64

Page 41: UNDERSTANDING INTELLIGENCE

• Target Information– Length: 70 amino acids– Resolution: 1.52 Å– PDB code: 1WHZ– Description: Hypothetical Protein From Thermus Thermophilus Hb8– Domains: single domain

Target T0281Detailed Target Analysis

• Assessment– GDT_TS server rank of our 1st model: 2– GDT_TS: 51.07– RMSD to native: 6.15

Page 42: UNDERSTANDING INTELLIGENCE

Target T0281Contact Map Comparison

True Map vs. Predicted Map True Map vs. Recovered Map

*note: true map is lower left

Page 43: UNDERSTANDING INTELLIGENCE

Target T0281Structure Comparison

true structure predicted structure

Page 44: UNDERSTANDING INTELLIGENCE

Target T0281Structure Comparison Superposition

True structure: thick trace

Predicted structure: thin trace

Page 45: UNDERSTANDING INTELLIGENCE

• Target Information– Length: 51 amino acids– Resolution: 2.00 Å– PDB code: 1WD5– Description: Putative phosphoribosyl transferase, T. thermophilus– Domains: 2nd domain, residues 53-103 of 208 AA sequence

Target T0280_2Detailed Target Analysis

• Assessment– GDT_TS server rank of our 1st model: 1 (also 1st among human groups)– GDT_TS: 54.41– RMSD to native: 5.81

Page 46: UNDERSTANDING INTELLIGENCE

Target T0280_2Contact Map Comparison

*note: true map is lower left

True Map vs. Predicted Map True Map vs. Recovered Map

Page 47: UNDERSTANDING INTELLIGENCE

Target T0281Structure Comparison

true structure predicted structure

Page 48: UNDERSTANDING INTELLIGENCE

Target T0281Structure Comparison Superposition

True structure: thick trace

Predicted structure: thin trace

Page 49: UNDERSTANDING INTELLIGENCE

THE SCRATCH SUITEwww.igb.uci.edu

– DOMpro: domains– DISpro: disordered regions– SSpro: secondary structure – SSpro8: secondary structure– ACCpro: accessibility– CONpro: contact number– DI-pro: disulphide bridges– BETA-pro: beta partners– CMAP-pro: contact map– CCMAP-pro: coarse contact map– CON23D-pro: contact map to 3D– 3D-pro: 3D structure (homology + fold recognition + ab-initio)

Page 50: UNDERSTANDING INTELLIGENCE
Page 51: UNDERSTANDING INTELLIGENCE

SISQQTVWNQMATVRTPLNFDSSKQSFCQFSVDLLGGGISVDKTGDWITLVQNSPISNLLCCCECCCCCCEEEECCCCCCCCCCCCEEEEEEECCCCEEEECCCCCCEEEEECCHHHHHHCCCEEEEECEEEEECCCCCCCTCCCCEEEEEEEETCSEEEECTTTTEEEEEECCHHHHHH-----------+--------------+++++++++-+---------++++----++++++---------+-+++-----------++++++++++-+-++++---+++++++++++++++-----------+--++---------+++++++++----+++-----++++++++++++++---------+-++++++--------+++++++++---++++-----++++++++++++++eeeeee---e--e-e-eee-ee-eee---------e-e--eeeeee--------------

RVAAWKKGCLMVKVVMSGNAAVKRSDWASLVQVFLTNSNSTEHFDACRWTKSEPHSWELIHHHHHHCCCEEEEEEEEEECCEEECCCCCEEEEEEEECCCCCCCCCEEEEEECCCCCCCCHHHHHHTTCEEEEEEEEEEEEEEECCCCCEEEEEEEECCCTTCCCEEEEEEECCTCCEEE+++++--+++++++++++-+----------++++++---------+-+++----------+++----++++++++++++----------+++++++++------++++++++++-+-+--++++---+++++++++++++--+------+++++++++------++++++++++---+-+++++-+-++++++++++++----------+++++++++------++++++++++---+-+-----ee---e-------e-e-ee-e-e-e-----e--eeee--e-------e-e-ee-e

..

Solvent accessibility threshold: 25%PSI-BLAST hits : 24

..

Query served in 151 seconds

Page 52: UNDERSTANDING INTELLIGENCE

Advantage of Machine Learning• Pitfalls of traditional ab-initio

approaches• Machine learning systems take time to

train (weeks).• Once trained however they can predict

structures almost faster than proteins can fold.

• Predict or search protein structures on a genomic or bioengineering scale .

Page 53: UNDERSTANDING INTELLIGENCE

DAG-RNNs APPROACH

• Two steps:– 1. Build relevant DAG to connect inputs, outputs, and hidden

variables– 2. Use a deterministic (neural network) parameterization together

with appropriate stationarity assumptions/weight sharing—overall models remains probabilistic

• Process structured data of variable size, topology, and dimensions efficiently

• Sequences, trees, d-lattices, graphs, etc• Convergence theorems• Other applications

Page 54: UNDERSTANDING INTELLIGENCE
Page 55: UNDERSTANDING INTELLIGENCE

Convergence Theorems

• Posterior Marginals:σBNdBN in distributionσBNdBN in probability (uniformly)

• Belief Propagation:σBNdBN in distributionσBNdBN in probability (uniformly)

Page 56: UNDERSTANDING INTELLIGENCE

Structural Databases

• PPDB = Poxvirus Proteomic Database

• ICBS = Inter Chain Beta Sheet Database

Page 57: UNDERSTANDING INTELLIGENCE
Page 58: UNDERSTANDING INTELLIGENCE
Page 59: UNDERSTANDING INTELLIGENCE
Page 60: UNDERSTANDING INTELLIGENCE

Strategies for drug design

O

HN

O

NHR O

RR

NH

O

O

HN

O

NH RO

R R

NH

OHN

HN

O

NHR

HN

R O

O

HN

O

NHR O

RR

NH

O

O

HN

O

NH RO

R R

NH

protein 2

O

protein 1

HN

protein 1

HN

O

NHR

protein 2

HN

R O

O

HN

O

NHR O

RR

NH

O HN

O

NHR

O

HN

O

NHR O

RR

NH

O HN

O

NHR

HN

O OHN

HN

HN

O OHN

HN

-sheet mimic -sheet mimic

protein 1 protein 1

• Block, modulate, mediate β-sheet interactions

• [Covalent modification of a chain to prevent β-sheet formation]

Page 61: UNDERSTANDING INTELLIGENCE
Page 62: UNDERSTANDING INTELLIGENCE
Page 63: UNDERSTANDING INTELLIGENCE

Three-Stage Prediction of Protein Beta-Sheets Using Neural Networks, Alignments, and Graph

Algorithms

Jianlin Cheng and Pierre Baldi

School of Info. and Computer Sci.University of California Irvine

Page 64: UNDERSTANDING INTELLIGENCE

Beta-Sheet Architecture

Page 65: UNDERSTANDING INTELLIGENCE

Importance of Predicting Beta-Sheet Structure

• AB-Initio Structure Prediction• Fold Recognition• Model Refinement• Protein Design• Protein Stability

Page 66: UNDERSTANDING INTELLIGENCE

Previous Work• Methods

– Statistical potential approach for strand alignment. (Hubbard, 1994; Zhu and Braun, 1999)

– Statistical potentials to improve beta-sheet secondary structure prediction.(Asogawa,1997)

– Information theory approach for strand alignment. (Steward and Thornton, 2000)

– Neural networks for beta-residue contacts. (Baldi, et.al, 2000)

• ShortcomingsFocus on one single aspect; not utilize structural contexts and evolutionary information; not exploit constraints enough; not publicly available.

Page 67: UNDERSTANDING INTELLIGENCE

Three-Stage Prediction of Beta-Sheets

• Stage 1 Predict beta-residue pairings using 2D-

Recursive Neural Networks (2D-RNN).• Stage 2 Align beta-strands using alignment algorithms.• Stage 3 Predict beta-strand pairs and beta-sheet

architecture using graph algorithms.

Page 68: UNDERSTANDING INTELLIGENCE

Dataset and StatisticsNum

Chains 916

Betaresidues

48,996

ResiduePairs

31,638

BetaStrand

10,745

StrandPairs

8,172

BetaSheet

2,533

Page 69: UNDERSTANDING INTELLIGENCE

Stage 1: Prediction of Beta-Residue Pairings Using 2D-RNN

Input Matrix I (m×m)

2D-RNNO = f(I)

Target / Output Matrix (m×m)

(i,j)

i-2 i-1 i i+1 i+2 j-2 j-1 j j+1 j+2 |i-j|

20 profiles 3 SS 2 SA

Tij: 0/1Oij: Pairing Prob.

(i,j)

Iij

Total: 251 inputs

Page 70: UNDERSTANDING INTELLIGENCE

An Example Target

Protein 1VJGBeta-Residue Pairing Map (Target Matrix)

Page 71: UNDERSTANDING INTELLIGENCE

An Example Output

Page 72: UNDERSTANDING INTELLIGENCE

Stage 2: Beta-Strand Alignment

• Use output probability matrix as scoring matrix

• Dynamic programming

• Disallow gaps and use simplified searching algorithms

1 m

n 1

1 m

1 n

Anti-parallel

Parallel

Total number of alignments = 2(m+n-1)

Page 73: UNDERSTANDING INTELLIGENCE

Strand Alignment and Pairing Matrix

• The alignment score (Pseudo Binding Energy) is the sum of the probabilities of paired residues.

• The best alignment is the alignment with maximum score.

• Strand Pairing Matrix.

Strand Pairing Matrix of 1VJG

Page 74: UNDERSTANDING INTELLIGENCE

Stage 3: Prediction of Beta-Strand Pairings and Beta-Sheet Architecture

Strand Pairing Constraints

Page 75: UNDERSTANDING INTELLIGENCE

Minimum Spanning Tree Like Algorithm

Strand Pairing Graph (SPG)

Goal: Find a set of connected subgraphs that maximize the sum of pseudo-energy and satisfy the constraints.

Algorithm: Minimum Spanning Tree Like Algorithm.

Page 76: UNDERSTANDING INTELLIGENCE

Example of MST Like Algorithm

0

1.3 0

.94 .37 0

.02 .02 .04 0

.02 .02 .03 1.9 0

.10 .05 .74 .04 .04 0

.02 .02 .03 .02 .02 .20 0

1234567

1 2 3 4 5 6 7

4 5

Strand Pairing Matrix of 1VJG

Assembly of beta-strandsStep 1: Pair strand 4 and 5

Page 77: UNDERSTANDING INTELLIGENCE

Example of MST Like Algorithm

0

1.3 0

.94 .37 0

.02 .02 .04 0

.02 .02 .03 1.9 0

.10 .05 .74 .04 .04 0

.02 .02 .03 .02 .02 .20 0

1234567

1 2 3 4 5 6 7

4 5

2 1

Strand Pairing Matrix of 1VJGA

N

Assembly of beta-strandsStep 2: Pair strand 1 and 2

Page 78: UNDERSTANDING INTELLIGENCE

Example of MST Like Algorithm

0

1.3 0

.94 .37 0

.02 .02 .04 0

.02 .02 .03 1.9 0

.10 .05 .74 .04 .04 0

.02 .02 .03 .02 .02 .20 0

1234567

1 2 3 4 5 6 7

4 5

2 1 3Strand Pairing Matrix of 1VJGA

N

Assembly of beta-strandsStep 3: Pair strand 1 and 3

Page 79: UNDERSTANDING INTELLIGENCE

Example of MST Like Algorithm

0

1.3 0

.94 .37 0

.02 .02 .04 0

.02 .02 .03 1.9 0

.10 .05 .74 .04 .04 0

.02 .02 .03 .02 .02 .20 0

1234567

1 2 3 4 5 6 7

4 5

2 1 3 6Strand Pairing Matrix of 1VJGA

N

Assembly of beta-strandsStep 4: Pair strand 3 and 6

Page 80: UNDERSTANDING INTELLIGENCE

Example of MST Like Algorithm

0

1.3 0

.94 .37 0

.02 .02 .04 0

.02 .02 .03 1.9 0

.10 .05 .74 .04 .04 0

.02 .02 .03 .02 .02 .20 0

1234567

1 2 3 4 5 6 7

4 5

2 1 3 67Strand Pairing Matrix of 1VJGA

N

C

Assembly of beta-strandsStep 5: Pair strand 6 and 7

Page 81: UNDERSTANDING INTELLIGENCE

Beta-Residue Pairing Results

• Sensitivity = Specificity = 41%

• Base-line: 2.3%. Ratio of improvement = 17.8.

• ROC area: 0.86• At 5% FPR, TPR is 58% • CMAPpro: Spec. and Sens. is 27%. ROC

area:0.8. TPR=42% at 5% FPR.

Page 82: UNDERSTANDING INTELLIGENCE

Strand Pairing Results

• Naïve algorithm of pairing all adjacent strands– Specificity = 42%– Sensitivity = 50%

• MST like algorithm– Specificity = 53%– Sensitivity = 59%– >20% correctly predicted strand pairs are non-adjacent

strand pairs

Page 83: UNDERSTANDING INTELLIGENCE

Strand Alignment Results

Paring Direction

Align.All

Align.Anti-P

Align.Para.

Align.Bridge

Acc. 93% 72% 69% 71% 88%

On the correctly predicted pairs:

Pairing Direction

Align.All

Align.Anti-P

Align.Para.

Align.Bridge

Acc. 84% 66% 63% 66% 73%

On all native pairs:

•Pairing direction is 15% higher than of random algorithm.•Alignment accuracy is improved by >15%.

Page 84: UNDERSTANDING INTELLIGENCE

Application and Future Work• New methods for beta-residue pairings (e.g. Linear

Programming, SVM), and strand alignment and pairings. More inputs (Punta and Rost, 2005).

• Applications– AB-Initio Structure Sampling (beta-sheet)– Fold Recognition (conservation of beta-sheets)– Contact Map– Model Refinement (pairing direction/alignment)

• Web server and datasethttp://www.ics.uci.edu/~baldig/betasheet.html

Page 85: UNDERSTANDING INTELLIGENCE

A New Fold Example (CASP6)1S12 (T0201, 94 residues)

1 2 3 4 5

1 0 1.71 .05 .29 .33

2 0 .06 .41 .12

3 0 .22 .04

4 0 .53

5 0

CEEEEEECCEEEECCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHEHHCCCCEEEEHHHHHHHHHHHHHHHHHHHHHHHHHCCCCEEEEEEECCC

Predicted: 1-2, 2-4, 3-4, 4-5

CEEEEECCCEEEEECCCCCHHHHHHHHHHHHHHHHHHHHCCCEEEEEECCEEEEEECCCCHHHHHHHHHHHHHHHHHHHHCCCCEEEEECCCCCC

True: 1–2, 2-4, 3-4, 1-5

True SS:

Predicted SS:

124

3

5

Rendered in Rasmol

Strand Pairing Matrix

Page 86: UNDERSTANDING INTELLIGENCE

ACKNOWLEDGMENTS• UCI:

– Gianluca Pollastri, Pierre-Francois Baisnee, Michal Rosen-Zvi– Arlo Randall, S. Joshua Swamidass, Jianlin Cheng, Yimeng Dou, Yann

Pecout, Mike Sweredoski, Alessandro Vullo, Lin Wu

– James Nowick, Luis Villareal

• DTU: Soren Brunak• Columbia: Burkhard Rost• U of Florence: Paolo Frasconi• U of Bologna: Rita Casadio, Piero Fariselli

www.igb.uci.edu/www.ics.uci.edu/~pfbaldi

Page 87: UNDERSTANDING INTELLIGENCE

1DFN| Defensin

Page 88: UNDERSTANDING INTELLIGENCE

Sequence with cysteine's position identified: MSNHTHHLKFKTLKRAWKASKYFIVGLSC[29]LYKFNLKSLVQTALSTLAMITLTSLVITAIIYISVGNAKAKPTSKPTIQQTQQPQNHTSPFFTEHNYKSTHTSIQSTTLSQLLNIDTTRGITYGHSTNETQNRKIKGQSTLPATRKPPINPSGSIPPENHQDHNNFQTLPYVPC[173]STC[176]EGNLAC[182]LSLC[18

6]HIETERAPSRAPTITLKKTPKPKTTKKPTKTTIHHRTSPETKLQPKNNTATPQQGILSSTEHHTNQSTTQILength: 257, Total number of cysteines: 5Four bonded cysteines form two disulfide bonds :173 -------186 ( red cysteine pair)176 -------182 (blue cysteine pair)

Prediction Results from DIpro (http://contact.ics.uci.edu/bridge.html)Predicted Bonded Cysteines:173,176,182,186Predicted disulfide bondsBond_Index Cys1_Position Cys2_Position1 173 1862 176 182

Prediction Accuracy for both bond state and bond pair are 100%.

A Perfectly Predicted Example

Page 89: UNDERSTANDING INTELLIGENCE

Sequence with cysteine's position identified: MTLGRRLAC[9]LFLAC[14]VLPALLLGGTALASEIVGGRRARPHAWPFMVSLQLRGGHFC[55]GATLIAPNFVMSAAHC[71]VANVNVRAVRVVLGAHNLSRREPTRQVFAVQRIFENGYDPVNLLNDIVILQLNGSATINANVQVAQLPAQGRRLGNGVQC[151]LAMGWGLLGRNRGIASVLQELNVTVVTSLC[181]RRSNVC[187]TLVRGRQAGVC[198]FGDSGSPLVC[208]NGLIHGIASFVRGGC[223]ASGLYPDAFAPVAQFVNWIDSIIQRSEDNPC[254]PHPRDPDPASRTHLength: 267, Total Cysteine Number: 11Eight bonded cysteines form four disulfide bonds: 55 ----- 71 (Red), 151 ----- 208 (Blue), 181 ----- 187 (Green), 198 ----- 223 (Purple)

A Hard Example with Many Non-Bonded Cysteines

Prediction Results from DIpro (http://contact.ics.uci.edu/bridge.html)Predicted Bonded Cysteines:9,14,55,71,181,187,223,254Predicted Disulfide Bonds:Bond_Index Cys1_Position Cys2_Position1 55 71 (correct)2 9 14 (wrong)3 223 254 (wrong)4 181 187 (correct)Bond State Recall: 5 / 8 = 0.625, Bond State Precision = 5 / 8 = 0.625Pair Recall = 2 / 4 = 0.5 ; Pair Precision = 2 / 4 = 0.5Bond number is predicted correctly.

Page 90: UNDERSTANDING INTELLIGENCE

Bond Num

Bond State Recall(%)

Bond State Precision(%)

Pair Recall(%)

Pair Precision(%)

1 91 46 74 392 93 77 61 513 90 74 54 454 77 87 52 595 71 86 33 426 65 84 27 347 63 85 36 558 66 89 27 419 60 83 23 35

10 55 86 30 4511 62 86 34 4712 67 97 17 2315 50 94 27 5016 82 99 11 1317 61 96 22 3318 50 82 6 919 47 90 11 20Overall bond state recall: 78%; overall bond state precision: 74%;

bond number prediction accuracy: 53%; average difference between true bond number and predicted bond number: 1.1 .

Prediction Accuracy on SP51 Dataset on All Cysteines

Page 91: UNDERSTANDING INTELLIGENCE

CURRENT WORK

• Feedback:Ex: SS Contacts SS Contacts

• Homology, homology, homology:SSpro 4.0 performs at 88%

Page 92: UNDERSTANDING INTELLIGENCE